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Abstract 
 
The multiscale modeling scheme encompasses models from the atomistic to the continuum scale. 
Phenomena at the mesoscale are typically simulated using reaction rate theory, Monte Carlo, or 
phase field models. These mesoscale models are appropriate for application to problems that 
involve intermediate length scales, and timescales from those characteristic of diffusion to long-
term microstructural evolution (~µs to years). Although the rate theory and Monte Carlo models 
can be used simulate the same phenomena, some of the details are handled quite differently in 
the two approaches. Models employing the rate theory have been extensively used to describe 
radiation-induced phenomena such as void swelling and irradiation creep. The primary 
approximations in such models are time- and spatial averaging of the radiation damage source 
term, and spatial averaging of the microstructure into an effective medium. Kinetic Monte Carlo 
models can account for these spatial and temporal correlations; their primary limitation is the 
computational burden which is related to the size of the simulation cell. A direct comparison of 
RT and object kinetic MC simulations has been made in the domain of point defect cluster 
dynamics modeling, which is relevant to the evolution (both nucleation and growth) of radiation-
induced defect structures. The primary limitations of the OKMC model are related to 
computational issues. Even with modern computers, the maximum simulation cell size and the 
maximum dose (typically much less than 1 dpa) that can be simulated are limited. In contrast, 
even very detailed RT models can simulate microstructural evolution for doses up 100 dpa or 
greater in clock times that are relatively short. Within the context of the effective medium, 
essentially any defect density can be simulated. Overall, the agreement between the two methods 
is best for irradiation conditions which produce a high density of defects (lower temperature and 
higher displacement rate), and for materials that have a relatively high density of fixed sinks such 
as dislocations.  
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1. Introduction 

As discussed in a previous report [1], an adequate quantitative understanding of the 

changes in the physical and mechanical properties of materials that occur during thermal aging or 

under irradiation requires a model capable of describing the formation and growth of point defect 

and solute clusters through all stages of cluster evolution, from their nucleation to growth and 

coarsening. That report provided a general description of two alternate methods, reaction rate 

theory [2] and object kinetic Monte Carlo, that can be used to describe cluster evolution and 

some preliminary comparisons of the results obtained from specific implementations of the two 

methods. A substantial fraction of the background material from that preliminary report is 

repeated here in order to provide a self-contained description of both the computational methods 

and an extensive comparison of the predictions the models provide. 

If a random spatial distribution of defect clusters is assumed, their evolution can be 

described in terms of a defect size distribution function (SDF) in the framework of the so-called 

mean field approximation. Evolution of this SDF can be accounted in the context of a reaction 

rate theory (RT) model though the use of a Master Equation (ME) that describes both growth and 

dissolution of the clusters due to reactions with mobile defects (or solutes), thermal emission of 

these same species, and cluster coalescence if the clusters are mobile. The relevant physical 

processes require accounting for clusters containing a very large number of point defects or 

atoms (>106), particularly for high irradiation doses or long ageing times. An explicit 

discretization of the ME leads to a system of coupled differential equations in which time is an 

explicit variable. The number of equations is the same as the number of point defects (an/or 

solutes) in the largest possible cluster. Numerical integration of such a system is feasible on 

modern computers, but such calculations are overly time consuming. Most practicable solutions 

to the ME by numerical methods employ some grouping procedure to significantly reduce the 

number of equations [3-8].  

The object kinetic Monte Carlo technique (OKMC) provides another method for 

calculating the evolution of the cluster SDF. This method has become practicable during last 

decade because of progress in computer technology. In the framework of OKMC, each point 

defect or defect cluster is treated as an object located in a specific position in a simulation cell of 

a given volume. Irradiation is simulated by introducing new point defects or defect clusters at 
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discrete times and in specific locations in the box, and evolution occurs as the various objects 

migrate and participate in a series of predefined reactions with other objects. Each object type 

has associated properties, such as size, reaction radius, and, if mobile, jump frequency and 

activation energy for migration. The reaction probabilities for various physical transition 

mechanisms, such as migration jump rates and the emission rate of point defects from larger 

defects or traps, are calculated based on Arrhenius frequencies for thermally activated events. 

The Monte Carlo algorithm [9] is used at each step to select the event that is going to take place 

based on the corresponding probabilities. After a given event is chosen, the time is increased 

according to a algorithm that depends on the jump frequencies for all the possible events in the 

system. 

One advantage of the RT approach is there are essentially no limits to the density or size of 

the clusters when calculating their evolution, providing the opportunity to compare with a broad 

range of experimental observations. However, the spatial and temporal correlations in defect 

production are not accounted for, which may in some cases lead to a loss of specific information. 

OKMC models can account for these spatial and temporal correlations; their primary limitation 

is related to the size of the simulation cell. In order to maintain a reasonable simulation time, the 

practicable box size is typically a cube with an edge length on the order of 100 nm. This limits 

the total cluster number density which may be obtained in this method. For example, if there is 

only one cluster in a 100 nm x 100 nm x 100 nm simulation cell, the corresponding cluster 

number density is 1021 m-3. This is an intermediate to high defect density for many relevant 

irradiated materials, and no lower cluster density can be treated by OKMC in a box of this size. 

Even for the relatively high defect density of 1022 m-3, the number of clusters in such a 

simulation cell would only be 10, which may not be enough to provide a good statistical 

simulation of defect cluster evolution. Another problem with statistics may arise when 

simulating clusters which are not stable in a certain size range, i.e. when cluster nucleation 

requires reaching a certain critical size at which they become stable enough to be able grow 

continuously. Such nucleation is possible due to fluctuations in the cluster growth and resolution 

processes and will be properly calculated by OKMC only if the density is sufficiently high to 

maintain such fluctuations.  

Thus, both the RT and OKMC have advantages and limitations based on the underlying 

nature of the techniques; the major features of these models are briefly summarized in Table 1. 
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Since the two techniques simply represent different mathematical methods for solving a given 

problem, they should provide similar results for well designed sample problems. A systematic 

application of the two methods will determine if they produce consistent results, or whether there 

are problems for which one method is preferable to the other. This is the main objective of the 

present study. Since the RT approach has been well established by broad use during last few 

decades, the approach taken here was to use RT calculations as a reference point to evaluate the 

predictions of the OKMC method for several different types of simulations. The RT and OKMC 

models used for this comparison are presented in the next section. The results of the calculations 

and a discussion of the conclusions are given in Sections 3 and 4, respectively. 

