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ABSTRACT

In this report, a non-trivial lower bound on the joint entropy of two non-identical images is developed,
which is greater than the individual entropies of the images. The lower bound is the least joint entropy
possible among all pairs of images that have the same histograms as those of the given images. New
algorithms are presented to compute the joint entropy lower bound with a computation time proportional to
S log S where S is the number of histogram bins of the images. This is faster than the traditional methods
of computing the exact joint entropy with a computation time that is quadratic in S .

1. NOTATION AND DEFINITIONS

The notation, definitions, and some key properties are introduced in this section, followed by Section 2.
containing three algorithms to compute a non-trivial lower bound on joint entropy of two images. Potential
application of the algorithms is indicated in Section 3..

Let I(H ×W) denote an image I of height H and width W. Let I[i][ j] denote the color shade value of the
image pixel at (i, j), 0 ≤ i < H and 0 ≤ j < W. Let S be the total number of unique shade values
(0 ≤ I[i][ j] < S ).

• 1-D Histogram The one-dimensional (1-D) histogram b is an array of counters b[0..S − 1] such that

0 ≤ b[s] = cs, 0 ≤ s < S , where Cb =
S−1∑
s=0

b[s].

• Reach of a 1-D Histogram The reach Rb of a 1-D histogram b is the number of non-zero bins in b:

Rb = |{x|x = b[s] and x > 0, 0 ≤ s < S }| . (1)

• Entropy of a 1-D Histogram The entropy EH(b) of a 1-D histogram b is given as

EH(b) = −
S−1∑
s=0

ps log ps for all ps > 0, where

ps = b[s]/Cb 0 ≤ s < S .
(2)

• 1-D Histogram of an Image The 1-D histogram bI of an image I(H ×W) is defined by

bI[s] = |{〈i, j〉 | I[i][ j] = s}| for all 0 ≤ s < S , where
S−1∑
s=0

bI[s] = HW = CbI .
(3)

• Entropy of an Image The entropy E(I) of an image I(H ×W) is defined as the entropy of its 1-D
histogram bI:

E(I) = EH(bI) . (4)

• 2-D Histogram The two-dimensional (2-D) histogram B is an array of counters B[0..S − 1][0..S − 1]

such that 0 ≤ B[s1][s2] = cs1,s2 , where CB =
S−1∑
s1=0

S−1∑
s2=0

B[s1][s2].
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• Reach of a 2-D Histogram The reach RB of a 2-D histogram B is the number of non-zero bins in B:

RB = |{x|x = B[s1][s2] and x > 0, 0 ≤ s1, s2 < S }| . (5)

• Entropy of a 2-D Histogram The entropy EH(B) of a 2-D histogram B is given as

EH(B) = −
S−1∑
s1=0

S−1∑
s2=0

ps1 s2 log ps1 s2 , for ps1 s2 > 0, where

ps1 s2 = B[s1][s2]/CB, 0 ≤ s1, s2 < S .

(6)

• 2-D Histogram of Two Images The 2-D histogram BI1I2 of two images I1(H ×W) and I2(H ×W) is
defined by

BI1I2[s1][s2] = |{〈i, j〉 | I1[i][ j] = s1 and I2[i][ j] = s2}| , where
S−1∑
s1=0

S−1∑
s2=0

BI1I2[s1][s2] = HW = CBI1 I2
.

(7)

• Minimal 2-D Histogram of Two Images The minimal 2-D histogram B∗(I1, I2) of two images I1
and I2 is defined by

B∗(I1, I2) = histogram B with minimal reach RB among all possible BÎ1 Î2
,

such that bÎ1
= bI1

and bÎ2
= bI2

(8)

In other words, B∗(I1, I2) is a 2-D histogram that has the smallest reach RB∗ among all possible 2-D
histograms BÎ1,Î2

for any images Î1 and Î2 that have the same histograms as I1 and I2 respectively,
that is, bÎ1

= bI1 and bÎ2
= bI2 .

• Joint Entropy of Two Images The joint entropy JE(I1, I2) between two equal-sized images
I1(H ×W) and I2(H ×W) is defined as the entropy of their joint 2-D histogram BI1I2 :

JE(I1, I2) = EH(BI1I2) . (9)

• Lower Bound on the Joint Entropy of Two Images The non-trivial joint entropy lower bound
JELB(I1, I2) between two equal-sized, non-identical images I1(H ×W) and I2(H ×W) is defined as

JELB(I1, I2) ≤ JE(Î1, Î2),
among all possible image pairs

〈
Î1, Î2

〉
with the same histograms as of I1 and I2,

that is, bÎ1
= bI1 and bÎ2

= bI2 .

