Nuclear Facility Accident (NFAC) Unit Test Report For HPAC Version 6.4

Ronald W. Lee
C. David Sulfredge

Approved for public release. Distribution is unlimited.

March, 2017
DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech

Reports produced before January 1, 1996, may be purchased by members of the public from the following source.

National Technical Information Service
5825 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Website: http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source.

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: reports@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
NUCLEAR FACILITY ACCIDENT (NFAC) UNIT TEST REPORT FOR HPAC VERSION 6.4

Ronald W. Lee
C. David Sulfredge

Date Published: March, 2017

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>ACRONYMS</td>
<td>ix</td>
</tr>
<tr>
<td>1. Overview</td>
<td>1</td>
</tr>
<tr>
<td>2. NFAC Description</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Source Models</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Material Modes</td>
<td>3</td>
</tr>
<tr>
<td>2.3 PIR Release Modes</td>
<td>5</td>
</tr>
<tr>
<td>3. Test Approach</td>
<td>6</td>
</tr>
<tr>
<td>3.1 NFAC Unit Tests</td>
<td>6</td>
</tr>
<tr>
<td>3.2 NFAC-RTH Integration Tests</td>
<td>6</td>
</tr>
<tr>
<td>3.3 NFAC-RTH-SCIPUFF Integration Tests</td>
<td>7</td>
</tr>
<tr>
<td>4. Automated Tests</td>
<td>7</td>
</tr>
<tr>
<td>4.1 ExternalFileFinderTest</td>
<td>7</td>
</tr>
<tr>
<td>4.2 ModelDefsTest</td>
<td>8</td>
</tr>
<tr>
<td>4.3 ModelTimesTest</td>
<td>22</td>
</tr>
<tr>
<td>4.4 PIRModelDefsTest</td>
<td>24</td>
</tr>
<tr>
<td>4.5 ParticleGroupsMgrTest</td>
<td>34</td>
</tr>
<tr>
<td>4.6 SourceTermTableTest</td>
<td>35</td>
</tr>
<tr>
<td>4.7 SourceTermTableTest2</td>
<td>42</td>
</tr>
<tr>
<td>4.8 RTHTimesTest</td>
<td>42</td>
</tr>
<tr>
<td>4.9 Spcr6918Test</td>
<td>43</td>
</tr>
<tr>
<td>4.9.1 No Shutdown Full</td>
<td>43</td>
</tr>
<tr>
<td>4.9.2 No Shutdown Partial</td>
<td>44</td>
</tr>
<tr>
<td>4.9.3 Shutdown Full</td>
<td>44</td>
</tr>
<tr>
<td>4.9.4 Shutdown Partial</td>
<td>44</td>
</tr>
<tr>
<td>5. Interactive Tests</td>
<td>49</td>
</tr>
<tr>
<td>5.1 Top Level Interactions</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Where Tab</td>
<td>50</td>
</tr>
<tr>
<td>5.3 What Tab</td>
<td>51</td>
</tr>
<tr>
<td>5.4 When Tab</td>
<td>58</td>
</tr>
<tr>
<td>5.5 Notes Tab</td>
<td>62</td>
</tr>
<tr>
<td>6. Results</td>
<td>63</td>
</tr>
<tr>
<td>6.1 Automated Test Results</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Automated Test Coverage</td>
<td>66</td>
</tr>
<tr>
<td>6.3 Interactive Test Results</td>
<td>69</td>
</tr>
<tr>
<td>Figures</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1.NFAC Source Terms</td>
<td>2</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Multicomponent Material Mode Isotopes</td>
<td>5</td>
</tr>
<tr>
<td>2 Sub-Release Time Scales</td>
<td>5</td>
</tr>
<tr>
<td>3 Code Coverage by Package</td>
<td>66</td>
</tr>
<tr>
<td>4 Code Coverage: CAComp</td>
<td>67</td>
</tr>
<tr>
<td>5 Code Coverage: CAComp.data</td>
<td>67</td>
</tr>
<tr>
<td>6 Code Coverage: CAComp.data.analyst</td>
<td>67</td>
</tr>
<tr>
<td>7 Code Coverage: CAComp.data.analyst.plantcond</td>
<td>68</td>
</tr>
<tr>
<td>8 Code Coverage: CAComp.data.times</td>
<td>68</td>
</tr>
<tr>
<td>9 Code Coverage: CAComp.exceptions</td>
<td>68</td>
</tr>
<tr>
<td>10 Code Coverage: CAComp.impl</td>
<td>68</td>
</tr>
<tr>
<td>11 Interactive Test Results: Top Level Interactions</td>
<td>69</td>
</tr>
<tr>
<td>12 Interactive Test Results: Where Tab</td>
<td>69</td>
</tr>
<tr>
<td>13 Interactive Test Results: What Tab</td>
<td>70</td>
</tr>
<tr>
<td>14 Interactive Test Results: When Tab</td>
<td>71</td>
</tr>
<tr>
<td>15 Interactive Test Results: Notes Tab</td>
<td>71</td>
</tr>
</tbody>
</table>
ACRONYMS

AGR Advanced Gas-Cooled Reactor
API Application Programming Interface
ATR Advanced Thermal Reactor
BWR Boiling Water Reactor
DTRA Defense Threat Reduction Agency
FBR Fast Breeder Reactor
GCHWR Gas-Cooled Heavy Water Reactor
GCR Gas-Cooled Reactor
GUI Graphical User Interface
HPAC Hazard Prediction and Assessment Capability
HTGR High-Temperature Gas Reactor
HWGCR Heavy Water Gas-Cooled Reactor
HWLWR Heavy Water Light Water Reactor
LGR Light-Water Gas-Cooled Reactor
LMFBR Liquid-Metal Fast Breeder Reactor
LWR Light Water Reactor
MELCOR Methods for Estimation of Leakages and Consequences of Releases
MWt Megawatt thermal
NFAC Nuclear Facility Accident Model
NRC Nuclear Regulatory Commission
ORIGEN Oak Ridge Isotope Generator
OSGi Open Service Gateway Initiative
PHWR Pressurized Heavy Water Reactor
PIR Percent Inventory Release
RASCAL Radiological Assessment Systems for Consequence Analysis
PWR Pressurized Water Reactor
RBMK (Russian) Reaktor Bolshoy Moschnosti Kanainy
RTH Radiological Transport for HPAC
SCIPUFF Second-order Closure Integrated Puff Model
SGHWR Steam-Generating Heavy Water Reactor
SOARCA State-of-the-Art Reactor Consequence Analysis
SPCR Software Problem/Change Report
VVER (Russian) Water-Water Energy Reactor
1. OVERVIEW

This document describes the methodology for and results of testing the Nuclear Facility Accident (NFAC) incident source model (ISM) in Version 6.4 of the Hazard Prediction and Assessment Capability (HPAC). Tests and results for Version 6.3 have been documented previously. Individual tests from Version 6.3 that are still relevant are repeated for this report, but the descriptions and source listings of NFAC-specific JUnit test driver components are not repeated and can be found in the prior report.

NFAC’s responsibility as an HPAC ISM is as follows. First, it must present an interactive graphical user interface (GUI) by which users can view and edit the definition of an NFAC incident. Second, for each incident defined, NFAC must interact with the Radiological Transport for HPAC (RTH) component to create activity table inputs and associate them with radiological materials to be transported via the Second-order Closure Integrated Puff Model (SCIPUFF). Third, NFAC must create SCIPUFF transport releases and materials and associate them with radiological materials for transport and dispersion. The goal of NFAC unit testing is to verify that these three responsibilities are implemented correctly, and the inputs produced are correct for the source term or model definition as specified.

However, in order for NFAC to function correctly, the other components with which it interacts must process the NFAC-generated inputs in the manner in which NFAC expects. Thus, it is necessary to include NFAC-RTH and NFAC-RTH-SCIPUFF integration tests.

WHAT’S NEW IN 6.4

Significant changes in NFAC since Version 6.3 are noted below.

Multicomponent material mode. (SPCR 6918) A new material mode has been added to leverage SCIPUFF’s multicomponent processing capability. The primary motivation is to approximate the high fidelity of groups mode with orders-of-magnitude improvement in performance. Refer to Section 2.7. Note this new capability coincides with new functionality added to RTH and SCIPUFF for HPAC-6.4.

Improved handling of noble gases in groups material mode. In conjunction with adding multicomponent mode, accounting for noble gases has been corrected and improved when particle groups are used to represent activity in releases.

Improved source term report. The layout of source term reports has been improved to be more consistent with available material and Percent Inventory release modes.

Default spatial domain changed. The default spatial domain for NFAC incidents has been changed to 10 km.

Update to research reactor data. (SPCR 6787) Research reactors have been updated to remove those that were proposed and never built, assign correct names, and add new reactors that have been planned or built. Also, locations have been updated to higher resolution coordinates.
2. NFAC DESCRIPTION

The critical components and capabilities of NFAC Version 6.4 which must be tested are described below.

2.1 SOURCE MODELS

As shown in Fig. 1, NFAC contains 22 distinct source term models, all of which are tested.

![NFAC Source Terms Diagram]

Fig. 1: NFAC Source Terms.

The distinction between operational and analyst models is largely a vestige from HPAC Version 4. The two operational models require minimal user input to define the scenario and are implemented as Percent Inventory source terms. They are based on phased release scenarios defined by the Nuclear Regulatory Commission (NRC).

Percent Inventory is the most widely used and thus the most important source term. Consequently, it is covered more completely in the range of tests. Whereas most models are based on defined accident scenarios, a few are purely for advanced analysis. Each is summarized below.

Moderate. Moderate scale accident defined by the NRC as a series of phased releases specifying percentages of activity released by isotope groups defined by the Methods Estimation of Leakages and Consequences of Releases (MELCOR) code.
Severe. Like Moderate but defining a more severe accident.

Analyst Mix. Non-scenario mode in which the user specifies the percentage of inventory activity released by MELCOR groups.

Containment Monitor Reading. Scenario defined by readings taken at a containment monitor.

Isotopic Concentrations. Non-scenario mode in which the user specifies what is released as concentrations of specific isotopes.

Isotopic Release Rates. Non-scenario mode in which the user specifies the release as rates for specific isotopes.

Percent Inventory (PIR). Specifies an event as a series of phased releases, which are specifications of percentages by MELCOR group of the inventory released over a specified duration. A shutdown period is represented as an initial duration of no activity released. This is the most used NFAC source term and is used for operational scenarios.

Plant Conditions. A collection of 13 specific accident/event scenarios, the names of which describe the respective scenario. Each requires input of specific parameters to define the event.

RASCAL Project. Imports a project file created with the NRC’s Radiological Assessment Systems for Consequence Analysis (RASCAL) application.

Spent Fuel. Specifies a spent fuel pool incident.

NFAC source terms define one or more releases with an activity vector associated with each release. There are variations on how these releases are modeled for transport and dispersion based on nine combinations of three material modes and three PIR release modes, default values for which are simple and none, respectively.

2.2 MATERIAL MODES

In terms of radiological materials, NFAC offers three modes for representing the activity associated with each release: simple, groups, multicomponent.

Simple

The default material mode, simple, offers the fastest calculation but the least fidelity. Each phased release is represented by at most two radiological materials and associated transport releases, one representing depositor isotopes and another representing non-depositors. Noble gases (one of the MELCOR groups) are non-depositors, and other isotopes are depositors. If the activity vector associated with a phased released contains only depositors, no non-depositor release is created and vice versa.

The gas deposition velocity for the depositor material is 3.0 mm/s. That is, each depositor isotope is assumed to settle at the same rate.

*The one exception is O-19, a non-depositor that belongs to the chalcogens group.
Particle Size Groups

A single deposition velocity for all isotopes has obvious limitations. Thus, NFAC offers a high-fidelity option in which activity is apportioned across as many as 11 particle size groups, each with a specific gas deposition velocity. This groups mode is only available for facilities of the following types:

- Boiling Water Reactor (BWR)
- Light Water Reactor (LWR)
- Pressurized Water Reactor (PWR) (certain variants)
- Water-Water Energy Reactor (VVER)

Apportionment tables are obtained from the State-of-the-Art Reactor Consequence Analysis (SOARCA) studies. BWR tables come from analysis at Peach Bottom and tables for the other facility types come from analysis at Surry. Further, cesium and iodine isotopes are apportioned into cesium iodide (CsI), which is treated as a MELCOR group and for which apportionment ratios are given in the tables. CsI apportionment is also based on SOARCA studies as well as other sources.

In groups mode, each activity released is represented by as many transport releases and associated transport and radiological materials as there are particle groups with non-zero activity after apportionment, plus a non-depositor release and materials if needed. This geometric growth in the number of materials and releases has an obvious effect on calculation time. Although this mode offers the highest fidelity available in NFAC, it will require a significant increase, sometimes orders of magnitude, in calculation time as compared to simple mode.

Multicomponent

SCIPUFF has been enhanced for HPAC-6.4 to support definition of multicomponent radiological materials. In conjunction with requisite RTH enhancements, NFAC now offers a third (multicomponent) material mode that leverages this capability. Instead of representing each particle group as a separate material, particle groups are bins associated with “components”, which are isotopes. Each transport release associated with an NFAC incident references the same multicomponent radiological material.

NFAC passes a single activity vector to RTH for the latter to use in calculating dose factor tables to write to the radfile that is read by SCIPUFF. In this new scheme, a basis value of 1.0 Ci is set as the activity for each isotope in the vector. In effect, the radfile dose factor tables are basis factors. Also written to the radfile are the particle group sizes and deposition velocities as well as names for each isotope representing a “component”. The association of the actual activity for each isotope in each particle group or bin is now in the transport release. That is, each transport release created by NFAC for an incident references the same radiological material but includes “mass” factors to apply for each isotope and group/bin. This representation allows SCIPUFF to calculate the transport and deposition and account for radiological dose with much less computational overhead.
Table 1: Multicomponent Material Mode Isotopes

<table>
<thead>
<tr>
<th>MELCOR Group</th>
<th>Isotopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noble Gases</td>
<td>Kr-85</td>
</tr>
<tr>
<td></td>
<td>Xe-133</td>
</tr>
<tr>
<td></td>
<td>Xe-135</td>
</tr>
<tr>
<td>Alkali Metals</td>
<td>Cs-134</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td>Alkaline Earths</td>
<td>Ba-140</td>
</tr>
<tr>
<td></td>
<td>Sr-89</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
</tr>
<tr>
<td>Halogens</td>
<td>I-131</td>
</tr>
<tr>
<td>Chalcogens</td>
<td>Te-129</td>
</tr>
<tr>
<td>Platinoids</td>
<td>Ru-103</td>
</tr>
<tr>
<td></td>
<td>Ru-106</td>
</tr>
<tr>
<td>Early Transition Elements</td>
<td>Mo-99</td>
</tr>
<tr>
<td>Tetravalents</td>
<td>Ce-141</td>
</tr>
<tr>
<td></td>
<td>Ce-144</td>
</tr>
<tr>
<td></td>
<td>Pu-239</td>
</tr>
<tr>
<td></td>
<td>Zr-95</td>
</tr>
<tr>
<td>Trivalents</td>
<td>La-140</td>
</tr>
<tr>
<td></td>
<td>Nb-95</td>
</tr>
<tr>
<td></td>
<td>Nd-147</td>
</tr>
<tr>
<td></td>
<td>Pr-143</td>
</tr>
<tr>
<td></td>
<td>Y-91</td>
</tr>
</tbody>
</table>

However, there is a limitation on the number of "components" that SCIPUFF can process efficiently. Consequently, NFAC limits the activity vector to a list of 22 isotopes that represent the lion’s share of activity and effects. They are listed in Table 1.

