
ORNL/TM-2016/710

Secure Enclaves: An Isolation-centric Approach for Creating
Secure High Performance Computing Environments

Approved for public release. Distribution is unlimited.

Ferrol Aderholdt
Blake Caldwell
Susan Hicks
Scott Koch
Thomas Naughton
Daniel Pelfrey
James Pogge
Stephen L. Scott
Galen Shipman
Lawrence Sorrillo

June 2015

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Website: http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Govern-
ment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2016/710

Computing & Computational Sciences Directorate

DoD-HPC Program

Secure Enclaves: An Isolation-centric Approach for Creating
Secure High Performance Computing Environments

Ferrol Aderholdt2, Blake Caldwell1, Susan Hicks1, Scott Koch1,
Thomas Naughton1, Daniel Pelfrey1, James Pogge2,

Stephen L. Scott1,2, Galen Shipman2 and Lawrence Sorrillo1

1 Oak Ridge National Laboratory
Oak Ridge, TN 37831

2 Tennessee Technological University
Cookeville, TN, 38501

Date Published: June 2015

Prepared by
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6285

managed by
UT-Battelle, LLC

for the
US DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

CONTENTS

List of Figures . x
List of Tables . xi

Executive Summary 1

1 Introduction 5
1.1 Project Scope . 6

1.1.1 Customizable Computing Resources . 6
1.1.2 Threat Model . 7

1.2 Report Outline . 8

2 Background 9
2.1 Terminology . 9

2.1.1 Virtualization . 9
2.1.2 Networking . 9

2.2 Virtualization Classification . 11
2.2.1 OS Level Virtualization . 11
2.2.2 System-level Virtualization . 11

2.3 SDN and Network Function Virtualization . 12
2.4 Storage Architectures . 13

2.4.1 The Lustre Storage Architecture . 13
2.4.2 The GPFS Storage Architecture . 16

2.5 Security Classifications . 18
2.6 Supporting Security Technologies . 19

2.6.1 NIST . 19
2.6.2 FIPS . 20
2.6.3 GSSAPI . 20
2.6.4 Kerberos . 20

2.7 System Management Tools . 20
2.7.1 Puppet . 21
2.7.2 OpenStack . 21

3 Virtualization 22
3.1 OS level virtualization . 22

3.1.1 Namespaces . 22
3.1.2 Cgroups . 24
3.1.3 Linux-VServer . 25

iii

3.1.4 OpenVZ . 26
3.1.5 LXC . 27
3.1.6 Docker . 27

3.2 System level virtualization . 27
3.2.1 Xen . 27
3.2.2 KVM . 28

3.3 Virtualization and Security Mechanisms . 29
3.3.1 sVirt . 29
3.3.2 SELinux . 29
3.3.3 AppArmor . 30
3.3.4 Capabilities . 30

4 Reconfigurable Networks 32
4.1 Typical Networking Environment . 32
4.2 Static Networks Involving VRF and Preconfigured VLANS 32
4.3 Software Interfaces for Reconfigurable Networks . 33
4.4 Traditional SDN . 33
4.5 Hybrid SDN . 34
4.6 Overlay Network . 34
4.7 SDN with OpenStack . 35
4.8 Implementing Neutron Routers . 35
4.9 Networking with LXD . 38

5 Security in HPC Storage 39
5.1 Lustre . 39

5.1.1 Isolation . 39
5.1.2 Authentication . 39
5.1.3 Authorization . 40
5.1.4 Integrity . 40
5.1.5 Features in Development . 40
5.1.6 Gaps . 41

5.2 GPFS . 41
5.2.1 Authentication . 41
5.2.2 Authorization . 42
5.2.3 Encryption . 42
5.2.4 Features & Gaps . 43

5.3 Discussion . 43
5.3.1 Comparisons of Security with Lustre and GPFS . 43
5.3.2 Performance in Lustre and GPFS . 44

6 Bridging Technologies for Secure Storage 45
6.1 Virtualization . 45
6.2 VLAN/Network Segmentation . 46
6.3 I/O Forwarding . 46

6.3.1 NFS . 46
6.3.2 VirtFS . 46

iv

6.3.3 DIOD . 47

7 OpenStack Implementation Details 48
7.1 Core OpenStack Components . 48

7.1.1 Horizon – Dashboard . 49
7.1.2 Nova – Compute . 49
7.1.3 Neutron – Networking . 49
7.1.4 Keystone – Identity Services . 49
7.1.5 Glance – Image Service . 49
7.1.6 Swift – Object Storage . 49
7.1.7 Cinder – Block Storage . 52

7.2 Emerging OpenStack Components . 54
7.2.1 Manila – Filesystem-As-A-Service . 54
7.2.2 Magnum – Containers-As-A-Service . 54
7.2.3 LXD – System-Containers-As-A-Service . 55
7.2.4 LXD vs. Magnum . 55

8 Secure Enclaves System Architecture 57
8.1 Isolation-Centric Architecture . 57
8.2 Instances of the Isolation-Centric Architecture . 59

8.2.1 Parallel filesystem with host-based subtree limitations for VM 59
8.2.2 Parallel filesystem with host-based subtree limitations for VE 60

9 Evaluation 62
9.1 Secure Enclave Testbed Description . 62

9.1.1 SDN in Testbed . 63
9.2 User namespaces . 65

9.2.1 Shared-storage use case . 65
9.3 HPCCG . 69

9.3.1 Description . 69
9.3.2 Setup . 69
9.3.3 Discussion & Observations . 71

9.4 iperf: TCP Bandwidth . 76
9.4.1 Description . 76
9.4.2 Setup . 76
9.4.3 Discussion & Observations . 76

9.5 On-demand Network Enclaving via SDN & OpenStack’s Neutron 77
9.5.1 Description . 77
9.5.2 Setup . 77
9.5.3 Discussion & Observations . 78

9.6 Network Isolation Testing . 80
9.6.1 Description . 80
9.6.2 Setup . 80
9.6.3 Discussion & Observations . 81

9.7 Controlling VM access to Lustre with IO-Forwarding . 84
9.7.1 Description . 84

v

9.7.2 Setup . 84
9.7.3 Discussion & Observations . 86

9.8 Controlling VE access to Lustre with kernel isolation . 87
9.8.1 Description . 87
9.8.2 Setup . 87
9.8.3 Discussion & Observations . 88

10 Secure Compute Vulnerability Assessment 90
10.1 Introduction . 90
10.2 Evaluation . 90

10.2.1 System-level Virtualization . 91
10.2.2 OS level virtualization . 93
10.2.3 The Linux Kernel . 94

10.3 Recommendations . 94

11 Network & Storage Vendor Analysis 95
11.1 Key Vendors and their role in SDN . 95

11.1.1 Arista . 95
11.1.2 Brocade . 96
11.1.3 Cisco . 96
11.1.4 Dell . 96
11.1.5 Juniper . 96
11.1.6 Mellanox . 97
11.1.7 Network Vendor Conclusion . 97

11.2 Storage Vendor Overview . 97
11.2.1 Seagate/Xyratex . 98
11.2.2 Oracle ZFS Storage Appliance . 99
11.2.3 Additional Systems . 100

12 Conclusion 101
12.1 Synopsis . 101
12.2 Observations . 103

12.2.1 Benchmarks . 103
12.2.2 User namespaces & Container Isolation . 104
12.2.3 Vulnerability Assessment . 105
12.2.4 Security Classifications . 105
12.2.5 Networking . 106
12.2.6 Secure Storage . 108

12.3 Future Plans . 108
12.4 Final Remarks . 110

Acknowledgments 111

Bibliography 112

Appendices

vi

A Protection Level 122
A.1 Protection Level . 122

B Docker 129
B.1 Docker Files . 129

C libvirt 131
C.1 libvirt Files . 131

D Network Enclaving Demo 133
D.1 On-Demand Network Enclaving via SDN & Neutron . 133

vii

LIST OF FIGURES

1.1 Illustration of two axes of administrative control . 7
2.1 Overview of various virtualization architectures . 12
2.2 Illustration of Lustre configuration for basic cluster . 14
2.3 Diagram showing steps for Lustre client writing data . 15
2.4 System structure for GPFS . 17
3.1 Example of cgroup linking CPUs and memory with subshell 25
4.1 Neutron OVS SDN Router Configuration. 37
4.2 VNIC interface configuration. 37
7.1 OpenStack Logical Architecture (source: [95]) . 48
7.2 Diagram of Cinder component interactions . 52
7.3 Diagram of Cinder Storage Node . 53
7.4 Example of ‘generic’ Manila file share component . 54
8.1 Example illustrating layers of isolation-based architecture 58
8.2 Diagram showing single network for storage network . 59
8.3 Diagram showing separate VLANs for storage network . 59
8.4 Example instance of Lustre, IO re-exporter with VM . 60
8.5 Example instance of Lustre, bind-mount with VE . 61
8.6 Example instance of GPFS, bind-mount with VE . 61
9.1 Secure Enclaves Testbed Logical Diagram. 62
9.2 Secure Enclaves Testbed Rack Diagram. 63
9.3 OpenStack L2 Deployment. 64
9.4 ML2 and Layer 3 Service Plugin interactions . 64
9.5 Example output from HPCCG benchmark. 70
9.6 Example loop used to run HPCCG tests . 70
9.7 Example of KVM/libvirt VM startup . 71
9.8 Example of Docker VE startup . 71
9.9 HPCCG (serial) with Native, Docker and KVM . 72
9.10 HPCCG (parallel) with Native, Docker and KVM . 72
9.11 Scale-up test of HPCCG MPI with Native, Docker and KVM 73
9.12 Example iperf server/client . 76
9.13 Illustration of OpenStack interface creating dynamic tenant networks via Arista’s

Neutron L2 plugin. 77
9.14 View of dynamically created tenant network “T4NET” with OpenStack and display of

underlying switch details (before/after add). 78
9.15 View of Arista switch details for life-cycle of dynamic tenant network (“T4NET”), which

was created and later deleted using OpenStack Dashboard. 79
9.16 Network isolation testbed configuration. 80

ix

9.17 Illustration of the steps for “MAC Flooding”. 82
9.18 Illustration of the steps for the “Multicast Brute Force Attack”. 82
9.19 Illustration of the steps for the “VLAN Hopping (Double Tagging) Attack”. 83
9.20 Illustration of the steps for the “DHCP Starvation Attack”. 83
9.21 Diagram showing the multiple tenant setup using several VEs over multiple hosts all

connected to Lustre shared storage. 88
9.22 IOR performance over 10 nodes comparing Native and VE (LXC). Illustrates VE

isolation without I/O performance penalty. 89
12.1 Summary of DCID 6/3 Protection Levels (PL) for inter-tenant security requirements. 106
D.1 Demo: OpenStack Networks . 133
D.2 Demo: Create a new tenant network (1/2) . 134
D.3 Demo: Create a new tenant network (2/2) . 134
D.4 Demo: Launch Tenant VMs on new “T4NET” . 135
D.5 Demo: VMs on Dynamic Tenant Network . 135
D.6 Demo: Horizon VM Console & Ping Test . 136
D.7 Demo: Details on Neutron Networks & Nova VMs . 136
D.8 Demo: Show Active VMs and Networks (Arista) . 137
D.9 Demo: Separate example with different Tenants . 137
D.10 Demo: Terminate VM Instances . 138
D.11 Demo: Show Terminated VMs Are Gone (Arista) . 138
D.12 Demo: Delete Tenant Network from OpenStack . 139
D.13 Demo: Summary - Tenant VLAN Remove (Arista) . 139

x

LIST OF TABLES

3.1 Available Linux namespaces and required kernel version. 23
3.2 Available cgroup controllers in RHEL7 . 25
3.3 Relationship between security/isolation mechanisms and virtualization solutions 29
5.1 Lustre vs. GPFS . 43
7.1 Comparison of Magnum and LXD features. 56
9.1 Parameters (numprocs & problem dimensions) for scale-up test of HPCCG MPI 74
9.2 Times for HPCCG (serial) tests . 75
9.3 MFLOPS for HPCCG (serial) tests . 75
9.4 Standard deviation of Times for HPCCG (serial) tests . 75
9.5 Standard deviation of MFLOPS for HPCCG (serial) tests 75
9.6 Network Bandwidth (TCP) with iperf . 76
9.7 Summary of isolation testing results. 81
9.8 FIO single VM client I/O performance . 84
9.9 FIO multiple processes VM client I/O performance . 85
9.10 IOR single VM client I/O performance . 85
9.11 I/O Performance for Multiple IOR processes per VM client 86
9.12 FIO performance comparison between Native and VE . 87
9.13 IOR performance comparison between Native and VE(s) 88
10.1 Virtualization solutions and their corresponding attack vulnerabilities. 91
10.2 Virtualization solutions and their vulnerabilities’ targeted region of the system. 91
11.1 Vendor compliance with the OpenFlow standard . 97
11.2 Seagate ClusterStor product specifications . 99
11.3 Oracle ZFS Storage appliance specifications . 100
A.1 Protection Level requirements review & assessment . 123

xi

Executive Summary
Secure Enclaves: An Isolation-centric Approach for Creating

Secure High Performance Computing Environments

High performance computing environments are often used for a wide variety of workloads ranging
from simulation, data transformation and analysis, and complex workflows to name just a few. These
systems may process data at various security levels but in so doing are often enclaved at the highest
security posture. This approach places significant restrictions on the users of the system even when
processing data at a lower security level and exposes data at higher levels of confidentiality to a much
broader population than otherwise necessary. The traditional approach of isolation, while effective in
establishing security enclaves poses significant challenges for the use of shared infrastructure in HPC
environments. This report details current state-of-the-art in virtualization, reconfigurable network
enclaving via Software Defined Networking (SDN), and storage architectures and bridging techniques for
creating secure enclaves in HPC environments.

The isolation mechanisms in the system software are the basic building blocks for enabling secure
compute enclaves. There are a variety of approaches to virtualization. We categorize these different
approaches to virtualization into two broad groups: OS-level virtualization and system-level virtualization.
The OS-level virtualization uses containers to allow a single OS kernel to be partitioned to create Virtual
Environments (VE), e.g., LXC. The resources within the host’s kernel are only virtualized in the sense of
separate namespaces. In contrast, system-level virtualization uses hypervisors to manage multiple OS
kernels and virtualize the physical resources (hardware) to create Virtual Machines (VM), e.g., Xen, KVM.
This terminology of VE and VM, detailed in Section 2, is used throughout the report to distinguish
between the two different approaches to providing virtualized execution environments.

We consider both VE and VM approaches and review current operating system (OS) protection
mechanisms and modern virtualization technologies to better understand the performance/isolation
properties. We also examine the feasibility of running “virtualized” computing resources as non-privileged
users, and providing controlled administrative permissions for standard users running within a virtualized
context. Our evaluations were focused primarily on the use of KVM for hypervisor-based experiments, and
LXD/LXC for container-based tests. The literature reviews and technology examinations included a variety
of approaches, such as Linux containers (LXC [71], Docker [35]) and full virtualization (KVM [57],
Xen [8]).

The evaluations using the different virtualization technologies are discussed in Section 9. This includes
experiments with user namespaces in VEs, which provides the ability to isolate user privileges and allow
a user to run with different UIDs within the container while mapping them to non-privileged UIDs in the
host. We have identified Linux namespaces as a promising mechanism to isolate shared resources, while
maintaining good performance. In Section 9.2 we describe our tests with LXC as a non-root user and
leveraging namespaces to control UID/GID mappings and support controlled sharing of parallel
file-systems. We highlight several of these namespace capabilities in Section 12.2.2.

The other evaluations that were performed during Year-1 of the project provide baseline performance
data for comparing VEs and VMs to purely native execution. In Section 9.3 we performed tests using the
High-Performance Computing Conjugate Gradient (HPCCG) benchmark to establish baseline performance
for a scientific application when run on the Native (host) machine in contrast with execution under Docker
and KVM. Our tests verified prior studies showing roughly 2-4% overheads in application execution time
& MFlops when running in hypervisor-base environments (VMs) as compared to near native performance
with VEs. For more details, see Figures 9.9 (page 72), 9.10 (page 72), and 9.11 (page 73).

1

The two most complete experiments focused on controlling access to storage, while maintaining good
performance, when using a VM or VE to access a parallel filesystem (Lustre). In Section 9.7, two different
IO-Forwarding methods were compared to evaluate the performance of re-exporting a host mounted Lustre
filesystem to a guest VM. The VirtFs/9pfs showed very good performance for IOR and FIO benchmark
tests. The other tests (Section 9.8) looked at the VE instance and showed that a combination of bind mounts
and user namespaces could provide secure near native performance for accessing Lustre from the VE.

SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of
which is very straight forward, the system administrator can deploy networks that are more amenable to
customer needs, and at the same time achieve increased scalability making it easier to increase overall
capacity as needed without negatively affecting functionality. The network administration of both the
server system and the virtual sub-systems is simplified allowing control of the infrastructure through
well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer
significant promise in meeting these goals, they also provide the ability to address a significant component
of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems
are built upon scalable high-performance networking technologies designed to meet specific application
requirements. Dynamic isolation of resources within these environments has remained difficult to achieve.
SDN and NFV methodology provide us with relevant concepts and available open standards based APIs
that isolate compute and storage resources within an otherwise common networking infrastructure.
Additionally, the integration of the networking APIs within larger system frameworks such as OpenStack
provide the tools necessary to establish isolated enclaves dynamically allowing the benefits of HPC while
providing a controlled security structure surrounding these systems.

Key Points The container-based virtualization shows great promise for providing efficient and secure
compute enclaving. The hypervisor-based virtualization can achieve good performance with
IO-Forwarding based on VirtFS (9pfs). We are able to leverage OpenStack and SDN to achieve on-demand
network enclaving, as demonstrated on SE testbed deployed at ORNL.

SDN and NFV provides the functionality necessary to configure distributed networking components
on-demand, while at the same time providing desired performance, security, and reliability goals. The
requirements of these open standards are largely driven by the cloud computing community. Adapting
these standards to HPC systems can provide an increased level of flexibility with significantly higher
performance than that of a typical cloud computing infrastructure. Reconfigurable networks are a key
component of this flexibility providing a unique opportunity to achieve the performance and application
scalability of leading edge HPC platforms while providing the ability to isolate applications within a shared
infrastructure.

There are a few existing and in-progress protection features in Lustre related to secure storage, which
are discussed in (Chapter 5.1). These include authentication capabilities like GSSAPI/Kerberos and the
in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption,
which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization
mechanisms for inter-cluster sharing of filesystems (Chapter 5.2). The limitations of key importance for
secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly
supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network∗ and practical
complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use
cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM).
There are promising options like para-virtualized filesystems to help with this issue, which are a particular

∗The network that connects the storage subsystem and users, e.g., Lustre’s LNET.

2

instances of the more general challenge of efficient host/guest IO that is the focus of interfaces like
virtio. A collection of bridging technologies have been identified in Chapter 6, which can be helpful to
overcome the limitations and challenges of supporting efficient storage for secure enclaves. The synthesis
of native filesystem security mechanisms and bridging technologies led to an isolation-centric storage
architecture that is proposed in Chapter 8, which leverages isolation mechanisms from different layers to
facilitate secure storage for an enclave.

Recommendations As part of our technology review we analyzed several current virtualization solutions
to assess their vulnerabilities. This included a review of common vulnerabilities and exposures (CVEs) for
Xen, KVM, LXC and Docker to gauge their susceptibility to different attacks. The complete details are
provided in Section 10 on page 90. Based on this review we concluded that system-level virtualization
solutions have many more vulnerabilities than OS level virtualization solutions. As such, security
mechanisms like sVirt (Section 3.3) should be considered when using system-level virtualization solutions
in order to protect the host against exploits. The majority of vulnerabilities related to KVM, LXC, and
Docker are in specific regions of the system. Therefore, future “zero day attacks” are likely to be in the
same regions, which suggests that protecting these areas can simplify the protection of the host and
maintain the isolation between users.

