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EXECUTIVE SUMMARY 

 

In the past year, CASL has partnered with Exelon and the University of Illinois at Urbana 

Champaign (UIUC) to begin simulating some of Exelon’s plants, particularly focusing on load-

follow operations.  In such operations, the power output from the plant will vary based on the 

demand or anticipated demand at the time.  For example, late at night, the demand is much lower 

than during the day when people are awake, so it would be potentially advantageous to operate the 

plant at lower power.  Historically, nuclear power generation has been among the cheapest sources 

of energy, so most plants in the United States have been operated with core-follow operations 

basically at full power with the exception of outages and various small scale events.  But in the 

current economic climate, priorities have changed. 

There are a number of questions that arise when considering load-follow operations, particularly 

with respect to VERA’s tools and capabilities.  Will the coupled neutronics and thermal hydraulics 

simulations with MPACT and CTF be able to perform well without substantial convergence issues?  

Will BISON be able to handle the somewhat rapid power changes that are present with load-follow?  

Will the clad hoop stresses be alarmingly high as a result of these power changes?  This milestone 

(L3:PHI.CMD.P14.02) has been intended to answer these questions and demonstrate such operations 

to assess feasibility and robustness before Exelon and UIUC proceed with their simulations using 

VERA.   

In this report, load-follow simulations using VERA-CS with one-way coupling to standalone BISON 

has been demonstrated including both a single rod with a full cycle of load-follow operations and a 

quarter-core model with a single month of load-follow.  From the single rod case, we observed no 

convergence issues in any of the ~1800 statepoints it simulated.  This provided sufficient confidence 

to proceed with the quarter-core model with a single month of load follow operations.  This 

simulation also completed successfully with only minor issues encountered along the way, though 

adequate workarounds were typically found.  However, 16 rods that failed to converge in BISON are 

part of ongoing discussions with INL that will hopefully have a meaningful impact on the robustness 

of future cases. 

The results obtained made qualitative sense, and the impact of the power cycling is understandable.  

We would be able to identify a number of rods for further analysis, but nothing from these results 

was particularly alarming.  There is some question as to how many rods should experience fuel-clad 

separation as the power is dropped and by how much they should separate, but this is something that 

can be addressed in future analysis.  There may also be questions as to whether or not additional 

statepoints would be needed to accurately predict the transient xenon behavior during the load-

follow operations.  However, the goal of this milestone was to demonstrate that the VERA tools 

were able to simulate these operations, which it has accomplished with only minor source code 

modifications.  Exelon and UIUC should be able to proceed with their simulations with more 

confidence now that this analysis has been performed. 
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1. INTRODUCTION 

To set the stage for this report, a brief description of VERA-CS is provided as well as some 

background information on why load-follow operations are of importance to CASL, particularly to 

the Exelon and UIUC collaboration.  Additionally, the objectives of this milestone will be outlined. 

1.1 VERA-CS Description 

The Virtual Environment for Reactor Analysis (VERA) is a simulation environment being developed 

by CASL, which is comprised of codes collectively used for nuclear reactor modeling and 

simulation. VERA-CS is considered to be the subset of VERA for core simulation, which is typically 

neutronics and thermal hydraulics.  The primary deterministic neutron transport solver is MPACT, 

and CTF is the subchannel thermal hydraulics solver.  Much of the work in this report relates to the 

BISON fuel performance code. Figure 1.1.1 shows the components of VERA.  

 

 
Figure 1.1.1. VERA Components 

 

MPACT 

The MPACT neutron transport solver, being developed collaboratively by Oak Ridge National 

Laboratory (ORNL) and the University of Michigan (UM), provides pin-resolved flux and power 

distributions [1]. To solve three-dimensional (3D) problems, it employs the 2D/1D method, which 

decomposes the problem into a 1D axial stack of 2D radial planes [2]. Typically, 2D Method of 

Characteristics (2D MOC) is used to solve each radial plane, and 1D nodal methods are used to solve 

axially along each rod. While there are a variety of axial solvers available, the nodal expansion 

method (NEM)-simplified P3 (SP3) solver is the default, which wraps a one-node NEM kernel [3]. 