Table 1: Comparison of reaction rate theory and object kinetic Monte Carlo methods 

Feature or Treatment 
of Variable Reaction Rate Theory Object Kinetic Monte Carlo 

solution method deterministic stochastic 

time explicit variable inferred from possible 
processes and reaction rates 

space homogeneous effective 
medium 

1 full spatial dependence 

defect production time and space-averaged 
2 discrete in time and space 

sink strength explicit analytical expression inferred from fate of point 
defects 

defect or sink density essentially unlimited 
computationally limited by 
simulation cell size, i.e.:    
Nmin ≥ 1/(box volume) 

1, 2 partial corrections to the typical RT approximations are possible, including multi-region 
RT models to account for spatial dependence in a limited way and the use of a so-called 
cascade diffusion model [10] to treat the time dependence of primary damage formation   

 

2. Description of Models 

The comparison of the two methods is more straight forward if restricted to a particular 

case. This investigation is focused on the evolution of the size distribution function of vacancy 
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and self-interstitial atoms (SIAs) clusters in a pure metal under irradiation with a constant 

network dislocation density as the only fixed sink. In the following discussion, the term void is 

used in a generic way to refer to a vacancy cluster of any size. The formulated model makes use 

of the following assumptions: 

1. The primary damage is produced either: (a) in the form of Frenkel pair, i.e. only single 

vacancies and SIAs; or (b) Frenkel pair plus small clusters of either vacancies or SIAs 

typical of those generated by displacement cascades; 

2. The point defects diffuse by three-dimensional random walk; 

3. The nucleation of vacancy and SIA clusters proceeds via a homogeneous mechanism, 

that is due to monodefect + monodefect = di-defect in the case of 1(a), or by both 

homogeneous and in-cascade clustering mechanisms at the same time for 1(b); 

4. Vacancy clusters are treated as spherical voids that are neutral sinks for point defects; 

thermal emission of vacancies is determined by a size-dependent binding energy; 

5. SIA clusters are treated as either planar loops or three dimensional spherical clusters, 

with a preference (bias) for absorbing SIAs relative to vacancies, and are stable against 

thermal SIA emission; 

6. Edge dislocations are a fixed matrix sink with a preference (bias) for SIAs that is the 

same as the SIA clusters; and 

7. The vacancy and SIA clusters are immobile. 

These assumptions are only used for simplification and do not lead to any restrictions in 

comparing the two methods. 

2.1 Rate theory model 

2.1.2. Form of master equation 

Based on the assumptions listed above, the SDF of voids, fv(x,t), and SIA clusters, fi(x,t), 

can be described by the following pair of master equations, in which x is the number of point 

defects in the cluster [4, 11]: 

 ( , ) ( ) ( 1, ) ( , ),v
v v v

f x t K x J x t J x t
t

∂
∂

= + − −  (1a) 

 ( , ) ( ) ( 1, ) ( , ),i
i i i

f x t K x J x t J x t
t

∂
∂

= + − −  (1b) 
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 ( ) ( )
2 2

( ) 1 , ( ) 1 ,v v NRT r i i NRT r
x x

xK x G xK x Gε ε ε ε
∞ ∞

= =

= − = −∑ ∑  (1c) 

 
The ( ), ( )v iK x K x  are the rates of in-cascade generation of voids and SIA loops, respectively, 

rε is the fraction of Frenkel pair which recombine during the cascade cooling, ,v iε ε  are the in-

cascade clustering fractions for vacancies and SIAs, respectively, GNRT is the NRT Frenkel pair 

generation rate, and Jv(x,t), Ji(x,t) are the void and SIA loop fluxes in cluster size space, 

respectively: 

 ( , ) ( , ) ( , ) ( 1, ) ( 1, ),v v vJ x t P x t f x t Q x t f x t= − + +  (2a) 
 ( , ) ( , ) ( , ) ( 1, ) ( 1, ).i i iJ x t P x t f x t Q x t f x t= − + +  (2b) 

In Eqs. (2), Pv(x,t) and Pi(x,t) are the rates of vacancy absorption by a void and SIA 

absorption by a SIA cluster, respectively; Qv(x,t) is the sum of the rates of SIA absorption and 

vacancy emission from a void, and Qi(x,t) the rate of vacancy absorption by a SIA cluster. These 

rates depend on the cluster concentration and the diffusion properties of the mobile defects, i.e. 

vacancies and SIAs. In the case of 3-D diffusion of point defects to voids and SIA loops the rates 

take the following form [4, 11]: 

 1
3( ) ( ),v v v vP x w x D C t=  (3a) 

 ( )1
3( ) exp ( ) ( ) ( ),b i v

v v i i v v v vQ x w x D C D E x kT Q x Q x⎡ ⎤= + − = +⎣ ⎦  (3b) 

 1
2( ) ( ),l

i i i i iP x Z w x D C t=  (4a) 

 1
2( ) ( ),l

i v i v vQ x Z w x D C t=  (4b) 

 
1/ 3 1/ 22

2

48 4, .v iw w
b

π π⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠⎝ ⎠
 (5) 

 
Ci,v(t) and Di,v are the concentrations and diffusion coefficients, respectively, of vacancies 

(subscript v) and SIAs (subscript i), ,l l
v iZ Z  are the dislocation loop capture efficiencies for 

vacancies and SIAs, ( )b
vE x is the binding energy of a vacancy to a vacancy cluster of size x, kB is 

Boltzmann’s constant, T is the absolute temperature, Ω is the atomic volume, and b is the 

magnitude of the SIA loop Burgers vector. In the case when the dislocation loops are treated as 

3-D clusters, which is used in the OKMC calculations, the parameter iw has to be replaced by vw  

and x1/2 replaced by of x1/3 in Eqs. (4a) and (4b). 
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Note that if the SDFs described by Eqs. (1a) and (1b) are written in x-space, the cluster 

densities are dimensionless. That is, the total density of clusters, , ,
2

( )v i v i
x

N f x
∞

=

= ∑ , has the units 

[1/atom]. The capture efficiencies used in Eqs. (3) and (4)  have dimensions of [m-2], and the 

cluster sink strengths, which are given by: 

 

2 1/3

2 2

2 1/2
( , ) ,

2 2

( ) ( ) ( ),

( ) ( ) ( ),

v v v v v
x x

l
l v i i i v i i i

x x

k P x f x w x f x

k P x f x Z w x f x

∞ ∞

= =

∞ ∞

= =

= ≡

= ≡

∑ ∑

∑ ∑
  

also have the dimensionality of [m-2]. For the purpose of comparing the results obtained by the 

RT and OKMC techniques, it will be useful to show that the sink strengths given by Eqs. (6) are 

equivalent to those that are normally used in the mean size approximation in RT models: 

 
2

2
( , ) ,

4 ,

2 ,
v v v

l
l v i v i i i

k R N

k Z R N

π

π

= < >

= < >
 

which describe damage accumulation in the form of voids and loops using the loop capture 

efficiency for vacancies and interstitials, Zl
v,i, the mean cluster radii <Rv> and <Ri>, and the 

corresponding total number densities Nv and Ni with units of m and m-3, respectively. In order to 

show this, the SDF can be calculated in the domain where the size of a cluster is defined by its 

radius, r, instead of x. The SDFs can be calculated by taking into account that a sum of the SDF 

over all sizes in any phase space used for the ME has to be equal to the total number of clusters, 