Additional research into the application of SDN and NFV technologies within an HPC context is
required. Leveraging large-scale orchestration frameworks such as OpenStack to manage HPC system
components will broaden the applicability and improve the security of HPC systems. While our initial
work focuses on leveraging SDN and NFV capabilities of Ethernet based networks for secure enclaves, the
proposed techniques are readily adaptable to high-performance networking technologies utilized within
HPC. Adopting SDN, NFV and broader orchestration technologies such as OpenStack for on-demand
network reconfiguration will require further development including scalable low-overhead tools that
provide monitoring and auditing of networking components (including endpoints). All this development
should be within the scope of compliance with applicable and necessary security policies.

In the context of storage, the Lustre filesystem offers excellent performance but does not support some
security related features, e.g., encryption, that are included in GPFS. If encryption is of paramount
importance, then GPFS may be a more suitable choice. There are several possible Lustre related
enhancements that may provide functionality of use for secure-enclaves. However, since these features are
not currently integrated, the use of Lustre as a secure storage system may require more direct involvement
(support). The use of OpenStack with GPFS will be more streamlined than with Lustre, as there are
available drivers for GPFS. The Manila project offers “Filesystem as a Service” for OpenStack and is
worth further investigation. Manila has some support for GPFS. The proposed Lustre enhancement of
Dynamic-LNET should be further investigated to provide more dynamic changes to the storage network
which could be used to isolate hosts and their tenants. The Linux namespaces offer a good solution for
creating efficient restrictions to shared HPC filesystems. However, we still need to conduct a thorough
round of storage/filesystem benchmarks.

Outline The remainder of this report is structured as follows:

• Section 1: Introduces the topic of secure enclaves and clarifies the scope of the project, to include
working assumptions about the threat model for secure enclaves.
• Section 2: Provides background and terminology used throughout the report. This section includes

details on Software Defined Networking (SDN), storage architectures, system mangement tools, and

3

security & virtualization classifications.
• Section 3: A review of isolation mechanisms for container and hypervisor based solutions. This

section provides information on security frameworks for use with virtualization.
• Section 4: Details alternative architectures and available methods for implementing dynamically

reconfiguring networks.
• Section 5: A review of protection mechanisms in two HPC filesystems; details about available

isolation, authentication/authorization and performance capabilities are discussed.
• Section 6: Describe technologies that can be used to bridge gaps in HPC storage and filesystems to

facilitate more secure storage.
• Section 7: A brief overview of key implementation details for the OpenStack cloud software stack.

This chapter also includes details on emerging components and services in the OpenStack project
that are particular interest for the secure enclaves effort.
• Section 8: We describe an isolation-centric approach for a secure high-performance environment,

and provide example instances to clarify applications in the secure enclaves effort.
• Section 9: Details on evaluations related to compute, network and storage experiments for secure

enclaves. This chapter includes an overview of our secure enclave testbed, which is a prototype for
the architecture described in Chapter 8.
• Section 10: Discusses a secure compute vulnerability assessment that reviewed common

vulnerabilities and exposures (CVEs) for Xen, KVM, LXC and Docker CVEs Xen, KVM, LXC,
Docker and the Linux kernel.
• Section 11.1: An overview of a number of SDN and Network Function Virtualization (NFV) vendor

technologies and their capabilities. Also, a brief analysis of storage vendors with products that could
potentially be of use for creating secure enclaves.
• Section 12: A brief synopsis of the report and highlight key observations from Year-1 of the project

as well as points of interest for further investigations.

4

Chapter 1

Introduction

High performance computing environments are used for a wide variety of workloads ranging from
simulation, data transformation and analysis, and complex workflows to name just a few. These systems
may process data at various security levels but in so doing are often enclaved at the highest security
posture. This approach places significant restrictions on the users of the system even when processing data
at a lower security level and exposes data at higher levels of confidentiality to a much broader population
than otherwise necessary. The traditional approach of isolation, while effective in establishing security
enclaves poses significant challenges for the use of shared infrastructure in HPC environments.

The ability to support “on-demand self-service” computing resources is a major asset of Cloud
Computing [79]. These customizable environments are made possible by modern operating system (OS)
mechanisms and virtualization technology, which allow for decoupling the physical and virtual resources.
This separation enables users to customize “virtualized” computing resources, while maintaining
appropriate protections to ensure control is maintained at the hosting (physical) level.

As the use of virtualization becomes more ubiquitous, additional hardware support is emerging to
assist with the multiplexing of the physical resources. Many hardware specific services such as data storage
and networking were not initially easily realizable with available virtual machine technologies. However,
newer hardware functionality is helping to improve performance when virtualizing these critical I/O
services. In the specific case of HPC workloads, latency and bandwidth requirements place a higher
performance demand on these virtualized services and the hardware used to realize them. The adapting of
virtualization methods within the HPC community requires a more narrowly focused approach to
virtualization. Streamlined techniques such as the use of Linux containers provides a virtualized
environment rather than a complete virtual machine, enabling the flexibility desired within the HPC
community without sacrificing performance system performance.

This report reviews current state-of-the-art in reconfigurable secure networking, secure
high-performance compute customization, and secure access to shared HPC storage resources. There are
numerous factors that influence the degree of control and isolation that can be achieved in current HPC
environments. The key technologies associated with secure enclaves are detailed. An architecture for a
high-performance secure enclave is presented along with details for a prototype implementation and
evaluations that that illustrate the capabilities and highlight areas for refinement. Therefore, this report
focuses on these three areas: (i) secure HPC compute, (ii) secure HPC network, and (iii) secure HPC
storage. The report provides insights into ways that available protection mechanisms may be used to better
isolate use of shared resources in a multi-tenant environment (Chapter 8). Specifically we examine the use
case of sharing common distributed parallel filesystems and a high speed network infrastructure.

5

In the area of secure compute, we review current OS protection mechanisms and virtualization
technologies to better understand the performance/isolation properties. We examine the feasibility of using
“virtualized” computing contexts to enable improved compute customization, which includes controlled
support for users having increased administrative permissions (within the virtualized context). We also
analyze the vulnerabilities of current virtualization based environments.

The growth of server virtualization is spurring increased interest in technologies that can be leveraged
to aid with network virtualization. A key element of modern networking with virtualized resources is the
combination of SDN and NFV. As industry standard APIs are developed using a common open source
standard, network appliance operation moves seamlessly within the compute infrastructure.

In the area of secure network, we present results from our investigation into mechanisms that can be
used to implement reconfigurable networks. The intent is to leverage these networking technologies to
facilitate isolation in multi-tenant environments. The report focuses on SDN to gain insights into its use in
a high-performance computing (HPC) context. This includes a review of methods and technologies for
implementing reconfigurable networks and a snapshot of key vendors that are providing products that
support SDN.

Lastly, in the area of secure storage, we provide background information on two major HPC storage
architectures: Lustre and GPFS. We focus on their security profiles; highlighting strengths, discussing
weaknesses and possible workarounds. Particular attention is paid to areas where security gaps can be
bridged by using other technologies. The resulting SE architecture offers an isolation-centric approach to
secure high-performance storage.

1.1 Project Scope

The overall goal of this project is to evaluate the current technologies used to create user customizable
computing platforms with respect to their security and isolation qualities. The basic assumption is that
virtualization plays a central role in enabling secure compute customization. As such a thorough review of
the current state of relevant virtualization technology is important to better understand the challenges and
opportunities for deploying user customizable computing resources.

1.1.1 Customizable Computing Resources

In multi-user computing environments the access to common computing, network and storage
resources are shared among many users. In contrast, this project is focused on a multi-tenant environment
that allows users to customize the computing platform specific to their needs, while still sharing some
physical network and storage resources. The customizability in a multi-user computing environment is
limited to unprivileged changes such as altering the shell and environment variables while using the shared
system in the context of a particular user. In a multi-user computing environment users are aware of other
users on the system and of all processes running on the system. The reason for limiting users to
unprivileged operations on the system is so that one user cannot bypass system security controls and affect
the quality of service of another user. However in a multi-tenant environment, each tenant’s computing
platform is isolated from each other, meaning that they can be allowed a high degree of control as to how
their platform is customized. For example a tenant may run a completely different Linux distribution with
customized system-level functionality such as logging authorization mechanisms that have no bearing on
other tenants. This can be done while still sharing physical resources such as network and storage. In this
project a customizable computing platform is in the context of a multi-tenant model where even

6

Platform A Platform B

Infrastructure Layer

Figure 1.1. Illustration of two axes of administrative control (platform and infrastructure) in
a customizable computing environment.

system-level changes are permissible. The isolation of computing platforms between each other and also
the underlying infrastructure enables a distinction to be made between platform admins and infrastructure
admins who manage the physical resources and services on top of which secure computing platforms are
deployed (Figure 1.1).

1.1.2 Threat Model

Virtualization technologies that enable customizable environments involve a deep “software stack”,
from the infrastructure and system layers to the application layer. The security at each of these levels must
be considered when evaluating the system as a whole. Furthermore, in this study we use isolation
mechanisms to limit the exposure of particular levels in the software stack that might have weak security
controls. The reinforcement of these controls through isolation mechanisms (e.g., virtualization) allows for
more fine-grained resource marshalling, whereas relying purely on strict controls might limit the usefulness
of a customized compute environment. Thus, to establish a framework for our evaluation and to identify
remaining gaps for future work we developed the following threat models assumed for this study.

We assume a multi-tenant model where many users make use of shared infrastructure for separate
tasks. Isolation must be maintained between users and their data. When virtualization involves sharing of
system level resources, (e.g. memory, CPU caches, I/O devices), there is a potential attack vector of
side-channel attacks between environments co-located on the same system. We assume granularity at the
node level, such that a single user has ownership of a compute node where memory, CPU cores, or PCI
devices are not shared.

While applications for different users do not share the same node, they may share physical network
infrastructure and storage resources. The shared storage could be at the block-level granularity, such that
data belonging to each user does not share filesystem data structures, or at the granularity of a subset of a
shared filesystem. Our use case with respect to a customizable secure compute environment focuses on
sharing a distributed or parallel filesystem such as Lustre or GPFS. A shared filesystem raises several
challenges in a multi-tenant environment, and of those challenges, we address those related to configuring
customizable compute environments for isolating segments of a shared filesystem and only providing a
user access to explicitly approved segments.

In summary, the working assumptions/requirements for a prototypical system are:

• Granularity is at the node level, i.e., single user per node (Therefore not concerned with on-node,

7

cross-user security attacks or snooping, i.e., memory of neighbor in co-hosted VM/VE)
• Must support controlled user permission escalation, i.e., user may obtain root, but only in VE/VM.
• Users can not escalate beyond set permissions/access granted to VE/VM (e.g., maintaining only

limited access rights on a shared filesystem)
• Maintain “acceptable” performance levels, where “acceptable” will be defined as some percentage of

native performance balanced with added protection capabilities. Performance implications are
presented in Chapter 9.

1.2 Report Outline

The report is structured as follows, in Chapter 2 we define important terminology, delineating
protection and security, and review security and virtualization classifications. Additionally, we provide
background on resource management and orchestration capabilities available through SDN and NFV. We
also include information related to general security technologies and system management tools.

Chapter 3 focuses on key virtualization technologies that are relevant to this project. In Chapter 4
details are given about alternative architectures and available methods for implementing dynamically
reconfiguring networks. Chapter 5 provides details on security related features of selected HPC
filesystems, namely Lustre and GPFS, and contrasts some of their differences with respect to secure
storage. Chapter 6 discusses technologies that can help to bridge gaps in secure HPC storage, which were
identified in Chapter 5.

Chapter 7 reviews OpenStack implementation details, to include the core components as well as
emerging components, e.g., Manila Filesystem-As-A-Service and Magnum Containers-As-A-Service.
Chapter 8 presents our view of an isolation-centric system architecture. This describes our approach to
secure enclaves in HPC. The prototype SE testbed from Year-1 leverages OpenStack.

The evaluations and demonstrations from Year-1 are provided in Chapter 9. This includes testing in
both virtual machine and container based environments to show the performance when employing different
isolation mechanisms for secure enclaves.

A vulnerability assessment for different virtualization technologies is given in Chapter 10. Chapter 11
provides an overview of a number of SDN vendor technologies and their capabilities. We also include a
review of vendor offerings in the area of secure storage.

Finally, in Chapter 12 we discuss our observations and conclude the report. An appendix is included
with auxiliary details on security protection levels (Appx. A), Docker (Appx. B) and libvirt (Appx. C).

8

Chapter 2

Background

There are several terms that get used somewhat interchangeably and have different connotations
depending on your background and area of expertise. To avoid these ambiguities, we define important
terminology and review classifications that will help to structure the remainder of the report.

Note, we generalize virtualization technologies into two groups: hypervisor-based and container-based.
Throughout the report we use the term virtual machine (VM) when referring to hypervisor-based
virtualization, e.g., KVM. We use the term virtual environment (VE) when referring to container-based
virtualization, e.g., Docker/LXC.

2.1 Terminology

2.1.1 Virtualization

Protection vs. Security: The title of this project includes the term “secure”. Therefore we begin by
clarifying our distinction between protection and security. The topic of security is important and a set of
security classifications are discussed in Section 2.5. However, the focus of this project is on specific
protection and isolation mechanisms, which can be used to create and enforce security policies. The
underlying mechanisms provide the building blocks to create security.

Virtualization Variants: In Section 2.2 we provide details about different container and hypervisor
based virtualization classifications. Generally speaking, throughout the report we distinguish between
hypervisor and container-based virtualization configurations using the terms, Virtual Machine (VM) and
Virtual Environment (VE), respectively.

Virtual Machine (VM) – type-I/type-II virtualization (hypervisors); VMs may include multiple OS
kernels and the virtualization layer extends below the kernel to virtualization of the “hardware.”

Virtual Environment (VE) – OS-level virtualization (containers); VEs share a single OS kernel with the
host and include virtualization of the “environment.” Resources within the host’s kernel are only
virtualized in the sense of separate namespaces.

2.1.2 Networking

This section reviews relevant terminology and background concepts. Standardizing of terminology is
still being worked out in the network virtualization community and inconsistencies exist in the literature.

9

For example, the available vendor documentation and associated research on both SDN and OpenFlow
discuss basic capabilities and functions in application specific terminology, often focusing on specific use
cases, rather than a generic capability.

Software Defined Networking (SDN) In the SDN architecture, the control and data planes are
decoupled, network intelligence and state are logically centralized, and the underlying network
infrastructure is abstracted from the applications. As a result, enterprises and carriers gain unprecedented
programmability, automation, and network control, enabling them to build highly scalable, flexible
networks that readily adapt to changing business needs [39].

OpenFlow OpenFlow is an open standard that enables researchers to run experimental protocols in the
campus networks we use every day. OpenFlow is added as a feature to commercial Ethernet switches,
routers and wireless access points and provides a standardized hook to allow researchers to run
experiments, without requiring vendors to expose the internal workings of their network devices.
OpenFlow is currently being implemented by major vendors, with OpenFlow-enabled switches now
commercially available [78].

DirectFlow Arista’s DirectFlow is an enhanced version of OpenFlow. As per [43], “DirectFlow extends
the capabilities of OpenFlow with controller-less operation and enables per-flow pattern-matching with
full control.” The DirectFlow Control product enables a user to perform operations on the switch via the
Command Line Interface (CLI) and EOS API (eAPI)1 interface [43].

OpenDaylight OpenDaylight is a collaborative, open source project to advance Software-Defined
Networking (SDN). OpenDaylight is a community-led, open, industry-supported framework, consisting of
code and blueprints, for accelerating adoption, fostering new innovation, reducing risk and creating a more
transparent approach to Software-Defined Networking [90].

Control plane and Data Plane In traditional networking, the control plane and data plane traffic shares
the same path. In SDN, the control and data are separated to facilitate an abstract network design. Control
plane traffic consists of L2, and L3 protocols, management traffic such as Simple Network Management
Protocol (SNMP) and Secure Shell (SSH). The data plane is the traffic containing the data exchanged
between applications, i.e., application data.

Network Abstraction The concept of network abstraction is primarily focused on supporting network
policy and controls rather than specific methods that can be used to deploy the controls through physical
hardware. In the context of SDN, it refers to connections, ports and data flow policies rather than the
physical connection descriptions such as VLANs, IP addresses, and physical networking devices. This
network abstraction layer facilities APIs that can be used to configure details about the network.

Network Decoupling The separation of the control plane, and the data plane, allows the network to be
abstracted. The control plane is defined in general terms and manages policies. The data plane is the
physical interface that acts on these policies, thus abstracting the network design, from the planning and
manipulation of physical connections.

1EOS is Arista’s Extensible Operating System that runs on their network switch hardware.

10

Northbound and Southbound network interfaces The concept of North and Southbound traffic refers
to the information exchanged between the decoupled control and data planes of the SDN. Northbound
specifically refers to information from the data plane to the control plane, and Southbound refers to
information from the control plane to the data plane. Restated, the Southbound interface involves the
controller-to-switch interaction and is defined by protocols like OpenFlow [89]. Conversely, the
Northbound interface involves the controller(s) and network services/application and the standards for this
are less well defined [89].

In the context of OpenDaylight, a Northbound interface allows applications to gather information about
the network used to modify the existing connection resources and capabilities such as bandwidth assigned
to the network. The Southbound interface deals with the hardware, and network layers, control policies are
translated to the data plane as instructions for connections, traffic management and security policies [91].

Agents and Controllers Tenants or applications interact with provisioning mechanisms that
communicate with agents or controllers. This allows the administrator to reconfigure the network to meet
tenant or application needs. An agent requests network resources through an API in the controller, which
then provisions the requested resources. The available resources are reported back to the agent. This
exchange allows the agents or tenants to dynamically provision resources during a heavy load, and then
release resources when the demand is low.

2.2 Virtualization Classification

Virtualization is the abstraction of the system layer in order to achieve various goals including isolated
execution, compute customization, and environment portability. A benefit enjoyed by cloud computing
environments is making use of the abstraction for resource sharing, allowing for higher resource utilization
through statistical multiplexing and oversubscription. Of more direct interest to this report, the
virtualization layer provides a demarcation point, above which distinct VMs or VEs can be customized in a
portable fashion, while layers below enforce inter-VM or VE isolation and act as a trusted arbitrator for
system resources and hardware.

2.2.1 OS Level Virtualization

OS level virtualization, or container-based virtualization, is the abstraction of the OS such that
processes and libraries are isolated within virtual environments (VE). These VEs are owned and created by
a user on the host system via a set of user-level tools. The user-level tools leverage the kernel’s isolation
capabilities in order to provide the abstraction with respect to a VE’s unique set of processes, users, and file
system. A VE employs a single kernel instance, which manages the isolation for the “containers” where
processes execute. This VE architecture is illustrated in Figure 2.1(c).

2.2.2 System-level Virtualization

System-level virtualization is the abstraction of the hardware such that execution environments are
isolated within virtual machines (VM). Each VM is isolated and managed by a virtual machine monitor
(VMM), also known as a hypervisor. The VMM is a thin software layer that may reside on top of the
hardware, or on top of (or beside) an administrative OS known as a host OS. An example of both types can

11

(a) Type-1 Virtualization (b) Type-2 Virtualization (c) OS-level Virtualization

Figure 2.1. Overview of various virtualization architectures

be seen in Figure 2.1. A VM configuration employs multiple kernel instances, one per VM, which are
managed by the VMM (hypervisor).