It is important to note that NFAC’s multicomponent material mode is a close approximation to groups mode that requires significantly less calculation time. However, activity is not preserved in multicomponent mode.

2.3 PIR RELEASE MODES

As described above, PIR scenarios are specified as a series of phased releases with an associated duration. The activity vectors (lists of isotopes and associated activity) associated with each phased release are determined by decaying the inventory to the start of the release. For a long duration phase (e.g., 48 h), there are many daughter products which will never be accounted for due to their appearance and decay during the period. Even shorter duration phases early in the series can lose significant effects due to lost daughter products. NFAC offers three release modes, two of which offer an accounting for daughter products in these situations. In order of increasing calculation time and fidelity, the modes are: none, average, and explicit.

For average and explicit modes, each phased is divided into sub-releases as shown in Table 2.

Table 2: Sub-Release Time Scales

<table>
<thead>
<tr>
<th>Time in Phase</th>
<th>Sub-Phase Duration</th>
<th>Sub-Release Duration</th>
<th>No. Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.0</td>
<td>0.5</td>
<td>+6 = 6</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>1.0</td>
<td>+3 = 9</td>
</tr>
<tr>
<td>6.0</td>
<td>9.0</td>
<td>3.0</td>
<td>+3 = 12</td>
</tr>
<tr>
<td>15.0</td>
<td>36.0</td>
<td>12.0</td>
<td>+3 = 15</td>
</tr>
<tr>
<td>51.0</td>
<td>–</td>
<td>24.0</td>
<td></td>
</tr>
</tbody>
</table>

(Times are in hours)

For the first 3.0 h of a phased release, a subrelease is created every 0.5 h, resulting in a maximum six releases. For the next 3.0 h, a subrelease is created every 1.0 h, for an additional three releases. Thus, a phased release of 6.0 h will have nine subreleases, six with a duration of 0.5 h, and three with a duration of 1.0 h.
Over the next 9.0 h, a subrelease is created every 3.0 h (an additional three), and over the next 36.0 h, a subrelease is created every 12.0 h (another three). After 51.0 h, a subrelease is created for every 24.0 h. For example, a phase with duration 72.0 h will have 15 releases representing the first 51.0 h and an additional release of 21.0 h. A phase of 12.0 h duration will have 11 releases, nine for the first 6.0 h and additional two for the next 6.0 h.

None. This is the default. No subreleases are created, and thus there is no accounting for lost daughter products.

Explicit. A transport release and associated transport and radiological materials are created for each subrelease. Although this mode offers the highest fidelity, it can greatly increase the SCIPUFF calculation time.

Average. This is a reasonable compromise that avoids long calculation times for SCIPUFF. Activities in subreleases are averaged with subrelease durations as weights. The resulting activity vector is applied to the original release.

3. TEST APPROACH

Although NFAC unit tests comprise most of the tests conducted, testing includes NFAC-RTH and NFAC-RTH-SCIPUFF integration tests. The integration tests are necessary to verify NFAC is functioning as designed.

Testing is divided into two paths: automated tests and interactive tests. Nine automated JUnit4 test suites containing 150 individual tests have been built and are described in detail below. Each individual test includes one or more assertions challenging specific results or consequences designed to exercise a key functional capability. The granularity of the capability being tested varies by test from an individual component method to an aggregate or composite test involving multiple components and methods. Success or failure of automated tests is an output of the test framework. They are run as unattended batch processes.

The GUI is not conducive to automated tests and thus must be tested interactively. All capabilities in the GUI are tested explicitly as described below.

3.1 NFAC UNIT TESTS

Some automated NFAC unit tests rely on aggregate information written by NFAC components to the log file. The log output contains all the data regarding activity table inputs fed to RTH and releases created for SCIPUFF and thus can be compared with baseline logs for equivalence.

3.2 NFAC-RTH INTEGRATION TESTS

For NFAC-RTH integration, two kinds of test artifacts are used in comparisons:

- Source term report HTML files
- Radfiles
Report files are created from information retrieved from RTH by NFAC. That is, NFAC asks RTH to return information previously passed to RTH by NFAC. Radios are generated by RTH as requested by SCIPUFF when a calculation is requested.

3.3 NFAC-RTH-SCIPUFF INTEGRATION TESTS

Some tests use artifacts that are created by SCIPUFF after transport and dispersion calculation. These are outputs based on plots requested via an HPAC OutputManager instance.

4. AUTOMATED TESTS

4.1 EXTERNALFILEFINDERTEST

This suite is composed of four individual tests to verify correct function of NFAC’s PropertyFinder class used to identify and locate ExternalFile instances to be (re)stored for a project. PropertyFinder instances are used by NfacImpl instances in exportFiles() and importFiles() methods now required for correct HPAC project export and import operations, respectively. Tests in alphabetical order are summarized below.

NFAC components tested:
- mil.dtra.hpac.models.nfac.CAcomp.data.FacilityDef
- mil.dtra.hpac.models.nfac.CAcomp.data.NfacIncident
- mil.dtra.hpac.models.nfac.CAcomp.data.PropertyFinder
- mil.dtra.hpac.models.nfac.CAcomp.impl.NfacImpl

Test: testAllIncidents

Loads a project containing multiple NfacImpl instances, assigns a custom inventory with an ExternalFile reference to each instance, and invokes the finder() method of a PropertyFinder instance to locate the ExternalFiles. Verifies all ExternalFiles are found.

Test: testFileReleases

Loads a project containing FileRelease instances and ensures all associated ExternalFiles are found.

Test: testNfacImpl

Tests correct behavior of the NfacImpl.exportFiles() method.

Test: testProject

Loads a project with an NFAC incident with a custom inventory and verifies that the findExternalFiles() method of PropertyFinder behaves correctly.
4.2 MODELDEFSTEST

This suite contains 35 individual tests designed to verify proper function of each of the NFAC source models. For each test there is a corresponding HPAC 6 project (.hpac6) file or a project export (.zip) file. For most tests a source term report (.html) is requested and compared to the baseline fixture, and when appropriate a log file (.log) is an additional fixture.

A ProjectManager instance is used to open the project file. The NfacImp instance(s) in the project are retrieved, and the getSourceTermReport() method is called to generated the HTML report. The test and baseline reports are compared for equivalence, allowing for different seed values used in material names. For those tests including a log file fixture, the fixture and log file resulting from the run are read into NfacLog objects and compared with the NfacLog.equals() method. Exact matches determine a successful test. Any difference in report content or NfacLog objects represents a test failure. Tests in alphabetical order are summarized below.

NFAC components tested:

mil.dtra.hpac.models.nfac.CAcomp.data.ActivityHash
mil.dtra.hpac.models.nfac.CAcomp.data.AmbClient
mil.dtra.hpac.models.nfac.CAcomp.data.Element
mil.dtra.hpac.models.nfac.CAcomp.data.Facility
mil.dtra.hpac.models.nfac.CAcomp.data.FacilityDB
mil.dtra.hpac.models.nfac.CAcomp.data.FacilityDBMgr
mil.dtra.hpac.models.nfac.CAcomp.data.FacilityDef
mil.dtra.hpac.models.nfac.CAcomp.data.MaterialMode
mil.dtra.hpac.models.nfac.CAcomp.data.ModelDefUtils
mil.dtra.hpac.models.nfac.CAcomp.data.ModelTimes
mil.dtra.hpac.models.nfac.CAcomp.data.ModerateModel
mil.dtra.hpac.models.nfac.CAcomp.data.NfacIncident
mil.dtra.hpac.models.nfac.CAcomp.data.ParticleGroups
mil.dtra.hpac.models.nfac.CAcomp.data.ParticleGroupsMgr
mil.dtra.hpac.models.nfac.CAcomp.data.ReproInventory
mil.dtra.hpac.models.nfac.CAcomp.data.SevereModel
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.AnalystMix
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.AnalystModelUtils
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.ConcentrationUnits
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.ContainmentMonitorReading
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.IsotopeReleases
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.IsotopeValue
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.IsotopicConcentrations
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.IsotopicReleaseRates
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.PIRSubReleaseMode
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.PercentInventory
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.PercentInventoryConstants
mil.dtra.hpac.models.nfac.CAcomp.data.analyst.PercentInventoryRelease
Test: test10682GroupsExplicit

Tests the new capabilities added for SPCR 10682. Refer to Section 2.2 for a description of the material modes. This test ensures the activity apportionment across particle groups is correct and the corresponding materials are created with the groups material mode and the explicit PIR release mode.
Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Groups
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 7.0 h
Releases:
<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5 h</td>
<td>NobleGas=0.01, AlkaMetal=0.6, Chalcogen=0.35</td>
</tr>
<tr>
<td>1</td>
<td>2.0 h</td>
<td>NobleGas=0.09, AlkaMetal=1.7, AlkaEarth=0.03, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>4.5 h</td>
<td>NobelGas=0.8, AlkaMetal=0.9, Chalcogen=0.45</td>
</tr>
</tbody>
</table>

Test: test10682GroupsNone

Tests proper activity apportionment and material creation for the groups material mode and none PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Groups
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 7.0 h
Releases:
<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5 h</td>
<td>NobleGas=0.01, AlkaMetal=0.6, Chalcogen=0.35</td>
</tr>
<tr>
<td>1</td>
<td>2.0 h</td>
<td>NobleGas=0.09, AlkaMetal=1.7, AlkaEarth=0.03, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>4.5 h</td>
<td>NobelGas=0.8, AlkaMetal=0.9, Chalcogen=0.45</td>
</tr>
</tbody>
</table>

Test: test10682PwrGroupsNone

Tests proper activity apportionment and material creation for the groups material mode and none PIR release mode.
Facility: Arkansas One-1 (PWR)
Operating Power: 2550.0 MWt
Material Mode: Groups
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 1.0 h
Release Duration: 7.0 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0 h</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5.0 h</td>
<td>NobleGas=3.0, AlkaMetal=0.003, Halogens=0.003, Chalcogen=0.03, Platinoid=1.68e-6, Tetravalent=4.0e-7, Trivalent=6.0e-7</td>
</tr>
<tr>
<td>2</td>
<td>2.0 h</td>
<td>NobleGas=17, AlkaMetal=0.07, AlkaEarth=8.95e-5, Halogens=0.089, Chalcogen=0.64, Platinoid=6.2e-6, Tetravalent=7.0e-7, Trivalent=1.6e-6</td>
</tr>
</tbody>
</table>

Test: test10682RascalGroupsNone
Tests proper activity apportionment and material creation for a RASCAL source term and the groups material mode.

Facility: Robinson-2 (PWR)
Operating Power: 2295.0 MWt
Material Mode: Groups
Source Term: Rascal Project
Units: Ci
Release Times: 0.0, 2.0, 4.0, 6.0, 8.0 h
Isotopes: Ba-140, Ce-141, Ce-144, Cs-137, I-131, Kr-85, La-140, Mo-99, Nb-95, Nd-147, Pr-143, Pu-239, Ru-103, Ru-106, Sr-89, Sr-90, Te-129, Xe-133, Xe-135, Y-91, Zr-95

Test: test10682RascalSimpleNone
Tests proper activity apportionment and material creation for a RASCAL source term and the groups material mode.

Facility: Robinson-2 (PWR)
Operating Power: 2295.0 MWt
Material Mode: Simple
Source Term: Rascal Project
Units: Ci
Release Times: 0.0, 2.0, 4.0, 6.0, 8.0 h
Isotopes: Ba-140, Ce-141, Ce-144, Cs-137, I-131, Kr-85, La-140, Mo-99, Nb-95, Nd-147, Pr-143, Pu-239, Ru-103, Ru-106, Sr-89, Sr-90, Te-129, Xe-133, Xe-135, Y-91, Zr-95
Test: test10682SimpleExplicit

Tests that activity apportionment and per-particle-size material creation do not occur for a scenario using the explicit PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 7.0 h

Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5 h</td>
<td>NobleGas=0.01, AlkaMetal=0.6, Chalcogen=0.35,</td>
</tr>
<tr>
<td>1</td>
<td>2.0 h</td>
<td>NobleGas=0.09, AlkaMetal=1.7, AlkaEarth=0.03, Chalcogen=1.45,</td>
</tr>
<tr>
<td>2</td>
<td>4.5 h</td>
<td>NobleGas=0.8, AlkaMetal=0.9, Chalcogen=0.45</td>
</tr>
</tbody>
</table>

Test: test10682SimpleNone

Tests that activity apportionment and per-particle-size material creation do not occur for a scenario using the none PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 7.0 h

Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5 h</td>
<td>NobleGas=0.01, AlkaMetal=0.6, Chalcogen=0.35,</td>
</tr>
<tr>
<td>1</td>
<td>2.0 h</td>
<td>NobleGas=0.09, AlkaMetal=1.7, AlkaEarth=0.03, Chalcogen=1.45,</td>
</tr>
<tr>
<td>2</td>
<td>4.5 h</td>
<td>NobleGas=0.8, AlkaMetal=0.9, Chalcogen=0.45</td>
</tr>
</tbody>
</table>

Test: test10682UnsupportedGroupsNone

Tests that activity apportionment and per-particle-size material creation do not occur even though requested via the groups material mode for an unsupported facility type and the none PIR release mode.
Facility: Hartlepool-1 (AGR)
Operating Power: 1785.0 MWt
Material Mode: disabled
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 1.0 h
Release Duration: 7.0 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0 h</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2.0 h</td>
<td>NobleGas=3.0, AlkaMetal=0.003, Halogens=0.003, Chalcogen=0.03, Platinoid=1.68e-6, Tetravalent=4.0e-7, Trivalent=6.0e-7</td>
</tr>
<tr>
<td>2</td>
<td>5.0 h</td>
<td>NobleGas=17, AlkaMetal=0.07, AlkaEarth=8.95e-5, Chalcogen=0.64, Platinoid=6.2e-6, Tetravalent=7.0e-7, Trivalent=1.6e-6</td>
</tr>
</tbody>
</table>

Test: test10682VverGroupsNone

Tests proper activity apportionment and material creation occurs for a VVER facility based on the model for a PWR using the groups material mode and the none PIR release mode.