These 2D and 1D solvers are coupled together through transverse leakage terms to ensure neutron 

conservation, and they are accelerated using 3D coarse mesh finite difference (CMFD).  

 

CTF 

CTF is a subchannel TH code being developed by ORNL and North Carolina State University 

(NCSU) specifically for light water reactor (LWR) analysis [4]. It simulates two-phase flow with a 

three-field representation—liquid, droplet, and vapor—assuming that the liquid and droplet fields 

are in dynamic equilibrium, leaving two energy conservation equations. CTF provides significantly 
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higher resolution and physics detail than the internal thermal hydraulics solver (Simplified TH) in 

MPACT, thus longer execution times. 

 

BISON 

The BISON fuel performance code is being developed by Idaho National Laboratory (INL) to 

provide single-rod fuel performance modeling capability so that users can assess best-estimate 

values of design and safety criteria and the impact of plant operation and fuel rod design on thermo-

mechanical behavior such as pellet-cladding interaction (PCI) failures in pressurized water reactors 

(PWRs) [5,6]. PCI is controlled by the complex relationship between the mechanical, thermal, and 

chemical behaviors of a fuel rod during operation. Consequently, modeling PCI requires an integral 

fuel performance code to simulate the fundamental processes of these behaviors. BISON is built on 

INL’s Multiphysics Object Oriented Simulation Environment (MOOSE) package [7,8] which use the 

finite element method for geometric representation and a Jacobian Free Newton-Krylov (JFNK) 

scheme to solve systems of partial differential equations [8]. For this work, BISON uses a 2D 

azimuthally symmetric (R-Z), smeared-pellet thermomechanical fuel pin model with boundary and 

heat source data from VERA-CS, which generates the time-dependent power shape/history and 

moderator temperature inputs needed for BISON. 

1.2 Collaboration with Exelon and UIUC 

In the past year, CASL has partnered with Exelon and the University of Illinois at Urbana 

Champaign (UIUC) to begin simulating some of Exelon’s plants, particularly focusing on load-

follow operations.  In such operations, the power output from the plant will vary based on the 

demand or anticipated demand at the time.  For example, late at night, the demand is much lower 

than during the day when people are awake, so it would be potentially advantageous to operate the 

plant at lower power.  Historically, nuclear power generation has been among the cheapest sources 

of energy, so most plants in the United States have been operated at full power with the exception of 

outages and various small scale events.  But in the current economic climate, priorities have 

changed. 

There are a number of questions that arise when considering load-follow operations, particularly 

with respect to VERA’s tools and capabilities.  Will the coupled neutronics and thermal hydraulics 

simulations with MPACT and CTF be able to perform well without substantial convergence issues?  

Will BISON be able to handle the somewhat rapid power changes that are present with load-follow?  

Will the clad hoop stresses be alarmingly high as a result of these power changes?  This milestone 

has been intended to answer these questions and demonstrate such operations to assess feasibility 

and robustness before Exelon and UIUC proceed with their simulations using VERA.   

1.3 Milestone Objectives 

The primary objectives to this milestone (L3:PHI.CMD.P14.02) are fairly straight-forward: 

1. Demonstrate MPACT/CTF (VERA-CS) load-follow simulation on a later cycle in WBN1 

operation. 

2. Use VERA-CS output data to generate and execute standalone BISON cases, assessing 

stresses encountered during power ramps. 

By going to a later cycle in Watts Bar Unit 1 operation, you can see more important effects that fuel-

clad contact can have on the hoop stress predicted by BISON.  In this work, a single month of load 

follow history was placed in the middle of Cycle 3.  This allows fresh, twice-, and thrice-burned 

assemblies to be incorporated into the analysis.   
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There were additionally two stretch goals specified: 

3. If computation burden is reasonable, perform load-follow for a full cycle. 

4. If Tiamat-Inline capability is stable, test simulation for either single month or full cycle of 

MPACT/CTF/BISON inline. 