(10)

• Normalized Mutual Information of Two Images Given two images I1 and I2 of the same size, the
normalized mutual information, NMI(I1, I2), between the two images is defined as

NMI(I1, I2) =
E(I1) + E(I2)

JE(I1, I2)
. (11)
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• An Upper Bound on Normalized Mutual Information of Two Images Given two images I1 and I2
of the same size, a (non-trivial) upper bound, NMIUB(I1, I2), on the normalized mutual information,
NMI(I1, I2) < 2, between the two images is defined as

NMIUB(I1, I2) > NMI(I1, I2) . (12)

• Maximal Normalized Mutual Information of Two Images Let Ig(h × w) be an image no bigger
than another image IG(H ×W), h ≤ H and w ≤ W. Let IGî ĵ

be the h × w sub-image of IG starting at
(î, ĵ), 0 ≤ î ≤ H − h and 0 ≤ ĵ ≤ W − w. The maximal mutual entropy of the two images is defined as

MNMI = max
(
NMI(Ig, IGî ĵ

), 0 ≤ î ≤ H − h, 0 ≤ ĵ ≤ W − w
)

≤ max
(
NMIUB(Ig, IGî ĵ

), 0 ≤ î ≤ H − h, 0 ≤ ĵ ≤ W − w
)
.

(13)

Lemma 1. Increasing the number of non-zero bins in any given histogram increases its entropy.

Proof. Let b be the original histogram and b′ be the modified histogram obtained by a sub-division of b.
Consider the smallest possible sub-division, namely, smearing the count of one shade across two shades,
leaving all the other counts unchanged. In other words, one of the non-zero bins is being sub-divided into
two non-zero bins. Pick any element b[s] to be divided from one shade s into two shades s1 and s2, where
b[s] = b[s1] + b[s2]. Thus, b′ differs from b only in the aforementioned modification of b[s], b[s1] and
b[s2]. Note that either s1 or s2 could be the same as s, but not both.

Let C =
S−1∑
s=0

b[s] be the total count of elements in the histogram. Let p =
b[s]
C , p1 =

b′[s1]
C , and p2 =

b′[s2]
C .

Note that p = p1 + p2, 0 < p ≤ 1, 0 < p1 < p and 0 < p2 < p. Then, the contribution of b[s] to the entropy
EH(b) of histogram b is −p log p. The contribution of b[s1] and b[s2] to the entropy EH(b′) of histogram
b′ is −p1 log p1 − p2 log p2. The net increase δEH(b, b′) of entropy from EH(b) to EH(b′) is given by the
following (based on the property x log x < 0 for all 0 < x < 1).

δEH(b, b′) = EH(b′) − EH(b) = −p1 log p1 − p2 log p2 + p log p = −p
(

p1

p
log

p1

p
+

p2

p
log

p2

p

)
> 0 .

Therefore, EH(b′) > EH(b). �

Lemma 2. JELB(I1, I2) = E(I1) if I1 = I2.

Proof. If I1 = I2, then JE(I1, I2) = E(I1) = E(I2) because the 2-D histogram B of I1 and I2 holds a
one-to-one mapping to the 1-D histogram b1 of I1 (or, equivalently, to the 1-D histogram b2 of I2).

B[s1][s2] =

b1[s1] if s1 = s2

0 if s1 , s2
for all 0 ≤ s1, s2 < S .

�

Lemma 3. JELB(Ig, IG) ≥ max
(
E(Ig), E(IG)

)
.

Proof. Since the 2-D joint histogram of two images has entropy at least as large as the entropy of
individual 1-D histograms, the joint entropy of two images is at least as large as the individual entropies of
the two images. �
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Theorem 1. JELB(I1, I2) = EH(B∗(I1, I2)).

Proof. In the histogram b1 of image I1, consider the element s1 with the maximum value c1 = b1[s1], that
is, c1 ≥ b1[s], 0 ≤ s < S . Similarly, in the histogram b2 of image I2, let s2 be the element with maximum
value c2 = b2[s2]. Without loss of generality, let c1 ≤ c2 (otherwise, we can simply swap the identities of
the images in the discussion). Let Î−s1

1 be a “trimmed” image obtained by omitting all c1 occurences of s1
from I1. Let Î−s1

2 be the image obtained by omitting c1 occurences of s2 in I2.