Facility: Zaporozhe-1 (VVER-1000)
Operating Power: 2850.0 MWt
Material Mode: Groups
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 1.0 h
Release Duration: 7.0 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0 h</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2.0 h</td>
<td>NobleGas=3.0, AlkaMetal=0.003, Halogens=0.003, Chalcogen=0.03, Platinoid=1.68e-6, Tetravalent=4.0e-7, Trivalent=6.0e-7</td>
</tr>
<tr>
<td>2</td>
<td>5.0 h</td>
<td>NobleGas=17, AlkaMetal=0.07, AlkaEarth=8.95e-5, Chalcogen=0.64, Platinoid=6.2e-6, Tetravalent=7.0e-7, Trivalent=1.6e-6</td>
</tr>
</tbody>
</table>

Test: test11653

Explicitly tests the fix for SPCR 11653 to ensure a custom inventory is accounted for when determining the available plant conditions source terms.
Facility: Arkansas One-1 (PWR)
Operating Power: 2550.0 MWt
Custom Inventory: Created from kewaunee.f71 ORIGN file
Material Mode: Simple
Source Term: Mix Specified by Analyst
Gross Release Rate: 1.0 Ci/s
Release Percentages:
 Nobel Gases: 98.0%
 Halogens: 2.0%

Test: testAnalystMix
Tests an AnalystMix model instance with the following properties:

Facility: Brunswick-1 (BWR Mk-1)
Operating Power: 2949.0 MWt
Material Mode: Simple
Source Term: Mix Specified by Analyst
Nobel Gases: 98.0%
Halogens: 2.0%
Gross Release Rate: 100.0 Ci/s

Test: testContainmentMonitorReading
Tests a ContainmentMonitorReading model instance with the following properties:

Facility: Brunswick-1 (BWR Mk-1)
Operating Power: 2949.0 MWt
Material Mode: Simple
Source Term: Containment Monitor Reading
Leak Rate: 10%/h
Monitor Location: Wet Well
Monitor Reading: 25.0 R/h
Release Path: Unfiltered
Sprays: Off

Test: testIsotopicConcentrations
Tests a IsotopicConcentrations model instance with the following properties:

Facility: Brunswick-1 (BWR Mk-1)
Operating Power: 2949.0 MWt
Material Mode: Simple
Source Term: Isotopic Concentrations
Concentration Units: kCi/cc
Release Rate: 20.0 cc/s
Isotope Values:
 Cs-130: 130.0
 Cs-131: 131.0
 I-130: 130.0
 I-131: 132.0
 I-133: 133.0
Test: testIsotopicReleaseRates

Tests a IsotopicReleaseRates model instance with the following properties:

<table>
<thead>
<tr>
<th>Facility</th>
<th>Cs-130: 130.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Power</td>
<td>Cs-131: 131.0</td>
</tr>
<tr>
<td>Material Mode</td>
<td>Cs-132: 132.0</td>
</tr>
<tr>
<td>Source Term</td>
<td>Cs-134: 134.0</td>
</tr>
<tr>
<td>Release Units</td>
<td>Isotopic Release Rates</td>
</tr>
<tr>
<td>Isotope Values</td>
<td>I-130: 130.0</td>
</tr>
<tr>
<td></td>
<td>I-131: 131.0</td>
</tr>
<tr>
<td></td>
<td>I-132: 132.0</td>
</tr>
<tr>
<td></td>
<td>I-133: 133.0</td>
</tr>
</tbody>
</table>

Test: testModerate

Tests an operational ModerateModel instance with properties:

<table>
<thead>
<tr>
<th>Facility</th>
<th>Brunswick-1 (BWR Mk-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Power</td>
<td>2949.0 MWt</td>
</tr>
</tbody>
</table>

Test: testMultiFive

Tests a project with five NFAC incidents.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Calvert Cliffs-1 (PWR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Power</td>
<td>2535.0 MWt</td>
</tr>
<tr>
<td>Material Mode</td>
<td>Simple</td>
</tr>
<tr>
<td>Source Term</td>
<td>Steam Generator Tube Rupture (Coolant)</td>
</tr>
<tr>
<td>Partitioned Generator:</td>
<td>false</td>
</tr>
<tr>
<td>Release Rate</td>
<td>1 Tube (35%/h)</td>
</tr>
<tr>
<td>Release Source</td>
<td>Steam Jet Air Ejector</td>
</tr>
<tr>
<td>Facility</td>
<td>Limerick-1 (BWR Mk-2)</td>
</tr>
<tr>
<td>Operating Power</td>
<td>3165.0 MWt</td>
</tr>
<tr>
<td>Material Mode</td>
<td>Simple</td>
</tr>
<tr>
<td>Source Term</td>
<td>Dry Well Leakage/Failure (BWR Containment)</td>
</tr>
<tr>
<td>Core Condition</td>
<td>Vessel Melt Through</td>
</tr>
<tr>
<td>Leak Rate</td>
<td>50%/h (release duration=2.0 h)</td>
</tr>
<tr>
<td>Filtered Release Path:</td>
<td>false</td>
</tr>
<tr>
<td>Sprays On</td>
<td>false</td>
</tr>
<tr>
<td>Facility</td>
<td>Oyster Creek (BWR Mk-1)</td>
</tr>
<tr>
<td>Operating Power</td>
<td>1950.0 MWt</td>
</tr>
<tr>
<td>Material Mode</td>
<td>Simple</td>
</tr>
<tr>
<td>Source Term</td>
<td>Containment Monitor Reading</td>
</tr>
<tr>
<td>Leak Rate</td>
<td>50%/h (release duration=2.0 h)</td>
</tr>
<tr>
<td>Monitor Location</td>
<td>Wet Well</td>
</tr>
<tr>
<td>Monitor Reading</td>
<td>20.0 R/h</td>
</tr>
<tr>
<td>Release Path</td>
<td>Unfiltered</td>
</tr>
<tr>
<td>Sprays</td>
<td>Off</td>
</tr>
</tbody>
</table>
Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
Source Term: Spent Fuel/Spent Fuel Pool
Fuel Condition: Fuel Cladding Failure
Number of Batches: 1
Release Path: Unfiltered
Sprays: Off
Time Last Batch in Pool: same as ReleaseToContainment

Facility: Salem-1 (PWR)
Operating Power: 3507.0 MWt
Material Mode: Simple
Source Term: Large, Dry, or Subatmospheric Containment Leakage/Failure
Core Condition: Gap Release
Filtered Release Path: false
Leak Rate: 50%/h (release duration=2.0 h)
Sprays On: false

Test: testPCConfinementByPass
Tests a PCConfinementByPass plant conditions model instance with properties:

Facility: Hartlepool-1 (AGR)
Operating Power: 1785.0 MWt
Material Mode: disabled
Source Term: Plant Conditions: Bypass of Confinement
Core Condition: Gap Release
Leak Rate: 25%/h (release duration=4.0 h)

Test: testPCConfinementLeakage
Tests a PCConfinementLeakage plant conditions model instance with properties:

Facility: Novovoronezh-3 (VVER-400/230)
Operating Power: 1155.0 MWt
Material Mode: Simple
Source Term: Plant Conditions: Confinement Leakage/Failure
Core Condition: Gap Release
Leak Rate: 50%/h (release duration=2.0 h)

Test: testPCContainmentByPass
Tests a PCContainmentByPass plant conditions model instance with properties:
Facility: Hamaoka-3 (BWR Mk-1)
Operating Power: 3168.0 MWt
Material Mode: Simple
Source Term: Plant Conditions: Bypass of Containment
Core Condition: Gap Release
Leak Rate: 100%/h (release duration=1.0 h)
Filtered Release Path: false

Test: testPCContainmentLeakage

Tests a PCContainmentLeakage plant conditions model instance with properties:

Facility: Beloyarski-3 (BN-600) (LMFBR)
Operating Power: 1680.0 MWt
Material Mode: disabled
Source Term: Plant Conditions: Containment Leakage/Failure
Core Condition: Gap Release
Leak Rate: 50%/h (release duration=2.0 h)
Filtered Release Path: false

Test: testPCDryWellLeakage

Tests a PCDryWellLeakage plant conditions model instance with properties:

Facility: Hamaoka-3 (BWR Mk-1)
Operating Power: 3168.0 MWt
Material Mode: Simple
Source Term: Plant Conditions: Dry Well Leakage/Failure (BWR Containment)
Core Condition: Gap Release
Filtered Release Path: false
Leak Rate: 100%/h (release duration=1.0 h)
Sprays On: false

Test: testPCIceCondenserContainmentCoreDamage

Tests a PCIceCondenserContainmentCoreDamage plant conditions model instance with properties:

Facility: Watts Bar-1 (PWR)
Operating Power: 3465.0 MWt
Material Mode: Simple
Source Term: Plant Conditions: Ice Condenser Containment Leakage/Failure
Core Condition: In-Vessel Severe Core Damage
Fans On: true
Filtered Release Path: true
Ice Bed Exhausted: true
Leak Rate: 50%/h (release duration=2.0 h)
Sprays On: true
Test: testPCIceCondenserContainmentGapRelease
Tests a PClceCondenserContainment plant conditions model instance with properties:

- Facility: Watts Bar-1 (PWR)
- Operating Power: 3465.0 MWt
- Material Mode: Simple
- Source Term: Plant Conditions: Ice Condenser Containment Leakage/Failure
- Core Condition: Gap Release
- Fans On: false
- Filtered Release Path: false
- Ice Bed Exhausted: false
- Leak Rate: 50%/h (release duration=2.0 h)
- Sprays On: false

Test: testPCIceCondenserContainmentMeltThrough
Tests a PClceCondenserContainment plant conditions model instance with properties:

- Facility: Watts Bar-1 (PWR)
- Operating Power: 3465.0 MWt
- Material Mode: Simple
- Source Term: Plant Conditions: Ice Condenser Containment Leakage/Failure
- Core Condition: Vessel Melt Through
- Fans On: false
- Filtered Release Path: false
- Ice Bed Exhausted: false
- Leak Rate: 50%/h (release duration=2.0 h)
- Sprays On: false

Test: testPCLargeDrySubcontainmentLeakage
Tests a PCLargeDrySubcontainmentLeakage plant conditions model instance with properties:

- Facility: Beaver Valley-1 (PWR)
- Operating Power: 2733.0 MWt
- Material Mode: Simple
- Source Term: Plant Conditions: Large, Dry, or Subatmospheric Containment Leakage/Failure
- Core Condition: Gap Release
- Filtered Release Path: false
- Leak Rate: 100%/h (release duration=1.0 h)
- Sprays On: false
Test: testPCPromptCriticalPowerExcursion

Tests a PCPromptCriticalPowerExcursion plant conditions model instance with properties:

- Facility: Bilibino Unit A (RBMK)
- Operating Power: 33.0 MWt
- Material Mode: disabled
- Source Term: Plant Conditions: Prompt Critical Power Excursion
- Core Involvement: Total

Test: testPCReproFacility

Tests a PCReproFacility plant conditions model instance with properties:

- Facility: Savannah River (Reprocessing)
- Material Mode: disabled
- Source Term: Plant Conditions: Reprocessing Facility
- Plant Throughput: 1.0 tonnes/day
- Release Rate: 100%/h (release duration=1.0 h)
- Release Fraction by Component:
 - Aqueous Waste Treatment: 0.5
 - Dissolution: 1.0
 - Feed Adjustment and Accountability: 1.0
 - Pu Recovery: 0.5
 - Solvent Treatment: 0.5
 - U-Pu Co-Decontamination, Partitioning, and U Purification: 1.0

Test: testPCSodiumWaterReaction

Tests a PCSodiumWaterReaction plant conditions model instance with properties:

- Facility: Phenix (LMFBR)
- Custom Inventory: stlauren_1.avc
- Operating Power: 699.0 MWt
- Material Mode: disabled
- Source Term: Plant Conditions: Sodium-Water Reaction
- Core Condition: Gap Release
- Leak Rate: 50%/h (release duration=2.0 h)

Test: testPCSteamTubeRuptureCoreDamage

Tests a PCSteamTubeRuptureCoreDamage plant conditions model instance with properties:
Facility: Dungeness B-1 (AGR)
Operating Power: 1560.0 MWt
Material Mode: "disabled"
Source Term: Plant Conditions: Steam Generator Tube Rupture (Coolant)
Coolant Concentration: In-Vessel Severe Core Damage
Partitioned Generator: false
Release Rate: 1 Tube (35%/h)
Release Source: Safety Valve

Test: testPCSteamTubeRuptureGapRelease

Tests a PCSteamTubeRupture plant conditions model instance with properties:

Facility: Dungeness B-1 (AGR)
Operating Power: 1560.0 MWt
Material Mode: "disabled"
Source Term: Plant Conditions: Steam Generator Tube Rupture (Coolant)
Coolant Concentration: Gap Release
Partitioned Generator: false
Release Rate: 1 Tube (35%/h)
Release Source: Safety Valve

Test: testPCSubatmosphericConfinementLeakage

Tests a PCSubatmosphericConfinementLeakage plant conditions model instance with properties:

Facility: Rovno-1 (VVER-440/213)
Operating Power: 1143.0 MWt
Material Mode: Simple
Source Term: Plant Conditions: Subatmospheric Confinement Leakage/Failure
Core Condition: Gap Release
Leak Rate: 100%/h (release duration=1.0 h)
Pool Suppression System: true

Test: testPCWetWellLeakage

Tests a PCWetWellLeakage plant conditions model instance with properties:
Facility: Hamaoka-3 (BWR Mk-1)
Operating Power: 3168.0 MWt
Material Mode: Simple
Source Term: Plant Conditions: Wet Well Leakage/Failure (BWR Containment)
Core Condition: Gap Release
Leak Rate: 100%/h (release duration=1.0 h)
Filtered Release Path: false
Wet Well: Saturated

Test: testRascalProject

Tests a RascalProject model instance with properties:

Facility: Brunswick-1 (BWR Mk-1)
Operating Power: 2949.0 MWt
Material Mode: Simple
Source Term: Rascal Project
Units: Ci
Release Times: 0.0, 0.25, 0.5, 0.75, ..., 8.0 h
Isotopes: Ba-139, Ba-140, Cs-134, Cs-136, Cs-137, Cs-138, I-131, I-132, I-133, I-134, I-135, Kr-83m, Kr-85, Kr-85m, Kr-87, Kr-88, La-140, Mo-99, Rb-86, Rb-88, Rh-103, Rh-105, Ru-103, Ru-105, Ru-106, Sb-127, Sb-129, Sr-89, Sr-90, Sr-91, Sr-92, Tc-99m, Tc-127, Tc-127m, Tc-129, Tc-129m, Tc-131, Tc-131m, Tc-132, Xc-131m, Xc-133, Xc-133m, Xc-135, Xc-135m, Xc-138, Y-90, Y-91, Y-91m, Y-92

Test: testSevere

Tests an operational SevereModel instance with properties:

Facility: Brunswick-1 (BWR Mk-1)
Operating Power: 2949.0 MWt

Test: testSpentFuel

Tests an operational SpentFuel instance with properties:

Facility: Brunswick-1 (BWR Mk-1)
Operating Power: 2949.0 MWt
Source Term: Spent Fuel/Spent Fuel Pool
Fuel Condition: Fuel Cladding Failure
Number of Batches: 1
Release Path: Unfiltered
Sprays: Off
Time Last Batch in Pool: 6 months prior to ReleaseToContainment
4.3 MODELTIMESTEST

One of the most critical aspects of NFAC processing is correct management of event times within a scenario. There are six possible events whose times define or are defined by associated durations:

<table>
<thead>
<tr>
<th>Event</th>
<th>Associated Duration</th>
<th>From Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown / Start of Decay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release to Containment</td>
<td>Containment</td>
<td>Start of Decay</td>
</tr>
<tr>
<td>Release to Environment</td>
<td>Shutdown</td>
<td>Start of Decay</td>
</tr>
<tr>
<td>Holdup</td>
<td>Release</td>
<td>Release to Containment</td>
</tr>
<tr>
<td>End of Release</td>
<td>Release</td>
<td>Release to Environment</td>
</tr>
<tr>
<td>End of Dispersion</td>
<td>Dispersion</td>
<td>End of Release</td>
</tr>
<tr>
<td>End of Exposure</td>
<td>Exposure</td>
<td>End of Dispersion</td>
</tr>
</tbody>
</table>

For some NFAC source models, individual events have no meaning and thus are ignored and not displayed in the GUI. Some times are computed directly from the model definition and thus are made uneditable (although displayed) in the GUI. Which times are displayed and/or editable are determined based on the model, and uneditable times must be computed based on the model parameters. Finally, uneditable times can be forced to be editable via the Advanced Mode toggle button in the When tab. The purpose of this test suite is to exercise event times management against various models and conditions. The eight tests are described below. Each unique times management class is tested.