Ntot. Replacing the sums with integrals, the total number density of the clusters in the case under 

consideration may be written as 

 
min2

( ) ( ) .tot
x R R

N f x dx f R dR
∞ ∞

= =

= ≡∫ ∫  (8) 

The two integral can be equal to each other if 

 ( ) ( ) .f x dx f R dR=  (9) 

Taking into account that the radii of voids, rv, and loops, ri, and the total number of defects 

in the clusters, xv, xi, related to each other as follows 

 3 24 , ,
3 v v i iR x R b xπ π= Ω = Ω  (10) 

 
(7a) 
 

(7b) 

 
(6a) 
 
(6b)
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and using Eq. (9) the functions fv(rv) and fi(ri) can be easily calculated 

 
1/ 3 1/ 2

2 / 3 1/ 236 4( ) ( ) , ( ) ( ) .v v v i i i
bf R f x x f R f x xπ π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

 (11) 

Note that dimensionality of the functions ( ), ( )v v i if R f R  is [ 1 1
m atom

]. On the other hand 

the SDFs in r-space are normally presented as a number of clusters per unit volume. This can be 

obtained by dividing the right hand sides of Eqs. (11) by the atomic volume, Ω, i.e. 

, , , ,
1( ) ( )v i v i v i v iF R f R=
Ω

. Here the capital F is used to distinguish between the dimensional SDF 

(1/m4) and SDFs ( ), ( )v v i if R f R ). Using Eqs. (10), (11) and replacing the sums in Eq. (6) 

by the corresponding integrals one can easily find that: 

 
,min

1/ 32
2 1/ 3

2
2

48 ( ) 4 ( ) 4 ,
v

v v v v v v v v
x R

k x f x dx R F R dR R Nπ π π
∞ ∞

=

⎛ ⎞
= = ≡ < >⎜ ⎟Ω⎝ ⎠

∫ ∫  (12a) 

 
,min

1/2
2 1/2

( , ) , , ,
2

4 ( ) 2 ( ) 2
i

l l l
i v i v i i v i i i i i v i i i

x R

k Z x f x Z R F R dR Z R N
b
π π π

∞ ∞

=

⎛ ⎞= = ≡ < >⎜ ⎟Ω⎝ ⎠ ∫ ∫  (12b) 

where 

 ,min ,min

,min ,min

( ) ( )

, .
( ) ( )

v i

v i

v v v v i i i i
R R

v v

v v v i i i
R R

R F R dR R F R dR

R R
F R dR F R dR

∞ ∞

∞ ∞< >= < >=
∫ ∫

∫ ∫
 (13) 

Although the integral of the SDFs shown in Eq. (7) has the same value for either phase 

space, the difference in dimensionality means the two SDF have quite different shapes in r- or x-

space. This is shown in Fig. 1, where r- and x-space SDFs calculated using the RT for a specific 

case are compared. Although use of the x-space description may be more convenient for 

purposes of the calculations, the r-space SDF is more appropriate for comparing with 

experimental observations such as TEM measurements. 
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2.1.2. Initial and boundary conditions 

The initial and boundary conditions for SDFs of void, SIA loops and point defect 

concentrations are taken to have the following form 

 0( , 0) ( 1), ( , 0) 0, ( 1),v v if x t C x f x t xδ= = − = = ≥  (14a) 

 ( 1, ) ( ), ( 1, ) ( ),v i if x t C t f x t C tv= = = =  (14b) 

 ( , ) ( , ) 0,v if x t f x t= ∞ = = ∞ =  (14c) 

 0( 0) , ( 0) 0,v v iC t C C t= = = =  (14d) 

where 0 exp
f

v
v

B

EC
k T

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 is the thermal equilibrium vacancy concentration ( f
vE is the 

vacancy formation energy) and ( )xδ is the Kronneker delta. 

 

2.1.3. Equations for point defect concentrations 

In order to complete the system of equations, we must add equations for the evolution of 

the vacancies, Cv, and SIAs, Ci, which are given by [6]: 
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 Fig. 1. Void size distribution function calculated for the case of 2vE =0.3: F(x) in phase space 
x (x=number of vacancies), and F(d) in phase space d (d= void diameter). 
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( ) ( ) ( )

( ) ( )

0
2

1

( ) 1 1 ( ) ( ) ( ) ( ) ( , )

(1) (1, ) (2) (2, ) (2) (2, ) ( ) ( , ) ( 1) ( 1, ) ,

x
dv

NRT r v R i i v v v v v i i
x

x
v v

v v v v i v v v v v
x

dC t G D C t C t Z D C t C P x f x t
dt

P f t Q f t P f t P x f x t Q x f x t

ε ε µ ρ
=∞

=

=∞

=

⎡ ⎤= − − − + − +⎢ ⎥⎣ ⎦

⎡ ⎤− − − − − + +⎣ ⎦

∑

∑
(15) 

 
( ) ( )

[ ]

1

1

( ) 1 1 ( ) ( ) ( ) ( , )

(1) (1, ) (2) (2, ) ( 1) ( 1, ),

x
di

NRT r i R i i v i i i i i
x

x
i

i i v i v v
x

dC t G D C t C t Z D C P x f x t
dt

P f t P f t Q x f x t

ε ε µ ρ
=∞

=

=∞

=

⎡ ⎤= − − − + +⎢ ⎥⎣ ⎦

− − − + +

∑

∑
 (16) 

where GNRT is the point defect generation rate, Rµ  is the recombination coefficient, ρ  is 

the dislocation density, and ,d d
v iZ Z  are the dislocation capture efficiencies for vacancies and 

SIAs, respectively (here d
vZ is set equal to 1.0). The first term on the right hand side of Eqs. (15) 

and (16) represents the generation rates of the mobile point defects, and the second term 

represents the capture rates by mutual point defect recombination, dislocations and the SIA loops. 

The third term accounts for the fact that reactions between two vacancies and two SIAs eliminate 

both of them at the same time, and the generation of vacancies and SIAs by reactions between a 

di-vacancy and SIA and di-SIA and vacancy. The last term represents the point defect capture 

rates by voids. 

Eqs. (1)-(4) and(15), (16) comprise a large system of coupled nonlinear differential 

equations and, in the general case, can be only solved by numerical methods. For realistic sizes 

of voids and SIA clusters the system size can exceed 106 equations, requiring that practicable 

solution of this system will require some grouping procedure to minimize the number of 

equations. This amounts to approximating the continuous SDF as a histogram. In the present 

work the grouping method developed by Golubov, et al. [6] was used. 