Unfortunately, simulating a full cycle of load-follow operations was deemed impractical, particularly 

for VERA-CS due to the long runtime from the case with just a single month.  Projecting from the 

results presented in this report, one might expect a full cycle of VERA-CS operations to take roughly 

3 months of continuous runtime on 1,000 cpu cores.  However, there is additional research being 

done to speed up VERA-CS calculations in general and to load-follow operations specifically.  So in 

the coming months, it might be anticipated that this number could be reduced considerably.  

Additionally, issues were identified in Tiamat-Inline that deemed a comparable simulation to that 

shown here to be unattainable, especially in conjunction with the failed BISON rods discussed in 

Section 5.4. 

2. WATTS BAR UNIT 1, CYCLE 3 DESCRIPTION 

The Watts Bar Nuclear Plant is a Westinghouse four-loop PWR operated by the Tennessee Valley 

Authority (TVA) and has been online since 1996.  It began with a 3,411 MWth power rating, but it 

had a 1.4% power uprate in 2001.  It is currently operating in its fourteenth cycle, logging over 6,000 

effective full power days (EFPD) of operation [9].  

 

 

Figure 2.1. Watts Bar Unit 1 – Core Geometry 

 

The left component of Figure 2.1 shows a 2D slice of the WBN1 Cycle 1 full core layout.  It is 

important to note that VERA currently does not model the core barrel, pads, or vessel, as are shown 

in the diagram.  The unit has 193 Westinghouse 17×17 fuel assemblies which are 12 feet tall with 

264 fuel rods and 25 guide/instrumentation tubes.  On the right is a typical axial layout of a fuel 
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assembly used in the nonproprietary model.  It includes upper/lower core plate, nozzles, and gaps, 

with two Inconel and six Zircaloy spacer grids. 

Figure 2.2 shows the core layout in Cycle 3, which is the basis for the quarter-core demonstration.  

Each assembly is color-coded based on enrichment.  Fresh assemblies include data on the number of 

integral fuel burnable absorber (IFBA) and wet annular burnable absorber (WABA) rods, whereas 

others contain the corresponding location from previous cycles.  It is worth noting that the center 

assembly (H-8) comes directly from Cycle 1, skipping Cycle 2 operations. 

 

 

Figure 2.2. Watts Bar Unit 1 – Cycle 3 Core Layout 

 

Figure 2.3 shows the idealized power history for Cycles 1-3 that was used in the VERA-CS 

simulation.  Cycle 1 has a more gradual ramp to power than is seen in subsequent cycles.  There is 

also slightly more variation during the cycle than in Cycles 2-3, which are primarily at 100% 

throughout the entire cycle.  Shortly after 14 gigawatt-days per metric ton (GWd/MT) in Cycle 1, 

VERA-CS imposes a step change to 86.9% power.  This was reflected in the BISON inputs, 

allowing a one-day transition to and from 86.9% power (an instantaneous power change would be 

problematic for BISON and most other codes).  At all other statepoints, BISON uses a linear 

interpolation of the power. 
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Figure 2.3. Watts Bar Unit 1 – Cycles 1-3 VERA-CS Power History 

 

The changes to the Cycle 3 power history to represent load-follow operation will be outlined in a 

later section. 

3. MONTH OF REPRESENTATIVE POWER HISTORY 

 

In planning this work, it was decided that it would be advantageous to use a non-proprietary core 

power history to allow for an easier documentation and dissemination of the demonstration.  

Discussing this with Exelon engineer Christopher Demetriou, he provided a single month of hour-

by-hour load-follow operations that is not based on any particular plant’s operation but is 

representative of the power changes Exelon is expecting during this type of operation.  Figure 3.1 

shows the hourly data that Exelon provided (blue) as well as the condensed representation that was 

used in VERA (green).  This condensed data uses 101 statepoints, making the calculations much 

more tractable than using the hourly data with 744 statepoints. 