Let ê(s1) = JELB(Î−s1
1 , Î−s1

2 ) be the lower bound on the joint entropy of the trimmed images.

We claim that
JELB(I1, I2) = e∗

where e∗ = ê(s1) − p log p,
p = c1/C,

and C =
S∑

s=0
b1[s] .

(14)

Note that the shade s2 is mapped to shade s1 (and possibly to additional shades if b2[s2] > b1[s1]).
Therefore, the contribution to the joint entropy from shade s2 is −p log p + α where α ≥ 0 is the
contribution from mapping of δs12 = b2[s2] − b1[s1] counts of shade s2 to other shades.

The claim of lower bound in Equation 14 is proved as follows. Let us consider the value e∗ provided by
Equation 14. This value e∗ is a valid candidate for the lower bound JELB(I1, I2) because it is a feasible
value for joint entropy. In other words, it provides a valid pair of images that have the same histograms as
the original images but with a joint entropy equal to e∗ ≥ JELB(I1, I2). If this candidate value happens to be
the least possible value among all such pairs of images, then, it is indeed the lower bound value (replacing
the inequality with equality, as e∗ = JELB(I1, I2)). Hence, the problem at hand is to reason if it is possible
to derive another different pairing of histograms (that is, another mapping of the images) that could result
in a joint entropy lower than e∗. Let us suppose there is some other mapping that has a lower joint entropy
ê < e∗. In that mapping of histograms, the element s2 would be split across at least one more shade than in
the candidate mapping; in other words, while the candidate mapping maps δs12 counts of s2 to s1, any new
mapping would split that mapping by at least one count. By Lemma 1, the entropy of the new mapping will
be greater than the candidate entropy. Hence, it is not possible to improve upon the above candidate
mapping that provides joint entropy equal to e∗. Therefore, ê(s1) = EH(B∗(Î−s1

1 , Î−s1
2 )), e∗ = EH(B∗(I1, I2),

and JELB(I1, I2) = e∗. �

2. ALGORITHMS TO COMPUTE JOINT ENTROPY LOWERBOUND

Given two images, Ig and IG, each of size W × H pixels, algorithms are presented in this section to compute
a lower bound on the joint entropy between the two images. In a typical usage of joint entropy, the image
IG is extracted from a source image that is larger than Ig and from a potentially different spectrum.

Based on the notation, definitions, and relations developed in the preceding section, Algorithm 1 is
designed to compute the lower bound of the joint entropy. An alternative expression of the main iterative
loop of Algorithm 1 is developed in Algorithm 2 that uses fewer instructions. Finally, a heuristic of the
same loop is developed in Algorithm 3 to estimate the lower bound. The heuristic reduces the run time at
the cost of overestimating the lower bound on certain inputs.
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The algorithms take as inputs two histograms bg and bG (corresponding to the images Ig and IG,
respectively) and produce a single real value which is the lower bound on the joint entropy between the two
images. Algorithm 1 is a complete set of instructions. Algorithm 2 only lists the alternative loop and omits
the parts prior to the loop which is identical with Algorithm 1. Similarly, Algorithm 3 lists only the
modified loop that is different from Algorithm 1.

2.1 RUNTIME COMPLEXITY

The algorithms provide a non-trivial value for JELB(Ig, IG) by relying only on the 1-D histograms of the
individual images, and not relying on the exact joint entropy. That is, given only the histograms bIg and bIG

of the two images Ig and IG, respectively, the algorithms compute JELB(Ig, IG) > max(E(Ig), E(IG)), where
Ig , IG. The result is computed in O(S log S ) time because it contains a sort operation on the histograms
(which incurs a O(S log S ) cost) followed by a linear pass on the non-zero values of the histograms (which
incurs O(S ) time). The total time is constant because S is a small constant (typically, 256). Therefore, the
algorithms are O(1) (constant time) in practice.

2.2 MAIN ALGORITHM

Given the 1-D histograms bg and bG of images Ig and IG, Algorithm 1 computes the entropy of the minimal
2-D joint histogram B∗(I1, I2) defined in Equation 8. From Theorem 1, the computed entropy is equal to the
non-trivial lower bound JELB(Ig, IG) of the two images.