2.2 Object kinetic Monte Carlo Model 

2.2.1. Thermally-activated processes 

The general features of the OKMC code used in the present work, LAKIMOCA, are 

described in [12]. The model treats radiation produced defects (vacancies, self-interstitials atoms, 

and clusters thereof) as objects that have specific reaction volumes and that are located in 

particular positions in the simulation box. Each object can migrate and participate in a series of 
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predefined reactions. The probabilities for physical transition mechanisms, which are basically 

migration jumps and emission from larger defects or from traps, are calculated in terms of 

Arrhenius frequencies for thermally activated events, ,exp a i
i i

B

E
k T

ν
⎛ ⎞

Γ = −⎜ ⎟
⎝ ⎠

, where iν is the 

attempt frequency (pre-factor) for event i, and Ea,i is the corresponding activation energy. The 

Monte Carlo algorithm [9] is used at each step to select the event that is going to take place, 

based on the corresponding probabilities. After a certain event is chosen, time is increased 

according to the residence time algorithm, 
1 1

th ext
e eN N

i j
i j

Pτ
= =

⎛ ⎞
∆ = Γ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

-1
 [13], where the Pj are the 

probabilities of external events, such as the appearance of a cascade or of isolated Frenkel pair 

produced by impinging particles. The choice of this expression is in the long term equivalent to 

choosing ' ln *Rτ τ∆ = − ∆ , where R is a random number between 0 and 1 [14]. 

2.2.2. Sink strengths in the OKMC 

In addition, the model includes non-thermally activated events, such as the annihilation of 

a defect after encountering either a defect of opposite nature (i.e. a SIA encountering a vacancy) 

or a sink, as well aggregation, either by adding a point-defect to a cluster or by forming a 

complex between a defect and a trap for it. These events occur only on the basis of geometrical 

considerations (overlap of reaction volumes) and do not participate in defining the progression of 

time. It is possible to introduce different classes of immobile traps and sinks, characterized by 

specific geometrical shapes (spheres, infinite cylinders, surfaces etc.) suitable for mimicking 

voids and other defects such as dislocations and grain boundaries.  

In the present work, the OKMC technique is used to simulate damage accumulation in the 

according to the framework of the model formulated above. A bcc iron lattice containing edge 

dislocations is simulated, with the evolution of two types of point defect clusters, voids and SIA 

loops. To simplify the calculations, both types of defect clusters are treated as spherical 

absorbers. The only difference between the vacancy clusters and the SIA loops is that the first 

ones are described as neutral sinks, whereas the second are considered to be biased, i.e. having 

preference for absorption of SIAs. Thus, instead of using Eq. (6b), the sink strength of the SIA 

clusters is given by: 
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 ( )2 1/3
( , ) , ,

2

( ) 4 , 1, 1 .l l l l
i v i v i v i v i i i v i

x

k Z w x f x Z R N Z Zπ
∞

=

= ≡ < > = >∑  (22) 

The bias of the SIA clusters is equal to ( ) / 1l l l l
l i v v ip Z Z Z Z= − ≡ −  and in the following 

calculations is chosen to be equal of that for the dislocations, i.e. l d
i iZ Z=  . Note that such an 

approach for the shape of SIA clusters in the following calculations is quite reasonable since the 

sink strengths of small spherical clusters and that of dislocation loops are similar when the 

cluster size is not large. Using Eqs. (6) one can find that the ratio of the sink strengths is given by 

 
( )
( ) ( )

1/ 6
2

3/ 2 1/ 6 1/ 6
2 3 1.592 ,

i sperical

i loop

k
x x

k
π − −≈ =  (23) 

 
i.e. it only weakly depends on the number of defects in the cluster (it varies within a factor 

2 when x varies in a range from 2 to 104). This size range matches well the calculations presented 

in this work since the highest irradiation dose used in the calculations is rather small (10-2 dpa). 

When the sink strength of small clusters is accounted for in the OKMC, a measurable 

difference is observed between the RT and OKMC. This arises from the discrete  spatial 

description of point defect absorption in the OKMC. In the case of the RT, the equivalent radius 

of a cluster containing any number of point defects can be calculated using Eq. (10), and this 

radius determines the sink strength, which is essentially the probability of the cluster absorbing a 

mobile point defect in that model. However, in the OKMC model, a cluster of X point defects 

occupies X lattice sites. Point defect absorption occurs when a mobile point defect arrives at an 

adjacent lattice site. For relatively large clusters the reaction probability or sink strength is nearly 

the same since the larger clusters are more nearly spherical. However, the equivalent radius 

given by Eq. 10 over-estimates the reaction rate for small clusters. This is illustrated in Fig. 2, in 

which the sink strength obtained by the two models is shown for vacancy clusters containing up 

to 500 vacancies (equivalent radius of  1.12 nm). The discrete points were obtained by OKMC 

simulations in which point defect absorption was computed for vacancy clusters of a the 

indicated size. The lines indicate RT sink strengths computed using the equivalent radius from 

Eq. (10). The dashed line is obtained using the lowest order expression for the sink strength, Eq. 

(7a), and the solid line is obtained when the first order correction term is included to account for 

multiple sink effects [15]. This multiple sink correction is implicitly accounted for in the OKMC 
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method. The impact of this difference in sink strength will be discussed further when the results 

are presented in Section 3. 

 

 
More than one approach could be followed to simulate the sink strength of dislocations in 

OKMC. One possible method is the direct introduction of an absorbing cylinder of a certain 

length, Ld, corresponding to the desired dislocation density, ρ, and with specified capture 

efficiencies for point defects. In this case, one may expect to reproduce the sink strength given in 

Eqs. (15) and (16) with the efficiencies 
( ), 1

,

2

ln
d
v i

cv ci

Z
kR

π
−

=
⎡ ⎤
⎣ ⎦

, which leads to a dislocation bias to 

be equal to: 

 ( )
( ) 1

ln /
,

ln

d d
di dvi v

d
v di

R RZ Zp
Z kR −

−
= =

⎡ ⎤
⎣ ⎦

 (24) 

 
where rdi, rdv are the cylinder capture radii for SIAs and vacancies, respectively, and 

2k k=  (where 2k is the total sink strength in the crystal). This approach appears relatively 

Fig. 2. Comparison of vacancy cluster sink strength obtained in OKMC simulations (discrete 
points) and the analytical expression applied in the RT (lines). The dashed line is the lowest 
order sink strength, which is valid for small sink volume fractions, and the solid line includes 
the first order sink strength correction factor [15]. 
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intuitive and straight forward, but this is not the case. The first problem arises with choosing the 

cylinder length. In order to simulate a given dislocation density, ρ, the length of the cylinder has 

to be taken to be equal to d boxL Vρ= , which may be too small or too large to fit conveniently in 

the simulation box, 1/ 3
box boxL V= . In addition, the dislocation density can vary by several orders of 

magnitude whereas the maximum box size is essentially fixed by computational limitations. As a 

result, such a cylinder may have its ends inside the simulation box, and thus cannot reproduce the 

actual cylindrical symmetry of a dislocation. The impact of this on the dislocation sink strength 

requires further investigation, which is beyond the scope of the present work, and is not directly 

relevant to the comparison of the RT and OKMC methods. A second issue arises from the fact 

that the dislocation sink strength and corresponding bias depends on the total sink strength, 2k , 

see Eq. (24), which changes during the irradiation. Because of these issues, the alternate 

approach discussed in the next paragraph was used to simulate the dislocation sink density.  