NFAC components tested:

```
mil.dtra.hpac.models.nfac.CAcomp.data.ModelTimes
mil.dtra.hpac.models.nfac.CAcomp.data.times.AnalystMixTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.IsotopicConcentrationsTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.IsotopicReleaseRatesTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.ModelTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.ModelTimesMgrFactory
mil.dtra.hpac.models.nfac.CAcomp.data.times.OperationalTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.PCContainmentByPassTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.PercentInventoryTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.RascalProjectTimesMgr
mil.dtra.hpac.models.nfac.CAcomp.data.times.SpentFuelTimesMgr
```

Test: testAnalystMix

This test verifies the following:

- The `ModelTimesMgrFactory.getInstance()` method correctly returns an `AnalystMixTimesMgr` instance for an `AnalystMix` model.
- The default times based on test input times are correctly set by the `AnalystMixTimesMgr` instance.
- After explicit settings of editable times, the Release to Environment and Release to Containment times are equivalent.
Test: testIsotopicConcentrations

This test verifies the following:

- The ModelTimesMgrFactory.getInstance() method correctly returns an IsotopicConcentrationsTimesMgr instance for an IsotopicConcentrations model.
- The default times based on test input times are correctly set by the IsotopicConcentrationsTimesMgr instance.
- After explicit settings of editable times, the Start of Decay, Release to Containment, and Release to Environment times are equivalent.

Test: testIsotopicReleaseRates

This test verifies the following:

- The ModelTimesMgrFactory.getInstance() method correctly returns an IsotopicReleaseRatesTimesMgr instance for an IsotopicReleaseRates model.
- The default times based on test input times are correctly set by the IsotopicReleaseRatesTimesMgr instance.
- After explicit settings of editable times, the Start of Decay, Release to Containment, and Release to Environment times are equivalent.

Test: testPCContainmentByPass

This test verifies the following:

- The ModelTimesMgrFactory.getInstance() method correctly returns a PCContainmentByPassTimesMgr instance for an PCContainmentByPass model.
- The default times based on test input times are correctly set by the PCContainmentByPassTimesMgr instance.
- After explicit settings of editable times, the Start of Decay and Release to Containment times are equivalent, and the Shutdown, Release, Dispersion, and Exposure durations are all correct.

Test: testPercentInventoryNoShutdown

This test verifies the following:

- The ModelTimesMgrFactory.getInstance() method correctly returns a PercentInventoryTimesMgr instance for a PercentInventory model.
- After explicit setting of editable times, the Release to Containment and Release to Environment times are equivalent, the Shutdown Duration is zero, and the Release, Dispersion, and Exposure durations are correct.
- After explicit setting of editable times in lenient mode, the Release to Containment and Release to Environment times are equivalent, and the Shutdown, Release, Dispersion, and Exposure durations are correct for the input times.
Test: testPercentInventoryShutdown

This test verifies the following:

- The `ModelTimesMgrFactory.getInstance()` method correctly returns a `PercentInventoryTimesMgr` instance for a `PercentInventory` model.
- After explicit setting of editable times, the Release to Containment and Release to Environment times are equivalent, and the Shutdown, Release, Dispersion, and Exposure durations are correct.
- After explicit setting of editable times in lenient mode, the Release to Containment and Release to Environment times are equivalent, and the Shutdown, Release, Dispersion, and Exposure durations are correct for the input times.

Test: testRascalProject

This test verifies the following:

- The `ModelTimesMgrFactory.getInstance()` method correctly returns a `RascalProjectTimesMgr` instance for an `RascalProject` model.
- After explicit setting of editable times, the Start of Decay, Release to Containment and Release to Environment times are equivalent.

Test: testSpentFuel

This test verifies the following:

- The `ModelTimesMgrFactory.getInstance()` method correctly returns a `SpentFuelTimesMgr` instance for an `SpentFuel` model.
- After explicit setting of editable times, the Start of Decay and Release to Containment times are equivalent, and the Holdup, Shutdown, Release, Dispersion, and Exposure durations are correct.

4.4 PIRMODELDEFSTEST

This suite contains 24 individual tests designed to verify proper function of Percent Inventory models and special processing associated with them. For each test there is a corresponding HPAC 6 project (.hpac6) file or a project export (.zip) file. For most tests a source term report (.html) is requested and compared to the baseline fixture, and when appropriate a log file (.log) is an additional fixture.

Included in this suite is verification that user overrides of model times and durations (see Section 4.3) result in correctly prorated PIR durations, and proper handling of material modes (refer to Section 2.2) and PIR release modes (refer to Section 2.3).

Test: testPIRGroupsAvgNoShutdown

Tests a `PercentInventory` model instance with no shutdown time and using `groups` material mode and `average` PIR release mode.
Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Groups
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>1</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRGroupsAvgWithShutdown
Tests a PercentInventory model instance with a shutdown time and using groups material mode and average PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Groups
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRGroupsExplWithShutdown
Tests a PercentInventory model instance with a shutdown time and using groups material mode and explicit PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Groups
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>
Test: testPIRGroupsNoneNoShutdown

Tests a PercentInventory model instance with no shutdown time and using groups material mode and none PIR release mode.

- Facility: Peach Bottom-2 (BWR Mk-1)
- Operating Power: 3924.0 MWt
- Material Mode: Groups
- PIR Release Mode: None
- Source Term: Percent Inventory
- Shutdown Duration: 0
- Release Duration: 6.695 h

Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>1</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRGroupsNoneWithShutdown

Tests a PercentInventory model instance with a shutdown time and using groups material mode and none PIR release mode.

- Facility: Peach Bottom-2 (BWR Mk-1)
- Operating Power: 3924.0 MWt
- Material Mode: Groups
- PIR Release Mode: None
- Source Term: Percent Inventory
- Shutdown Duration: 41.7 m
- Release Duration: 6.695 h

Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRMcAvgNoShutdown

Tests a PercentInventory model instance with no shutdown time and using multicomponent material mode and average PIR release mode.
Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Multicomponent
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>1</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRMcAvgWithShutdown

Tests a PercentInventory model instance with a shutdown time and using *multicomponent* material mode and *average* PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Multicomponent
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRMcExplNoShutdown

Tests a PercentInventory model instance with no shutdown time and using *multicomponent* material mode and *explicit* PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Multicomponent
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>1</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>
Test: testPIRMcExplWithShutdown

Tests a PercentInventory model instance with a shutdown time and using multicomponent material mode and explicit PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Multicomponent
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h

Releases:

Duration Percentages by Group
0 41.7 m 0
1 41.7 m NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45
2 6.0 h NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27

Test: testPIRMcNoneNoShutdown

Tests a PercentInventory model instance with no shutdown time and using multicomponent material mode and none PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Multicomponent
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 6.695 h

Releases:

Duration Percentages by Group
0 41.7 m NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45
1 6.0 h NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27

Test: testPIRMcNoneWithShutdown

Tests a PercentInventory model instance with a shutdown time and using multicomponent material mode and none PIR release mode.
Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Multicomponent
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRSimpleAvgNoShutdown

Tests a PercentInventory model instance with no shutdown time and using simple material mode and average PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Simple
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>1</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRSimpleAvgWithShutdown

Tests a PercentInventory model instance with a shutdown time and using simple material mode and average PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Simple
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>
Test: testPIRSimpleExplNoShutdown

Tests a PercentInventory model instance with no shutdown time and using simple material mode and explicit PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Simple
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 0
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>1</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRSimpleExplWithShutdown

Tests a PercentInventory model instance with a shutdown time and using simple material mode and explicit PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3924.0 MWt
Material Mode: Simple
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 6.695 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.7 m</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41.7 m</td>
<td>NobelGas=0.01, AlkaMetal=0.6, Chalcogen=1.45</td>
</tr>
<tr>
<td>2</td>
<td>6.0 h</td>
<td>NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.67, LessVolatile=0.27</td>
</tr>
</tbody>
</table>

Test: testPIRSimpleNoneNoShutdown

Tests a PercentInventory model instance with no shutdown time and using simple material mode and none PIR release mode.
Test: testPIRSimpleNoneWithShutdown

Tests a PercentInventory model instance with a shutdown time and using simple material mode and none PIR release mode.

Test: testPIRSubReleasesAverage

Tests a PercentInventory model instance with the average PIR release mode.
Test: testPIRSubReleasesExplicit

Tests a PercentInventory model instance with the *explicit* PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
PIR Release Mode: Explicit
Source Term: Percent Inventory
Shutdown Duration: 30.0 m
Release Duration: 48.0 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48.0 h</td>
<td>NobelGas=100</td>
</tr>
</tbody>
</table>

Test: testPIRSubReleasesNone

Tests a PercentInventory model instance with the *none* PIR release mode.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
PIR Release Mode: None
Source Term: Percent Inventory
Shutdown Duration: 30.0 m
Release Duration: 48.0 h
Releases:

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>Percentages by Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48.0 h</td>
<td>NobelGas=100</td>
</tr>
</tbody>
</table>

Test: testPercentInventoryNoShutdownAsIs

Tests a PercentInventory model instance with no shutdown duration defined in the releases and no override of the model event times.
Test: testPercentInventoryNoShutdownForced

Tests a PercentInventory model instance with no shutdown duration defined in the releases, but model event times are overridden to force a shutdown time.

Test: testPercentInventoryWithShutdownAsIs

Tests a PercentInventory model instance with a shutdown duration defined in the releases and no override of the model event times.
Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 11.3 h
Releases:

Duration Percentages by Group
0 41.7 m 0
1 41.7 m NobelGas=0.01, AlkaMetal=0.6, Chalcogen=0.35
2 83.33 m NobelGas=0.09, AlkaMetal=1.7, AlkaEarth=0.03, Chalcogen=1.45
3 250.0 m NobelGas=0.8, AlkaMetal=0.9, Chalcogen=0.45
4 303.0 m NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.22, LessVolatile=0.27

Test: testPercentInventoryWithShutdownForced

Tests a PercentInventory model instance with a shutdown duration defined in the releases, but model event times are overridden to force no shutdown time.

Facility: Peach Bottom-2 (BWR Mk-1)
Operating Power: 3414.0 MWt
Material Mode: Simple
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 41.7 m
Release Duration: 11.3 h
Releases:

Duration Percentages by Group
0 41.7 m 0
1 41.7 m NobelGas=0.01, AlkaMetal=0.6, Chalcogen=0.35
2 83.33 m NobelGas=0.09, AlkaMetal=1.7, AlkaEarth=0.03, Chalcogen=1.45
3 250.0 m NobelGas=0.8, AlkaMetal=0.9, Chalcogen=0.45
4 303.0 m NobelGas=0.3, AlkaMetal=0.1, Chalcogen=0.22, LessVolatile=0.27

4.5 PARTICLEGROUPSMGRTEST

The major enhancement for NFAC version 6.3 was the addition of a new mode for processing materials. Refer to Section 2.2 for a description of the material modes. This test suite is comprised of seven tests that ensure the apportionment tables are properly read and activity apportionment and material creation are correctly processed.

NFAC components tested:

mil.dtra.hpac.models.nfac.CAcomp.data.ParticleGroups
mil.dtra.hpac.models.nfac.CAcomp.data.ParticleGroupsMgr
Test: testBWRCounts

Checks that the number of particle size groups, MELCOR groups, and table entries for each MELCOR group associated with the BWR facility type, as read from `defaults.properties`, are correct.

Test: testBWRValues

Checks that the BWR table entries giving apportionments for each MELCOR group and particle group, as read from `defaults.properties` are correct.

Test: testPWRCounts

Checks that the number of particle size groups, MELCOR groups, and table entries for each MELCOR group associated with the PWR facility type, as read from `defaults.properties`, are correct.

Test: testPWRValues

Checks that the PWR table entries giving apportionments for each MELCOR group and particle group, as read from `defaults.properties`, are correct.

Test: testReadCounts

Checks that the number of particle group tables and the list of associated facility types, as read from `defaults.properties`, are correct.

Test: testTypeMap

Verifies that the table associated with each reactor type and subtype are correct if the type/subtype should be supported and are not specified otherwise.

Test: testWriteAndRead

Verifies that the `java.util.Properties` entries as read from `defaults.properties` can be written and read back with the same resulting deserialized objects.

4.6 SOURCETERMTABLETEST

Another critical piece of NFAC functionality is determination of which of the 22 source models are valid or can be applied to a specific facility definition. A facility definition includes the facility selected from NFAC’s facility “database” as well as a reference to any custom inventory file. NFAC’s SourceTermTable and PlantConditionTables classes encapsulate the capability of determining available source terms. They are “data driven” in that they read the `source_terms.data` and `plantcond.dat` files, respectively, to drive the determination process.

This test suite includes 26 individual tests to verify that the source model availability process functions correctly.