There two general architectures used to describe where the VMM exists within a system
architecture [41]: type-1 and type-2 VMM. As shown in Figure 2.1(a), a type-1 VMM exists above the
hardware. A type-2 VMM, Figure 2.1(b), exists on top of (or beside) the host OS. In a type-1 VMM, the
host OS is often implemented as a privileged VM, which contains many of the hardware device drivers used
by the system. The host OS for a type-2 VMM executes natively. An example of a type-1 VMM is the Xen
hypervisor [8], while the kernel-based virtual machine (KVM) [47, 63] is an example of a type-2 VMM.

2.3 SDN and Network Function Virtualization

Prior work in programmable networks laid the foundation for the current efforts into Software Defined
Networking (SDN) [89]. Fundamentally, the SDN architectural model is based on the notion of decoupling
the control and data channels. This separation enables the control portion to be managed in a more flexible
manner without binding it to the actual data forwarding layer [83, 89], i.e., the control and data may be
managed (even implemented) separately.

This separation can be leveraged by virtualized environments to allow more dynamic configuration of
the network to meet the needs of applications. Allowing tenants (customers) to provision and configure
dynamic networks can be beneficial for testing applications, or scaling an existing production environment
or specific application. Virtualization saves time for the tenants since they don’t have to wait for network
administrators to provision and configure additional network resources. This saves time for both the
network engineers and systems engineers. The system engineers can focus on adding to resource capacity,
leaving the virtualization controller to handle the tenant flexibility needs. SDN works by separating the
control plane and data plane in the network environment. The control plane handles the configuration and
use management of available network resources including routing and monitoring functions. The control
plane is responsible for QoS and security policy enforcement on the network connections. The data plane
handles the actual flow of data between applications with connections and port sharing under direct
management of the control plane between tenant compute nodes and any external network connections.

In a traditional network the routers, switches, firewalls, and load balancers are dedicated to a physical
configuration. Often these pieces of hardware are from different vendors. Organizational network
topologies are typically centered on these functions. Virtualized networking is focused on commodity
servers that can perform all of these functions to various extents. The standardization of software based

12

services as opposed to application specific physical appliances provides on-demand flexibility in
provisioning the layout of the newly defined system. Routers, firewalls and load balancers can be rapidly
deployed as needed in a virtualized environment. As network commodity servers improve in performance
and lowered cost, additional network function virtualization can be realized. Advances in the switch fabric
ASIC and corresponding controllers will allow MAC (media access control) functions such as layer 2 and
layer 3 level control functions to be transferred to the virtualized network control resulting in a reduction in
system cost coupled with increased deployment flexibility.

The large scale adaptation of SDN facilitates the dynamic reconfiguration of networks to meet the
needs of both specific user requirements and applications. The incorporation of Network Function
Virtualization (NFV) on the other hand is changing how networks are scaled, enabling dynamically
configured functions such as firewalls, and load balancers to optimize deployment time. Systems can be
deployed and realized based on available CPU, network, and memory capacity in the virtual server farms.
This deployment model saves the network engineers from having to focus on rack space, cooling, and
cabling requirements associated with specific system expansion needs. NFV deployment reduces custom
hardware support costs, however server support costs will increase.

System performance requirements are more easily realized using SDN and NFV. The use of SDN
allows the user to quickly spin up network functions such firewalls and load balancers based on specific
needs. Additionally SDN has the potential to assist in optimizing traffic flows within the network to reduce
latency and network hot spots. For example, in a SDN environment, software could detect that tenant
traffic is spread out and is pushing heavy traffic among nodes causing potential hot spots and requiring QoS
to be enabled. Rearranging the host servers and changing the network to meet that service level agreement
is possible with reconfigurable networks. The software provisions the network in an underutilized area with
respect to virtual server resources and available network resources providing the hypervisors with the
necessary resources to move tenant traffic over to the newly created service. Likewise the software could
detect that a virtualized load balancer, or firewall, is nearing capacity and can spin up and configure
replacement virtual services with additional capability. The combination of SDN and NFV allows higher
functionality, while being able to monitor the network, and modify configurations as needed.

2.4 Storage Architectures

Storage systems are integral components of HPC environments. Historically, HPC storage systems
were mostly installed in government labs, large universities and a few commercial research and
development labs. The emphasis was on achieving performance and scalability suitable for a HPC context
and less on implementing strong security controls. Often very basic protections were judged sufficient. The
shift toward more ubiquitous Internet access and the corresponding increase in shared storage across
compute platforms, especially cloud-based platforms, has increased the demand for security in HPC
storage. We focus on two HPC storage solutions, Lustre and GPFS, as we believe they collectively
represent the more mature, feature-rich, performant, scalable, cost effective and actively developed
architectures.

2.4.1 The Lustre Storage Architecture

Lustre is a popular storage architecture in the HPC world. The Lustre filesystem has been utilized
today by 7 out of 10 of the TOP10 supercomputing sites and over 60% of the TOP100 [93]. It is open
source (GPLv2) and is available for several Linux variants. It is a massively parallel filesystem, capable of

13

tremendous I/O performance. Its ability to easily scale capacity and performance by adding more servers is
another reason why Lustre is so popular. Clients and servers on a Lustre network communicate via a
special networking API called LNET, Lustre networking.

LNET supports a variety of transport protocols including TCP, Infiniband’s o2ib, Cray’s Seastar and
Gemini, Myrinet’s MX, RapidArray’s ra and Quadrics’ Elan [93]. LNET also supports routers which
provide the capability of routing traffic between different IP networks whose underlying Layer 2
technology might differ. A common use of routers is to bridge between an Ethernet network and an
Infiniband fabric [93], often to extend the storage resources on an Infiniband fabric to clients without
Infiniband connectivity. Infiniband-to-Infiniband routers are also used to physically partition a large fabric,
while still allowing Lustre filesystem access between the partitions. An example of a potential Lustre
configuration for basic cluster installation is shown in Figure 2.2.

Figure 2.2. Illustration of Lustre configuration for basic cluster installation (figure
source: [98]).

In Lustre, the management server (MGS) provides the clients with configuration information, such as
the location of the metadata server (MDS), storage servers, and filesystem parameters. It also serves as the
first point of contact for a client that wishes to mount the filesystem. To open a particular file, the client
contacts a MDS server to receive the metadata for that file. This is stored in an inode similar to traditional
filesystems such as ext4, but information on the layout of the file is stored in the extended attributes
portion. The layout information consists of Object Storage Target (OST) indexes and object numbers for
each chunk of the file, which reside throughout the cluster. The client can then contact the Object Storage
Server (OSS) on which the specified OSTs reside and gather all chucks from the file. This interaction is
illustrated in Figure 2.3, which shows the steps for a Lustre client involved in writing data to the filesystem.

Lustre Components

Metadata Server (MDS) The MDS provides the interface between Lustre clients and the Metadata
Target (MDT). The metadata includes file and directory names and their associated inode (location) in the
Lustre filesystem [98].

Management Server (MGS) The MGS provides an information service for Lustre, which includes
configuration details about all Lustre filesystems in the cluster. The MGS is independent of an individual

14

Figure 2.3. Diagram showing steps for Lustre client writing data (figure source: [98]).

filesystem, instead it provides general configuration data for end-users and Lustre components
themselves [98].

Metadata Target (MDT) The MDT is responsible for maintaining Lustre metadata, e.g., file and
directory names, permissions. The MDT is the storage portion of the Lustre metadata, and is accessed via
the MDS [98]. The MDT is associated with a filesystem (one filesystem, one MDT) and the shared target
(MDT) can be accessed by many MDSs, but for consistency only one should use it. In the event of an MDS
failure, a secondary MDS can serve out the MDT to clients [98].

Object Storage Servers (OSS) The OSS provides I/O services for network file requests. The OSS
obtains the file data from OST. An OSS is generally paired with 2-8 OSTs [98], which can each be as large
as 128 TB [70]. The MDT, OST and Lustre clients can run on a single node but generally are separated to
different machines, e.g., MDT on node, OSTs on OSS node, Lustre client on compute nodes [98].

Object Storage Target (OST) The OST stores file data as objects, i.e., “chunks of user files” [98].
Multiple OSTs are generally used for a single Lustre filesystem with file “chunks” (objects) spread across
the different OSTs. The mapping between file and OST is not necessarily one-to-one, and in many cases to
improve performance the files are spread across several OSTs [98]. The management of these “file
striping” over OSTs is maintained by a Logical Object Volume (LOV) [98].

Lustre Lock Manager (LDLM) The LDLM coordinates filesystem access, which is run by the
MDS [98]. The lock manager used by Lustre is based on the design employed by the VAX distributed lock
manager [59].

Portal RPC (PTLRPC) The Portal Remote Procedure Call (RPC), PTLRPC, is the underlying
mechanism used within LNET for the client/server exchanges. The mechanism is responsible for [118]:

• sending requests through imports2 and receiving replies,
• receiving and processing requests through exports and sending replies,
• performing bulk data transfer, and
• error recovery.

2Lustre import/export are communication pairings used for receiving/sending over LNET.

15

Lustre Clients The clients are Linux kernel modules that interfaces with the Linux Virtual File
System (VFS) and the backend Lustre data servers [98]. The clients mount the Lustre filesystem to provide
a seamless view of the underlying parallel infrastructure. The client ensures POSIX compatibility for the
user of the filesystem, which include coherent, synchronized filesystem access at all times [98]. There are
different clients for the various Lustre components [98]:

• Metadata Client (MDC) to interface with MDT,
• Object Storage Client (OSC) to interface with OST, and
• Management Client (MGC) to interface with MGS.

Lustre Network Driver (LND) A LND provides the interface between the underlying physical network
and the abstracted LNET. There are several drivers available for Lustre, e.g., Ethernet (TCP/IP), Infiniband,
Quadrics Elan, Myrinet, and Cray (SeaStar Or Gemini) [98].

Lustre Networking (LNET) Lustre uses an internal network abstraction layer that offers an API for
managing metadata and file I/O via server and clients [98]. The LNET layer abstracts the underlying
network fabric to allow various network transport layers to inter-operate; the Lustre clients and servers use
LNET to have a common communication substrate independent of the underlying network
technology [98]. LNET uses Lustre Network Drivers (LNDs) to communicate with the underlying
networks, e.g., Ethernet, Infiniband, SeaStar.

2.4.2 The GPFS Storage Architecture

General Parallel File System (GPFS) is a propriety storage architecture from IBM that supplies a
feature-rich filesystem. This is a cluster filesystem, providing concurrent access to files from multiple
clients. While it possesses many enterprise class storage attributes, GPFS is also a popular choice for HPC.
Its features include replication, information life-cycle management (ILM), cloning, snapshots, global
namespace, encryption and authentication. Also, GPFS is available for several operating systems: Linux,
AIX and Windows.

There are two main methods by which GPFS shares data across clusters: GPFS multicluster and Active
File Management (AFM). Multicluster allows GPFS filesystems to share files amongst themselves after the
appropriate authentications and authorizations. Multicluster is more suited for sharing filesystems in a
Personal Computer (PC) environment as it assumes reliable links and offers higher performance.

AFM is not an HPC appropriate feature as it creates caches of filesets that are asynchronously
maintained with the home fileset location. AFM is engineered to prioritize creating global namespaces of
filesets rather than getting the most performance. Some of the filesets in the namespace can be read-only.

By default all nodes in a GPFS storage architecture perform the same functions. Thus we describe the
GPFS architecture by enumerating the different functions in GPFS and their relationships to each other. A
general overview of the system structure is shown in Figure 2.4.

GPFS Components

GPFS Cluster Manager There is one cluster manager per cluster. This node is chosen internally through
an election amongst the quorum nodes. The cluster manager has many important duties including:

• Monitoring disk leases,

16

Network	
Shared	 Disk	

(NSD)	

OS	 Kernel	

OS	 Vnode/VFS	

GPFS	 Portability	 Layer	

GPFS	 Kernel	 module	

ApplicaAon	

File System calls

GPFS	 admin	
commands	

GPFS	 daemon	 	
mmfsd	

Config	
Manager	

File	
System	
Manager	

Metanode	

Commands

Figure 2.4. System structure for GPFS (adapted from figure in source: [58]).

• Detecting failures and managing recovery from node failures,
• Determining whether a quorum exists so that the GPFS daemon can start,
• Distribute configuration changes to other nodes in the cluster, and
• Manage UID mapping from remote clusters.

Filesystem Manager There is one filesystem manager per filesystem. This node is chosen by the cluster
manager and manages all the nodes mounting the filesystem. The primary functions of the Filesystem
Manager are:

• Managing adding disks to the filesystem,
• Changing disk availability,
• Managing all mount and umount requests for the filesystem.

Token Manager Server The Token Manager may be the filesystem manager. The Token Manager
coordinates access to files on shared disks by granting tokens that convey the right to read or write data or
metadata of a file.

Metanode The metanode handles file metadata. Unlike other storage architectures the metanode for a file
is determined on a per-file basis and then on which node in the GPFS cluster has recently opened the file
for the longest period. Thus over the lifetime of a file the metanode is dynamic. The distributed nature of
metadata handling lends itself to good scale-out and metadata performance capabilities.

Network Shared Disk (NSD) Disks containing user data are called Network Shared Disk, NSD. Upon
joining a filesystem each disk is tagged with a filesystem descriptor to uniquely identify it belongs to the
filesystem. NSD is also the name of a protocol for network access to the disks. The NSD protocol must
also be running on the nodes to which the NSD logical units (LUNs) are attached.

17

Quorum Server The quorum procedure is used for preserving data consistency in GPFS. Quorum means
one plus one-half. When a majority, quorum, of nodes are communicating in a cluster then core cluster
functions like filesystems mounts can proceed. This scheme prevents filesystem corruption by preventing
nodes that have become cut-off from the rest of the cluster from performing filesystem mounts and data
access.

2.5 Security Classifications

The “Orange Book” [29] is a requirements guideline published by the Department of Defense (DoD) in
1985. This publication defined both the fundamental requirements for a computer system to be considered
secure and multiple classification levels in order to describe the security of a given system.3

The fundamental requirements for secure computing systems are:

1. Security Policy. The security policy defines the mandatory security policy for the system. This may
include separation of privilege levels and the implementation of a need-to-know access list.

2. Marking. Marking includes the ability for access control labels to be associated with system objects
as well as have the ability to assign sensitivity levels to objects and subjects.

3. Identification. Within a secure system, each subject must be identified in order to properly assert the
security policy.

4. Accountability. Logging must be used in order to properly hold each subject accountable for their
actions while logged into the system.

5. Assurance. Each component of the security policy implementation must reside within independent
mechanisms.

6. Continuous Protection. During the execution of the system, each component must retain its integrity
in order to be considered trusted.

The criteria of the security for a system ranges from division D to division A. Division D represents
systems with minimal security, while division A represents systems with a high level of verifiable security.
A system that is labeled as a division D system is considered to provide minimal protection and is reserved
for any system that does not meet the criteria for any higher rated system.

Division C systems are broken into two classes: C1 and C2. A system meeting the criteria for class C1
provides the following fundamental requirements: (i) security policy, (ii) accountability, and (iii) assurance.
With respect to requirement (i), a system must have discretionary access control in which access controls
are used between objects and users with the ability to share objects amongst users or groups.
Requirement (ii) states that the system should provide the user with the ability to login with the use of a
password. Requirement (iii) directs the configuration to provide system integrity as well as a separation of
privilege for user applications and the OS kernel. Additionally, the system should be tested with respect to
the security mechanisms used to provide each of these requirements.

A C2 system provides all of the requirements with some additional requirements. The kernel should
provide sanitized objects before use or reuse. Additionally, the kernel should maintain logs of the following

3Note, Appendix A includes details related to security “Protection Levels” from the DCID 6/3 manual [27].

18

events: use of authentication mechanisms, file open operations, process initiation, object deletion, and user
actions.

Division B criteria moves from discretionary to mandatory protection for the system. This division
contains multiple classes of increasing protection from class B1 through B3. In addition to providing an
increased amount of protection, the system developer must also provide a security policy model as well as
the specification for the model.

Class B1 requirements are the same as C2 with the addition of sensitivity labels, mandatory access
control, and design specification and verification. The sensitivity labels allow for the ability to have
multiple trust levels per user, per object, or both. The mandatory access control will leverage the security
labels in order to enforce the security policy. The sensitivity policy that will be deployed in a class B1
system, and from hence forth, is one in which a subject can read at their sensitivity level or lower and write
at their sensitivity level or higher. This prevents objects from becoming untrusted and removes the
possibility of users observing data outside of their sensitivity level. The design specification and
verification of the system may be done as an informal or formal model and must be maintained over the life
span of the system. Additionally, all claims made about the system must be verified or verifiable.

Class B2 provides structured protection as well as a verifiable security policy model. The majority of
requirements for a system to be considered of class B2 are also required as a class B1. The additions from
the B1 requirements are within the fundamental requirements areas such as the security policy,
accountability, and assurance. The security policy is extended to support device sensitivity labels and users
have the ability to query their sensitivity level at runtime. The accountability requirement is extended to
supported “trusted path” communication between the user and the kernel. The assurance requirements are
considerably extended from the B1 to the B2 requirements. In a B2 class, the kernel must execute within its
own domain, maintains process isolation through address space provisioning, and is structured into
independent modules with a separation between protection-critical and non-protection critical elements.
Additionally, covert channels are searched for and analyzed.

Class B3 requires a complete implementation of a reference monitor, which will provide mediation on
all access of objects by subjects, be tamper-proof, and be small enough to be verifiable. Additionally, the
system must contain recovery procedures in the case of faults or attacks as well as be highly resistant to
penetration. With respect to the fundamental requirements for the system, minor additions are required
within the accountability and assurance requirements when compared to class B2. In a class B3 system, the
trusted path is required like class B2, but the path should be isolated and distinguishable from any other
path. The auditing system should be able to track the various security events and determine if any
predefined thresholds have been exceeded. If the events are to continue, the system should terminate the
event in the least disruptive manner. The system architecture should have minimal complexity with simple
protection mechanisms while providing significant abstraction.

Division A provides the most secure systems. However, these systems require complete verification,
which is not feasible with the average size and complexity of modern systems.

2.6 Supporting Security Technologies

2.6.1 NIST

National Institute of Standards and Technology (NIST) is a government body that “develops and issues
standards, guidelines, and other publications to assist federal agencies in implementing the Federal
Information Security Management Act (FISMA) and in managing cost-effective programs to protect their

19

information and information systems [34]”.

2.6.2 FIPS

Federal Information Processing Standards (FIPS) are issued by the National Institute of Standards and
Technology. FIPS are “publicly announced standardizations developed by the United States federal
government for use in computer systems by all non-military government agencies and by government
contractors, when properly invoked and tailored on a contract [121]”.

2.6.3 GSSAPI

The General Security Services Application Programming Interface (GSSAPI) is a general application
programming interface (API) for security schemes [119]. The GSSAPI allows security vendors to write
GSSAPI compliant security modules which is sure to work with clients respecting the standard. A major
benefit of the GSSAPI is that it removes the need for vendors to know details specific to the client. For
example, the popular Kerberos [86] security mechanism is often used via GSSAPI to ensure a consistent
API due to variations in Kerberos implementations.