One way to avoid these complications is to simulate the dislocation sink by introducing 

another class of spherical absorber, which maintains the two main properties of dislocations as a 

sink for point defects: (a) a preference for SIA absorption, i.e. maintain a constant dislocation 

bias, and (b) maintain constant sink strength during irradiation. This may be achieved by 

introducing additional spherical absorbers with fixed density and size as follows 

 2 4 ,d d
vd vk R Nπ ρ= ≡  (25a) 

 2 4 , ( ).d d d d
id i i vk R N R Rπ= >  (25b) 

Thus choosing a specific capture radius for vacancies, d
vR , the density of the absorbers, 

dN , can be calculated from the first Eq. (25), 
4

d
d
v

N
R
ρ
π

= . The bias in the case is equal to 

 
2 2

2 1,
d

i v i
d

v v

k k Rp
k R
−

= = −  (26) 

i.e. it depends on the ratio of /d d
i iR R  only. Taking the ratio /d d

i iR R  to be equal to d
iZ one 

may expect that Eqs. (25) will reproduce the sink strength of dislocations with respect to their 

ability to capture point defects. Thus, Eqs. (25) and (26) permit calculating the absorber 

properties of dislocation at any given dislocation density and bias. The spherical absorbers used 
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to simulate dislocations are randomly distributed in the simulation box, with capture radii of 

0.4 , 0.48d d
v iR nm R nm= = for vacancies and SIAs, respectively,. 

An OKMC simulation cell size of 300×300×300 lattice parameters was used in all the 

simulations discussed here. Given the lattice parameter of α-Fe (see Table 2), this leads to a 

volume equal to 6.423x10-22 m3. As a result, the minimum density of any given object that can be 

obtained in the OKMC simulations is 1.56x1021 m-3, i.e. one per box volume. The impact of this 

limitation will be discussed below. 

2.3 Material and irradiation parameters 

In order to explore a range of irradiation phenomena, and to help isolate the effects of 

different mechanisms, two types of irradiation conditions were considered: 

1. Pure Frenkel pair production only, which is similar to electron irradiation, and 

2. Cascade damage production, typical of heavy ion or neutron irradiation, in which 30% 

of the SIA and vacancies are produced in small clusters (14% di-, 12% tri-, 4% tetra-interstitials) 

and 6-vacancy clusters. 

For the second case, two classes of cascade debris were considered in the OKMC 

simulations: (2a) normal cascades in which the point defects and defect clusters were spatially 

correlated as observed in atomistic simulations of cascade damage formation [16], and (2b) 

special “random” cascades in which the spatial correlation was not preserved. Case (2b) is a 

better approximation of how the damage production is simulated in the rate theory model. The 

cascade efficiency, i.e. the fraction of point defects that survive after cascade cooling phase, is 

taken to be 0.4 for the cases of cascade damage production. When simulating Frenkel pair 

production, the cascade efficiency is essentially 1.0, so the damage rate was set to permit 

comparison with cascade damage results at the same effective displacement rate. 

The binding energy of a vacancy with a void of size x is described using the capillarity 

model adjusted to a specific di-vacancy binding energy, 2vE . The general expression for the 

vacancy binding energy takes the following form: 

 ( ) ( )2 / 32 / 3

2 2 / 3

1
( ) .

2 1
b f f
v v v v

x x
E x E E E

⎛ ⎞− −
= + − ⎜ ⎟⎜ ⎟−⎝ ⎠

 (27) 
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Table 2. Material and irradiation parameters used in calculations 

Temperature, T 373 to 523 K 
Lattice parameter, a 0.2876 nm 

Atomic volume, 3 / 2aΩ =   1.189x10-29 m3 

Number of atoms in unit volume, 1/N = Ω  8.407x1028 m-3 

Box volume of a cube of size 300a, boxV  6.423x10-22 m3 

Number of atoms in the box, /box boxN V= Ω   5.4x107 

Number density equivalent to one cluster in, 1/cl boxN V=  1.557x1021 m-3 

NRT displacement rate, GNRT 4x10-7 to 4x10-5 dpa/s 
Cascade survival efficiency, (1- rε ) 0.40 

Fraction of SIAs in cluster form, iε  (x=2, 3 and 4) 0.30 

Fraction of voids in cluster form, vε  (x=6) 0.30 

Recombination coefficient, ( )4 /R v ir rµ π= + Ω , ( 0.4466v ir r+ =  nm) 4.72x1020 m-2 

Attempt frequency, ν  6.0x1012 s-1 

Vacancy diffusion coefficient, 0 exp
m
v

v v
ED D
kT

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

pre-exponential, 2
0

1 3,
6 2vD r r aν

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

migration energy, m
vE  

 
 
 
6.02x10-8 m2/s 
 
0.65eV 

SIA diffusion coefficient, 0 exp
m
i

i i
ED D
kT

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

pre-exponential, 2
0

1
6iD r ν=  

migration energy, m
iE  

 
 
 
6.02x10-8 m2/s 
 
0.30eV 

Binding energy of di-vacancies, 2vE  0.2 - 0.8 eV 

Capture efficiencies of dislocations and SIA clusters, ,l l
v iZ Z  1.0, 1.20 

Dislocation density, ρd 3x1014 m-2 

Capture radii for “dislocation” spherical absorbers, ,d d
i vR R   0.48 and 0.4 nm 

(p=0.2) 
 

The energy 2vE  can be treated as a variable parameter to permit investigation of the 
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stability of the vacancy clusters. The same value is applied in both the OKMC and RT models. 

The SIA clusters are treated as thermally stable. The nominal material and irradiation parameters 

are given in Table 2. 

3. Results 

A large number of figures will be presented to summarize the primary results. A consistent 

color scheme has been applied in each of the figures to aid the reader. The RT results are shown 

as red curves, and the OKMC as black symbols or curves. Parameters that were varied in the 

analysis are differentiated by different types of lines. In some cases, two sets of OKMC results 

are shown at a given dose. One is the instantaneous value at that dose, and the other is the 

average value obtained from that dose and the previous four timesteps. This helps to demonstrate 

the statistical nature of the OKMC results and permits results to be shown when the average 

value is less than the minimum of one per OKMC box volume. This minimum density is also 

indicated in some of the figures. The results presented include calculated values of: vacancy and 

interstitial concentrations, vacancy and SIA cluster densities, the total number of vacancies and 

SIA accumulated in clusters, and the vacancy and SIA cluster size distributions. The net number 

of point defects accumulated in clusters is significant because it represents the volume change or 

swelling associated with the irradiation. 