 
Figure 3.1.  Month of Representative Load-Follow Core Power History 
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4. SINGLE ROD DEMONSTRATION 

 

Before jumping into a larger case, such as a quarter-core model, there were several questions that 

needed to be answered about the ability of the VERA tools to handle this simulation.  For example, 

initial concerns centered around general convergence of MPACT/CTF calculations, as well as the 

standalone BISON cases.  To see if there were any warning signs or convergence issues, a single rod 

demonstration was performed with a full cycle of load-follow operation.  This was accomplished by 

appending 18 months of the representative load-follow power history to make up Cycle 2 of the 

rod’s life.  Cycle 1 was run at a constant power (100% of a roughly average linear heat rate) for 440 

EFPD.  This would allow the rod to come into contact before starting Cycle 2, where we might 

expect to see more considerable hoop stresses.  If the rod were not in contact, there likely would not 

be anything of interest, at least with respect to the hoop stress distributions.  Once Cycle 1 is 

complete, there is a short, month-long outage, then Cycle 2 is performed.  Figure 4.1 shows the 

power history for this rod, which corresponds to the behavior just described. 

 

 
Figure 4.1.  Single Rod Demonstration – Rod Power History (kW) 

 

This single rod case was executed on a CASL development cluster at ORNL, where the VERA-CS 

calculation required roughly 16 hours on 60 cores.  The BISON calculation required roughly 4.5 

hours on 32 cores.  Moving into the results, Figure 4.2 shows the maximum centerline fuel 

temperature for the rod.  During Cycle 1, we see the centerline temperature drop as the fuel-cladding 

gap closes due to fuel relocation and cladding creep, leveling off near the end of the first cycle.  As 

we go into Cycle 2 and the load-follow operations, we see notable oscillations as the power is 

cycled, which is expected.  We also see a secondary trend where the temperature gradually increases 

as we move through the cycle, which is primarily driven by degradation of the fuel conductivity. 
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Figure 4.2.  Single Rod Demonstration – Maximum Centerline Fuel Temperature (K) 

 

Figure 4.3 shows the minimum fuel-clad gap thickness.  As the simulation starts, we see a quick 

drop in the gap thickness, which is due to the fuel relocation that is occurring.  Going through Cycle 

1, the fuel eventually comes into contact at roughly 400 EFPD.  During the outage, the temperature 

is dropped to cold conditions (293 K and atmospheric pressure), causing the fuel and clad to 

separate.  Once the fuel is brought back up to HFP conditions at the start of Cycle 2, contact is again 

achieved and maintained through the cycle.  There has been some discussion as to whether or not the 

gap thickness should vary more during the load-follow operations, particularly as the power is 

decreased and the fuel/clad geometrically adjust to the new thermal conditions.  Gap reopening was 

not observed here during load-follow operations, but will be a topic of future consideration. 

 

Figure 4.3.  Single Rod Demonstration – Min. Fuel-Clad Gap Thickness (μm) 
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Figure 4.4 shows the maximum clad hoop stress experienced in the rod.  During Cycle 1, particularly 

before contact is achieved, the hoop stress is primarily driven by the difference between the system 

(~15 MPa) and rod internal pressure (~2-6 MPa).  As a result, the hoop stress is compressive 

(negative).  During the cycle outage, the system pressure is dropped to atmospheric, so the hoop 

stress becomes tensile (positive) as the internal pressure exceeds the system pressure.  This is 

reversed going into Cycle 2, once full system pressure is restored.  Once we move into the load 

follow operations, we eventually see that the hoop stress becomes positive as the fuel begins to press 

harder on the clad.  We also observe oscillations corresponding to power changes.  So even though 

the fuel-cladding gap does not reopen, the contact stress decreases at lower power. 

 

Figure 4.4.  Single Rod Demonstration – Maximum Clad Hoop Stress (MPa) 

 

From these results, we did not see any substantial convergence issues and the stresses observed 

seemed mostly reasonable.  There are still some open questions about specific issues, particularly 

fuel-clad gap thickness behavior, but nothing indicates that analysis should not progress to a larger 

problem, such as the quarter-core case presented in the next section. 