NFAC components tested:

```
mil.dtra.hpac.models.nfac.CAcomp.data.Facility
```
Test: testAGRCompatibility

Explicitly tests for individual model compatibility via the `SourceTermTable.checkCompatibility()` method. The Dungeness B-1 and Windscale AGR facilities (without custom inventories) are tested against the following models with expected compatibility:

Dungeness B-1

- AnalystMix: yes
- ContainmentMonitorReading: no
- IsotopicConcentrations: yes
- IsotopicReleaseRates: yes
- ModerateModel: no
- PCLargeDrySubContainment: no
- PercentInventory: yes
- SevereModel: no
- SpentFuel: no

Windscale AGR

- PCConfinementByPass: yes
- PCConfinementLeakage: yes
- PCContainmentByPass: no
- PCContainmentLeakage: no
- PCDryWellLeakage: no
- PClceCondenserContainment: no
- PCLargeDrySubContainmentLeakage: no
- PCPromptCriticalPowerExcursion: no
- PCReproFacility: no
- PCSodiumWaterReaction: no
- PCSteamTubeRupture: yes
- PCSubatmosphericConfinementLeakage: no
- PCWetWellLeakage: no

Test: testAGRSourceTerms

Calls `SourceTermTable.isOperationalSupported()`, `SourceTermTable.getFacilityTerms()`, and `PlantConditionTables.getPlantConditionTerms()` with the following AGR facilities and conditions, verifying the correct source term names are returned:
With inventory + Active With inventory + Inactive No inventory

Dungeness B-1 Windscale AGR Hunterston B-1

1 Inventory filename set explicitly
2 Inventory filename cleared explicitly

Test: testBWR0SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following BWR type-0 facilities and conditions, verifying the correct source term names are returned:

With inventory + Active With inventory + Inactive No inventory
Leibstadt Brunsbuettel (kkb) Leibstadt
2 Inventory filename cleared explicitly

Test: testBWR1SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following BWR type-1 facilities and conditions, verifying the correct source term names are returned:

With inventory + Active With inventory + Inactive No inventory
Santa Maria De Garona Fukushima-Daiichi-1 Santa Maria De Garona
2 Inventory filename cleared explicitly

Test: testBWR2SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following BWR type-2 facilities and conditions, verifying the correct source term names are returned:

With inventory + Active With inventory + Inactive No inventory
Fukushima-Daini-1 Fukushima-Daini-1 Fukushima-Daini-1
2 Inventory filename cleared explicitly
3 Explicitly set inactive

Test: testBWR3SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following BWR type-3 facilities and conditions, verifying the correct source term names are returned:

With inventory + Active With inventory + Inactive No inventory
Cofrentes Cofrentes Cofrentes
2 Inventory filename cleared explicitly
3 Explicitly set inactive
Test: testFBRSourceTerms
Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following FBR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monju(^1)</td>
<td>KNK II(^1)</td>
<td>Monju</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory filename set explicitly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testGCHWRSourceTerms
Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following GCHWR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monts D’Arree(^1)</td>
<td>Monts D’Arree</td>
<td>Monts D’Arree(^4)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory filename set explicitly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explicitly set active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testGCRSourceTerms
Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following GCR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldbury-1</td>
<td>Oldbury-2</td>
<td>Latina</td>
</tr>
</tbody>
</table>

Test: testHTGRSourceTerms
Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following HTGR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peach Bottom-1(^1,4)</td>
<td>Peach Bottom-1(^1)</td>
<td>Peach Bottom-1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory filename set explicitly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explicitly set active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testHWGCRSourceTerms
Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following HWGCR facilities and conditions, verifying the correct source term names are returned:
With inventory + Active	With inventory + Inactive	No inventory
A-1 Bohunice\(^{1,4}\) | A-1 Bohunice\(^{1}\) | A-1 Bohunice
1 | Inventory filename set explicitly
4 | Explicitly set active

Test: **testHWLWRSourceTerms**

Calls `SourceTermTable.isOperationalSupported()`, `SourceTermTable.getFacilityTerms()`, and `PlantConditionTables.getPlantConditionTerms()` with the following HWLWR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugen ATR(^{1,4})</td>
<td>Fugen ATR(^{1})</td>
<td>Fugen ATR</td>
</tr>
<tr>
<td>1</td>
<td>Inventory filename set explicitly</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Explicitly set active</td>
<td></td>
</tr>
</tbody>
</table>

Test: **testLGRSourceTerms**

Calls `SourceTermTable.isOperationalSupported()`, `SourceTermTable.getFacilityTerms()`, and `PlantConditionTables.getPlantConditionTerms()` with the following LGR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanford - N(^{1,4})</td>
<td>Toitsk E</td>
<td>Toitsk F(^{4})</td>
</tr>
<tr>
<td>1</td>
<td>Inventory filename set explicitly</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Explicitly set active</td>
<td></td>
</tr>
</tbody>
</table>

Test: **testLMFBRSourceTerms**

Calls `SourceTermTable.isOperationalSupported()`, `SourceTermTable.getFacilityTerms()`, and `PlantConditionTables.getPlantConditionTerms()` with the following LMFBR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beloyarsky-3(BN-600)(^{1})</td>
<td>Beloyarsky-4(BN-800)(^{1,3})</td>
<td>Beloyarsky-3(BN-600)</td>
</tr>
<tr>
<td>1</td>
<td>Inventory filename set explicitly</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Explicitly set inactive</td>
<td></td>
</tr>
</tbody>
</table>

Test: **testLWRSourceTerms**

Calls `SourceTermTable.isOperationalSupported()`, `SourceTermTable.getFacilityTerms()`, and `PlantConditionTables.getPlantConditionTerms()` with the following LWR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic LWR Site</td>
<td>Generic LWR Site(^{3})</td>
<td>Generic LWR Site(^{2})</td>
</tr>
<tr>
<td>2</td>
<td>Inventory filename cleared explicitly</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Explicitly set inactive</td>
<td></td>
</tr>
</tbody>
</table>
Test: testPHWRSourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following PHWR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce-1</td>
<td>Gentilly-1</td>
<td>Agesta</td>
</tr>
</tbody>
</table>

Test: testPWRSourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following PWR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doel-1</td>
<td>BR-3</td>
<td>Doel-2</td>
</tr>
<tr>
<td>2 Inventory filename cleared explicitly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testRBMKSourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following RBMK facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilibino Unit A</td>
<td>Beloyarsky-1</td>
<td>Bilibino Unit A</td>
</tr>
<tr>
<td>2 Inventory filename cleared explicitly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testReproSourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following Repro facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho Falls ICPP</td>
<td>Mol</td>
<td>Idaho Falls ICPP</td>
</tr>
<tr>
<td>2 Inventory filename cleared explicitly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testResearchSourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following Research facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRRI TRIGA Reactor</td>
<td>BR-3 (Mol)</td>
<td>ATR</td>
</tr>
</tbody>
</table>
Test: testSGHWRSourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following SGHWR facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winfrith SGHWR¹,⁴</td>
<td>Winfrith SGHWR¹</td>
<td>Winfrith SGHWR⁴</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testSPCR6787

This test verifies changes to research reactors in the NFAC facility database resulting from SPCR 6787. It calls FacilityDB.getFacilities() to list all facilities for a country code and then searches the list to the match name and research reactor facility type. Explicit tests by country are as follows.

<table>
<thead>
<tr>
<th>Country</th>
<th>Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>(no existing research reactors)</td>
</tr>
<tr>
<td>China</td>
<td>CARR (Beijing), CEFR (Beijing), CMRR (Mienyang), HTR-10 (Beijing), HWRR-II (Beijing), IRT-DPRK, YONGBYON GCR</td>
</tr>
<tr>
<td>North Korea</td>
<td>IRT-DPRK, YONGBYON GCR</td>
</tr>
<tr>
<td>Portugal</td>
<td>RPI</td>
</tr>
</tbody>
</table>

Test: testVVER0SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following VVER type-0 facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bushehr-1</td>
<td>Bushehr-1²</td>
<td>Bushehr-1²</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testVVER1SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following VVER type-1 facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metzamor-2</td>
<td>Metzamor-1</td>
<td>Kola-1²</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test: testVVER2SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following VVER type-2 facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dukovany-1</td>
<td>Nord (Greifswald)-5</td>
<td>Dukovany-2²</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory filename cleared explicitly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: testVVER3SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following VVER type-3 facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>With inventory + Inactive</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kozloduy-5</td>
<td>Kozloduy-6³</td>
<td>Kalinin-3²</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory filename cleared explicitly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explicitly set inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.7 SOURCETERMTABLETEST2

This test suite is distinguished from SourceTermTableTest for cases in which no plant condition models apply. For now, this is limited to the new HWRESRC research facility type.

Test: testHWRESRC3SourceTerms

Calls SourceTermTable.isOperationalSupported(), SourceTermTable.getFacilityTerms(), and PlantConditionTables.getPlantConditionTerms() with the following HWRESRC facilities and conditions, verifying the correct source term names are returned:

<table>
<thead>
<tr>
<th>With inventory + Active</th>
<th>No inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR-40</td>
<td>IR-40²</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Inventory filename cleared explicitly</td>
<td></td>
</tr>
</tbody>
</table>

4.8 RTHTIMESTEST

Interacts with RTH to test times returned from decay calculations when various decay times are passed as input.
4.9 SPCR6918TEST

This suite contains 44 individual tests designed to verify proper function of Percent Inventory models with the number *multicomponent* material mode and all the PIR release modes relative to the same scenarios using *simple* and *groups* material modes. Some aspects of these tests are covered in the PIRModelDefsTest suite, (Section 4.4), but this suite focuses on expected results in a typical NRC moderate accident scenario at Watts Bar-1 and an abbreviated version of that scenario. Moreover, this suite includes NFAC-RTH-SCIPUFF integration tests with plot output results as test artifacts. NFAC-RTH-SCIPUFF integration tests request areas of contours for the following fields:

<table>
<thead>
<tr>
<th>Class</th>
<th>Choice</th>
<th>Kind</th>
<th>Category</th>
<th>Type</th>
<th>Class</th>
<th>Choice</th>
<th>Kind</th>
<th>Category</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotope Ground Deposition</td>
<td>Total Activity</td>
<td>Surface Data</td>
<td>Mean Value (M)</td>
<td>RTH Radiation Field</td>
<td>Total Effective Dose Rate</td>
<td>Surface Data</td>
<td>Mean Value (M)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The four scenarios over which the nine combinations of material and PIR release modes are repeated are defined as follows.

4.9.1 No Shutdown Full

This is the Watts Bar-1 moderate accident scenario with the shutdown period removed.

- **Facility:** Watts Bar-2 (PWR)
- **Operating Power:** 3480.0 MWt
- **Material Mode:** Groups
- **PIR Release Mode:** Average
- **Source Term:** Percent Inventory
- **Shutdown Duration:** 0
- **Release Duration:** 44.9 h

Releases

<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>NG</th>
<th>AM</th>
<th>AE</th>
<th>Hal</th>
<th>Chal</th>
<th>Plat</th>
<th>Tetraval</th>
<th>Trival</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.9 h</td>
<td>3.0</td>
<td>0.003</td>
<td>1.0e-5</td>
<td>0.003</td>
<td>0.03</td>
<td>1.2e-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>32.0 h</td>
<td>3.0</td>
<td>0.003</td>
<td>0</td>
<td>0.003</td>
<td>0.03</td>
<td>1.68e-6</td>
<td>4.0e-7</td>
<td>6.0e-7</td>
</tr>
<tr>
<td>2</td>
<td>11.0 h</td>
<td>17.0</td>
<td>0.07</td>
<td>8.95e-5</td>
<td>0.089</td>
<td>0.64</td>
<td>6.2e-6</td>
<td>7.0e-7</td>
<td>1.6e-6</td>
</tr>
</tbody>
</table>
4.9.2 No Shutdown Partial

This is the Watts Bar-1 moderate accident scenario with the shutdown period removed, the second phased release removed, and the final phase reduced to a duration of 3.0 h.

<table>
<thead>
<tr>
<th>Releases:</th>
<th>#</th>
<th>Duration</th>
<th>NG</th>
<th>AM</th>
<th>AE</th>
<th>Hal</th>
<th>Chal</th>
<th>Plat</th>
<th>Tetraval</th>
<th>Trival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.9 h</td>
<td>3.0</td>
<td>0.003</td>
<td>1.0e-5</td>
<td>0.003</td>
<td>0.03</td>
<td>1.2e-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.0 h</td>
<td>17.0</td>
<td>0.07</td>
<td>8.95e-5</td>
<td>0.089</td>
<td>0.64</td>
<td>6.2e-6</td>
<td>7.0e-7</td>
<td>1.6e-6</td>
</tr>
</tbody>
</table>

4.9.3 Shutdown Full

This is the Watts Bar-1 moderate accident scenario as defined by the NRC.

<table>
<thead>
<tr>
<th>Releases:</th>
<th>#</th>
<th>Duration</th>
<th>NG</th>
<th>AM</th>
<th>AE</th>
<th>Hal</th>
<th>Chal</th>
<th>Plat</th>
<th>Tetraval</th>
<th>Trival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.9 h</td>
<td>3.0</td>
<td>0.003</td>
<td>1.0e-5</td>
<td>0.003</td>
<td>0.03</td>
<td>1.2e-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>32.0 h</td>
<td>3.0</td>
<td>0.003</td>
<td>0</td>
<td>0.003</td>
<td>0.03</td>
<td>1.68e-6</td>
<td>4.0e-7</td>
<td>6.0e-7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.0 h</td>
<td>17.0</td>
<td>0.07</td>
<td>8.95e-5</td>
<td>0.089</td>
<td>0.64</td>
<td>6.2e-6</td>
<td>7.0e-7</td>
<td>1.6e-6</td>
</tr>
</tbody>
</table>

4.9.4 Shutdown Partial

This is the Watts Bar-1 moderate accident scenario with the second phased release removed, and the final phase reduced to a duration of 3.0 h.
Facility: Watts Bar-2 (PWR)
Operating Power: 3480.0 MWt
Material Mode: Groups
PIR Release Mode: Average
Source Term: Percent Inventory
Shutdown Duration: 3.1 h
Release Duration: 44.9 h
Releases:
<table>
<thead>
<tr>
<th>#</th>
<th>Duration</th>
<th>NG</th>
<th>AM</th>
<th>AE</th>
<th>Hal</th>
<th>Chal</th>
<th>Plat</th>
<th>Tetraval</th>
<th>Trival</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.9 h</td>
<td>3.0</td>
<td>0.003</td>
<td>1.0e-5</td>
<td>0.003</td>
<td>0.03</td>
<td>1.2e-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3.0 h</td>
<td>17.0</td>
<td>0.07</td>
<td>8.95e-5</td>
<td>0.089</td>
<td>0.64</td>
<td>6.2e-6</td>
<td>7.0e-7</td>
<td>1.6e-6</td>
</tr>
</tbody>
</table>

Test:testNoShutdownFullGroupsAverage

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with groups material mode and average PIR release mode.

Test:testNoShutdownFullGroupsExplicit

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with groups material mode and explicit PIR release mode.

Test:testNoShutdownFullGroupsNone

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with groups material mode and none PIR release mode.

Test:testNoShutdownFullMCAverage

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with multicomponent material mode and average PIR release mode.

Test:testNoShutdownFullMCExplicit

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with multicomponent material mode and explicit PIR release mode.

Test:testNoShutdownFullMCNone

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with multicomponent material mode and none PIR release mode.

Test:testNoShutdownFullMCNoneContours

An NFAC-RTH-SCIPUFF integration test, this exercises the "No Shutdown Full" scenario with multicomponent material mode and none PIR release mode and compares resulting contour areas.
Test:testNoShutdownFullSimpleAverage

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with *simple* material mode and *average* PIR release mode.

Test:testNoShutdownFullSimpleExplicit

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with *simple* material mode and *explicit* PIR release mode.

Test:testNoShutdownFullSimpleNone

An NFAC-RTH integration test, this exercises the "No Shutdown Full" scenario with *simple* material mode and *none* PIR release mode.

Test:testNoShutdownPartialGroupsAverage

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with *groups* material mode and *average* PIR release mode.

Test:testNoShutdownPartialGroupsExplicit

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with *groups* material mode and *explicit* PIR release mode.

Test:testNoShutdownPartialGroupsNone

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with *groups* material mode and *none* PIR release mode.

Test:testNoShutdownPartialGroupsNoneContours

An NFAC-RTH-SCIPUFF integration test, this exercises the "No Shutdown Partial" scenario with *groups* material mode and *none* PIR release mode and compares resulting contour areas.

Test:testNoShutdownPartialMCAverage

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with *multicomponent* material mode and *average* PIR release mode.

Test:testNoShutdownPartialMCEExplicit

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with *multicomponent* material mode and *explicit* PIR release mode.

Test:testNoShutdownPartialMCNone

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with *multicomponent* material mode and *none* PIR release mode.
Test:testNoShutdownPartialMCNoneContours

An NFAC-RTH-SCIPUFF integration test, this exercises the "No Shutdown Partial" scenario with multicomponent material mode and none PIR release mode and compares resulting contour areas.

Test:testNoShutdownPartialSimpleAverage

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with simple material mode and average PIR release mode.

Test:testNoShutdownPartialSimpleExplicit

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with simple material mode and explicit PIR release mode.

Test:testNoShutdownPartialSimpleNone

An NFAC-RTH integration test, this exercises the "No Shutdown Partial" scenario with simple material mode and none PIR release mode.