The simplest situation to simulate is that of only Frenkel pair production, with vacancy and 

interstitial cluster formation occurring only as a result of homogeneous nucleation. For this case, 

the three different sink behavior possibilities were considered:  

(1) no fixed sinks, vacancy and interstitial clusters can form by classical nucleation 

(diffusive encounters), the capture efficiency of both cluster types for mobile mono-vacancies 

and mono-interstitials is the same, i.e. there is no biased absorption; 

(2) the same as in (1) above, but SIA clusters have 20% interstitial bias; and 

(3) the same as in (2) above but the fixed (dislocation) sink with an interstitial bias of 

20% and a density of 3x1014 m-2 is included. 

Of these three, the last one is certainly most physically representative of the behavior 

expected in real materials. The use of the other two was intended to be a tool for isolating the 

effect of specific point defect / sink reactions to aid in the comparison and evaluation of the two 
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computational models. 

The results of RT and OKMC simulations for these conditions are shown in Figs. 3-7 for 

an irradiation temperature of 373K and an NRT displacement rate of 4x10-7 dpa/s. The dose 

dependence of the vacancy concentration is shown in Fig. 3, where the expected influence of the 

various sink structures can be seen. There is initially little difference between the biased and 

unbiased interstitial clusters cases when point defect clusters are the only sink; the difference 

increases at higher doses when the cluster sink strength increases. The addition of a biased 

dislocation sink increases the vacancy concentration at the lowest doses due to increased 

partitioning of vacancies and interstitials, but the concentration is reduced at higher doses due to 

a higher overall sink strength. 

Although the trends are similar in both the OKMC and RT results, there is a consistent 

trend for the vacancy concentration to be higher in the OKMC simulations. This difference arises 

as a result of the differences in the point defect cluster sink strength discussed above and 

illustrated in Fig. 2. The lattice-based sink strength obtained with the OKMC is smaller than that 

from the continuum RT model in the size range of most of the clusters that are generated. This 

reduced sink strength leads to a higher concentration of free vacancies. Note that difference 

Fig 3. Vacancy concentration for the case of only Frenkel pair production and three sink 
variants (see text). 
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between the two methods is reduced when the dislocation sink is added since the significance of 

the cluster sink strength is reduced in this case. 

The dose dependence of the vacancy and SIA cluster densities are shown in Fig. 4 for the 

three sink variants. The RT and OKMC predictions of the vacancy concentration are in good 

agreement for each case. However, the RT results indicate that the interstitial cluster density is 

near or below the one defect per box value. As a result, the OKMC results are quite variable, 

ranging between 0 and about 4 per box (6x1021 m-3). Limited statistics is also responsible for the 

irregular time dependence observed in the OKMC curves for vacancy clusters. The simulation 

cell generally contains less than 10 vacancy clusters even though the displacement rate is 

relatively high, and the temperature quite low. 

The impact is limited statistics is even more clearly observed in the void size distributions 

shown in Fig. 5. The irradiation and sink conditions remain the same as in Fig. 4, and the density 

of one defect cluster per OKMC box is indicated. The void SDF obtained from the RT model is 

smooth and continuous for each of the sink conditions shown in Figs. 5 (1-c). However, the 

density at any one size is less than one void per unit OKMC box volume. Therefore, the 

instantaneous density predicted by the OKMC model tends to be either zero or one (or 

occasionally two) per box volume. Averaging the OKMC results over five timesteps begins to 

give the appearance of a size distribution value, but the meaning of these values would be 

difficult to interpret in the absence of the RT results and the knowledge that they represent only 

one or two voids. The same situation is observed for the interstitial SDF in Figure 6. The RT 

model produces a smooth SDF for each of the three sink conditions, with the details 

appropriately dependent on the defect partitioning balance induced by the neutral or biased SIA 

clusters, and the overall density reduced by the addition of a dominant dislocation sink. At each 

size, the equivalent density is much less than one per OKMC box volume. As a result, the 

corresponding OKMC simulations can not reproduce a reasonable approximation of either the 

absolute SDF, or the variation with sink conditions. Averaged OKMC points are clustered at 

small sizes with a density between 0.1 and 1.0 per box volume.  

The number of defects accumulated in point defect clusters is shown Fig. 7 as a function of 

dose for the three sink conditions. This value is significant because it represents a net change in 

the irradiated microstructure that can ultimately be experimentally verified. For example,  
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Fig. 4. Dose dependence of vacancy and interstitial cluster density predicted by RT and 
OKMC for three types of sink structures: (a) only point defect clusters, no biased absorption, 
(b) same as (a) but interstitial clusters have 20% bias for SIA, and (c) same as (b) but add 
fixed dislocation density with 20% bias for SIA. 

one defect 
per box 
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Fig. 5. Vacancy cluster size distributions predicted by RT and OKMC for three types of 
sink structures: (a) only point defect clusters, no biased absorption, (b) same as (a) but 
interstitial clusters have 20% bias for SIA, and (c) same as (b) but add fixed dislocation 
density with 20% bias for SIA. 

one defect 
per box 

one defect 
per box 
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volumetric swelling is directly related to accumulation of vacancies. There is good agreement 

between the RT and OKMC predictions of vacancy accumulation for all three cases, although the  

dose dependence of the OKMC results are irregular in Figs. 7 (a) and (b) due to the vacancy 

cluster density being only slightly greater than the one per box value (see Fig. 4). As they should, 

the total number of vacancies and interstitials accumulated in clusters approach the same value as 

the dose increases in Figs. 7 (a) and (b). SIA accumulation is also in reasonable agreement 

except for the third case in Fig. 7(c), where the interstitial cluster density  is less than one per 

OKMC box volume (Fig. 4).  

The results shown in Figs. 8 and 9 illustrate the effect of irradiation temperature at a 

relatively high damage rate of 4x10-5 dpa/s. The vacancy concentration is shown in Fig. 8(a) and 

the void number density in 8(b). Fig. 9(a) shows the number of vacancies accumulated in clusters, 

and the vacancy cluster size distribution is shown in Fig. 9(b) at two doses for a temperature of 

100°C. The In Figs. 8(a) and (b), and 9(a) the sink conditions include an interstitial bias for the 

interstitial clusters, but no fixed sink. The fixed dislocation sink is added in Fig. 9(b). The RT 

and OKMC results are in reasonable agreement, with the vacancy concentration slightly higher 

for the OKMC model because of the difference in the vacancy cluster sink strength discussed 

above. For temperatures greater than about 200°C, the predictions of the OKMC model show 

Fig. 6. Interstitial cluster size distributions predicted by RT and OKMC for the same three 
types of sink structures as in Fig. 5. 

one defect 
per box 
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Fig. 7. Number of vacancies and interstitials accumulated in clusters predicted by RT and 
OKMC for the same three types of sink structures as in Figs. 5 and 6. 
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considerable scatter due to the limited number of vacancies and vacancy clusters in the 

simulation cell. In fact, these results provide a useful measure of the number of objects required 

for the OKMC model to provide an adequate representation of the RT results. For example, in 

Fig. 8(a), there is considerable scatter in the value of the vacancy concentration obtained from 

the OKMC model at 250°C. At this temperature, the number of vacancies in the simulation cell 

is about 100. At the higher temperature of 300°C, where there are about 50 vacancies in the 

simulation cell, the scatter in the vacancy concentration is +/-50%. The vacancy cluster number 

Fig. 9. Influence of irradiation temperature on RT and OKMC predictions of: (a) vacancies 
accumulated in clusters and (b) vacancy cluster size distribution. 