5. QUARTER CORE DEMONSTRATION 

5.1 Cycle 3 Power History With Load-Follow 

In Section 2, background on the Watts Bar Unit 1 core was provided, especially the details related to 

Cycle 3, which is the basis for this problem.  Additionally, the idealized VERA-CS power histories 

for Cycles 1-3 were also presented.  To simulate load-follow operations, the month of representative 

history described in Section 3 was inserted near the middle of Cycle 3 (10.27 GWd/MT, 268.7 

EFPD).  Figure 5.1.1 shows the new Cycle 3 core power history reflecting this modification, where 

the simulation ends once load-follow operations are completed.  In a typical cycle of nominal 

operation, VERA-CS uses 20-30 statepoints.  With this month of load-follow operations, there are 

roughly 114 statepoints in the new Cycle 3 definition (13 from initial core-follow then 101 from 

load-follow), substantially more than is usually used.  It is worth noting that Figure 5.1.1 uses hours 

for the x-axis to more easily reflect the load-follow power transitions. 
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Figure 5.1.1.  Quarter-core Power History With Month of Load Follow 

 

To get an idea of what a multicycle power history looks like in BISON, Figure 5.1.2 shows the three 

cycle power history for a sample rod.  This one, in particular, is slightly below average power in 

general.  Comparing each cycle’s power history to the core power histories previously presented, it 

can be seen that there is some variation as a result of the radial power changes during operation.  For 

example, the core power in Cycles 2-3 is fairly constant, at least in the first part of Cycle 3, but in 

this case we see that the power increases as the cycle is depleted.  This means that the radial power 

for this rod experiences an increase.  From Figure 5.1.2, we can also see the zero power periods 

during the cycle outages. 

 

 
Figure 5.1.2.  Sample Rod Multicycle Power History 
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5.2 Reactivity and Axial Power Control 

In consulting with Exelon, their reactivity control during load-follow operations would actually be 

very similar to core-follow, leaning on critical boron concentration to control reactivity along with 

minor control rod bank insertions to manage the axial offset (AO).  Figure 5.2.1 shows the critical 

boron concentration as a function of burnup for the load-follow demonstration core.  Until load-

follow operations start, the trend is very similar to what has been seen in other analyses.  Initially the 

boron concentration is high when at HZP because there is no Doppler feedback to drive down 

reactivity.  As the core is brought up to power, however, feedback allows the boron concentration to 

drop considerably.  During the first few GWd/MT, the IFBA and WABA rods deplete, losing some 

of the reactivity worth, which is offset by an increase in the critical boron concentration.  As the 

cycle progresses, fuel burnup becomes more dominant and the core is less reactive, requiring less 

boron to control criticality.  By the time we start the load-follow operations, the critical boron 

concentration is lower (~700 ppm).  When power decreases during load-follow operations, Doppler 

feedback increases reactivity and more boron is necessary to control the reactivity.  Once it comes 

back up to full power, the boron decreases.  Effectively, the boron concentration is inversely 

proportional to the power level. 

 

  
Figure 5.2.1.  Quarter Core Demonstration – Boron Letdown Curve 

 

As mentioned, there are some changes to the bank insertion to control the axial offset.  While this 

work did not perform a full design study to assess the necessary bank insertion to maintain an 

acceptable AO, it did use a simplified, linear relationship between core power and Bank D insertion 

based on discussions with Andrew Godfrey.  At 70% power, Bank D is positioned at 190 steps, and 

at 100% it is at 220 steps.  Any power in between simply linear interpolated to yield the insertion for 

that state.  From the results, this approach did a reasonable job of managing the AO, but in a 

production case the insertion would be provided from the operation data.   