Test:testNoShutdownPartialSimpleNoneContours

An NFAC-RTH-SCIPUFF integration test, this exercises the "No Shutdown Partial" scenario with simple material mode and none PIR release mode and compares resulting contour areas.

Test:testShutdownFullGroupsAverage

An NFAC-RTH integration test, this exercises the "Shutdown Full" scenario with groups material mode and average PIR release mode.

Test:testShutdownFullGroupsExplicit

An NFAC-RTH integration test, this exercises the "Shutdown Full" scenario with groups material mode and explicit PIR release mode.

Test:testShutdownFullGroupsNone

An NFAC-RTH integration test, this exercises the "Shutdown Full" scenario with groups material mode and none PIR release mode.

Test:testShutdownFullMCAverage

An NFAC-RTH integration test, this exercises the "Shutdown Full" scenario with multicomponent material mode and average PIR release mode.

Test:testShutdownFullMCEXPLICIT

An NFAC-RTH integration test, this exercises the "Shutdown Full" scenario with multicomponent material mode and explicit PIR release mode.
Test:testShutdownFullMCNone
An NFAC-RTH integration test, this exercises the “Shutdown Full” scenario with multicomponent material mode and none PIR release mode.

Test:testShutdownFullMCNoneContours
An NFAC-RTH-SCIPUFF integration test, this exercises the ”Shutdown Full” scenario with multicomponent material mode and none PIR release mode and compares resulting contour areas.

Test:testShutdownFullSimpleAverage
An NFAC-RTH integration test, this exercises the “Shutdown Full” scenario with simple material mode and average PIR release mode.

Test:testShutdownFullSimpleExplicit
An NFAC-RTH integration test, this exercises the “Shutdown Full” scenario with simple material mode and explicit PIR release mode.

Test:testShutdownFullSimpleNone
An NFAC-RTH integration test, this exercises the “Shutdown Full” scenario with simple material mode and none PIR release mode.

Test:testShutdownPartialGroupsAverage
An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with groups material mode and average PIR release mode.

Test:testShutdownPartialGroupsExplicit
An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with groups material mode and explicit PIR release mode.

Test:testShutdownPartialGroupsNone
An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with groups material mode and none PIR release mode.

Test:testShutdownPartialGroupsNoneContours
An NFAC-RTH-SCIPUFF integration test, this exercises the ”Shutdown Partial” scenario with groups material mode and none PIR release mode and compares resulting contour areas.

Test:testShutdownPartialMCAverage
An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with multicomponent material mode and average PIR release mode.
Test:testShutdownPartialMCExplicit

An NFAC-RTH integration test, this exercises the "Shutdown Partial" scenario with multicomponent material mode and explicit PIR release mode.

Test:testShutdownPartialMCNone

An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with multicomponent material mode and none PIR release mode.

Test:testShutdownPartialMCNoneContours

An NFAC-RTH-SCIPUFF integration test, this exercises the "Shutdown Partial" scenario with multicomponent material mode and none PIR release mode and compares resulting contour areas.

Test:testShutdownPartialSimpleAverage

An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with simple material mode and average PIR release mode.

Test:testShutdownPartialSimpleExplicit

An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with simple material mode and explicit PIR release mode.

Test:testShutdownPartialSimpleNone

An NFAC-RTH integration test, this exercises the “Shutdown Partial” scenario with simple material mode and none PIR release mode.

Test:testShutdownPartialSimpleNoneContours

An NFAC-RTH-SCIPUFF integration test, this exercises the "Shutdown Partial" scenario with simple material mode and none PIR release mode and compares resulting contour areas.

5. INTERACTIVE TESTS

The purpose of the interactive tests is to exercise each piece of functionality in the Nuclear Facility Incident Edit dialog and its constituent components. Verification of results is by visual inspection of the interface and/or examination of project files after being saved and are recorded in the test descriptions below.

5.1 TOP LEVEL INTERACTIONS

Test: Set Incident Name

Set the incident name via the Name edit field.
Verification:
- Incident name correctly (de)serialized from/to the project file.
5.2 WHERE TAB

Test: Select Facility

Select a facility via the Select button in the Facility group. Examine the facility tree to verify correct representation of the facilities defined in NFAC data files.

Verification:

- The All Facilities tree lists all the countries (and generic) represented in the wcountry.dat file.
- Each country tree node expands to the proper subtrees (Power Reactor, Reprocessing Facility, and/or Research Reactor) based on facilities available in that country.
- Verify special statuses decommissioned, not yet completed, and no inventory are accurately represented.
- Each leaf node lists the available facilities correctly as per the associated lwr_???.dat file.
- The selected facility is correctly represented and (de)serialized from/to the project file.

Test: Select Default Facility Location

Choose the Facility Location radio button in the Location group for the default facility location.

Verification:

- The coordinate for the facility as stored in the facility database is (de)serialized from/to the project file.

Test: Enter Explicit Facility Location

Selected the Customized Location radio button and enter an explicit coordinate for the facility location.

Verification:

- The entered coordinate is (de)serialized from/to the project file as the facility location.

Test: Define Facility Location by Dragging the Incident Icon

With the Customized Location radio button selected, drag the incident icon on the map to set the location.

Verification:

- The dragged-to coordinate is (de)serialized from/to the project file as the facility location.

Test: Select the Default Inventory File

Choose the Default for Facility radio button in the Inventory group.

Verification:

- The inventory file referenced in the facility database entry is (de)serialized from/to the project file.
Test: Select a Custom Inventory File

Choose the Customized radio button in the Inventory group and specify an inventory (i.e., activity vector or .avc) file.
Verification:
• The specified file is (de)serialized from/to the project file as the custom inventory.

Test: Use the ORIGEN File Import Utility to Create a Custom Inventory File

Activate the Origen Import button to run the ORIGEN Importer.
Verification:
• After selecting a F71 file, the ORIGEN File Import utility appears and displays the cases in the file.
• Activating the Show File Overview button brings up an overview windowing showing information about each case in the F71 file.
• After selecting a case and activating the Show Case Overview button, a window giving a summary of the selected case appears.
• After selecting a case and activating the Show Case Details button, a windowing displaying details of the selected case appears.
• After selecting a case, selecting and entering values in the Inventory File Units group, and activating the Create Inventory File button, and entering a target filename, an inventory file is created.
• The created inventory file can be specified as the custom inventory for the facility.

5.3 WHAT TAB

Test: Enter an Explicit Operating Power

Change the value of the Operating Power field.
Verification:
• The specified operating power is (de)serialized from/to the project file.

Test: Select a Moderate Incident

Choose the Moderate Incident radio button.
Verification:
• The Moderate model appropriate for the selected facility is (de)serialized from/to the project file and displayed in the report resulting from activating the View Source Term button (compared to the associated acmxxx.dat file).

Test: Select a Severe Incident

Choose the Severe Incident radio button.
Verification:
• The Severe model appropriate for the selected facility is (de)serialized from/to the project file and displayed in the report resulting from activating the View Source Term button (compared to the associated acsxxx.dat file).
Test: Define an Isotopic Release Rates Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *Isotopic Release Rates* from the *Source Terms Available* list. Click the *Next* button. From the *Define Isotopic Release Rates* dialog, choose *Release Units* and enter values under *Isotope Values*.

Verification:

- The defined isotope values and release units are (de)serialized from/to the project file and displayed in the report resulting from activating the *View Source Term* button.

Test: Define an Isotopic Concentrations Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *Isotopic Concentrations* from the *Source Terms Available* list. Click the *Next* button. From the *Define Isotopic Release Rates* dialog, choose *Release Units* and enter values under *Isotope Values*.

Verification:

- The defined isotope values and release units are (de)serialized from/to the project file and displayed in the report resulting from activating the *View Source Term* button.

Test: Define a Percent Inventory Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *Percent Inventory* from the *Source Terms Available* list. Click the *Next* button. From the *Define Percent Inventory Releases* dialog, activate the *Load* button and choose *From Moderate Model*. Then, activate the *Load* button and choose *From Severe Model*. Enter explicit values in the release duration and group percentage cells. Activate the *New* button to add a release. Change the duration units via the *Duration Units* combo box. Select a cell in any release column and activate *Delete* to remove that release.

Verification:

- The release definitions for the moderate and severe models are correct for the type of facility *acmxxx.dat* and *acsxxx.dat* files, respectively).
- The (first) totals column is accurately updated after cell edits.
- All duration cell values are converted upon selection of new duration units.
- A new, release column is added when *New* is activated with cell values set to the remainder required to reach 100% release of each group.
- *Deleted* releases are moved.
- The defined releases are (de)serialized from/to the project file and displayed in the report resulting from activating the *View Source Term* button.

Test: Define an Analyst Mix Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *Mix Specified by Analyst* from the *Source Terms Available* list. Click the *Next* button. From the *Define Mix Specified by Analyst* dialog, enter a *Gross Release Rate* and various values for the percentages by MELCOR group.

Verification:

-
• The *Gross Release Rate* value is (de)serialized from/to the project file.
• Entering release percentages totaling more than 100% results in a warning dialog.
• Release percentages for each group are (de)serialized from/to the project file.

Test: Define a Containment Monitor Reading Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *Mix Specified by Analyst* from the *Source Terms Available* list. Click the *Next* button. From the *Define Containment Monitor Reading Incident* dialog, enter various values for: *Representative Operating Power, Monitor Reading and Location, Sprays, Release Path, and Leak Rate*.

Verification:

• All entered values are (de)serialized from/to the project file.
• A warning appears if 100% leak rate is selected with a filtered release path.
• The release duration is correctly calculated from the specified leak rate.

Test: Define a Spent Fuel Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *Spent Fuel* from the *Source Terms Available* list. Click the *Next* button. From the *Define Spent Fuel/Spent Fuel Pool Incident* dialog, enter various values for: *Representative Operating Power, Number of Batches, Fuel Condition, Sprays, Release Path, Last Batch in Pool datetime, and Leak Rate*.

Verification:

• All entered values are (de)serialized from/to the project file.
• A warning appears if 100% leak rate is selected with a filtered release path.
• The *Last Batch in Pool* time is forced to be no later than *Shutdown/Start of Decay* on the *When* tab.
• The release duration is correctly calculated from the specified leak rate.

Test: Define a RASCAL Project Incident

Choose the *Technical Analysis* radio button. Activate the *Define Incident* button and choose *RASCAL Project* from the *Source Terms Available* list. Click the *Next* button. From the *RASCAL Project* dialog, activate the *Read File* button to locate and select a RASCAL project file.

Verification:

• The contained *tadspecs.tmp* file is read correctly to get the case name.
• The contained *NucName.tmp* file is read correctly to get the list of isotopes.
• The contained *STC_Rel.tmp* file is read correctly to get release durations and activity values for each isotope at each release time.
• The isotope activities and durations for each release are correctly (de)serialized from/to the project file.
Test: Define a Confinement Bypass Plant Conditions Incident

In the Where tab, choose a facility for which the Confinement Bypass plant condition is available, such as Hartlepool-1 in Great Britain (an AGR). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Bypass of Confinement from the Plant Conditions Available list. From the Bypass of Confinement dialog, enter or select various values for Representative Operating Power, Core Condition, and Leak Rate.

Verification:
- Values entered or selected are (de)serialized from/to the project file.
- The release duration is correctly calculated from the specified leak rate.

Test: Define a Confinement Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Confinement Bypass plant condition is available, such as Novovoronezh-3 in Russia (a VVER-440/230). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Confinement Leakage/Failure from the Plant Conditions Available list. From the Confinement Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, and Leak Rate.

Verification:
- Values entered or selected are (de)serialized from/to the project file.
- The release duration is correctly calculated from the specified leak rate.

Test: Define a Containment Bypass Plant Conditions Incident

In the Where tab, choose a facility for which the Containment Bypass plant condition is available, such as Hamaoka-3 in Japan (a BWR Mk-1). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Bypass of Containment from the Plant Conditions Available list. From the Bypass of Containment dialog, enter or select various values for Representative Operating Power, Core Condition, Release Path, and Leak Rate.

Verification:
- Values entered or selected are (de)serialized from/to the project file.
- The release duration is correctly calculated from the specified leak rate.

Test: Define a Containment Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Containment Leakage plant condition is available, such as Beloyarsky-3(BN-600) in Russia (an LMFBR, requires a custom inventory file). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Containment Leakage/Failure from the Plant Conditions Available list. From the Containment Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, Release Path, and Leak Rate.

Verification:
• Values entered or selected are (de)serialized from/to the project file.
• The release duration is correctly calculated from the specified leak rate.

Test: Define a Dry Well Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Dry Well Leakage plant condition is available, such as Hamaoka-3 in Japan (a BWR Mk-1). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Dry Well Leakage/Failure from the Plant Conditions Available list. From the Dry Well Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, Release Path, Sprays, and Leak Rate.

Verification:

• Values entered or selected are (de)serialized from/to the project file.
• The release duration is correctly calculated from the specified leak rate.

Test: Define an Ice Condenser Containment Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Ice Condenser Containment plant condition is available, such as Watts Bar-1 in the United States (a PWR). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Ice Condenser Containment Leakage/Failure from the Plant Conditions Available list. From the Ice Condenser Containment Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, Release Path, Sprays, Fans, Ice Bed Condition Before Core Damage, and Leak Rate.

Verification:

• Values entered or selected are (de)serialized from/to the project file.
• The release duration is correctly calculated from the specified leak rate.

Test: Define a Large Dry Subcontainment Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Large Dry Subcontainment Leakage plant condition is available, such as Beaver Valley-1 in the United States (a PWR). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Large, Dry, or Subatmospheric Containment Leakage/Failure from the Plant Conditions Available list. From the Large, Dry, or Subatmospheric Containment Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, Release Path, Sprays, and Leak Rate.

Verification:

• Values entered or selected are (de)serialized from/to the project file.
• The release duration is correctly calculated from the specified leak rate.
Test: Define a Prompt Critical Power Excursion Plant Conditions Incident

In the Where tab, choose a facility for which the Prompt Critical Power Excursion plant condition is available, such as Bilibino Unit A in Russia (an RBMK). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Prompt Critical Power Excursion from the Plant Conditions Available list. From the Prompt Critical Power Excursion dialog, enter or select various values for Representative Operating Power, and Core Involvement.

Verification:
- Values entered or selected are (de)serialized from/to the project file.

Test: Define a Reprocessing Facility Plant Conditions Incident

In the Where tab, choose a facility for which the Reprocessing Facility plant condition is available, such as Savannah River in the United States. On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Reprocessing Facility Plant Conditions from the Plant Conditions Available list. From the Reprocessing Facility Plant Conditions dialog, enter or select various values for Plant Throughput, Release Rate, and the values in the Release Fraction by Component group.

Verification:
- Values entered or selected are (de)serialized from/to the project file.

Test: Define a Steam Generator Tube Rupture Plant Conditions Incident

In the Where tab, choose a facility for which the Steam Tube Rupture plant condition is available, such as Dungeness B-1 in Great Britain (an AGR). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Steam Generator Tube Rupture (Coolant) from the Plant Conditions Available list. From the Steam Generator Tube Rupture (Coolant) dialog, enter or select various values for Coolant Concentration, Steam Generator Conditions, Release is From, and Release Rate.

Verification:
- Values entered or selected are (de)serialized from/to the project file.