2.6.4 Kerberos

Kerberos is a security system that provides authentication in a distributed system [86]. The Kerberos
authentication system is widely used by many other systems, to include commercial products like
Windows, GPFS, Lustre, etc. Kerberos itself does not provide authorization, but can be used to build
authorization in other services [86]. Briefly, a client contacts a Kerberos authentication server and once
authenticated obtains a ticket. This ticket contains cryptographic keys that ensure the identity of the
authentication server and client, so that when the client speaks to a service it can transmit the clientticket,
which can be verified based on the established keys known within the infrastructure. A key element to this
process is that the clientticket contains all the information needed for the service to verify the identity of
the client and the authorizing server, which enables the security protocol to be more efficient by reducing
the amount of communication required to authenticate a client [86]. A more thorough description of the
Kerberos authentication service is provided in [86] and RFC-4120 [87].

2.7 System Management Tools

As virtualization technologies enable the portability and lifecycle management (save/start/stop) of
user-customizable secure computing environments, tools that operate at a higher level of abstraction
become necessary to facilitate rapid deployment and management of resources. Should it be desirable, they
allow for compute resources to be instantiated without privilege on the physical hardware they are
deployed on.

In some instances lower-level configuration management tools, e.g., Puppet, can be used to fill gaps in
higher-level tools or aid in site customizing procedures. Therefore, we provide a short description for
general background. We include a short description of OpenStack, which is detailed more fulling in a later
chapter.

20

2.7.1 Puppet

As a very flexible and full-featured configuration management system, Puppet [60] can be a useful tool
for an automated infrastructure deployment. In the test bed, Puppet was used to initially configure the
RHEL 7 VM or VE hosts. In the typical deployment scenario there were one-time tasks first run by the
infrastructure admin, before the system is accessible by other users. After the initial run, Puppet can be run
via an agent process in the background to periodically sync configurations. The agent ensured consistency
across the various machines in a deployment. Beyond use by infrastructure admins, Puppet could also be
employed to configure tenant VMs or VEs based on templates. An option for further customization by
tenants could be to set up a separate version-controlled repository per-tenant. When Puppet runs on the
VMs or VEs, it would use the configuration parameters and templates from the committed repository. This
achieves a high standard of consistency and reproducibility where a VM or VE that fails can easily be
recreated from the data in configuration management. This model works well for infrastructure admins
who have a large number of systems to manage and complex configuration requirements. However, the
check-in and Puppet agent model can be a burden for tenants to keep up with, where configured
environments might only be serving a temporary purpose.

An alternative to periodic runs of configuration management is to leverage virtualization features such
as snapshotting to save the changes to the base image to persistent storage. This is a common feature for
system-level virtualization technologies, but further testing is needed with OS-level virtualization to
explore tools such as CRUI [25] when used with LXC. This tool would provide the means for live
migration of containers between physical hosts. A hybrid approach to this problem is likely where Puppet
is used for infrastructure administration, while tenant configuration may rely on other higher level tools.

2.7.2 OpenStack

OpenStack is an open-source cloud framework primarily aimed at deployed private cloud platforms.
Numerous sub-projects are each responsive for providing services to the OpenStack cloud. For example the
neutron project provides the networking services, where the nova project provides the computing
resources. Each project has an API for admins or tenants to interact with. Only a subset of the OpenStack
projects apply to the use case in this work and each component can be configured to meet specific customer
demands. For instance, neutron has several plugins for providing different types of network services (e.g.
vlan, flat, gre). We are interested in using the plugins that facilitate isolation through various mechanisms,
including VLANs, and SDN plugins that allow the configuration of network devices to be automated.

Our use case of a multi-tenant cloud, providing system-level or OS-level customizable computing
platforms, while supporting separate platform and infrastructure admins fits well within the OpenStack
framework. Over the coming months we will be exploring the use of OpenStack with regard to how it
works with the secure customizable compute platforms that are the subject of this report.

OpenStack deployments typically allow users to log into a web-based dashboard to view and manage
tenant-specific resources, or alternatively allow them to authenticate with APIs providing similar
functionality. From the dashboard, a user can launch an instance selecting from a list of available images,
and upon successfully deployment, view the IP address that can be used to SSH to the deployed VE or VM.
Resource limits such as the number of instances or CPUs, or GB of memory that can be used are specified
per-tenant. In summary OpenStack provides significant ease of use benefits to both types of administrators,
but it also expands the functionality exposed to tenants who are unprivileged on the actual hosts providing
either VE or VM compute resources.

21

Chapter 3

Virtualization

Virtualization dates back to the 1960’s with research performed at IBM in conjunction with their large
time-shared systems [24, 42]. In these environments the resources were prohibitively expensive, such that
the resources needed to be shared among users. As noted by Goldberg [41], virtual machines enhanced
system multiplexing (e.g., “multi-access, multi-programming, multi-processing”) to include the entire
platform (“multi-environments”).

Interestingly, many of the initial motivating factors that led to the use of virtual machines (machine
costs, user accessibility, development on production environments, security, reliability, etc.) are true of
today’s large-scale computing environments [51, 61, 117, 125]. The early IBM VM/370 systems included
additional hardware support for virtual machines [24]. The recent resurgence of interest in
virtualization [38] has led to hardware enhancements to support virtualization on commodity architectures
(e.g., Intel [116], AMD [2]).

Virtualization has re-emerged as a building block to aid in the construction of systems software. This
infrastructure technology has been used in the past to support system multiplexing and to assist with
compatibility during system evolution (e.g., IBM 360 virtual machines [24]). The approach has received
renewed interest to enhance security (trusted computing base), improve utilization (over-subscription), and
assist system management (snapshots/migration). In this chapter we review relevant virtualization
technologies that will be used in our feasibility study.

3.1 OS level virtualization

With respect to this work, all user-level tools will be leveraging mechanisms present within the Linux
kernel. The Linux kernel has two primary mechanisms that are used to implement isolation for
container-based, single-OS kernel virtualization: (i) namespaces and (ii) control groups (cgroups).

3.1.1 Namespaces

Namespaces provide isolations for various resources as well as users. Currently, there are six
namespaces present in the Linux kernel1. These namespaces are summarized in Table 3.1.

The first namespace to be supported by the Linux kernel was for controlling file system mounts. The
mnt namespace allows for isolating one namespace instance from another instance. This feature dates back
to Linux version 2.4.19 and allows mounts within a namespace to be invisible outside the context of the

1As of Nov-2014, Linux v3.18.

22

Kernel Namespace Description
≥2.4.19 mnt mount points & file systems to be isolated, (i.e., file system mounts

in one namespace are hidden from another namespace)
≥2.6.19 ipc Inter-Process Communication mechanisms within namespace
≥2.6.19 uts hostname and domain name separate from values at host
≥2.6.24 pid process isolation between namespaces
≥2.6.29 net isolates the network devices and network stack
≥3.8 user separate lists of users per namespace; allows for separation

of privileges between the host and the guest.

Table 3.1. Available Linux namespaces and required kernel version.

namespace. Subsequently, inter-process communication (IPC) and hostname/domainname isolation
mechanisms were introduced in Linux version 2.6.19 with the ipc and uts namespaces, respectively.

The isolation of entire processes between namespaces was added with the pid namespace in Linux
version 2.6.24. This allows for two processes running on the same machine to be visible from the host but
entirely invisible to each other. For example, a process listing (ps) from the host shell will show Process-A
in Container-A and Process-B in Container-B. However, a process listing within Container-A will not show
Process-B and vise versa.

The isolation of network devices, and the network stack as a whole, on a per-container basis was
introduced in Linux version 2.6.29 with the net namespace. This provides a logical copy of the network
stack, including: routes, firewall rules, and network devices, loopback device, SNMP statistics, all sockets,
and network related procfs and sysfs entries. When using the net mechanism for devices and sockets, the
network device belongs to exactly 1 network namespace, and the socket belong to exactly 1 network
namespace.

The most recent addition was the user namespace, which establishes per-namespace contexts for user
ID’s (UIDs) and group ID’s (GIDs). UIDs and GIDs when combined with capability sets (discussed in
3.3.4) are the basic security attributes in Linux for defining allowed operations on files, processes, or
system resources. User namespaces, as an isolation mechanism, work in conjunction with these attributes
to perform security enforcement specific to the context of a user namespace and only to the resources
within that namespace. When applied to containers, a container runs within the context of a child user
namespace distinct from the host OS’s parent user namespace. In this scenario, a user in the host context
can be mapped to a different user within the container, even the container’s root user. This user is able
perform administrative functions within the container, such as installing packages, and system operations
such that: (i) the user possesses the capability set to do so, and (ii) the resource on which it is acting on is
owned by the user namespace. For example, an user who is privileged within the child user namespace
who attempts operations on net and mnt namespaces of a parent user namespace would be denied if the
user is not privileged with the necessary capabilities in the parent namespace. However, new network
and mnt namespaces that are created within the child user namespace may be modified. Launching an
LXC container (as evaluated in Section 9.2) will cause new net and mnt namespaces to be created inside
the child user namespace so that unprivileged users may modify them.

Any user on the system can create a nested namespace, such that the nesting level does not exceed up
to 32 levels. When a process in the parent namespace creates a new user namespace, the process’s effective
user becomes the child namespace’s owner and inherits all capabilities in the new namespace by default.
Other processes can be placed within the same child user namespace and return to their parent namespace,

23

but processes may only exist in a single namespace at any point in time.
Access to system resources within user namespaces are controlled by the host OS kernel in the

following way. When any user performs a system call (e.g. open(), mount(), write()), the host kernel will
evaluate whether to allow the operation by mapping the UID in the calling namespace to the UID in the
namespace where the target resource resides (and check the capabilities set within the target’s namespace).
In this way the root user within a container, which is mapped to an unprivileged user may not un-mount a
filesystem on the host, because it only possesses the capabilities to un-mount a filesystem within the
context of the container’s namespace. System calls such as getuid() return the UID within the context of the
calling process, meaning applications executing within the container are unaffected by the existence of
different mappings on the host.

There is a significant degree of flexibility in how UIDs can be mapped between the host OS and a
container. An unprivileged user on the host OS can create a child namespace, but by default only their own
UID is mapped within the container (as root). To extend this behavior, the root user on the host OS can
configure the allowed mappings such that unprivileged users can map ranges of UIDs on the host to within
the container. A typical usage is to allow UIDs within the container to be mapped to very high UIDs on the
host (e.g. 1,000,000), such that they remain unprivileged on the host, but the full range of 65k users can
exist within the container (up to 1,065,534).

Having introduced the use of the namespaces such as net, mnt, and user namespaces related to
kernel isolation mechanisms, it is also necessary to distinguish these from another type of namespace used
in the context of filesystems. A filesystem namespace involves the hierarchical naming scheme of
directories and files, where a file is uniquely identified by its path. Filesystem namespaces can be nested,
where one filesystem’s namespace is rooted at a mount point within another filesystem. There will be some
overlap of these definitions when discussing isolating filesystem namespaces in Section 9.2. There we
restrict the files a container may access to those files rooted at a particular point in the filesystem directory
hierarchy. The two filesystem namespaces in that discussion are the global directory structure and the
chroot’d namespace making up the files which a container may access.

3.1.2 Cgroups

Linux Control Groups (cgroups) provide a mechanism to manage resources used by sets of tasks [17].
This mechanism partitions sets of tasks into hierarchical groups allowing for these sets of processes, and all
future child processes, to be allocated a specific amount of the given resources, e.g., CPU, memory. The
Linux subsystems that implement the cgroups are called resource controllers (or simply controllers). These
resource controllers are responsible for scheduling the resource to enforce the cgroup restrictions. A list of
available controllers is shown in Table 3.2. The cgroups are arranged into a hierarchy that contains the
processes in the system, with each task residing in exactly one cgroup. The cgroup mechanism can be used
to provide a generic method to support task aggregation (grouping). For example, the grouping of CPUs
and memory can be linked to a set of tasks via cpusets, which uses the cgroups subsystem [17].

To simplify the usage of cgroups, the designers created a virtual file system for creating, managing, and
removing cgroups. The file system of type cgroup can be mounted to make changes and view details
about a given cgroup hierarchy [17]. All query and modify operations are done via this cgroup file
system [17], with each cgroup shown as a separate directory with meta-data contained in files in the
directory, e.g., tasks list of PIDs in group. Figure 3.1 shows an example taken from [17] that details how
create a cgroup named “Charlie” that contains just CPUs 2 and 3 and Memory Node 1, and starts a subshell
‘sh’ in that cgroup.

24

Controller Description
blkio sets limits on input/output access to and from block devices such as physical

drives (disk, solid state, USB, etc.).
cpu uses the scheduler to provide cgroup tasks access to the CPU. It is mounted

together with cpuacct on the same mount.
cpuacct automatic reports on CPU resources used by tasks in a cgroup. It is mounted

together with cpu on the same mount.
cpuset assigns individual CPUs (on a multicore system) and memory nodes to tasks

in a cgroup.
devices allows or denies access to devices by tasks in a cgroup.
freezer suspends or resumes tasks in a cgroup.

memory sets limits on memory use by tasks in a cgroup, and generates automatic reports
on memory resources used by those tasks.

net_cls tags network packets with a class identifier (classid) that allows the Linux
traffic controller (tc) to identify packets originating from a particular cgroup task.

perf_event allows to monitor cgroups with the perf tool.
hugetlb allows to use virtual memory pages of large sizes, and to enforce resource limits

on these pages.

Table 3.2. Available Resource Controllers in Red Hat Enterprise Linux 7 [104].

1 mount -t tmpfs cgroup_root /sys/fs/cgroup
2 mkdir /sys/fs/cgroup/cpuset
3 mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset
4 cd /sys/fs/cgroup/cpuset
5 mkdir Charlie
6 cd Charlie
7 /bin/echo 2-3 > cpuset.cpus
8 /bin/echo 1 > cpuset.mems
9 /bin/echo $$ > tasks

10 sh
11 # The subshell ’sh’ is now running in cgroup Charlie
12 # The next line should display ’/Charlie’
13 cat /proc/self/cgroup

Figure 3.1. Example showing how to create a cgroup (“Charlie”) containing CPUs 2 and
3, and Memory Node 1, and starting a process (‘sh’) in the new cgroup. (Example taken
from [17].)

3.1.3 Linux-VServer

Linux-VServer [64] is a patch to the Linux kernel that allows for VEs to be created and isolated from
each other as well as the host system. The patch specifically modifies the process, network, and file system
data structures of the kernel.

With respect to processes, each process is given a unique PID regardless of VE. This means there is a
global PID space. In order to isolate VEs, a VE is given a range of possible PIDs and any process with a
PID within that range is considered within that VE.

The file systems of each VE are isolated through the use of chroot. Chroot changes the root

25

directory (e.g., “/”) for the execution context to the directory associated with the VE. When this occurs, the
user of the VE should not be able to locate any file not associated with the VE unless there is a shared file
system between VEs (e.g., NFS).

There is little isolation with respect to the network subsystems of the kernel. More clearly, there is no
performance isolation between VEs, but packets are tagged with a VE ID in order to determine the delivery
location of the packet.

The scheduling of a VE to the CPU is completed with the combination of two approaches. The first
approach is the use of the default Linux scheduler. However, simply using the Linux scheduler could result
in an unfair scheduling of specific VEs. To remedy this, the Linux-VServer uses a token bucket filter (TBF)
in order to schedule VEs. Each VE is assigned a TBF. While the TBF is not full, every process associated
with the VE is removed from the scheduler’s list of “runable” processes (i.e., run queue). When the TBF is
full, a process from the VE is scheduled and the TBF is emptied accordingly.

Unfortunately, due to the implementation of Linux-VServer (i.e. a global PID space), a VE executing
in this environment cannot be checkpointed or migrated. This is because it is impossible to guarantee the
same PID space originally assigned to a VE to be available on restart. As we will be dealing with clusters
and scientific computing, there will be failures and the inability to overcome failures reduces the
desirability of this virtualization system. Another potential detraction of Linux-VServers is that the support
is through external patches, i.e., the code is not in the main line of the Linux kernel. Therefore, the
integration and deployment of Linux-VServers with existing environments may be less streamlined.

3.1.4 OpenVZ

OpenVZ [97] is a container-based virtualization solution. The system is made possible by creating a
custom kernel that supports the underlying functionality including process and resource isolation. The
custom kernel commonly used is a modification of a Linux kernel. It is possible to make use of a
unmodified Linux kernel of version 3.x or higher, but this will result in limited functionality.

OpenVZ leverages the namespace functionality resident in the Linux kernel in order to provide
process, file system, I/O, and user isolation. The isolation is provided on a per VE basis. This allows for the
safe execution of multiple VEs per system.

Resource isolation with respect to the CPU and disk resources are accomplished using two-level
schedulers. For the CPU, beancounters are used to represent a VE executing on the system. These
beancounters keep track of the VEs CPU usage over time and allow the scheduler to fairly select a
schedulable VE. At the second level of scheduling, the default Linux scheduler is used to select a process to
execute from within the VE. Similarly, beancounters are used to keep track of a VEs disk I/O usage as well.
The first level scheduler for disk I/O examines the beancounters for each VE and fairly selects a VE. After
the VE has been chosen, the default Linux disk I/O scheduler will be used as the second level scheduler.

OpenVZ provides several options for the use of the networking systems. There are route-based,
bridge-based, and real-based networking options that may be assigned to a specific VE. The route-based
approach is the routing of Layer 3 packets (e.g. TCP) to a VE. The bridge-based approach routes Layer 2
packets (e.g. Ethernet) to a VE. Finally, the real-based approach is simply the assignment of a NIC to a VE.

Checkpoint/restart and container migration is supported for OpenVZ. Checkpoint/restart may be
accomplished using CRIU [25], which is able to leverage existing Linux kernel functionality in order to
save the container’s state to disk. The same mechanism is used to provide migration functionality, however,
this is a stop-and-copy approach rather than a live migration approach.

26

3.1.5 LXC

Linux containers (LXC) [71] is a collection of user-level tools that assist in the creation, management,
and termination of containers. The tools leverage the feature-set presented by the Linux kernel including
namespaces and cgroups. By leveraging these features, it is possible for LXC to remove the burden of
knowledge with respect to virtual environment creation from the user. Instead, customization of the
environment is eased and can be the primary goal of the user.

Because LXC leverages features present in Linux, the scheduling of CPU resources is provided by the
default scheduler and the use of cgroups. Likewise, user, filesystem, and process isolation is provided
through the use of namespaces.

3.1.6 Docker

Docker is a user-level tool to support in the creation, management, and termination of containers in
Linux environments. This tool may leverage either the underlying Linux container-based features or LXC
in order to easily create and maintain containers. As an alternative to LXC containers can be run through
the libcontainer execution driver, which is aimed at standardizing the API that programmers use to create
and manage containers. Docker has switched to make libcontainer the default execution driver in Docker,
so it is likely that future development efforts from within Docker will be focused on libcontainer rather
than LXC. Regardless of which is leveraged, Docker provides both resource isolation and resource
management through Linux’s namespaces and cgroups respectively.

The distinguishing features of Docker from LXC are higher-level features such as an image-based
filesystem capable of support snapshotting, and an API that can be used locally by the docker daemon or
remotely, if the socket is exported, to control the management of containers. LXC exposes many very
granular configuration options, whereas Docker’s configuration is much more limited and contained within
a standardized “Dockerfile” format (see Appendix B for Dockerfile examples). The image-based
management of Docker images greatly simplifies the distribution of applications, where they can be stored
in a repository, from which a user can pull the image, run the container, save the image, and push it back to
the repository. For our evaluation, we set up a private Docker repository on a test bed node, which is an
alternative to using http://hub.docker.com.

3.2 System level virtualization

A hypervisor based approach to virtualization allows for running multiple OS kernels, which run in the
virtual machine. The following subsections describe the Xen (type-I) and KVM (type-II) hypervisor-based
virtualization platforms.