 

5.3 Performance Notes 

The VERA-CS calculations for this problem were run on the Panacea cluster at ORNL, taking 

roughly 7 days on 1,000 cores (~168,000 core-hours).  It is worth noting that the CMFD speed-ups 
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that were recently added have been observed to have some remaining convergence characteristics 

that are being explored, so the previous CMFD formulation was used here.  In the future, once the 

issues are resolved with CMFD, we would expect this case to run notably faster.  However, this 

enabled us to get a rough estimate of the computational resources necessary to complete both this 

case and project the requirements for a full cycle of load-follow operations.  With these numbers we 

might expect a full cycle to take between 2.5 and 3.0 million core-hours.  With CMFD speed ups, 

maybe 1.0 to 2.0 million.  Additionally, there is active research being performed collaboratively by 

ORNL and the University of Tennessee – Knoxville (UTK) to address load-follow VERA-CS 

performance specifically, by altering the transport algorithm being used.  Hopefully, near-future 

cases may be able to take advantage of the improvements made there. 

 

The BISON cases were run on the Falcon supercomputer at Idaho National Laboratory, requiring 

roughly 70,000 core-hours.  This performance substantially improves upon the Cycle 6-7 results 

obtained earlier this year [12], in which the quarter-core BISON results required roughly 35,000-

40,000 core-hours.  By nearly quadrupling the number of statepoints in the cycle, it would not have 

been unreasonable to expect 120,000 to 160,000 core-hours.  However, various improvements in 

both BISON itself and CASL’s use of BISON likely played a large factor in reducing the run times. 

 

5.4 Results 

To present the results, four statepoints have been selected from the simulation to highlight the 

changes during the cycle: 

1. HZP, State 1 

2. Early in HFP Operations, State 7 

3. Start of Load-Follow Operations, State 13 

4. Low Power Point in Load-Follow, State 90 

 

Figures 5.4.1 through 5.4.3 show the results for the maximum centerline temperature, fuel-clad gap 

thickness, and maximum clad hoop stress, respectively.  Each figure contains the results for 4 

statepoints and three images for each state.  The top left image for each corresponds to the 2D radial 

layout containing either the maximum or minimum value for that rod.  All of the 2D images were 

created with the VERAView graphical user interface (GUI) [13].  The top right image corresponds 

to the 3D data distribution as visualized using Visit [14].  The quarter-core orientation has been 

rotated such that the quarter symmetry lines are visible, providing a better view of the data 

distributions axially.  The final, bottom image for each statepoint is the core power where the red, 

dashed line denotes the current timestep and power level.  For clarity, the colorbar legend is enlarged 

and shown on the rightmost location on each figure. 

 

It should be noted that in all of the 2D figures, assembly locations B-9 and G-14 each have 8 rods 

that demonstrated convergence issues, so they are missing data and are denoted with white, similar 

to guide tubes.  The inputs for these rods have been communicated to the BISON team and are part 

of ongoing discussions to resolve the issues they have posed. 

 

These figures provide useful information about what is happening in the reactor.  In Figure 5.4.1, 

State 1 (top left), which is at HZP, reports that all of the maximum centerline fuel temperatures are at 

565 K, as expected.  At State 7 (top right), the reactor is at HFP with substantial centerline 

temperatures.  By State 13 (bottom left), a lot of the major peaks in centerline temperature have 

decreased due to closure of the fuel-cladding gap.  State 90 shows the results during load-follow at 
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70% power, which causes lower centerline temperatures.  A full set of results for the centerline 

temperature are available in Appendix A. 

In Figure 5.4.2, the minimum gap thickness across all axial locations is shown.  State 1 (HZP) shows 

the fresh assemblies in red.  The 69.5 micron gap is the result of thermal expansion of the rod, 

closing a bit from the fabricated gap thickness.  We can also see the distributions on the burned 

assemblies which are the result of their power profiles from Cycle 2 (or Cycle 1 in the case of H-8).  