Test: Define a Subatmospheric Confinement Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Subatmospheric Confinement Leakage/Failure plant condition is available, such as Rovno-1 in the Ukraine (VVER-440/213). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Subatmospheric Confinement Leakage/Failure from the Plant Conditions Available list. From the Subatmospheric Confinement Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, Pool Suppression System, and Leak Rate.

Verification:
• Values entered or selected are (de)serialized from/to the project file.
• The release duration is correctly calculated from the specified leak rate.

Test: Define a Wet Well Leakage/Failure Plant Conditions Incident

In the Where tab, choose a facility for which the Wet Well Leakage plant condition is available, such as Hamaoka-3 in Japan (a BWR Mk-1). On the What tab, choose the Technical Analysis radio button. Activate the Define Incident button, choose Plant Conditions from the Source Terms Available list, activate the Next button, and then choose Wet Well Leakage/Failure from the Plant Conditions Available list. From the Wet Well Leakage/Failure dialog, enter or select various values for Representative Operating Power, Core Condition, Release Path, Wet Well, and Leak Rate.

Verification:
• Values entered or selected are (de)serialized from/to the project file.
• The release duration is correctly calculated from the specified leak rate.

Test: Select Material Processing Modes

Step 1. From the Where tab, select the facility Bruce-1 (Canada → Power Reactor). On the What tab, activate the Edit Calculation Options button to bring up the Edit Calculation Options dialog. Check that the Mode combo box in the Material Processing group is disabled.

Verification:
• The combo box is disabled.

Step 2. From the Where tab, select the facility Beaver Valley-1 Bruce-1 (United States → Power Reactor). On the What tab, activate the Technical Analysis radio button. Activate the Edit Calculation Options button to bring up the Edit Calculation Options dialog. In turn for each option, do the following.

Select the mode. Activate the OK button to close dialog. Select File → Export Project to ASCII from the menu bar. After saving the file, examine it with an editor to verify the materialMode field has the correct value.

Verification:
• The combo box is enabled.
• Three modes are available: Simple, Groups, Multicomponent.
• The materialMode field value is correct in the ASCII project export.

Test: Select Percent Inventory Release Modes

On the What tab, activate the Technical Analysis radio button. Activate the Edit Calculation Options button to bring up the Edit Calculation Options dialog. Activate the Mode combo box in the Percent Inventory Release group. In turn for each option, do the following.

Select the mode. Activate the OK button to close dialog. Select File → Export Project to ASCII from the menu bar. After saving the file, examine it with an editor to verify the PIRMode field has the correct value.

Verification:
• Three modes are available: Average, Explicit, None.
• The PIRMode field value is correct in the ASCII project export.
Test: View Source Term

Activate the View Source Term button to generate and display an HTML report giving details of the source term as currently defined.

Verification:

- Source term HTML report generated for all source models.

5.4 WHEN TAB

The When tab in the NFAC GUI is relatively complex compared to other incident source models. Refer to Section 3.4 ModelTimesTest for a description of the six event times possible in NFAC incidents. Which of the event times are visible and/or editable for a particular NFAC source model depends on that model and which of the event times are defined or computed based on the model definition. Further, the new Advanced Mode toggle button allows the user to override these settings and enter explicit times for all events, possibly redefining the model in the process. The interactive tests examine each NFAC source model to verify the proper times are visible and editable and are correctly computed if appropriate. The Reset Times button is activated to ensure the default times are applied.

Test: Moderate Model Times Edit

Verification:

- Shutdown/Start of Decay: visible, editable
- Release to Containment: invisible
- Release to Environment: visible, uneditable, calculated correctly
- End of Release: visible, uneditable, calculated correctly
- End of Dispersion: visible, editable
- End of Exposure: visible, editable
- After reset, times set correctly

Test: Severe Model Times Edit

Verification:

- Shutdown/Start of Decay: visible, editable
- Release to Containment: invisible
- Release to Environment: visible, uneditable, calculated correctly
- End of Release: visible, uneditable, calculated correctly
- End of Dispersion: visible, editable
- End of Exposure: visible, editable
- After reset, times set correctly

Test: Analyst Mix Model Times Edit

Verification:
Shutdown/Start of Decay: visible, editable
Release to Containment: invisible
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Containment Monitor Reading Model Times Edit

Verification:

Shutdown/Start of Decay: invisible
Release to Containment: visible, editable
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Isotopic Concentrations Model Times Edit

Verification:

Shutdown/Start of Decay: invisible
Release to Containment: invisible
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Isotopic Release Rates Model Times Edit

Verification:

Shutdown/Start of Decay: invisible
Release to Containment: invisible
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Percent Inventory Model Times Edit

Verification:

1 Time can be manually set less than computed end time based on leak rate
Shutdown/Start of Decay: visible, editable
Release to Containment: invisible
Release to Environment: visible, uneditable, calculated correctly
End of Release: visible, uneditable, calculated correctly
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Containment Bypass Plant Conditions Model Times Edit

Verification:

Shutdown/Start of Decay: visible, editable
Release to Containment: invisible
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

1 Time can be manually set less than computed end time based on leak rate

Test: Prompt Critical Power Excursion Plant Conditions Model Times Edit

Verification:

Shutdown/Start of Decay: invisible
Release to Containment: invisible
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Reprocessing Facility Plant Conditions Model Times Edit

Verification:

Shutdown/Start of Decay: invisible
Release to Containment: invisible
Release to Environment: visible, editable
End of Release: visible, editable
End of Dispersion: visible, editable
End of Exposure: visible, editable
After reset, times set correctly

Test: Confinement Bypass Plant Conditions Model Times Edit

Times management for this source model is shared by all other Plant Conditions models except for the three identified in the preceeding tests.
Verification:

- **Shutdown/Start of Decay**: visible, editable
- **Release to Containment**: invisible
- **Release to Environment**: visible, editable
- **End of Release**: visible, editable
- **End of Dispersion**: visible, editable
- **End of Exposure**: visible, editable
- After reset, times set correctly
- 1 Time can be manually set less than computed end time based on leak rate

Test: Spent Fuel Model Times Edit

Verification:

- **Shutdown/Start of Decay**: invisible
- **Release to Containment**: visible, editable
- **Release to Environment**: visible, editable
- **End of Release**: visible, editable
- **End of Dispersion**: visible, editable
- **End of Exposure**: visible, editable
- After reset, times set correctly
- 1 Time can be manually set less than computed end time based on leak rate

Test: RASCAL Project Model Times Edit

Verification:

- **Shutdown/Start of Decay**: invisible
- **Release to Containment**: invisible
- **Release to Environment**: visible, editable
- **End of Release**: visible, editable
- **End of Dispersion**: visible, editable
- **End of Exposure**: visible, editable
- After reset, times set correctly

Test: Detect Event Times Out of Chronological Order

After modification of editable time fields and activation of the OK button for the *Nuclear Facility Incident Edit* dialog, if times are not in chronological order, a "Times are not in chronological order" error dialog is displayed, and the model definition remains unchanged.

Verification:

- Out of order times are detected, a warning dialog is displayed, and the model definition is not updated.
Test: Apply Time Field Changes for All Events

Enter a field value and activate the corresponding button in the Change Field for All Events group.

Verification:

- Month (MM) fields are updated.
- Day (DD) fields are updated.
- Year fields are updated.
- Hours (hh) fields are updated.
- Minutes (mm) fields are updated.
- Seconds (ss) fields are updated.
- Calculated fields are updated correctly.

Test: Override Times in Advanced Mode

Activate the Advanced Mode toggle button to override editability of fields.

Verification:

- All visible fields are editable.
- Chronological order checks are still applied.

5.5 NOTES TAB

Test: Edit Notes

Verification:

- Notes are (de)serialized from/to the project file.
- Notes can be modified (changed, deleted, augmented).
6. RESULTS

6.1 AUTOMATED TEST RESULTS

NfacJUnit4Adapter consolidates all test results into a single report. The report is listed below.

Running tests...
Test project Z:/re7x/src/hpac5-poplib-cmake/build-win
Start 1: test0001_dc_around_tiles
1/62 Test #1: test0001_dc_around_tiles Passed 0.64 sec
Start 2: test0002_dc_around_rasters
2/62 Test #2: test0002_dc_around_rasters Passed 0.75 sec
Start 3: test0003_dc_inner_tiles
3/62 Test #3: test0003_dc_inner_tiles Passed 0.56 sec
Start 4: test0004_dc_inner_rasters
test0004_dc_inner_rasters
4/62 Test #4: test0004_dc_inner_rasters Passed 0.53 sec
Start 5: test0005_dc_diamond_tiles
5/62 Test #5: test0005_dc_diamond_tiles Passed 0.56 sec
Start 6: test0006_dc_diamond_rasters
test0006_dc_diamond_rasters
6/62 Test #6: test0006_dc_diamond_rasters Passed 0.52 sec
Start 7: test0007_ny_triangle_tiles
7/62 Test #7: test0007_ny_triangle_tiles Passed 0.58 sec
Start 8: test0008_ny_triangle_rasters
test0008_ny_triangle_rasters
8/62 Test #8: test0008_ny_triangle_rasters Passed 0.58 sec
Start 9: test0009_va_exclude_1_tiles
test0009_va_exclude_1_tiles
9/62 Test #9: test0009_va_exclude_1_tiles Passed 1.55 sec
Start 10: test0010_va_exclude_1_tiles_ini
10/62 Test #10: test0010_va_exclude_1_tiles_ini Passed 1.52 sec
Start 11: test0011_va_exclude_1_rasters
test0011_va_exclude_1_rasters
11/62 Test #11: test0011_va_exclude_1_rasters Passed 1.80 sec
Start 12: test0012_va_exclude_1_rasters_ini
12/62 Test #12: test0012_va_exclude_1_rastersIni Passed 1.83 sec
Start 13: test0013_va_exclude_2_tiles
test0013_va_exclude_2_tiles
13/62 Test #13: test0013_va_exclude_2_tiles Passed 1.55 sec
Start 14: test0014_va_exclude_2_tiles_ini
14/62 Test #14: test0014_va_exclude_2_tiles_ini Passed 1.62 sec
Start 15: test0015_va_exclude_2_rasters
test0015_va_exclude_2_rasters
15/62 Test #15: test0015_va_exclude_2_rasters Passed 1.59 sec
Start 16: test0016_va_exclude_2_rasters_ini
16/62 Test #16: test0016_va_exclude_2_rastersIni Passed 1.56 sec
Start 17: test0017_va_exclude_12_tiles
test0017_va_exclude_12_tiles
17/62 Test #17: test0017_va_exclude_12_tiles Passed 1.47 sec
Start 18: test0018_va_exclude_12_tiles_ini
18/62 Test #18: test0018_va_exclude_12_tiles_ini Passed 1.86 sec
Start 19: test0019_va_exclude_12_rasters
test0019_va_exclude_12_rasters
19/62 Test #19: test0019_va_exclude_12_rasters Passed 1.66 sec
Start 20: test0020_va_exclude_12_rasters_ini
20/62 Test #20: test0020_va_exclude_12_rastersIni Passed 1.77 sec
Start 21: test0021_va_exclude_1n_tiles
test0021_va_exclude_1n_tiles
21/62 Test #21: test0021_va_exclude_1n_tiles Passed 1.64 sec
Start 22: test0022_vaexclude_1n_tiles Ini
22/62 Test #22: test0022_vaexclude_1n_tilesIni Passed 1.91 sec
Start 23: test0023_va_exclude_1n_rasters
test0023_va_exclude_1n_rasters
23/62 Test #23: test0023_va_exclude_1n_rasters Passed 1.84 sec
Start 24: test0024_va_exclude_1n_rasters_ini
24/62 Test #24: test0024_va_exclude_1n_rastersIni Passed 1.69 sec
Start 25: test0025_va_exclude_2n_tiles
test0025_va_exclude_2n_tiles
25/62 Test #25: test0025_va_exclude_2n_tiles Passed 1.34 sec
Start 26: test0026_va_exclude_2n_rasters
test0026_va_exclude_2n_rasters
26/62 Test #26: test0026_va_exclude_2n_rasters Passed 1.37 sec
Start 27: test0027_va_exclude_2n_rasters_ini
27/62 Test #27: test0027_va_exclude_2n_rastersIni Passed 1.52 sec
Start 28: test0028_va_exclude_2n_rasters ini
28/62 Test #28: test0028_va_exclude_2n_rastersIni Passed 1.53 sec
61/62 Test #61: test0061_mosul_rasters_only Passed 1.06 sec
Start 62: test0062_mosul_rasters_and_tiles
62/62 Test #62: test0062_mosul_rasters_and_tiles Passed 1.12 sec

100% tests passed, 0 tests failed out of 62

Label Time Summary:
exclusion = 56.70 sec (40 tests)
mgrs = 0.06 sec (1 test)
rasters = 45.09 sec (36 tests)
simple = 18.87 sec (21 tests)
tiles = 31.61 sec (26 tests)

Total Test time (real) = 76.00 sec
6.2 AUTOMATED TEST COVERAGE

Test coverage analysis is produced using version 0.7.9 of JaCoCo[2] Just as not all NFAC components have equal importance in providing functionality, not all branches within any NFAC component have equal importance. Coverage results from the JaCoCo report are presented in the following tables. Table 3 gives a summary by Java package.