3.2.1 Xen

The Xen hypervisor [8] is a commonly used hypervisor in Enterprise and Cloud environments. The
reason for this is due to its free and open-source nature as well as the use of paravirtualization.

Paravirtualization is the modification of both the host OS and guest OS in order to make use of
hypercalls from the guest to the host. Hypercalls are akin to system calls in both usage and implementation.
For the Xen implementation, a hypercall table is used containing function pointers to the various functions.
These functions are meant to perform some privileged operation on behalf of a guest without the
requirement of a trap-and-emulate architecture commonly found in full virtualization environments.

27

Interrupts in the guest are delivered using an event-based interrupt delivery system in Xen. Upon
interrupt delivery, the guest makes use of the corresponding interrupt service routine specified by the guest.
During the boot process, the guest registers the interrupt descriptor table (IDT) and, thus, each interrupt
service routine with Xen. Xen validates each routine before allowing it to handle interrupts. The majority
of faults cause Xen to rewrite the extended stack frame prior to redirecting execution to the guest. An
exception to this rule is system call exceptions as these are the most common interrupt. After validation,
these exceptions are handled directly by the guest without redirection.

With respect to memory management, a guest OS is allocated a specified amount of RAM by the user
during VM creation. As the guest boots, each page used is registered with Xen after it is initialized. At this
point, the guest will relinquish write privileges to Xen and only have read privileges. Any update will be
performed by Xen via a hypercall. This allows Xen to provide verification of page updates prior to them
actually occurring.

Xen schedules VMs using its credit scheduler. With this scheduler, all VMs are given a certain amount
of credits that are debited each time the VM is scheduled. Debits occur periodically every 10 milliseconds
the guest is allowed to run.

The credit scheduler uses two states to describe the schedulability of a VM. At any given point, a VM
is either in the UNDER state or the OVER state. The UNDER state means the VM still has credits to use
and the OVER state is for VMs who have used all of their credits. When scheduling occurs, a VM in the
UNDER state will be chosen first unless none are runnable. In this case, a VM from the OVER state will be
chosen to execute.

3.2.2 KVM

The kernel-based virtual machine (KVM) [47, 63] is a hypervisor, which extends the Linux kernel.
This is often implemented as a loadable kernel module (LKM) but may also reside in the kernel directly.
The extension provides support for modern processor extensions for virtualization known as Intel
VT-x [116] and AMD-v [2].

KVM operates in conjunction with supporting user-level tools found within QEMU [9]. QEMU is
responsible for multiple tasks including allocating the memory associated with a guest, emulating the guest
devices, and performing redirection of execution back to the hypervisor during execution. Any guest that is
created by the user will have the memory for the guest allocated using malloc by QEMU and an ioctl
is used to inform KVM of the initial address space that may be associated with the VM. Because malloc
is used, KVM’s VMs do not use the amount of assigned memory until each page is touched. Each emulated
device is handled in userspace by QEMU after receiving notification from KVM that work is pending. The
majority of execution by QEMU is within a loop that handles the pending I/O, as noted earlier, and will
return execution to KVM at the end of the loop.

Emulating each device adds a significant amount of overhead due to the VM exits caused by the I/O
operations from the executing VM. Because of this reason, Rusty Russell developed virtio [106]. Virtio is a
standard for PCI device as well as block device paravirtualization.

While virtio is simply a standardized interface, it requires the usage of hypercalls between the host and
the guest. Hypercalls are similar to system calls in implementation and allows for a layer of isolation to be
removed in order to reduce the amount of VM exits and, thus, improve performance. Currently, KVM
supports five hypercalls, of which only four are active.

With virtio, there is a frontend and backend driver. The frontend driver exists within the VM and
communicates via hypercalls with the backend driver found within the host. In more detail, the steps for
the KVM virtio frontend/backend communication between guest/host are:

28

Mechanism Linux-VServer OpenVZ LXC Docker Xen KVM
Namespaces No Yes Yes Yes No No

Cgroups No Yes Yes Yes No No
SELinux/sVirt No No Yes Yes Yes Yes

Hypervisor No No No No Yes Yes

Table 3.3. This table shows the relationship between the security/isolation mechanisms and the virtu-
alization solutions (i.e., which mechanisms are present in which solutions).

1. A guest needs to perform an operation on the device.

2. The function corresponding to the operation is called by the guest on the frontend device.

3. A hypercall is issued between the frontend device and the backend device.

4. The backend device sends the operation to the hardware device and returns the result to the frontend
device.

3.3 Virtualization and Security Mechanisms

In this section, we present relevant security mechanisms. These security mechanisms and the isolation
mechanisms from Sections 3.1 & 3.2 are summarized in conjunction with relevant virtualization solutions
in Table 3.3.

3.3.1 sVirt

The Secure Virtualization (sVirt) project extends the generic virtualization interface libvirt [10] to
include a pluggable security framework [82]. sVirt can be used to put a “security boundary around each
virtual machine” [96, Ch.15]. VM or VE processes and disk images are labeled by sVirt so that the kernel
can enforce a MAC policy. The initial implementation used SELinux for the labeling and policy
enforcement and addressed the threat of a guest that escapes the virtualization mechanism and and then use
the host as a platform for attacks on other guests or escalation attacks on the host itself. As of libvirt 0.7.2,
there is also support for using AppArmor with sVirt to restrict virtual machines [3].

3.3.2 SELinux

SELinux [108] is an implementation of the Flask [110] architecture for the Linux kernel. The Flask
architecture was the result of the NSA’s and Secure Computing Corporation’s (SCC) research to develop a
strong, flexible mandatory access control mechanism being transferred to Utah University’s Fluke OS.
While being implemented for Fluke, the mechanism was enhanced becoming the Flask architecture.

The Flask architecture is comprised of two components: (i) the security server and (ii) the access
vector. The security server contains the security policy for the system. A security policy is a list of possible
subjects and objects. Each subject is a user or role, while everything else is considered an object. With
respect to kernel-space, the kernel subsystems are considered object managers. The access vector is simply
a bitmap with the results obtained by the security server whenever access to a file or device is requested by

29

a process. By storing the results of the security server in the access vector, it is possible to provide
mandatory access control with little overhead.

Initially, the development of SELinux was completed as a series of patches to the Linux kernel that
provide the services found within the Flask architecture. These patches focus on providing security labels
for the various resources controlled by the kernel and the users that may use the system.

3.3.3 AppArmor

The AppArmor security project [5] is derived from the SubDomain project that dates back to
1998/1999 [4], and was rebranded as AppArmor after Novell acquired the work in 2005 [4]. The code
extends the Linux kernel to support mandatory access controls (MAC). In 2009 Canonical took over
maintenance and development of AppArmor and the core functionality was accepted into the main Linux
source in kernel version 2.6.36 [4]. AppArmor uses the Linux Security Module (LSM) interface [23].

AppArmor places restrictions on resources that individual applications can access, which defines the
“AppArmor policy” for the program. These controls include access to files, Linux capabilities, network
resources and resource limits (rlimits) [5]. The program profiles are path-based. The system is intended to
have a lower learning curve than some other security tools. This is in part due to a “learning mode” where
policy offenses are logged to help identify the behavior of the program [5]. These learned elements can
then be added to the restrictions (“enforced mode”) or ignored depending on the security objectives. The
intent is to reduce the overhead in developing the security policies for a platform. The various releases and
re-packaged versions of AppArmor also include additional policy defaults for standard services, e.g., ntpd.

AppArmor is available on many modern Linux distributions, e.g., Debian, openSUSE, Ubuntu. Note,
there does not appear to be direct support for AppArmor in the latest Red Hat release (RHEL7) but the
RPMS from openSUSE may be usable. AppArmor has also been integrated with libvirt [3] to provide
another security backend for the sVirt framework.

3.3.4 Capabilities

Linux capabilities were introduced in version 2.2 as a mechanism for dividing up the privileges of the
root user into distinct units [16]. As of Linux 3.17 the kernel has 37 such units. A thread possesses
capability bounding sets which are subsets of the 37 capabilities, one is the effective set, which is used for
permission checking by the kernel. Particular capabilities can be individually added or dropped using the
capset() syscall. For example, a process just needing to modify the kernel’s logging behavior (e.g. clear the
ring buffer), could have all other capabilities dropped except for CAP_SYSLOG. This is an example of a
narrowly-scoped capability that can be granted with a low likelihood of allowing that process to escalate to
full root privileges. However, another capability CAP_SYS_ADMIN accounts for over 30% of all uses of
capabilities within the 3.2 kernel [16]. The implication is that CAP_SYS_ADMIN has become the catchall
for privileged operations in the kernel and due to legitimate privilege escalation vectors, it is no better at
limiting the scope of privilege than the full set of capabilities. Some other examples that can lead to
privilege escalation when given to a process unconstrained by kernel namespaces are
CAP_SYS_MODULE, CAP_SYS_RAWIO, CAP_SYS_PTRACE, CAP_CHOWN [114] The first one
would allow arbitrary code to be loaded as a kernel module, and the second one would allow processes to
directly control system devices. Interestingly, only the first two are removed from capability bounding set
granted to a Docker container by default. Namespace and chroot isolation mechanisms limit the attack
surface and in the last two, the isolation prevents specific root escalation vectors. The capability
CAP_SYS_PTRACE allows a process to control the execution of another through the ptrace() syscall, but

30

when constrained to a pid namespace, the processes which can be traced are very few. Likewise, from
within a chroot environment, the CAP_CHOWN capability (as root) allows the files to have ownership bits
changed within the chroot but sensitive files like /etc/passwd on the host are not accessible. However, in the
last example, additional isolation techniques, such user namespaces are needed to prevent a chroot
breakout. So even though capabilities distinguish units of root privileges, dropping capabilities must be
combined with other isolation techniques to prevent a process from expanding its effective capabilities
beyond what was granted.

31

Chapter 4

Reconfigurable Networks

There are a variety of methods for dynamically reconfiguring the network, each with different
challenges and limitations. This section contrasts typical networking techniques with virtual networking
methods.

4.1 Typical Networking Environment

In the typical environment, the system is analyzed and requirements documents are generated to realize
the needs of the application. Initially the Layer 3 appliance is built out in the appropriate location and then
specific security policies are added. The Layer 2 structures are built out depending on customer needs. In a
rapidly changing environment, meeting the Layer 2 change requests presents a challenge. If a customer
requires additional Layer 3 instances on top of the requested Layer 2 functions, it can force a complete
redesign of existing security policies. Additionally, the physical connections must be considered for the
deployment, taking into consideration:

1. Are the tenant nodes connected?
2. Is there a need for external WAN and Internet connectivity?
3. As the system grows, how will load balancing be handled?

The primary concern with traditional networking deployment models is that the physical connections
have to change as rapidly as the user’s needs change. This means a considerable amount of time is spent
reallocating existing physical connections and facility (space) resources as well as the down time
associated with reconfiguring the existing equipment or adding new appliances.

4.2 Static Networks Involving VRF and Preconfigured VLANS

The availability of preconfigured static Virtual Routing and Forwarding (VRF)s and corresponding
Virtual Local Area Network (VLAN)s allows for tenants to be placed into separate service areas, where all
traffic is carried between physical virtualization servers using different VLANs. This topology works well
if the network is rigidly defined with fixed connections and port definitions. Access to external servers and
infrastructure is handled through connection policies maintained directly on the server. This method does
not allow the tenants to run services in an environment where inbound and outbound filtering is applied.
This is especially true if each customer has unique and frequently changing network requirements. As the

32

requirements change, the Access Control List (ACL)s, firewall rules, and both physical & virtual switch
policies and configurations must change as well. Altering connectivity requires updating all of the traffic
defining policies and connection information.

4.3 Software Interfaces for Reconfigurable Networks

A common method used in reconfigurable networks is deployment automation. This methodology
implies that all network appliances are managed by a centrally control system. The network administrators
push out bulk changes and policies across the entire network without having to configure each device
manually. In a secure environment, after verifying the correct permissions, tenants can request additional
resources and these requests are pushed through the central network management system. The central
management system configures the available resources with appropriate security policies and connection
rules and then pushes out these changes where they are needed. All SDN methods have a need for a
common interface to abstract the physical connections from the vendor specific (physical) device [7]. As
each vendor uses a combination of proprietary hardware and appliance OS the associated application
software commonality is accomplished through a vendor specific application program interface (API).

The vendor API interacts with the OpenStack service software and acts as a common interface to
translate SDN functionality into direct corresponding functions on the vendor hardware. The resulting
control interface approaches the desired universal control layer envisioned by the virtual system designers
without sacrificing the capabilities of the individual hardware. Additionally this method allows, within
some parameters, the multiple vendor deployment capability desired by server farm administrators. This
capability further eliminates the need to have one specific switch appliance vendor throughout the facility.
Systems are streamlined in this virtual common platform approach. As an example, with a large group of
tenants, this allows the central management system to limit the networks carried over a Layer 2 trunk to the
physical virtual servers, which saves bandwidth by removing unneeded broadcast traffic. The existence of
common connectivity templates in place allows each tenant to securely operate without interacting with
other tenants. Further, access to external networks is provided to the tenant systems, while maintaining
existing connection and security policies. Network access APIs are vendor specific, with only common
functions called out specifically in the OpenFlow standard. In many cases vendors add functionality to
increase performance, statistics or reliability outside of the standard in an effort to entice the use of their
hardware. Additionally since switch fabric bandwidth and connection agility change the vendors port
configuration, vendor syntax will often be different. The syntax for shutting down and reconfiguring ports
will vary from vendor to vendor on the command line interface. The use of a vendor API allows the central
management system to communicate with the physical appliance over a controller attached port, using a
common control language. This allows the central control authority to authenticate and then make any
necessary network configuration changes. The OpenFlow based API can make all changes at all layers,
once the established security policies have been met. In addition to configuration APIs, some network
appliances support third party configuration management software such as Chef, or Puppet. In most cases
APIs will use a JSON like interface for human readable code and configuration data, but will have
commands that are unique for their specific capabilities and platforms.

4.4 Traditional SDN

In a traditional SDN, there is no implied intelligence on the network appliance as all decisions with
respect to the control plane and data plane originate from a logically central control authority. While this

33

methodology offers flexibility, it does not however scale well, representing a recognized single point of
failure. The use of traditional SDN through a single central controller works well for small deployments
with high flexibility and low availability requirements [124]. Some of these limitations can be addressed by
employing a clustered central controller architecture with an active/passive or active/active failover
strategy. There are SDN architectures that adopt an active/active centralized controller architecture to
address both scalability and resiliency requirements.

4.5 Hybrid SDN

Hybrid SDN uses a separate control plane like traditional SDN, but network devices also maintain
control plane functions independently. In this model each network device still functions independently
from the central controller, but also receives configurations from the central controller. The central
controller handles traffic by reconfiguring the individual nodes as needed by each device. This allows a
simple method for dynamically handling traffic hot-spots.

Applications can talk to the central controllers via API to get network health, or to make provisioning
changes leveraging the abstraction concept. In a hybrid SDN control responsibility is both shared and
dispersed, losing the central controller does not result in the loss of the entire network, only the
management and configuration is crippled until the system is repaired. Individual network appliances can
still be configured if central control is lost, the network is still capable of running the current applications
with a temporarily frozen configuration and policies rule set. The hybrid SDN model scales better, and
maintains high availability.

4.6 Overlay Network

Network overlays are accomplished by using tunneling or encapsulation techniques. This allows the
extension of the network at Layer 2 from one location to another, increasing flexibility in terms of scaling
the network as large as needed. The use of overlays also overcomes some of the intrinsic limitations of
network appliances such as the 4096 VLAN limit. Overlay networks are beneficial in a data center
environment due to low latency, higher bandwidth, and increased control over bandwidth utilization.
Additionally, overlay methods extend Layer 2 networks across Layer 3 boundaries, either within the data
center, or across WAN links. Keeping this local to the data center allows additional control flexibility unless
dedicated paths are required. For example, if Service Level Agreements (SLAs) exist to a certain path
across a provider’s network. Overlay networks can extend across the WAN interface to other data centers as
long as the connection is compatible in performance such as bandwidth, latency, and jitter. Essentially the
network overlay is a network built on top of an existing network structure. Connectivity is accomplished
through the creation of network tunnels, requiring endpoints within both connected domains which are
configured to allow traffic transferred across the tunnel appearing as a contiguous Layer 2 domain.

The necessary overlay endpoints can be created manually, or via APIs. Similar overlay methods found
within the data center are implemented by using encapsulation methods such as Virtual eXtensible Local
Area Network (VXLAN). Protocols like VXLAN allow you to create virtualized Layer 2 networks across
different Layer 3 networks and can scale up to 16 million logical networks.

34

4.7 SDN with OpenStack

OpenStack uses a hybrid SDN approach where the network appliances are considered stand-alone
devices and function as separate entities from OpenStack. It is possible to have all Layer 2 and Layer 3
traffic preconfigured statically on the individual network device. In this configuration, OpenStack handles
traffic between tenants. Some network vendors support OpenStack plugins that allow OpenStack to make
port and VLAN configuration changes as part of their OpenStack interface API. OpenStack includes a
network control node application called Neutron that facilitates SDN networking accomplished using the
internal OpenStack routing engine for both inter- and intra-VLAN traffic. Neutron has the capability to
communicate with the network via dynamic routing.

4.8 Implementing Neutron Routers

The use of multiple flat networks require bridge interfaces for each network connection, the addition of
VLANS further complicates the setup by requiring switch and gateway configuration per instance. Neutron
contains a plugin agent specifically to handle L3 connectivity. This agent allows both administrators and
tenants to create routers that handle traffic between directly connected tenant network interfaces, either
Generic Routing Encapsulation (GRE) or VLAN, and a single management or controller network node.
Access to external provider networks, including WAN services are handled through this Neutron router
structure. The external network is typically implemented as either a FLAT or VLAN provider network.

Nova compute nodes use both fixed and floating IP addresses. The fixed IP addresses are assigned to
the compute instance on creation, and remain until the instance is terminated. Floating IP addresses are
dynamically associated with the instance as needed. Floating IP addresses can be associated or
disassociated with a instance at any time. A public or provider network involves a connection that is
potentially outside of Neutron control. In a Nova network the use of 1:1 NAT translation allows for a
customizable “floating” IP address implementation, it is common for the same IP that is used as the L2
address to also be used in the bridge to the hypervisor. This is accomplished by using the iptables
configuration on the host by modifying the Source Network Address Translation (SNAT)/Dynamic
Network Address Translation (DNAT) rules. Re-association of a floating IP address is accomplished by
removing the rule from the iptables SNAT/DNAT rules list and re-associating on another instance, in
this way the instance IPs remain static, only the NAT rules change.

Neutron routers act as gateways for each tenant instance using the Neutron L3 agent, instead of
manipulating the iptables on the hypervisor. The iptable in the router handles the NAT translations,
by instantiation of connections to Virtualized Network Interface Control (VNIC) devices connected to its
ports. The floating IP addresses are procured from the provider network through pre-determined tables or
using the Neutron DHCP agent. Containers1 or VE can be instantiated without worrying about using
redundant IP addresses on the same networks nor requiring the user to reset or manually load tables as part
of a start up script. Access to the node within a container is only granted by using the network ID
(namespace) and setting the connection in the routing tables. Attempts to access without proper credentials
can be tagged and monitored easily in this configuration. This method limits the floating IP addresses to
that of the WAN address space. The MAC addresses of the tenant NICs can have fixed IP addresses in the
NAT tables as well as be associated with defined security group IDs. The Neutron L3 agent should be
present on both the network and controller node. Once a container is established only the compute node

1Also referred to as Virtual Environments (VEs) in the other project report titled, “Review of Enabling Technologies to Facilitate
Secure Compute Customization.”