The algorithm is a greedy iteration over the histograms. First, each histogram is sorted in descending order
(lines 1-2). Then, the sorted histograms are traversed in lock-step fashion until the histograms are
exhausted (line 4) or the first zero is encountered in either of the histograms (lines 5-7). When the first zero
is encountered in the first histogram, it automatically signals the end of the other histogram also, because
the total number of pixels is the same in the two images. This condition is asserted in line 6 before actually
exiting the loop at line 7. While the maximum is non-zero, the loop continues processing.

Note that the entropy and joint entropy are invariant with a permutation of the shade identities. Due to this
property, the sorted histograms may be seen as a loss-less remapping of the original images, and,
consequently, histograms. For this reason, the shades can be safely referred to by the new indices after
sorting even though they may be different from their identities before sorting. Therefore, in the following
description, we will refer to the shades in the sorted histograms.

The two indices ig and iG keep track of the current location in each histogram respectively. The current
maximum in bg is always available at the element bg[ig]. Similarly, the current maximum in bG is at bG[iG].
If bg[ig] < bG[iG], then all the instances of shade ig of Ig are mapped to the shade iG of IG. The assigned
number of instances bg[ig] is remembered in the variable c, which is later used in line 32 to update the joint
entropy. The remaining count of instances of iG is marked in bG[iG] as equal to bG[iG] − c. This updated
count should now be placed in its proper position to maintain the sorted order in the histogram bG. This
placement is accomplished by the for loop in lines 12-15, which swaps the values until sorted order is
restored.

In the case of bg[ig] > bG[iG], an analogous set of operations is performed in lines 17-25. In case
bg[ig] = bG[iG], the update is simpler: all instances of ig are mapped to iG, and both shades are exhausted
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Algorithm 1: Computing the Joint Entropy Lowerbound

Result: Computes a lowerbound on the joint entropy of images Ig and IG of
same dimensions, given their histograms of color shades

Data:

Input
S Number of bins of color shades
C Number of pixels in Ig (same as in IG)
bg[0..S − 1] Histogram of Ig, 0 ≤ bg[·] < C =

∑
s bg[s]

bG[0..S − 1] Histogram of IG, 0 ≤ bG[·] < C =
∑

s bG[s]
Output

JELB(Ig, IG) Non-trivial lowerbound on the joint entropy of Ig and IG

1 Sort bg in descending order
2 Sort bG in descending order
3 JELB ← 0; ig ← 0; iG ← 0
4 while ig < S and iG < S do
5 if bg[ig] = 0 then
6 Assert bG[iG] = 0
7 Exit loop
8 else if bg[ig] < bG[iG] then
9 c← bg[ig]

10 bG[iG]← bG[iG] − c
11 bg[ig]← 0
12 for tG = iG to S − 1 do
13 if bG[tG] ≥ bG[tG + 1] then
14 break
15 swap(bG[tG], bG[tG + 1])

16 ig ← ig + 1
17 else if bg[ig] > bG[iG] then
18 c← bG[iG]
19 bg[ig]← bg[ig] − c
20 bG[iG]← 0
21 for tg = ig to S − 1 do
22 if bg[tg] ≥ bg[tg + 1] then
23 break
24 swap(bg[tg], bg[tg + 1])

25 iG ← iG + 1
26 else bg[ig] = bG[iG]
27 c← bg[ig]
28 bg[ig]← 0
29 bG[iG]← 0
30 ig ← ig + 1
31 iG ← iG + 1

32 d ← c/C
33 JELB ← JELB − d log2 d
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from both histograms, and hence, both histograms move on to the next most frequently occurning shades
(lines 26-31).

In all cases, the index into the corresonding histogram (ig for bg, and iG for bG) is incremented if and only
if the shade indicated by that index is entirely accounted for its contribution (by being set to zero) to the
lower bound computation on line 33.

2.3 ALTERNATIVE LOOP OF THE MAIN ALGORITHM

Algorithm 2: A more compact but equivalent form of the loop in lines 4-33 of Algorithm 1

1 while ig < S and iG < S do
2 if bg[ig] = 0 then
3 Assert bG[iG] = 0
4 Exit loop
5 c←

∣∣∣bG[iG] − bg[ig]
∣∣∣

6 if c = 0 then c← bG[iG]
7 bG[iG]← bG[iG] − c
8 bg[ig]← bg[ig] − c
9 if bG[iG] = 0 then iG ← iG + 1

10 else
11 for tG = iG to S − 1 do
12 if bG[tG] ≥ bG[tG + 1] then
13 break
14 swap(bG[tG], bG[tG + 1])

15 if bg[ig] = 0 then ig ← ig + 1
16 else
17 for tg = ig to S − 1 do
18 if bg[tg] ≥ bg[tg + 1] then
19 break
20 swap(bg[tg], bg[tg + 1])

21 d ← c/C
22 JELB ← JELB − d log2 d

Although Algorithm 1 is expressed for easier readibility, it is possible to reduce the number of operations
(code size). Algorithm 2 shows the same algorithm but rewritten so that the main loop has fewer
instructions.