 

Fig. 8. Influence of irradiation temperature on RT and OKMC predictions of: (a) vacancy 
concentration and (b) vacancy cluster density. 

one defect 
per box

one defect 
per box
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density falls below one per OKMC cell volume for temperatures greater than 200°C. The 

conditions for the size distribution comparison shown in Fig. 9(b) were chosen to have a high 

cluster density, i.e. T=100°C and with the biased dislocation sink included. For this case, the RT 

and OKMC predictions are similar at both 0.005 and 0.01 dpa. 

Figures 10, 11, and 12 illustrate the impact of atomic displacement rate at a temperature of 

100°C. Results are shown for three displacement rates, 4x10-7, 4x10-6, and 4x10-5 dpa/s. Values 

of the vacancy concentration obtained from the two models are in good agreement at each 

damage rate. However, even at these relatively high displacement rates, the interstitial 

concentration remains well below the density which is equivalent to one object in the OKMC 

simulation cell. Therefore, it is not possible to obtain an accurate value for the interstitial 

concentration from the OKMC model. This point is further demonstrated by the point defect 

cluster densities shown in Fig. 11. Although the two models predict similar values for the void 

density, substantial fluctuations are observed in the OKMC results as long as the number of 

voids in the simulation cell is less than a few hundred. Only for the highest displacement rate of 

4x10-5 dpa/s is the number of interstitial clusters in the OKMC cell greater than one. Similarly, 

Fig. 10. Influence of atomic displacement rate on point defect concentrations predicted by 
RT and OKMC at 100°C. 

one defect 
per box 
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Fig. 11. Influence of atomic displacement rate on RT and OKMC predictions of vacancy and 
SIA cluster density at 100°C for three types of sink structures: (a) only point defect clusters, 
no biased absorption, (b) same as (a) but interstitial clusters have 20% bias for SIA, and (c) 
same as (b) but add fixed dislocation density with 20% bias for SIA.

one defect 
per box 

one defect 
per box 

one defect 
per box 
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Fig. 12. Influence of atomic displacement rate on RT and OKMC predictions of vacancy 
cluster size distribution at 100°C for the same three types of sink structures as in Fig. 11.
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Fig. 12 indicates that it is only at this very high displacement rate that the void size distribution 

function obtained from the OKMC contains enough objects to give a good representation of the 

SDF obtained from the RT (Fig. 12(c)). 

 The two sets of involving simulation of cascade damage conditions are summarized in Fig. 

13 to 16. The conditions chosen for this comparison were an NRT displacement rate of 1x10-5 

dpa/s, cascade efficiency of 0.4, temperature of 200°C, and with the most complete sink structure. 

The cascades used in the OKMC simulations shown in Figs. 13 and 14 are what might be termed 

realistic cascades, i.e. the spatial correlation of the point defects and small clusters is typical ooc 

a cascade obtained from molecular dynamics simulations. This spatial correlation was removed 

in the “cascades” used to obtain the OKMC results shown in Figs. 15 and 16. 

Although in-cascade production of point defect clusters increases the cluster density, 

raising the temperature to 200°C reduces the point defect concentrations. As a result, the 

agreement between the OKMC and RT is relatively poor for the vacancy concentration in Fig. 

13(a), the interstitial density is too low to be accurately modeled using OKMC. Values for the 

point defect cluster densities are in relatively good agreement in Fig. 13(b) since there are a 

sufficient number of clusters formed. Similarly, the number of vacancies and interstitials 

Fig. 13. Dose dependence of RT and OKMC predictions of: (a) point defect concentrations and (b) 
point defect cluster densities, under cascade damage production with interstitial biased SIA clusters 
and fixed dislocation sink. Dashed blue lines indicate one defect in OKMC box. 
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accumulated in clusters is also in good agreement as seen in Fig. 14(a). The cluster size 

distributions obtained from the two methods shown in Fig. 14 (b) are in fair agreement at small 

sizes where a large number of clusters exist. However, the OKMC model can not produce the 

smooth distribution seen in the RT predictions for large sizes because the density of large 

clusters is too low. 

Although the simulated cascades used in the OKMC model to produce the results shown in 

Figs. 15 and 16 are less representative of real atomic displacement cascades, they provide a 

better simulation of how primary damage production is modeled in the RT. Therefore, it is not 

surprising that the agreement between the two models is somewhat improved for this case, which 

can be confirmed by a careful comparison of Fig. 13 with Fig. 15 and Fig. 14 with Fig. 16. Note 

that the red RT curves are the same in both sets of figures. For example, the OKMC vacancy 

cluster density in Fig. 15(b) is much closer to the RT result than the corresponding curve in Fig. 

13(b), and the agreement for the number of vacancies in clusters is improved between Figs. 14(a) 

and 14(b). The improvement in the vacancy concentration (Fig. 13(a) vs. Fig. 15(a)) is slight, no 

doubt due to the limited statistics in the OKMC results. 

 

Fig. 14. RT and OKMC predictions of: (a) point defects accumulated in clusters and (b) cluster 
size distributions, under cascade damage production with interstitial biased SIA clusters and fixed 
dislocation sink. Dashed blue line in (b) indicates one defect in OKMC box. 
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4. Discussion 

The results presented in the preceding section have highlighted both the similarities and 

differences inherent in the reaction rate theory and object kinetic Monte Carlo methods. They 

Fig. 15. Dose dependence of RT and OKMC predictions of: (a) point defect concentrations 
and (b) point defect cluster densities. Cascade damage production in which defects have no 
spatial correlation, sink structure as in Figs. 13 and 14. Dashed blue lines indicate one defect 
in OKMC box. 

Fig. 16. RT and OKMC predictions of: (a) point defects accumulated in clusters and (b) 
cluster size distributions. Cascade damage production in which defects have no spatial 
correlation, sink structure as in Figs. 13 and 14. Dashed blue line in (b) indicates one defect 
in OKMC box 
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confirm that the two methods will give nearly identical results if the problem to be solved is well  

posed. However, because of the inherent differences in the methods listed in Table 1 and 

discussed above, specifying the problem in such a way as to obtain the desired equivalence is not 

a trivial exercise. For example, if small point defect clusters are described in a “standard” way in 

both approaches, the inherent difference between the OKMC lattice-based reaction rates and the 

RT continuum sink strengths will lead to systematic difference in the results. The OKMC 

reaction rates lead to a lower effective sink strength which increases the concentration of mono-

defects in the matrix. This significance of this difference depends on the details of the problem. It 

is greater for conditions in which small defect clusters are more dominant, e.g. electron 

irradiation of a material with a low dislocation density. Lower temperatures and higher damage 

rates would also increase it’s significance. 