35

within the container have unfettered access to each other and controlled access to the external network.
Nova nodes are simply added to the table in the router as created, no other management action is necessary.
This also applies to VMs that perform other functions including additional routers for separate internal
networks.

The use of routers in Neutron is possible using existing technology, however it is a fairly new
development. Bottlenecks have been observed in the layering necessary to perform the function as it is
currently being built up with existing software blocks rather than implemented as a stand-alone function.
The redundancy factor is higher than normal to achieve otherwise simple NAT pairings. Preliminary
reports suggest it is possible to have near zero latency network within a LXD structured environment. 2

The list of current considerations for implementing virtual routers is given below.

A. When configuring the L3 agent using the agent config file, specifying an external network bridge,
causes Neutron to associate the external NIC directly with the bridge. The attributes for “vlan”
“segmentation ID”, and “provider network” are ignored, Neutron assigns an IP address to its
translation table from the provider network.

B. The gateway can be manually specified using the gatewayexternalnetwork_id attribute,
otherwise Neutron looks for the gateway from the provider network if the attribute
external=true is set otherwise, Neutron will stall if gateway not found.

C. If an external bridge is not set, Neutron uses the external interface into the Open Virtual Switch
(OVS) bridge specified by the provider network from the Neutron Controller. Any subsequent
network traffic is handled through the Open VSwitch flow rules present in the controller. This is the
typical interface for controlling VLANs through OVS.

D. Traffic within a GRE based tenant network is limited to that network only, bridging is now through
the router.

E. The Neutron router will allow directly connected tenant networks to communicate with each other
freely, and the external provider network only if the router rules allow the connection. All tenant
nodes are behind the Neutron router, and no longer have floating IP addresses, therefore there is no
direct connection to them outside the Neutron router or within the DHCP namespace instance.

A test network (Figure 4.1) is proposed as a sandbox test using a Network Node, and Network
Controller Node, and a Nova Compute Node. In the test there is only one Nova Node but more are
possible, the container must be limited to one network Node and one Network Control Node however. All
nodes have both Neutron control Agents and the OVS agent running, the controller node does not require
the OVS agent. The Open vSwitch plugin can be replaced with a proprietary Neutron Switch interface
provided by the physical switch manufacturer. The provider network is modeled using a network node
instance. Connections to the networks are through bridging (br-ext) and using GRE tunnels (br-tun) set in
the OVS router configuration file.3 Internally the VLAN interfaces are configured using bridging adapters
configured using Neutron as shown in Figure 4.2.

2The beta release of LXD in Ubuntu 14.04 OpenStack and the re-writing of most of the access agents in Neutron is well
underway.

3Note, this describes a general OpenStack/Neutron test scenario that would use GRE tunnels. However, in the primary SE testbed
running on the CADES hardware at ORNL, we do not use GRE tunnels, rather we use VLANs programmed via the SDN interface
to the Arista switch that is exposed via a Neutron plugin. Thus the “Not in CADES” annotations in Figure 4.2.

36

Figure 4.1. Neutron OVS SDN Router Configuration.

Figure 4.2. VNIC interface configuration.

37

4.9 Networking with LXD

LXD [72] is an extension of the successful LXC [71], which includes the use of Docker [35] support
and similar services in establishing containers. It was envisioned by OpenStack Canonical to have the
virtualization environment where LXC is the client support and LXD is the server. LXD will allow secure
containers set ups for Linux based compute nodes, there is no support for other operating systems. Further
the LXD/LXC pairing eliminates the redundant bridge structures that cause intrinsic delays in packet
delivery by replacing the need for additional structures to perform the routing function directly within the
host. The routing between containers can be enhanced using the LXD manager, which is aware of the
end-points (containers) and hosts, to avoid adding redundant bridges.

38

Chapter 5

Security in HPC Storage

5.1 Lustre

To employ Lustre in a secure enclave model we outline its security features. Lustre release 2.7 adds an
important capability, dynamic LNET configuration, which we leverage to automate the isolation of
environments sharing access to the filesystem. Another upcoming feature which enhances Lustre’s
authentication capabilities, is GSSAPI support. Since Lustre is POSIX compliant, file locking mechanisms
promote serialized file access and POSIX ACLs provide user-managed authorizations. Administrators of
Lustre can employ root-squash1 to restrict root clients on the mounted filesystem. There are other features
under development for the Lustre 2.8 release scheduled for Q2 2015 [65].

5.1.1 Isolation

A Lustre server can communicate with clients and servers via the LNET API over one or more network
interfaces. The common use case is a single LNET on a single physical medium, on which the server can
reach all other servers and all clients. However, the identifier Lustre uses for each network node could
specify a different network interface (NI) (e.g. @tcp2 instead of @tcp1, where each are in different
subnets). If the server has LNET configured on both @tcp1 and @tcp2 NIs, then it could reach a client
172.20.0.1@tcp1 as well as 192.168.0.100@tcp2. These NIs can be separate physical interfaces
or different VLANs, but in each case traffic between the two NIs is isolated. Only servers that are
dual-homed on both NIs have visibility into both network segments.

This has been a feature of Lustre to have so-called “multi-rail” LNET configurations, but until
Lustre 2.7 with the Dynamic LNET Configuration feature, it has not been possible to make changes to add
or remove an NI from a server without taking the entire filesystem down. Now a command-line tool lcmd
and a YAML specification can be used to add and remove these interfaces on-demand.

5.1.2 Authentication

GSSAPI New authentication mechanisms can be added to Lustre through its support of the
GSSAPI [119]. Currently support for Kerberos is included this way and soon a shared host-key mechanism
is due for release.

1The “root-squash” option restricts a local root user’s permissions from being applied to the remote system providing the
share, i.e., squashing local root permissions from transferring to the remote system.

39

Kerberos According to OpenSFS, the organization currently responsible for ensuring that Lustre
“remains vendor-neutral, open, and free [92]”. Lustre’s support for Kerberos is in some disrepair [120]. An
older work describes Kerberos intended uses in Lustre. Kerberos allows mutual authentication amongst
clients, OSSes and MDSes. It also provides both privacy and integrity for PTLRPC messages. All entities,
users and services alike, are represented as principals to the Kerberos server. Each principal shares a secret
key with the Kerberos server that allows them to verify messages from the server. Kerberos implementation
is simplest if the Key Distribution Center (KDC) and all the other services share the same user
database [98].

Shared Key Authentication Shared Key Authentication and Encryption in Lustre is currently in
development and is expected to be completed in Lustre version 2.8. This mechanism will provide
host-based authentication and encryption and will use Lustre’s existing support for GSSAPI. In this scheme
a single key is generated for each client and is installed on client and server [30]. This key is created using
a notion of cluster ID, “a string used to uniquely identify a cluster.” Data integrity will be provided by
creating a message digest, HMAC, of each message or block of data. The keys used to create this HMAC
will be obtained from the Linux keyring. The scheme proposes to use userspace tools to create the keys and
LNET control utilities, lctl, to make the keys available to Lustre. For encryption, a Diffie-Hellman key
exchange will be performed to generate a per-session encryption key. Lustre’s PTLRPC will be tasked with
performing the Diffie-Hellman key exchange.

5.1.3 Authorization

POSIX & ACLs Lustre employs a POSIX compliant UNIX filesystem interface [45, 93]. The full suite
of POSIX tests completes on a Lustre filesystem just as they do on a regular ext4 filesystem [93]. This
means that regular UNIX users encounter familiar filesystem interfaces and behaviors and can almost
immediately begin using a Lustre filesystem.

Root-Squash Since version 2.6 Lustre has supported “root-squash.” This is the ability to specify to
which local UID/GID should root on an accessing client should be mapped [98]. Thus filesystem
administrators can apply arbitrary restrictions on clients accessing the filesystem as root.

5.1.4 Integrity

Lustre can provide data integrity checks by computing checksums on data [93]. A 32-bit checksum for
data read or written on the client and server is computed to guard against corruption in transit. Alder32 and
CRC32 are amongst the common algorithms utilized. It should be noted that the backend filesystem does
not do any persistent checksumming and so cannot determine whether data residing on disk is corrupted.

5.1.5 Features in Development

Two features currently under development that could add to the overall security of a shared Lustre
filesystem are UID/GID mapping scheme and support for clients to mount sub-trees of the filesystem.

Developers from Indiana University have put forth a plan for implementing a nodemap scheme for UID
and GID mapping within Lustre funded by an OpenSFS grant [109]. It’s functionality was demonstrated
with Lustre 1.6 and 1.8 releases, but work is under way to bring the code up to date for a Lustre 2.8
re-implementation. There have been patches submitted for review [68], but the development is not far

40

enough along that we could perform an evaluation of the feature. Briefly, the nodemap defines a
relationship between NID ranges (clients) and UID/GID maps. The nodemap is distributed via LNET to
each Lustre OSS and MDS for enforcing what system IDs map to IDs on the filesystem based on the NID
of the client. This is not unlike our proposed use of user namespaces to map the UIDs/GIDs within a
container to IDs on the host. The combination of these two mapping techniques would provided a layered
approach to securely isolating UID/GID ranges. For example, user namespaces can map the root user
within a container to a normal user on the host, where the nodemap defines what IDs on the host are
allowed to map to filesystem IDs. This could potentially limit the filesystem access rights of an adversary if
a VE host were to be compromised.

The ability for a client to mount a subdirectory of a Lustre filesystem is proposed in a patch currently
under review [69]. This patch proposes to add a capability similar to NFS, where instead of mounting the
Lustre root directory, the client could choose to limit the filesystem namespace that is exposed to a
subdirectory of the Lustre filesystem. It is true that this doesn’t add any security in enforcing isolation at
the client level because if the client is capable of mounting a subdirectory, then there’s nothing preventing
the client form mounting the root directory instead.

5.1.6 Gaps

Having discussed the security features of Lustre, we note significant gaps that appear in the current
Lustre release. The first is the absence of server-enforced subtree mounts, instead granting full namespace
access to client. There is not a method to limit the subtrees of the filesystem to export to specific clients.
This leaves little protection for data on the filesystem if an adversary has escalated to root on any one
client. We view this as significant component of shared filesystem security, and we explore alternative
ways to mitigate this risk with Lustre in Section 6.

A second gap is the lack of encryption support at rest. Encryption of data in flight is made possible by
the GSSAPI support in Lustre, however, it is not likely tested enough to be used in production.
Furthermore, objects and metadata are stored in unencrypted ldiskfs (a variant of ext4) format on the
the OST devices. Other non-native techniques would be needed to achieve encryption with Lustre.

As evidenced by the frequent appearance of Lustre on Top500 lists, the focus has been more on the
scalability and performance aspects rather than security features seen in other filesystems targeted at the
“enterprise-class market.”

5.2 GPFS

GPFS is a storage architecture rich in security features. It is POSIX compliant; GPFS implements file
locking algorithms that ensures serialization of file updates and uses POSIX ACLs authorizations to
manage file access. GPFS also provides both authentication and encryption between clusters owning a
filesystem and cluster wishing to mount that filesystem. Apart from encryption in authentication, GPFS
also provides encryption for “at rest” files on the filesystem. Below we explore these features in greater
detail.

5.2.1 Authentication

GPFS supports mutual cluster authentication and authorization in Multicluster [52]. This allows
distinct GPFS clusters to authorize and authenticate each other and then share filesystems. The cluster

41

owning the filesystem must explicitly grant access to other clusters wishing to mount that filesystem and
also explicitly grant access for the specific filesystem to be mounted. On the other hand, clusters wanting to
mount a remote filesystem must define the cluster owning the remote filesystem as well as the filesystem it
wishes to mount. For this GPFS uses RSA authentication; each cluster generate key pairs then exchanging
their public keys. GPFS also supports client clusters at multiple security levels[52]. In this model key pairs
of the appropriate strength are exchanged with the different clusters[52]. It is important to note this
authentication is between two clusters so nodes within each cluster use the cluster keys for authentication.
In addition, this mechanism does not include user authentication[52]; it is assumed the users authenticate to
the operating system of the client node by means external to GPFS.

5.2.2 Authorization

POSIX & ACLs GPFS is fully POSIX compliant [1]. Locking, POSIX ACLs and other shell utilities
makes the GPFS filesystem experience very similar to a standard Linux filesystem installation.

Kerberos in GPFS Kerberos can be used in combination with SSH as a means of authenticating
administrative commands in GPFS [113]. However, it appears to have limited applicability in
authenticating clusters to each other. In addition, Kerberos can be used to authenticate users at login into
nodes belonging to a GPFS cluster.

GSSAPI in GPFS In GPFS the GSSAPI seem mostly confined to usages within SSH authentication of
clients to nodes belonging to a GPFS cluster at login and not as a means of authentication between GPFS
services[52].

Root-Squash in GPFS Root squash in GPFS is the ability to map a root user on a client mounting the
filesystem to another user with little authorization on the filesystem. This is a restriction imposed by the
cluster owning the filesystem and not a device of any UID mapping application nor is it a function of the
client cluster mounting the filesystem.

Multicluster Authorization GPFS multicluster requires both filesystem cluster and client cluster various
authorization episodes. First, each cluster must authorize participating in multicluster sharing. Then each
cluster must authorize connecting to each other; the cluster owning the filesystem must authorize clusters
mounting the filesystem and then authorize each connecting client to mount a specific filesystem.
Similarly, the client cluster must authorize the cluster with the filesystem and the particular filesystem [52].

5.2.3 Encryption

GPFS supports on-disk encryption in GPFS Advanced Edition and then only in the latest version of the
4.1 filesystem. Encryption is managed through keys and encryption policies and supports several different
ciphers. This encryption only applies to data and not metadata. GPFS also advertises secure deletion where
data is effectively inaccessible because the encryption keys are deleted from the filesystem.

Encryption from authentication coupled with the on-disk encryption effectively provide end-to-end
data encryption in GPFS. Encrypted files at rest on disk are transported through the wire in its encrypted
format, to be decrypted in the memory of the client mounting the filesystem. GPFS also supports
encryption in a multicluster environment.

42

Table 5.1. Lustre vs. GPFS

Feature Lustre GPFS
Authentication yes yes
Encryption in Authentication yes yes
On-disk Encryption no yes
Subtree mounts no no
POSIX Compliant yes yes
User authentication to storage no no
Kerberos Support yes other∗

GSSAPI Compliant yes other∗

Performance good good
Scalability good good
∗ denotes that feature is not applied directly to GPFS processes.

In GPFS, Master Encryption Keys (MEKs) are used to encrypt File Encryption Keys (FEKs). FEKs
encrypt portions of a file when the file is first created. The FEK is stored, in encrypted format, in an
attribute of the file. MEKs are stored on Remote Key Management Servers (RKMs). The RKMs also
contain other encryption and policy information.

All GPFS security mechanisms are NIST compliant. To ensure other compliances like FIPS 140-2 or
NIST SP800-131A GPFS uses variables, like FIPS1402mode=yes. These variables must be set before
generating the key-store.

5.2.4 Features & Gaps

GPFS possesses attractive protections. Its authentication and encryption capabilities as well as the “at
rest” file encryption capabilities make GPFS a highly secure storage architecture. GPFS also lacks subtree
export control capabilities in its NSD protocol thus client cluster mounts cannot be restricted to a subtree of
the filesystem. This is a serious shortcoming.

5.3 Discussion

5.3.1 Comparisons of Security with Lustre and GPFS

While both the Lustre and GPFS storage architectures produce highly performant scalable filesytems,
there are significant differences in their security capabilities (Table 5.1). Both suffer from the inability to
only export subtrees of their global filesystem. This is a significant shortcoming as it means that any client
that mounts one of these filesystem mounts all the data on the filesystem. This an aspect that we discuss in
Section 6, where modern OS technologies can be used to provide an additional layer of isolation between
end-users and access to the root filesystem namespace. Both GPFS and Lustre support GSSAPI and
Kerberos but in different manners. In GPFS, Kerberos functions to authenticate users for login to systems
at the OS level and possibly to authenticate administrative commands. However, in Lustre, Kerberos is
used for authentication amongst Lustre specific services. A significant difference between the security
stance of the two filesystem is that GPFS natively supports data encryption “at rest,” while Lustre does not.
Another area where there are significant differences is authentication amongst storage specific

43

technologies. GPFS authenticates pairs of clusters to allow filesystem mounts whereas Lustre
authentication is host-based. So client node wanting to mount the Lustre filesystem would have to be
authenticated against each Lustre service. Pointedly lacking in both storage architectures is end-user
authentication to either Lustre or GPFS specific processes.

5.3.2 Performance in Lustre and GPFS

On at 18PB system with 5000+ servers using GPFS v3.4 has been documented to achieve
240GB/sec [44]. No further details were given on the setup. The Lustre Spider filesystem at ORNL has
been documented to produce about the same throughput [99]. This paper predicts that the next generation
of Lustre filesystem will reach 1TB/s [102].

44

Chapter 6

Bridging Technologies for Secure Storage

There are several technologies that may be useful for bridging current gaps in HPC secure storage. The
methods we highlight are generally focused on introducing isolation or protection mechanisms that can be
leveraged to overcome voids in current HPC storage technologies.

6.1 Virtualization

The virtualization capabilities in enclaves can be leveraged to overcome certain issues by carefully
applying the available isolation mechanisms. We briefly highlight some of the more interesting capabilities
that can be of use for bridging current gaps in secure storage. Note, more details on isolation with
virtualization can be found in Chapter 3.

Virtual Machines In hypervisor-based systems, the VM can have virtual devices that do not necessarily
match the exact hardware. This can be useful for interposing on a VM’s device layer to provide capabilities
that are transparent to the guest running inside the VM. For example, if encryption was a priority the data
passing from the VM to virtual devices could be encrypted on the fly.

Another example where virtualized devices can be advantageous is when there are changes made to
make the interface more efficient by adapting the VM’s interface for performance reasons. This is
commonly referred to as para-virtualization and is commonly used for customizing the VM’s interface to
better suite a given use case. For example, virtualized IO can avoid translation in some layers of the
software stack because similar work is happening at the system level. Note, this is in contrast to techniques
like VMM-bypass, which have the hypervisor and VM setup an interface that allows the VM to have
(controlled) direct access to resources without passing through the hypervisor. The virtio [106]
interface is a standardized API within Linux for creating efficient IO devices for VMs.

Containers & Namespaces The container-based approach to virtualization uses a single OS kernel and
adds additional isolation mechanisms for running processes. In this VE-based environment, there are
several mechanisms available for limiting access and visibility of the system that can be advantageous for
securing storage. For example, the mnt namespace provides a kernel level restriction for limiting access to
portions of the filesystem. This can be combined with user namespaces to allow for controlled mapping
of UID/GID privileges within and outside the VE and host contexts. For example, a user may have root
permissions in a VE but not outside the VE. Additionally, since there is a single kernel in the VE context,

45

very efficient isolation mechanisms like bind-mounting can be employed to restrict access to filesystems,
e.g., restrict a user to a specific region of the filesystem.

6.2 VLAN/Network Segmentation

The ability to restrict access to different portions of the communication network is another mechanism
for limiting access and protecting storage. The creation of dynamic network segments, i.e., overlay
networks and VLANS, can be used to segment the network to specific hosts and users. These network
restrictions may be within the network connecting the hosts, which run the VEs and VMs, such that only
the hosts have the ability to make configuration changes to these segments. This would restrict users
(VEs/VMs) from seeing each other. Additionally, the restrictions can be within the storage network itself.
For example, limiting which hosts may access the Lustre network, i.e., LNET, can limit potential risks to
the backing storage network (Chapter 5.1.1). Note, more details on techniques for network segmentation
can be found in Chapter 4.