The key difference between Algorithm 1 and Algorithm 2 is the elimination of multi-way conditional
spanning if–else if–else if–else into two independent, simplified if–else statements. The conditional checks
about which of the two histograms has a larger maximum count than the other is eliminated. Also, the
explicit check for equality of the maxima is also eliminated. Instead, the code is simplified to only depend
on whether the current maximal shade is fully consumed in the mapping at any given iteration. This code
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in Algorithm 2, which is exactly equivalent to that in Algorithm 1, may be useful in highly
resource-constrained hardware implementations such as on Field Programmable Gate arrays (FPGAs),
Application-Specific Integrated Circuits (ASICs), and Digital Signal Processing (DSP) chips.

2.4 HEURISTIC VARIANT OF THE MAIN ALGORITHM

Algorithm 3: A simplified heuristic version of the loop in lines 1-22 of Algorithm 2

1 while ig < S and iG < S do
2 if bg[ig] = 0 then
3 Assert bG[iG] = 0
4 Exit loop
5 c←

∣∣∣bG[iG] − bg[ig]
∣∣∣

6 if c = 0 then c← bG[iG]
7 bG[iG]← bG[iG] − c
8 bg[ig]← bg[ig] − c
9 if bG[iG] = 0 then iG ← iG + 1

10 if bg[ig] = 0 then ig ← ig + 1
11 d ← c/C
12 JELB ← JELB − d log2 d

The alternative expression of Algorithm 2 can be further simplified to Algorithm 3. This simplication is
useful in reducing computational time, hardware resources and/or software code size even more. The
simplication is achieved by eliminating the adjustment of partially assigned shades to restore the sorted
order of the histograms when the maxima of both the histograms do not exactly match each other (in other
words, when the maximum of one histogram is larger than that of the other). In that case, by eliminating
the for loop that pushes the fractional remainder of the larger maximum to its proper position down its
sorted histogram, two effects happen: (1) the run time is potentially reduced because the continual scan
down the histogram array is eliminated, (2) the lower bound is potentially violated, resulting in a slightly
higher estimate of the joint entropy than the theoretically correct value.

In applications where computational speed is more important at the cost of some tradeoff on accuracy, the
abridged version given in Algorithm 3 can provide very fast execution and much smaller code size than
Algorithm 1 and Algorithm 2.

3. CONCLUDING REMARKS

3.1 SOFTWARE IMPLEMENTATION

The algorithms have been implemented on central processing units (CPUs) as well as on graphical
processing units (GPUs) in the C++ programming language and Common Unified Data Architecture
(CUDA) programming environments. Software is available by contacting the authors.
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3.2 POTENTIAL APPLICATION

Normalized Mutual Information (NMI) is a correlation metric that finds use in image registration and
many other applications. NMI (Equation 11) is a function that relates the entropy measures of each
individual image of the image pair with the joint entropy of the image pair. Although NMI offers excellent
quality and resilience in matching, it is a computationally very intensive to apply in practice. The difficulty
in actually computing NMI limits its use to small sizes of problems and non-real-time applications. At the
crux of NMI computation is computing the joint entropy of the two images. A lower bound on the joint
entropy places an upper bound on the NMI. The algorithms presented in this report are useful in improving
the performance of traditional NMI-based image processing applications, especially in computing a
non-trivial upperbound on MNMI (Equation 13).

Based on the lower bound on joint entropy as presented in this report, an alternative to NMI can be
formulated, called Normalized Mutual Information - Upper Bound (NMIUB defined in Equation 12), which
is a non-trivial upperbound on the actual NMI. Due to the higher speed of computation of JELB, NMIUB

can be computed faster than NMI while retaining (or exceeding) its matching quality and resilience. An
empirical study of the effectiveness of NMIUB based on JELB, in comparison to NMI in terms of runtime
speed and quality of image matching, is being documented in a separate, complementary report [2].
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