Table 3: Code Coverage by Package

<table>
<thead>
<tr>
<th>Package</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
<th>Classes Missed</th>
<th>Classes Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAcomp</td>
<td>99</td>
<td>14</td>
<td>14</td>
<td>1,941</td>
<td>2</td>
<td>94</td>
<td>373</td>
<td>785</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>CAcomp.data</td>
<td>56</td>
<td>35</td>
<td>1,040</td>
<td>1,593</td>
<td>1,494</td>
<td>3,510</td>
<td>373</td>
<td>785</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>CAcomp.data.analyst</td>
<td>47</td>
<td>30</td>
<td>796</td>
<td>1,242</td>
<td>1,575</td>
<td>2,978</td>
<td>218</td>
<td>525</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>CAcomp.data.analyst.plantcond</td>
<td>42</td>
<td>7</td>
<td>237</td>
<td>389</td>
<td>534</td>
<td>963</td>
<td>130</td>
<td>278</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>CAcomp.data.times</td>
<td>91</td>
<td>61</td>
<td>35</td>
<td>104</td>
<td>22</td>
<td>234</td>
<td>5</td>
<td>61</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>CAcomp.data.impl</td>
<td>72</td>
<td>47</td>
<td>668</td>
<td>1,045</td>
<td>1,034</td>
<td>3,578</td>
<td>83</td>
<td>227</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>CAcomp.exception</td>
<td>0</td>
<td>n/a</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Coverage for each class is presented in Tables[4][10] In terms of significance in NFAC processing, the most important classes are:

- CAcomp.data.AmbClient
- CAcomp.data.Facility
- CAcomp.data.ModelTimes
- CAcomp.data.NfacIncident
- CAcomp.data.NfacIncidentMgr
- CAcomp.data.ParticleGroups
- CAcomp.data.ParticleGroupsMgr
- CAcomp.data.analyst.PercentInventory
- CAcomp.data.analyst.PercentInventoryRelease
- CAcomp.data.analyst.PercentInventoryReleaseTree
- CAcomp.data.analyst.SourceTermTable
- all classes in CAcomp.data.times
- CAcomp.impl.AmblInputsMgr
- CAcomp.impl.NfacImpl
- CAcomp.impl.ReproMod
- CAcomp.impl.St_Monitor
- CAcomp.impl.StcalcClient

†Package names assume a mil.dtra.hpac.model.nfac prefix.
Table 4: Code Coverage: CAComp

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NfacServiceRefs</td>
<td>92</td>
<td>39</td>
<td>14</td>
<td>41</td>
<td>2</td>
<td>64</td>
<td>2</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 5: Code Coverage: CAComp.data

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActivityHash</td>
<td>66</td>
<td>46</td>
<td>133</td>
<td>223</td>
<td>154</td>
<td>533</td>
<td>15</td>
<td>74</td>
</tr>
<tr>
<td>ActivityHash.ActivityZComparator</td>
<td>46</td>
<td>25</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AmbClient</td>
<td>51</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AmbClient.ActivityNameSorter</td>
<td>46</td>
<td>25</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AmbClient.ActivityTableInputMatIDSorter</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>AmbClient.ActivityValueSorter</td>
<td>50</td>
<td>37</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AmbClient.IsotopeDepSorter</td>
<td>37</td>
<td>25</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AmbClient.IsotopeShortNameSorter</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ActivityHash.ActivityZComparator</td>
<td>71</td>
<td>50</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>19</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ActivityHash</td>
<td>54</td>
<td>42</td>
<td>8</td>
<td>16</td>
<td>18</td>
<td>48</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Facility</td>
<td>54</td>
<td>40</td>
<td>9</td>
<td>18</td>
<td>25</td>
<td>69</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>FacilityDB</td>
<td>11</td>
<td>9</td>
<td>37</td>
<td>44</td>
<td>79</td>
<td>100</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>FaciltyDB</td>
<td>66</td>
<td>28</td>
<td>92</td>
<td>158</td>
<td>97</td>
<td>330</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>FacilityDB</td>
<td>80</td>
<td>50</td>
<td>6</td>
<td>13</td>
<td>4</td>
<td>22</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>FacilityDB</td>
<td>54</td>
<td>40</td>
<td>9</td>
<td>18</td>
<td>25</td>
<td>69</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>FacilityDef</td>
<td>71</td>
<td>47</td>
<td>54</td>
<td>107</td>
<td>57</td>
<td>238</td>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td>FastIsotopes</td>
<td>35</td>
<td>31</td>
<td>22</td>
<td>34</td>
<td>35</td>
<td>67</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>MaterialMode</td>
<td>92</td>
<td>100</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>ModelDefUtils</td>
<td>35</td>
<td>23</td>
<td>87</td>
<td>98</td>
<td>133</td>
<td>206</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>ModelTimes</td>
<td>78</td>
<td>26</td>
<td>27</td>
<td>68</td>
<td>32</td>
<td>186</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>ModerateModel</td>
<td>35</td>
<td>0</td>
<td>8</td>
<td>15</td>
<td>7</td>
<td>16</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>NfacConstants</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NfacDummyMaterial</td>
<td>0</td>
<td>0</td>
<td>136</td>
<td>136</td>
<td>162</td>
<td>162</td>
<td>131</td>
<td>131</td>
</tr>
<tr>
<td>NfacIncident</td>
<td>66</td>
<td>13</td>
<td>22</td>
<td>49</td>
<td>47</td>
<td>133</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>NfacRelease</td>
<td>89</td>
<td>50</td>
<td>7</td>
<td>20</td>
<td>5</td>
<td>38</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Options</td>
<td>47</td>
<td>10</td>
<td>31</td>
<td>62</td>
<td>67</td>
<td>175</td>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>ParticleGroups</td>
<td>72</td>
<td>48</td>
<td>59</td>
<td>95</td>
<td>74</td>
<td>273</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>ParticleGroupsGroupActivityList</td>
<td>81</td>
<td>62</td>
<td>10</td>
<td>22</td>
<td>7</td>
<td>47</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>ParticleGroupsGroupInfo</td>
<td>64</td>
<td>50</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>18</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>ParticleGroupsGroupInfo</td>
<td>41</td>
<td>40</td>
<td>13</td>
<td>19</td>
<td>8</td>
<td>21</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>ParticleGroupsMgr</td>
<td>71</td>
<td>47</td>
<td>19</td>
<td>40</td>
<td>21</td>
<td>88</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>PropertyFinder</td>
<td>87</td>
<td>73</td>
<td>16</td>
<td>38</td>
<td>15</td>
<td>100</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Range</td>
<td>19</td>
<td>15</td>
<td>40</td>
<td>45</td>
<td>69</td>
<td>86</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Range.Mode</td>
<td>76</td>
<td>n/a</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ReproInventory</td>
<td>11</td>
<td>11</td>
<td>70</td>
<td>74</td>
<td>183</td>
<td>206</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>SevereModel</td>
<td>29</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 6: Code Coverage: CAComp.data.analyst

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbstractAnalystModel</td>
<td>63</td>
<td>n/a</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>AnalystMix</td>
<td>55</td>
<td>25</td>
<td>27</td>
<td>49</td>
<td>60</td>
<td>126</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>AnalystMix.Utils</td>
<td>62</td>
<td>62</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>ConcentrationUnits</td>
<td>30</td>
<td>0</td>
<td>21</td>
<td>32</td>
<td>50</td>
<td>76</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>ContainmentMonitorReading</td>
<td>48</td>
<td>10</td>
<td>24</td>
<td>44</td>
<td>63</td>
<td>135</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>IsotopeReleases</td>
<td>33</td>
<td>20</td>
<td>42</td>
<td>58</td>
<td>81</td>
<td>120</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>IsotopeValue</td>
<td>27</td>
<td>12</td>
<td>41</td>
<td>55</td>
<td>87</td>
<td>123</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>IsotopicConcentrations</td>
<td>46</td>
<td>10</td>
<td>25</td>
<td>42</td>
<td>65</td>
<td>124</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>IsotopicReleaseRates</td>
<td>48</td>
<td>14</td>
<td>22</td>
<td>38</td>
<td>51</td>
<td>104</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>PIRSubReleaseMode</td>
<td>92</td>
<td>100</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>PercentInventory</td>
<td>56</td>
<td>44</td>
<td>46</td>
<td>83</td>
<td>83</td>
<td>215</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>PercentInventoryConstants</td>
<td>0</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PercentInventoryRelease</td>
<td>51</td>
<td>31</td>
<td>37</td>
<td>69</td>
<td>76</td>
<td>154</td>
<td>16</td>
<td>42</td>
</tr>
<tr>
<td>PercentInventoryRelease.Tree</td>
<td>91</td>
<td>62</td>
<td>84</td>
<td>150</td>
<td>32</td>
<td>361</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>PlantConditionConstants</td>
<td>55</td>
<td>13</td>
<td>31</td>
<td>35</td>
<td>51</td>
<td>60</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>PlantConditionTables</td>
<td>31</td>
<td>38</td>
<td>62</td>
<td>102</td>
<td>156</td>
<td>230</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>PlantConditionMdl</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PIRReleaseRate</td>
<td>53</td>
<td>31</td>
<td>37</td>
<td>69</td>
<td>76</td>
<td>154</td>
<td>16</td>
<td>42</td>
</tr>
<tr>
<td>ReproInventory</td>
<td>11</td>
<td>11</td>
<td>70</td>
<td>74</td>
<td>183</td>
<td>206</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>SevereModel</td>
<td>29</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 7: Code Coverage: CAComp.data.analyst.plantcond

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCConfinementByPass</td>
<td>29</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>13</td>
<td>22</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>PCConfinementLeakage</td>
<td>29</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>13</td>
<td>22</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>PCContainmentByPass</td>
<td>37</td>
<td>0</td>
<td>17</td>
<td>26</td>
<td>39</td>
<td>62</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>PCContainmentLeakage</td>
<td>55</td>
<td>n/a</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>18</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>PCCore, leakData</td>
<td>51</td>
<td>33</td>
<td>15</td>
<td>30</td>
<td>29</td>
<td>82</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>PCDryWellLeakage</td>
<td>42</td>
<td>0</td>
<td>17</td>
<td>28</td>
<td>40</td>
<td>73</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>PCIceCondenserContainment</td>
<td>45</td>
<td>0</td>
<td>19</td>
<td>34</td>
<td>48</td>
<td>100</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>PCLargeDrySubContainmentLeakage</td>
<td>42</td>
<td>0</td>
<td>17</td>
<td>28</td>
<td>40</td>
<td>74</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>PCPromptCriticalPowerExcursion</td>
<td>42</td>
<td>9</td>
<td>22</td>
<td>34</td>
<td>43</td>
<td>76</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>PCReproFacility</td>
<td>42</td>
<td>0</td>
<td>22</td>
<td>44</td>
<td>76</td>
<td>155</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>PCTeamPipeBurstLeakage</td>
<td>42</td>
<td>11</td>
<td>30</td>
<td>47</td>
<td>65</td>
<td>119</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>PCSubatmosphericConfinementLeakage</td>
<td>36</td>
<td>0</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>66</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>PCWaterWellLeakage</td>
<td>40</td>
<td>8</td>
<td>23</td>
<td>35</td>
<td>50</td>
<td>85</td>
<td>11</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 8: Code Coverage: CAComp.data.times

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbstractTimesMgr</td>
<td>90</td>
<td>50</td>
<td>6</td>
<td>12</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>AnalystMixTimesMgr</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IsotopicConcentrationsTimesMgr</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IsotopicReleaseRatesTimesMgr</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>LeakRateTimesMgr</td>
<td>89</td>
<td>50</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>27</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>ModelTimesMgrFactory</td>
<td>68</td>
<td>70</td>
<td>6</td>
<td>15</td>
<td>4</td>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>NoopTimesMgr</td>
<td>83</td>
<td>n/a</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>OperationalTimesMgr</td>
<td>81</td>
<td>45</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>42</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PCContainmentByPassTimesMgr</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PCLeakRateTimesMgr</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PercentInventoryTimesMgr</td>
<td>100</td>
<td>83</td>
<td>3</td>
<td>19</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>RascalProjectTimesMgr</td>
<td>91</td>
<td>50</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>29</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>SpentFuelTimesMgr</td>
<td>100</td>
<td>n/a</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 9: Code Coverage: CAComp.exceptions

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NfacValidationException</td>
<td>0</td>
<td>n/a</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 10: Code Coverage: CAComp.impl

<table>
<thead>
<tr>
<th>Class</th>
<th>Instructions Coverage (%)</th>
<th>Branches Coverage (%)</th>
<th>Complexity Missed</th>
<th>Complexity Total</th>
<th>Lines Missed</th>
<th>Lines Total</th>
<th>Methods Missed</th>
<th>Methods Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmbInputsMgr</td>
<td>84</td>
<td>58</td>
<td>77</td>
<td>141</td>
<td>56</td>
<td>430</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>AmbInputsMgr.MCReleaseRec</td>
<td>92</td>
<td>62</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>30</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EfficiencyFile</td>
<td>92</td>
<td>70</td>
<td>4</td>
<td>12</td>
<td>1</td>
<td>32</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>EquilibrateActivityVector</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>36</td>
<td>115</td>
<td>115</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>MelcorFracture</td>
<td>38</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td>13</td>
<td>25</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>MelcorFracturesFile</td>
<td>83</td>
<td>53</td>
<td>12</td>
<td>19</td>
<td>2</td>
<td>37</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MelcorReleaseFractionsFile</td>
<td>82</td>
<td>83</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>NfacFieldDescribeHelper</td>
<td>0</td>
<td>0</td>
<td>155</td>
<td>155</td>
<td>405</td>
<td>405</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>NfacImpl</td>
<td>69</td>
<td>48</td>
<td>91</td>
<td>145</td>
<td>158</td>
<td>589</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>PercentInventoryFileMgr</td>
<td>66</td>
<td>45</td>
<td>8</td>
<td>13</td>
<td>6</td>
<td>25</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RepoData</td>
<td>58</td>
<td>43</td>
<td>14</td>
<td>26</td>
<td>22</td>
<td>58</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>ReproMod</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>413</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>StMonitor</td>
<td>90</td>
<td>42</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>StcalcClient</td>
<td>81</td>
<td>55</td>
<td>240</td>
<td>390</td>
<td>246</td>
<td>1,378</td>
<td>4</td>
<td>37</td>
</tr>
</tbody>
</table>
6.3 INTERACTIVE TEST RESULTS

Table 11: Interactive Test Results: Top Level Interactions

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Incident Name</td>
<td>Success</td>
</tr>
</tbody>
</table>

Table 12: Interactive Test Results: Where Tab

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select facility</td>
<td>Success</td>
</tr>
<tr>
<td>Select default facility location</td>
<td>Success</td>
</tr>
<tr>
<td>Enter explicit facility location</td>
<td>Success</td>
</tr>
<tr>
<td>Define facility location by dragging the incident Icon</td>
<td>Success</td>
</tr>
<tr>
<td>Select the default inventory file</td>
<td>Success</td>
</tr>
<tr>
<td>Select a custom inventory file</td>
<td>Success</td>
</tr>
<tr>
<td>Use the ORIGEN File Import Utility to create a custom inventory file</td>
<td>Success</td>
</tr>
<tr>
<td>Test</td>
<td>Result</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Enter an explicit operating power</td>
<td>Success</td>
</tr>
<tr>
<td>Select a moderate incident</td>
<td>Success</td>
</tr>
<tr>
<td>Select a severe incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define an Isotopic Release Rates incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define an Isotopic Concentrations incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Percent Inventory incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define an Analyst Mix incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Containment Monitor Reading incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Spent Fuel incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a RASCAL Project incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Confinement Bypass Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Confinement Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Containment Bypass Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Containment Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Dry Well Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define an Ice Condenser Containment Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Large Dry Subcontainment Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Prompt Critical Power Excursion Plant Condition incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Reprocessing Facility Plant Condition incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Steam Generator Tube Rupture Plant Condition incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Subatmospheric Confinement Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Define a Wet Well Leakage/Failure Plant Conditions incident</td>
<td>Success</td>
</tr>
<tr>
<td>Select Material Processing Modes</td>
<td>Success</td>
</tr>
<tr>
<td>Select Percent Inventory Release Modes</td>
<td>Success</td>
</tr>
<tr>
<td>View source term</td>
<td>Success</td>
</tr>
</tbody>
</table>
Table 14: Interactive Test Results: When Tab

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Severe model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Analyst Mix model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Containment Monitor Reading model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Isotopic Concentrations model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Isotopic Release Rates model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Percent Inventory model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Containment Bypass Plant Conditions model Times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Prompt Critical Power Excursion Plant Conditions model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Reprocessing Facility Plant Conditions model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Confinement Bypass Plant Conditions model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Spent Fuel model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>RASCAL Project model times edit</td>
<td>Success</td>
</tr>
<tr>
<td>Detect event times out of chronological order</td>
<td>Success</td>
</tr>
<tr>
<td>Apply time field changes for all events</td>
<td>Success</td>
</tr>
<tr>
<td>Override times in advanced mode</td>
<td>Success</td>
</tr>
</tbody>
</table>

Table 15: Interactive Test Results: Notes Tab

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit notes</td>
<td>Success</td>
</tr>
</tbody>
</table>
References

INTERNAL DISTRIBUTION

1. R. W. Lee
2. C. D. Sulfredge
3. ORNL Office of Technical Information and Classification

EXTERNAL DISTRIBUTION