6.3 I/O Forwarding

The forwarding of I/O requests through some intermediate layer or service is a very general method for
controlling access. A common method for performing this I/O forwarding is to use a network protocol for
marshalling the interactions between a client and server. This is often useful for restricting access to
filesystem subtree to limit the namespace accessible by a given user, i.e., restrict mountable filesystem
shares. When employing virtualization, the forwarding layer may simply be between a host/guest. When
working under a single kernel, the filesystem subtree can be restricted via a combination mechanisms, e.g.,
bind-mounts, pivot_root, and user namespaces, as used by containers. However, when working with
multi-kernel configurations, e.g., VMs, the sharing must be modified to suit the two kernel environment.
The remaining paragraphs in this chapter describe I/O forwarding mechanisms that could be used to retain
control of the filesystem tree exposed to the guest.

6.3.1 NFS

Lustre does not have the capability to restrict client mount to only subtrees of the filesystem. This is a
very common feature of the NFS protocol and is immensely useful. It also provides a measure of security
as it restricts client visibility of the filesystem to anything outside the mounted area. Even if a client on the
storage network was compromised, such that the client machine could issue a mount of the entire
filesystem, with NFS export restrictions, the NFS server would not allow mounts to succeed outside of the
configured subtree for that client’s IP address.

6.3.2 VirtFS

VirtFS is a para-virtualized filesystem designed to optimize passing filesystems up from the host
operating system through to the guest environment. Popular methods of passing filesystems into a guest are
NFS and CIFS1 Both these options suffer from performance deficiencies and both are unable to capitalize
on the virtual nature of the environment. The ingredients for VirtFS are QEMU [9], KVM [63],
VirtIO [106] technologies and the 9P2000.L protocol [31, 55]. VirtFS moves away from the traditional

1The CIFS protocol is often referred to by the name Samba, which is an open-source implementation of the CIFS/SMB server.

46

notion of creating virtual block devices in the guest environment for the filesystem passed to it and instead
passes I/O to memory objects it shares with the host. These I/Os are then relayed to the local filesystem of
the host. This minimizes the number places where the same information is cached between client and
server and reduces the number of layers through which data must flow between them. A QEMU/KVM
server would export part of the hypervisor’s filesystem hierarchy into the guest environment where it is
mounted using the 9P2000.L protocol. At this point the guest uses the filesystem as if it were local. In
reality however, the guest I/O is actually happening on the hypervisor filesystem [55].

6.3.3 DIOD

DIOD is an I/O forwarding server that uses the 9P protocol to share a filesystem [31]. This work is
being carried out by Jim Garlick at LLNL and is currently only being tested with NFS filesystems [31].
There is potential for using this with parallel filesystems like Lustre and GPFS but the documentation
indicates this has not yet been fully tested [32]. Even with the experimental Lustre support, performance is
limited without a patch to the v9fs driver in Linux to increase the packet payload size beyond 64k [33].
Attempts to push this patch upstream were unsuccessful. However, there has been related work that used 9P
for I/O forwarding of Lustre, which appears to be using the NFS-Ganesha server with support for 9P [103].

47

Chapter 7

OpenStack Implementation Details

7.1 Core OpenStack Components

There are several components in the OpenStack framework. They each offer a distinct interface to the
functionality for a distributed computing environment. Figure 7.1 illustrates the different elements in the
OpenStack architecture and shows the interactions between the various component interfaces.

Figure 7.1. OpenStack Logical Architecture (source: [95])

48

7.1.1 Horizon – Dashboard

A user of OpenStack has a choice of interfaces with the various components. Commonly service
interactions are run through a command-line interface that generates the appropriate API calls, to Nova for
example. Alternatively the graphical interface known as Horizon can be used as a dashboard for a user
(tenant) or administrator. Per-tenant instances can be managed and currently used resources can be tracked
using Horizon. Like the CLI, Horizon interacts with individual OpenStack services via the REST-based
API.

7.1.2 Nova – Compute

Nova is the compute service of OpenStack and is the primary interface for users to
create/start/stop/migrate instances. Given a set of nova-compute nodes in an OpenStack cluster, the
nova-scheduler service will make placement decisions of VM’s on particular nova-compute hypervisors.
The nova-compute nodes are typically running KVM and hosting virtual machines, but alternative
nova-compute drivers can host containers (nova-compute-lxd) and even coordinate the booting of
baremetal nodes (nova-compute-ironic)

7.1.3 Neutron – Networking

Neutron is a complex service in OpenStack handling the networking between tenant VM instances and
network services such as DHCP, routing, load balancing, and the metadata service (for assisting in booting
nodes). Note, Neutron is also discussed in the reconfigurable networking section (Chapter 4.7).

7.1.4 Keystone – Identity Services

Authentication and authorization of users in an OpenStack environment is handled by the Keystone
service. Keystone maintains roles and project memberships of users and provide a mechanism for
authenticating each API call.

7.1.5 Glance – Image Service

Glance is the name of the service that manages VM images. Each image is stored in the glance-registry
for retrieval from nova-compute when a VM boots.

7.1.6 Swift – Object Storage

OpenStack [94] contains an object storage service known as “Swift” [111]. The purpose of which is to
provide massively scalable, redundant storage across commodity hardware platforms. The basic model for
this service is along the lines of Amazon S3 storage severs and is managed in similar fashion. The
redundant nature of this storage server allows for VM instance templates used by OpenStack compute
nodes.

Object Storage Support Structure OpenStack uses many services to complete a storage environment
setup. The following is a list of services necessary to run the object storage service in an OpenStack
environment:

49

• Swift: This service handles all of the common files shared between other OpenStack object storage
servers and packages, including the Swift client itself;
• Swift-Proxy: The proxy service is the outward facing component that clients connect to.
• Swift-account: The account management service clients use to gain access to OpenStack Storage;
• Swift-Object: Service package that manages object storage and rsync file transfer synchronization

methods;
• Swift-Container: The package that handles the OpenStack Object Storage Container Class and

server;
• Swift-recon: Middleware used on a Swift server node to collect access and usage statistics;
• Memcache: Memory object caching system;
• Network time protocol (NTP): Protocol used in multi-node environments to synchronize the nodes

such that the transfers, snapshots and cache scheduling can all be synchronized;
• Xfprogs: This module controls the XFS filesystem used in many OpenStack object storage systems.

OpenStack relies on an NTP server to keep all of its nodes and transfers synchronized. In Swift
storage, NTP is used to allow multiusers access to shared data by using a scheduler to make sure one
device does not lock out the other requesting client nodes. A maximum resolution is 5 seconds; if the
synchronization exceeds this limit the results are unpredictable. Careful load balancing is necessary to
provide adequate networking between storage and compute nodes. If the number of compute instances
wishing access to data conflicts with the scheduling or desired latencies, Swift allows for replication and
redundant repositories that self-synchronize. The effect is the data and storage scales with the demand.

In keeping with the Amazon S3 storage model, Swift is designed to be both highly scalable and highly
redundant. It can be installed on any commodity hardware that has sharable storage to be used across the
entire installation. The visible structure of the storage service is the folder or directory tree rather than the
disk itself. The physical disk is invisible to the virtual plane and may contain one single tree or multiple top
directory trees that will appear as individual storage sites depending on group and user permissions.

Object Replication A key element in a highly scalable and redundant filesystem is the ability to handle
replication with minimum overhead. In the case of multiple VMs that are set up to share similar resources,
such as configuration files and operation parameters, Swift must be able to not only have replicated
structure, but synchronization so that all nodes sharing common resources can be maintained
simultaneously. The Swift object server relies on the rsync service to maintain this replication
requirement. The attributes set to achieve this are found in the configuration file rsyncd.conf. Each
active synchronized instance has values indicating individual performance, such as access rules, the
maximum connections allowed. The file attributes, such as read-only and locks, are set in the configuration
for the instance. The max connections attribute is used to set a value based on the limitations of the
physical host where the storage server is located. If this machine has high throughput networking, large
amounts of RAM and multiple high speed disks, the max connections value can be set higher. If the storage
node is lacking in physical services, such as available cores, networking throughput and cache memory,
then setting this value lower helps keep the system from being overwhelmed by the virtualization of the
cloud environment.

Client Connections – Proxy Server The use of a proxy server to handle client connections allows the
system administrator to scale out the object storage environment without affecting the connection to the
front end. User authentication, access logs and connectivity rules are set in the node’s
/etc/swift/proxy-server.conf file. This allows the system to direct connection requests

50

specifically to a pre-determined source for authentication verification, without the necessity of having to
change the basic authentication structure locally. This configuration file also contains the IP address and
port to use for both physical or virtual LAN support in this authentication process.

Account Server The account server provides a list of containers available on the node. The accounts are
actually in this case the rsync account numbers for the connected containers within the storage system.
The account server also is used to assign directory folders from the physical disk to a specific proxy server
account. Access to specific data could be limited to a single server and account number or shared on
multiple servers or accounts.

Container Server The configuration of the container server is very similar to that of the account server,
the purpose is to establish server nodes that support the previously generated storage accounts.

Object Server The object server associates the data object with a particular account and container server
such that the data is available to an authorized user from a virtualized source on the cloud cluster. This is
accomplished by tying the three servers together Account, Container and Object servers in what is called a
service ring. The purpose of this structure is for data to be available even if it is non-contiguous and is
located across multiple physical disks and multiple hardware platforms. The system will see one or more
server storage devices that may be made up of scattered physical drives. The ability to replicate the data on
companion storage allows systems to be brought out of service without affecting the perceived location and
availability of the data source.

Isolation The storage can be isolated using zones and rings structure. A zone is a group of storage nodes
isolated from other nodes in the system. This terminology can be confusing as it is also used in reference to
the use of separate physical appliances, network connections, power source, or geographical location. A
zone will refer to storage nodes that share common networking and access rules. The Swift Ring structure
allows multiple Swift servers and services to locate objects. Swift uses zones to store backup copies or
replicas of data on separate systems. Zones are also used to add client access capacity, for example if the
storage objects are high demand, and access is requested for multiple users causing access slow down, a
zone can be stood up that copies the data and brings up an additional server to share the requested data. In
this example we see how the account and synchronization servers come into play. Updates to the data
object will be synchronized across all zones as the data source is authenticated. New data appears in each
replicated zone within the collective ring such that all sources are up to date.

In a similar fashion, storage nodes can be removed or taken offline from the cluster. This is done by
setting a node’s priority weight to zero and issuing a ring rebalance command. The node will be removed
from service and replications will not include copies and verifications to that node. Once this rebalancing is
complete a remove node command can be issued.

System Health and Physical Audits Swift also contains the ability to perform health checks and
physical audits on the physical drives attached to a server node. Automated audits help detect physical
drives with defects or damaged drives that allow the redundancy systems to replicate the data and prepare
for the replacement of the physical disk. Once a physical drive is replaced, the configuration files that
describe the Account, Container and Object servers can replicate the missing data and re-attach the drive to
the storage ring. This is done by re-enabling the drive back into the ring descriptor, the replicator will
reload and check the data on the device and notify the system that the storage object is back in service.

51

Figure 7.2. Diagram of Cinder component interactions.

This is accomplished by issuing a ring rebalancing command, once the physical drive is replaced.
Statistical analysis is accomplished by using the middleware application swift-recon. This command
provides usage statistics including bytes transferred, read, written and errors. The command line allows for
both full reporting on the storage disks and zone based reports. The average loading on the system can also
be reported as can the time averaged usage statistics. swift-recon also reports on quarantined data
objects and replication metrics such as success, failure and any discrepancies between replicated objects.

7.1.7 Cinder – Block Storage

OpenStack allows the user to maintain persistent storage methods. When data is written to virtualized
node instances the data is not persistent, meaning when the instance is lost the written data can be lost as
well. Block storage volumes are a form of persistent storage that can be attached to existing running
compute nodes. The block storage methods used in OpenStack are similar to those in Amazon EC2 elastic
storage. The running compute node uses an iSCSI based LVM grouping listed as cinder-volumes.
This is in keeping with the OpenStack Block Storage service called Cinder [19]. The service that supports
this is called Cinder and the LVM (Logical Volume Manager) volume group is referred to as
cinder-volumes. Before any such connections are made the open-iscsi service must be mounted.
Figure 7.2 shows a high-level view of the interactions between the Cinder block storage components. A
logical diagram of a Cinder Storage Node is shown in Figure 7.3.

Preparing the Physical Disk Before launching the cinder-volumes service the physical disk or part
of it must be properly prepared. This is accomplished by creating a partition configured as an LVM volume.

Authentication Cinder uses the existing authentication methods established during the installation of
OpenStack and requires keys and ACL checking just as any of the other services in OpenStack, by defining
an endpoint, authentication service and user credentials. This includes container class user ID and
namespace identification as well as network ID. In a secure environment a Cinder volume can be assigned
access only through a VLAN port on a localized Neutron node within the container.

52

Figure 7.3. Diagram showing components in a Cinder Storage Node.

Replicating Instance Once a Cinder volume service is established and its group credentials created, the
instances can be copied like any other instance template and only the group ID and VLAN access
credentials changed. This is used to allow multiple users access to a data block without specific use
information regarding what data and who is accessing it available to the other users.

Compute Node Attachment Once a Cinder volume is established it can be attached to a compute node
with the nova volume-attach command from the nova client. This will occur only after the
authentication service has verified the permissions and network node has authenticated the connection
credentials. The perspective from the compute node has been compared to the plugging in of a USB
storage device, once it appears on the compute node request layer (after authenticating) it is automatically
mounted and the connection takes on characteristics native to that of the attached node. Example, it may be
the third attached LVM Cinder volume and therefore appear on this device with a different drive name.
During authentication the configuration file allows the administrator to make the drive volume name unique
to that user. This helps to obfuscate the use or importance of the drive from other nodes and systems
sharing a similar attachment to the same data volume. Once a Cinder volume is attached, only that compute
node has access to the block. This follows the USB analogy completely, if another node requests the
volume from the system, it must first be relinquished by the current user, then after release it is available for
attachment to the new compute node.

53

7.2 Emerging OpenStack Components

7.2.1 Manila – Filesystem-As-A-Service

A file sharing service called Manila [75] is currently under development. It is based on the Cinder
architecture and provides an OpenStack interface for distributed/parallel filesystems, e.g., NFS, GPFS. The
Manila project was started in 2013 and was added to the Juno release with an “incubation” status. There
are reference implementations for developers as well as initial support for a few vendors/filesystems, e.g.,
IBM’s GPFS, NetApp, etc.

Manila: “Generic” Share Driver

14

!  Creates a Nova instance (not
owned by requesting tenant) to
offer NFS/CIFS shares backed
by Cinder volumes
–  New instance is created for each

“share network”
–  Connected into existing Neutron

network & subnet
–  Instance flavor, source Glance

image, & SSH keypair are
configurable in manila.conf!

–  Manila creates shares in instance
using Linux commands over SSH

nova-compute

CIFS

manila create!

Control Path

Data Path

Manila

net use!

Neutron

Cinder

nova boot!

neutron
port-add!

cinder create!

Figure 7.4. Example of the ‘generic’ Manila file share component for OpenStack (figure
source [76]).

The currently supported protocols for file sharing are NFS and CIFS (i.e., Samba). The access
restrictions are host based (IP addresses). The project is exploring additional access controls beyond the
basic host-based (IP) approach, e.g., LDAP user/group [76]. The Manila file share service interfaces with
the Neutron networking layer, which creates a new neutron subnet that exposes (exports) the share.
Currently, this share is limited to a single network and is available to the set of hosts on that network [76].
A snapshot of the share can be created, which as of early 2014 was limited to read-only [76].

An overview presentation from the 2014 OpenStack Juno Summit in Atlanta is available off of the
Manila project’s wiki [76]. This includes a demonstration of the code and details from several vendors
supporting or developing Manila modules for the OpenStack component. An example of the reference
‘generic’ Manila component, useful or development/testing, is shown in Figure 7.4. This ‘generic’
component dynamically instantiates a VM that is used as the file server, which is attached to the respective
compute node subnets. This file server exports the share via the NFS or CIFS protocol. At the time of the
presentation, the filesystem mount from within the tenant VM of the network share (e.g., NFS export) is
done manually, e.g., via a remote SSH to the compute node. They mention that they are currently
investigating ways to try and automate this mounting process [76].

7.2.2 Magnum – Containers-As-A-Service

The Magnum [100] project was made part of the OpenStack core recently in March 2016 for providing
container orchestration within OpenStack. A design principle of Magnum is using the existing OpenStack

54

projects for their respective services and adding the abstractions necessary to support containerized
applications. For parity to VM deployment models in OpenStack, it uses Glance for the image repository,
Nova for managing container instances, Heat for service orchestration, and Neutron from networking.

The only supported container format (to our knowledge, future plans may differ) is Docker containers.
This would imply Docker’s libcontainer as the lower level container execution driver. In contrast to LXD,
Magnum is targeting the higher level goal of integrating other OpenStack services for the management and
orchestration of container deployments. It provides a “bay” abstraction to place containers in, where one
tenant has a bay, and a bay may consist of one or more physical compute nodes (actually nova instances, so
virtual compute nodes are supported). There are different “bay types” for representing groups of
containers, e.g., Docker Swarm model, Google Kubernetes [100]. The lowest-level container format is
important to the SE project because user namespace support by libcontainer (for Docker/Magnum) is not as
complete as it is in LXC (for LXD) today.

A current drawback of Magnum’s implementation is that containers are provisioned on virtual
machines. The support for bare metal provisioning of containers with Magnum is currently under
development for inclusion in a future release. Possible inclusion could be Q2 of 2016.

For a complete introduction to the Magnum project, see the OpenStack Summit presentation [101] and
visit the project website [74].

7.2.3 LXD – System-Containers-As-A-Service

LXD has a stated goal of managing “system containers” much as a hypervisor manages virtual
machines. This is in contrast to the “application container” that is the focus of the Docker ecosystem. LXD
is filling a niche role for secure and lightweight system containers that Canonical has identified as a
priority, while the broader container community is more interested in the orchestration capabilities and
pure OpenStack integration of the Magnum project.

The LXD project was announced in 2014, but was missing several features until recently including its
image management functionality and OpenStack integration. This was because LXD was held back by
Canonical in anticipation of announcements at the OpenStack Summit, where it was presented as a
functional alternative to system-level virtualization with KVM. This effort is very similar to the design that
we have proposed in prior reports, but until recently, it didn’t support the dynamic provisioning model used
by OpenStack for VMs. Now with the nova-compute-lxd plugin, it is possible to start and stop per-tenant
containers, as would be done with VM instances. There are more technical details for LXD [101] available
in recordings of the recent OpenStack Summit presentations.

Status of user namespaces in Docker: This is not complete as of June 2015. An experimental feature of
remapping the root user in a Docker container to an unprivileged user on the host is close to being merged.
This is sufficient to support the use case of single-user isolated containers that enforce unprivileged access
to a shared filesystem.1 This feature is now targeted for the Docker 1.8 release, which has a target release
date of 4-August.

7.2.4 LXD vs. Magnum

Two main advantages of Magnum over an LXD environment would be a higher degree of integration
with Neutron networking options and an API specifically designed for container management, rather than

1Docker user namespace progress can be tracked at: https://github.com/docker/docker/pull/12648

55

the nova API designed for virtual machine management. In a presentation on LXD at the Summit [101], it
was argued that since LXD targets the use case of OS containers, the same API’s targeted for virtual
machines are adequate. Additionally they believed that providing networking access to containers through
a Linux bridge on the host was adequate. As part of this project, we have been using the ML2 Arista
plugin, which is not yet supported in the LXD model. Magnum claims support for all ML2 drivers. A brief
comparison of Magnum and LXD is given in Table 7.1.