By State 7, the gap has closed in nearly all of the burned assemblies, and even the fresh assemblies 

are experiencing significant closure, if not full contact.  States 13 and 90 look quite similar in that 

many of the rods are experiencing contact, with the exception of some rods near the periphery.  The 

full set of results in Appendix B shows that as the power changes from high to low power, some of 

the rods that are in contact experience a small amount of lift-off and contact is not maintained. 

In Figure 5.4.3, the maximum clad hoop stresses are shown.  It should be noted that for this figure 

the 2D and 3D data correspond to different legends.  In this case the 2D data corresponds to the 

numbers on the left side of the legend and the 3D data to the numbers are the right.  At BOC, we see 

that many of the stresses are negative, though all are very small.  The fresh assemblies and rods not 

experiencing any contact demonstrate negative stresses because of the difference between the higher 

system pressure and the lower rod internal pressure.  The burned assemblies have some fission gas 

produced from previous operation as well as helium gas in IFBA rods, so their rod internal pressures 

are higher than the fresh assemblies.  By State 7, we see that some of the burned assemblies 

demonstrate considerable tensile hoop stresses (~80 MPa), but likely not high enough for concern.  

Additionally, many of the fresh assemblies still have not experienced much contact, so the stresses 

are still negative.  In State 13, many of the higher stress locations have relaxed some as the 

magnitudes are lower.  However, many of the fresh assemblies have numerous rods experiencing 

contact, resulting in low-magnitude positive stresses.  During State 90 where the power is decreased, 

the magnitude of the hoop stresses drops considerably, as seen in the single rod demonstration.  A 

full set of results for the hoop stress are available in Appendix C. 
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Figure 5.4.1.  Quarter Core Demonstration – Maximum Centerline Fuel Temperature (K) 
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Figure 5.4.2.  Quarter Core Demonstration – Fuel-Clad Gap Thickness (μm) 
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Figure 5.4.3.  Quarter Core Demonstration – Maximum Clad Hoop Stress (MPa) 
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6. CONCLUSIONS 

In this report, load-follow simulations using VERA-CS with one-way coupling to standalone BISON 

has been demonstrated including both a single rod with a full cycle of load-follow operations and a 

quarter-core model with a single month of load-follow.  From the single rod case, we observed no 

convergence issues in any of the ~1800 statepoints it simulated.  This provided sufficient confidence 

to proceed with the quarter-core model with a single month of load follow operations.  This 

simulation also completed successfully with only minor issues encountered along the way, though 

adequate workarounds were typically found.  The 16 rods that failed to converge in BISON are part 

of ongoing discussions with INL that will hopefully have a meaningful impact on the robustness of 

future cases. 

The results obtained made qualitative sense, and the impact of the power cycling is understandable.  

We would be able to identify a number of rods for further analysis, but nothing from these results 

was particularly alarming.  There is some question as to how many rods should experience fuel-clad 

separation as the power drops and by how much they should separate, but this is something that can 

be addressed in future analysis.  There may also be questions as to whether or not additional 

statepoints would be needed to accurately predict the transient xenon behavior during the load-

follow operations.  However, the goal of this milestone was to demonstrate that the VERA tools 

were able to simulate these operations, which it has accomplished with only very minor source 

modifications.  Exelon and UIUC should be able to proceed with their simulations with more 

confidence now that this analysis has been performed. 

One major point of future work should focus on improving the performance and fully incorporating 

the speed ups projected in MPACT.  For example, additional plans are already underway to improve 

the robustness of the CMFD speedups through the incorporation of a multilevel (in energy) CMFD 

solver.  Furthermore, the work between ORNL and UTK will hopefully yield substantial 

improvements specific to load follow.  With the current projection of ~2 million core-hours for a full 

load-follow cycle (compared to the 15,000-20,000 for a full cycle of nominal operations), substantial 

improvements will likely be needed before this is attractive beyond a research exercise. 
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APPENDIX A – QUARTER CORE, MAXIMUM CENTERLINE FUEL 
TEMPERATURE RESULTS 
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4.5 
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APPENDIX B - QUARTER CORE, FUEL-CLAD GAP THICKNESS 
RESULTS 
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