It may be argued that the OKMC reaction rates are more accurate for the small clusters 

since a collection of only a few vacancies may be poorly described by the spherical 

approximation used in the RT sink strengths. Similarly, the ability to account for the spatial 

correlation of the defects produced by displacement cascades is an advantage of the OKMC 

relative to the RT. These differences could be accounted for in the RT by using the results 

specific OKMC simulations to provide deriving a set of correction factors that could be applied 

in the RT models. For example, information such as that shown in Fig.2 could be used to correct 

the RT sink strengths for small point defect clusters. Monte Carlo simulations could also be used 

to determine that degree of additional point defect recombination that occurs due to spatial 

correlations in cascade debris [19], and a correction could be applied to the RT damage 

production rate.  

The primary limitations of the OKMC model are related to computational issues. Even 

with modern computers, the maximum simulation cell size and the maximum dose (typically 

much less than 1 dpa) that can be simulated are limited. Increasing either of these parameters 

necessitates a reduction in the other. The limited cell size directly specifies the minimum density 

of any type of object in the system; no density lower than one object per simulation cell volume 

can be simulated. Since defect densities are a strong function of irradiation temperature and 

damage rate, the density limit implies limits on the irradiation conditions that can be simulated. 

For a given box size, there will be a combination of maximum temperature and minimum dose 

rate for which the OKMC model can be used.. However, an object density of one per box volume 
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is not a sufficient criterion for successful use of the OKMC. Because of the statistical nature of 

Monte Carlo methods, there should be enough objects of each type to ensure the statistical 

significance of the results. The results shown in Fig. 8(a) provide the clearest example. 

Significant fluctuations in the vacancy concentration were observed even when there were as 

many as 300 vacancies in the simulation cell, partly because there were less than 10 vacancy 

clusters to act as sinks. Under conditions in which nucleation of extended defects is difficult and 

proceeds primarily on the basis of fluctuations (high temperature and low damage rate), the 

OKMC method is unlikely to predict accurate nucleation rates if a statistically significant 

number of the nucleating species is not present. 

In contrast with the OKMC, even very detailed RT models can simulate microstructural 

evolution for doses up 100 dpa or greater in clock times that are relatively short. Within the 

context of the effective medium, essentially any defect density can be simulated. Overall, the 

agreement between the two methods is best for irradiation conditions which produce a high 

density of defects (lower temperature and higher displacement rate), and for materials that have a 

relatively high density of fixed sinks such as dislocations. The higher dislocation density reduces 

the significance of differences associated with the sink strength of small defect clusters.. 

5. Summary 

This study has verified the ability of alternate kinetic models based on the reaction rate 

theory and kinetic Monte Carlo methods to obtain comparable results in well-posed simulations 

that are directly relevant to modeling radiation-induced microstructural evolution. It has also 

help define irradiation regimes in which it may be inappropriate to use the OKMC methods. In 

particular, current computational limitations on the OKMC simulation cell size imply that it may 

be difficult to use the OKMC at displacement rates and temperatures relevant to many reactor 

components. Expected advances in computing will expand the range of use for OKMC models, 

but this progress may occur slowly since orders of magnitude in defect density are required. 

However, the OKMC does a better job of accounting for spatial correlations that influence point 

defect reaction rates with small defect clusters and that modify the primary damage source term 

under cascade damage conditions. As such, one immediate application of OKMC simulations is 

to improve the parameterization of the rate theory models. 
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Figure Captions 

Fig. 1. Void size distribution function calculated for the case of 2vE =0.3: F(x) in phase space x 
(x=number of vacancies), and F(d) in phase space d (d= void diameter). 

Fig. 2. Comparison of vacancy cluster sink strength obtained in OKMC simulations (discrete 
points) and the analytical expression applied in the RT (lines). The dashed line is the lowest 
order sink strength, which is valid for small sink volume fractions, and the solid line includes the 
first order sink strength correction factor [15]. 

Fig 3. Vacancy concentration for the case of only Frenkel pair production and three sink 
variants (see text). 

Fig. 4. Dose dependence of vacancy and interstitial cluster density predicted by RT and OKMC 
for three types of sink structures: (a) only point defect clusters, no biased absorption, (b) same as 
(a) but interstitial clusters have 20% bias for SIA, and (c) same as (b) but add fixed dislocation 
density with 20% bias for SIA. 

Fig. 5. Vacancy cluster size distributions predicted by RT and OKMC for three types of sink 
structures: (a) only point defect clusters, no biased absorption, (b) same as (a) but interstitial 
clusters have 20% bias for SIA, and (c) same as (b) but add fixed dislocation density with 20% 
bias for SIA. 

Fig. 6. Interstitial cluster size distributions predicted by RT and OKMC for the same three types 
of sink structures as in Fig. 5. 

Fig. 7. Number of vacancies and interstitials accumulated in clusters predicted by RT and 
OKMC for the same three types of sink structures as in Figs. 5 and 6. 

Fig. 8. Influence of irradiation temperature on RT and OKMC predictions of: (a) vacancy 
concentration and (b) vacancy cluster density. 

Fig. 9. Influence of irradiation temperature on RT and OKMC predictions of: (a) vacancies 
accumulated in clusters and (b) vacancy cluster size distribution. 

Fig. 10. Influence of atomic displacement rate on point defect concentrations predicted by RT 
and OKMC at 100°C. 

Fig. 11. Influence of atomic displacement rate on RT and OKMC predictions of vacancy and 
SIA cluster density at 100°C for three types of sink structures: (a) only point defect clusters, no 
biased absorption, (b) same as (a) but interstitial clusters have 20% bias for SIA, and (c) same as 
(b) but add fixed dislocation density with 20% bias for SIA. 

Fig. 12. Influence of atomic displacement rate on RT and OKMC predictions of vacancy cluster 
size distribution at 100°C for the same three types of sink structures as in Fig. 11. 

Fig. 13. Dose dependence of RT and OKMC predictions of: (a) point defect concentrations and 
(b) point defect cluster densities, under cascade damage production with interstitial biased SIA 
clusters and fixed dislocation sink. 

Fig. 14. RT and OKMC predictions of: (a) point defects accumulated in clusters and (b) cluster 
size distributions, under cascade damage production with interstitial biased SIA clusters and 
fixed dislocation sink. 

Fig. 15. Dose dependence of RT and OKMC predictions of: (a) point defect concentrations and 
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(b) point defect cluster densities. Cascade damage production in which defects have no spatial 
correlation, sink structure as in Figs. 13 and 14. 

Fig. 16. RT and OKMC predictions of: (a) point defects accumulated in clusters and (b) cluster 
size distributions. Cascade damage production in which defects have no spatial correlation, sink 
structure as in Figs. 13 and 14. 

 

 

 

 

 

 

 