Feature Magnum LXD
Neutron networking All ML2 Linux bridge only

Image storage Glance Local per node
Scheduling (via nova) Supported per bay No support mentioned

Live migration n/a Supported
Exposing block device n/a Future feature

Hardware assisted isolation (VTX) n/a Future feature
Persistence model Ephemeral Persistent by default

Table 7.1. Comparison of Magnum and LXD feature based on latest technical review of available
information.

Remarks: Therefore, if a container environment supporting user namespaces were required today (June
2015), the best path would be using LXD as the container management system and the nova-compute-lxd
driver for integration with OpenStack. However, the Magnum Container-As-A-Service and Docker
functionality is schedule to be released soon.

56

Chapter 8

Secure Enclaves System Architecture

An important facet of secure-enclaves is the ability to create the perception of single-user environments
out of shared resources. This is achieved through a layering of different isolation mechanisms. In this
chapter we will present our view of an isolation-centric system architecture. The end user’s compute tasks
are managed within virtualization based instances (e.g., Chapter 3), which are either hypervisor based
virtual machines (VMs) or single-kernel based virtual environments (VEs). The networking between
instances can be created through dynamic (reconfigurable) means (e.g., Chapter 4). The architecture
employs different underlying storage technologies (e.g., Chapter 5) in concert with bridging
technologies (e.g., Chapter 6) to provide the requisite controls for persistent storage.

8.1 Isolation-Centric Architecture

Given the security strengths and frailties of Lustre and GPFS from previous chapters, we advocate a
entirely different approach that might not be immediately intuitive. We believe isolation is key to providing
security as well as preserving the performance expected in a HPC environment. To this end, we redefine
the storage layer up from the filesystem (Lustre or GPFS) to extend into an enclave where the user’s view
of storage is strongly restricted to authorized areas. These restrictions are achieved in a layered fashion
using different isolation mechanisms like OS containers, virtual machines and network segmentation
capabilities. The network isolation mechanisms can extend into the storage architecture by implementing a
dedicated VLAN per user into the storage filesystem and another for a user’s compute resources (nodes).
For example, a user requiring 128 nodes for a job will have one VLAN dedicated to the 128 compute nodes
and another dedicated to the storage traffic. This holistic approach to a secure-enclaves design is a
consequence of the challenge to balance performance and protection. In many cases, as highlighted in
earlier chapters, there are gaps in available security capabilities for shared resources in HPC systems. For
example, there are limitations in HPC filesystems that inhibit securing the storage layers through native
mechanisms due to practical implementation gaps. Thus, the requisite protection and isolation mechanisms
are not directly available by the HPC filesystems and must be complemented with additional layers. An
illustration of this isolation-centric architecture is shown in Figure 8.1.

The gaps in current HPC filesystems can be overcome via the bridging technologies we have
mentioned before, e.g., VirtFS, DIOD, NFS. These technologies can be used to restrict the end-user to
approved areas of the parallel HPC filesystem. For example, in Figure 8.1 end-user jobs run in the VEs and
the VMs. In either case, the end-user’s view of the storage has been restricted by host level mounts from
Node1, Node2 and Node3 into their virtual environment. It is important to note that all the hosts

57

10.0.0.1@tcp:/lustre Lustre
Storage OSSs

MDSs

…

Lustre Network (LNET)

Node1

/mnt/lustre

VE1

 /mnt/lustre/user1

VE2

 /mnt/lustre/user1

User2 enclave

User1 enclave

Host Network

Node2

/mnt/lustre

VE3

/mnt/lustre/user1

Host-local/NFS Export

Node3

/mnt/lustre/user2

NFS-exporter:/
user2

VM1

 nfs:/user2

/mnt/lustre

Figure 8.1. Diagram showing different layers of isolation-based architecture using Lustre,
three VEs and one VM.

(Node1..3) mount the full filesystem and pass the “user appropriate portion” into the virtual environments.
Also note that there is no commingling of end-user processes due to the compute layer virtualization based
isolation mechanisms. In those instances where we restrict each user’s traffic to their own network VLAN,
both into the storage and the VEs or VMs belonging to that user, we have essentially installed a single-user
environment (i.e., enclave) – though contention for shared resources remains (e.g., parallel filesystem).

As identified in previous chapters the ability to control the namespace accessible by a tenant is a
common gap in many HPC parallel filesystems. This issue of restricting subtree access for a global
filesystem can be achieved in an isolation-centric model by employing kernel based namespace restrictions
or via I/O forwarding methods in multi-kernel scenarios. These map to the VE and VM use cases within
the secure-enclaves architecture, where VEs operate within a single kernel and VMs have distinct kernels.
In both cases, the controls are implemented at the host-level, i.e., outside of the VE/VM context, and
restrict access to the underlying storage services. The VE based approach may be implemented using “bind
mounts” and Linux namespaces to restrict the tenant to a subset of the shared filesystem. The VM case
may use NFS or 9pfs to “export” the shared filesystem at a specific depth to restrict access. As noted in
earlier chapters, para-virtualized filesystem interfaces may provide more efficient “re-exporting” of
host-level filesystems to the guest (VM) context by passing virtual IO devices, e.g., virtio.

There are also instances where it can be beneficial to limit portions of the storage network, which is the
portion of the network dedicated to the storage LAN, e.g., Lustre’s LNET. A normal configuration is to
have a single storage network with all hosts directly connected. Note, these host machines are running the
tenant compute VEs/VMs, which are connected via compute VLANs. The scenario of a single storage
network is illustrated in Figure 8.2 where a all hosts in the cluster are directly connected to the single
storage network.

An additional degree of network traffic segregation can be achieved by creating “storage VLANs.” In
this scenario, the hosts are grouped and each group has a distinct interface for the different storage VLANs,
i.e., VLANs for the storage-facing region of the network. These interfaces can be used to segregate traffic
for the storage network. For example, in a Lustre environment a separate network interface (NI) could be

58

Lustre
Storage

OSSs

MDSs

1 2 3 4 5 Compute Hosts

VLAN 1

192.168.122.*@tcp

tcp0 NI

Figure 8.2. Diagram showing all hosts on a single storage network.

1

192.168.122.*@tcp0

tcp0 NI

10.5.12.*@tcp100

tcp100 NI

172.20.1.*@tcp200

tcp200 NI

Lustre
Storage

OSSs

MDSs

2 3 4 5 6 Compute Hosts

VLAN 2
VLAN 3

VLAN 1

Figure 8.3. Diagram showing hosts on separate VLANs to restrict overall access to storage
network.

created on the host for the different types of groups. This multiple storage VLAN example is shown in
Figure 8.3. Note, the addition of features like Dynamic LNET Configuration (Section 5.1.1) provide a way
to create these grouping in a much more agile fashion that can be influenced by the tenant assignments for
a given host.

8.2 Instances of the Isolation-Centric Architecture

The following examples show concrete instances of configurations that employ the proposed
isolation-centric architecture. These scenarios illustrate approaches for managing one of the major
challenges when creating secure enclaves: access to shared storage. The configurations use different
storage technologies (Chapter 5) and as necessary bridging technologies (Chapter 6) to implement the
controls for the isolation-centric secure storage. In Sections 9.7 & 9.8, these examples are evaluated using a
Lustre filesystem with controlled access from the VM and VE scenarios.

8.2.1 Parallel filesystem with host-based subtree limitations for VM

Lustre, NFS re-exporter with KVM This configuration seeks to implement subtree export capability
using Lustre and NFS (Figure 8.4(a)). A node which is a Lustre client also assumes two other

59

responsibilities; that of a NFS server and host for a KVM instance. The KVM instance is in turn a NFS
client mounting the filesystem served by the NFS server. In this approach, the NFS server only exports that
subtree of the Lustre filesystem it wishes to make available to the user. We expect some performance
penalty for using NFS.

Lustre, 9pfs re-exporter with KVM This configuration seeks to implement subtree export capability
using Lustre and p9fs with KVM (Figure 8.4(b)). A node which is a Lustre client also assumes one other
responsibility; that of a KVM instance. The KVM instance in turn uses the p9fs protocol to mount the part
of the host filesystem. In this approach, the KVM instance is allocated the part of the filesystem it is
allowed to mount via p9fs at the time of its creation. We expect some performance penalty for using P9fs.

10.0.0.1@tcp:/lustre	 Lustre	 	
Storage	 OSSs	

MDSs	

…	
	

Lustre Network (LNET)

User2 enclave

Host Network
Host-local/NFS Export

Node2	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/lustre/user2	

NFS-‐exporter:/user2	

VM2	
	
	

nfs:/user2	

/mnt/lustre	

Node1	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/lustre/user2	

NFS-‐exporter:/user2	

VM1	
	
	

nfs:/user2	

/mnt/lustre	

IO Forwarding Layer
(NFS)

(a) NFS re-exporter

10.0.0.1@tcp:/lustre	 Lustre	 	
Storage	 OSSs	

MDSs	

…	
	

Lustre Network (LNET)

User2 enclave

Host Network
Host-local/9pvs-virtio Export

Node2	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/lustre/user2	

9pfs-‐virCo:/user2	

VM2	
	
	

nfs:/user2	

/mnt/lustre	

Node1	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/lustre/user2	

9pfs-‐virCo:/user2	

VM1	
	
	

nfs:/user2	

/mnt/lustre	

IO Forwarding Layer
(9pfs-virtio)

(b) 9pfs-virtio re-exporter

Figure 8.4. Example instance of Lustre, IO re-exporter with VM. This shows two different
approaches for the IO re-exporter, one that uses NFS and another that uses 9pfs with virtio.

8.2.2 Parallel filesystem with host-based subtree limitations for VE

Lustre, bind-mount with LXC namespaces This model seeks to restrict the LXC instance to a portion
of the filesystem tree. A Lustre client hosts a LXC instance into which a subtree of the filesystem is bind
mounted (Figure 8.5). This maintains the high performance of Lustre in the LXC instance, while protecting
other areas of the global filesystem. Another benefit here is that the Lustre client authentication
mechanisms are all preserved.

GPFS, bind-mount with LXC namespaces This model seeks to restrict the LXC instance to a portion
of the filesystem tree. A GPFS client hosts a LXC instance into which a subtree of the filesystem is bind
mounted (Figure 8.6). This maintains the high performance of the GPFS in the LXC instance, while
protecting other areas of the global filesystem. Another benefit here is that the GPFS client authentication
mechanisms and the filesystem encryption protection are all preserved.

60

10.0.0.1@tcp:/lustre	 Lustre	 	
Storage	 OSSs	

MDSs	

…	
	

Lustre Network (LNET)

Node1	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/lustre	

VE1	
	
	
	 /mnt/lustre/user1	

VE2	
	
	
	 /mnt/lustre/user1	

User1 enclave

Host Network

Node2	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/lustre	

VE3	
	
	
	

/mnt/lustre/user1	

Figure 8.5. Example instance of Lustre, bind-mount with VE.

10.0.0.1@tcp:/gpfs	 GPFS	 	
Storage	

GPFS Storage Network

Node1	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/gpfs	

VE1	
	
	
	 /mnt/gpfs/user1	

VE2	
	
	
	 /mnt/gpfs/user1	

User1 enclave

Host Network

Node2	
	
	
	
	
	
	
	
	
	
	
	
	
	

/mnt/gpfs	

VE3	
	
	
	

/mnt/gpfs/user1	

Figure 8.6. Example instance of GPFS, bind-mount with VE.

61

Chapter 9

Evaluation

A variety of tests have been carried out to evaluate technologies used in a prototype based on the
architecture discussed in Chapter 8. The evaluations presented in this chapter provide details about
performance and demonstrate the viability of an OpenStack based secure enclaves prototype.

9.1 Secure Enclave Testbed Description

ORNL has constructed a testbed environment to develop and evaluate the use of HPC and cloud
computing technologies. This testbed, illustrated in Figures 9.1 & 9.2, has been used to experiment with
several technologies, e.g., Software Defined Networking (SDN) for on-demand tenant networks,
benchmark controlled access to parallel storage.

Figure 9.1. Secure Enclaves Testbed Logical Diagram.

The secure enclaves (SE) prototype system is comprised of eight dedicated nodes within the CADES
resources at ORNL. The testbed has been configured to aid evaluations (presented in this chapter) that
operate with and without the OpenStack environment. As such, four of the nodes were used for manual

62

Figure 9.2. Secure Enclaves Testbed Rack Diagram.

configurations/testing and four were used for an OpenStack environment.1 Briefly, the secure enclave (SE)
testbed consists of eight Dell C6220 nodes configured as follows:

• 1 OpenStack management system
• 3 compute systems capable of running bare metal OS images, Virtual Machines, and Linux

containers
• 4 compute system are used for general VM/VE tests
• Note: A Lustre storage system (4 OSSs & 1 MDS) is setup on identical hardware and directly

connected via 10G to the eight nodes in SE testbed 2

There are two DDN 10K storage systems accessible from the testbed, each with dual storage controllers
and over 1/2 petabyte usable capacity. Arista 7150S network switches connecting compute and storage
resources. InfiniBand is used for connectivity between storage servers and storage controllers.

The SE testbed is based on the “Juno” release of OpenStack and uses Red Hat Enterprise Linux
(RHEL) 7 for the host operating system (OS). The OpenStack Neutron component is used to configure
networking for the OpenStack compute instances. The Arista ML2 plugin for Neutron provides on-demand
enclaving via SDN, which enables creation of dynamic per-tenant network enclaves (i.e., VLANs).

9.1.1 SDN in Testbed

To expose SDN capabilities to OpenStack, Arista provides plugins and drivers for OpenStack
integration of Layer 2 and Layer 3 functionality. The Layer 2 plugin enables the OpenStack networking
service (Neutron) to communicate with Arista’s CloudVision eXtension (CVX) through an Arista
mechanism driver over the Arista Command API (eAPI) to provision tenant networks. A typical Layer 2
OpenStack integration is shown in Figure 9.3. CVX is a series of open source extensions to Arista switches

1Note: The plan is to add the four manually configured machines into the SE testbed once we have fully integrated all software
elements with OpenStack.

2Some tests were performed outside of the OpenStack environment using temporary allocations of additional compute nodes,
or with customized node builds. In Figure 9.21, the Lustre system is shown for such a test using 10 additional Dell C6220 compute
nodes for a single VE+Lustre experiment.

63

that enable them to use the open-standard XMPP protocol to establish a single view of the network via an
industry-standard CLI. eAPI allows applications and scripts to have complete programmatic control over
the switch. Once the API is enabled, commands using Arista’s CLI syntax are accepted. Responses are
machine-readable output and errors serialized in JSON, served over HTTP.

Figure 9.3. OpenStack L2 Deployment.

CVX has visibility of the entire network environment and provisions VLANs on switch interfaces so
that the compute instances on the compute nodes have connectivity to the appropriate tenant VLANs. CVX
can run in a VM or on an Arista switch itself. The Arista Layer 3 Service Plugin communicates directly
with the Arista switches, either TOR or Spine, to provision routing functionality. In response to router
create/delete and interface add/remove requests in the OpenStack environment, appropriate SVIs (Switched
Virtual Interfaces) are created on respective switches. In future releases the Layer 3 service plugin will
communicate through CVX. A typical Layer2/3 OpenStack integrated environment is depicted in
Figure 9.4.

Figure 9.4. ML2 and Layer 3 Service Plugin interactions

64

9.2 User namespaces

From our review of prevalent virtualization technologies, which we have discussed in Chapter 3 above,
we observed that user namespaces have a unique benefit with respect to VEs and multi-tenant shared
filesystems. The existence of a kernel-enforced isolation mechanism between the user mappings on the
host and guest meant that the root user could be prevented from gaining access to certain areas of the
filesystem. Since a shared filesystem client, typically sits in kernel-space where it handles VFS calls it
implicitly trusts the supplied UID and GID, as that of an authenticated user. However, the root user local to
that machine is capable of supplying an UID or GID with a POSIX system calls (e.g. read(), write(),
stat()), so there are no mechanisms preventing root from accessing any users data on the filesystem.
Root-squash techniques limit the power of the actual root user, but they are powerless to distinguish
between a real user and root posing as that user.

However, with the introduction of the user namespace abstraction, root in the VE is a new level in the
privilege hierarchy where the filesystem client can be protected behind UID and GID mapping where root
in the container is just a normal user on the host. With respect to the security of a shared filesystem, the
consequence of allowing the end-user to have root credentials within the container is no different than
granting them an unprivileged user account on the filesystem. A container root user can be restricted to a
separate view of the shared filesystem as defined by POSIX file and directory permissions (also referred to
as a filesystem namespace).

9.2.1 Shared-storage use case

Building on the technical feasibility of securely isolating the filesystem namespace that a container
may access, we are evaluating the use of customizable VEs (containers) accessing these isolated segments
of two parallel distributed filesystems, Lustre and GPFS. Security is achieved through a combination of
filesystem namespace isolation, and existing POSIX permission-based access controls. For a
proof-of-concept demonstration, we used a single node in our test bed infrastructure running Red Hat
Linux version 7 for the host OS, and a LXC container as the VE guest, also running Red Hat Linux 7. Red
Hat disables user namespace support by default, so a 3.13.11 kernel was built with user namespaces
enabled and additional upstream patches for supporting unprivileged user namespaces. Shadow-utils 4.2
was used instead of the Red Hat-provided version to include new features relating to user namespaces.
Specifically, 4.2 enabled the host’s root user to control of the allowed UID/GID mappings with usermod
utility or the /etc/subuid and /etc/subgid files. While the kernel and shadow-utils version were not the Red
Hat-provided versions, there is precedent in other distributions, namely Ubuntu to support these features
out of the box. A last important requirement for this proof-of-concept that is relevant in a production
deployment was centralized LDAP for consistent UIDs between the RHEL7 host OS and Lustre servers.
LDAP is not a requirement in the VE guest for shared storage isolation.

On the Lustre side, the server was KVM-virtualized for rapid deployment running Lustre 2.5 on Red
Hat Linux 6. Work is currently underway to migrate the filesystem to dedicated hardware and storage
controllers in the testbed to facilitate performance evaluations. The RHEL7 host ran a Lustre 2.6 client,
which is installed as a kernel module and activated with the mount command. The mount command below
run as root mounts the filesystem at /lustre by initiated a TCP connection to the Lustre MGS server. This
environment uses the TCP lustre networking driver instead of the InfiniBand driver.

mount -t lustre 192.168.122.5@tcp:/lustre /lustre/

65

When /lustre is viewed on the host by an unprivileged user alice, the directory ownership is dictated by
the LDAP server. Three users on the host: alice, bob, and root have three directories each, with user, group,
and world writable bits set.

[alice@or-c45 lustre]$ ls -l
total 36
drwxrwx--- 3 alice users 4096 Oct 14 09:23 alice-group
drwx------ 3 alice users 4096 Oct 14 09:24 alice-user
drwxrwxrwx 3 alice users 4096 Oct 14 08:27 alice-world
drwxrwx--- 3 bob users 4096 Oct 14 08:28 bob-group
drwx------ 2 bob users 4096 Oct 14 08:23 bob-user
drwxrwxrwx 3 bob users 4096 Oct 14 08:28 bob-world
drwxrwx--- 2 root root 4096 Oct 14 08:15 root-group
drwx------ 2 root root 4096 Oct 14 08:15 root-user
drwxrwxrwx 3 root root 4096 Oct 14 08:27 root-world

This is the typical case where a cluster compute node has the filesystem mounted where any user can
access files as the ownership and permissions settings allow. Both alice and bob can access directories
owned by themselves, where access to the other directories depends on whether the group r/w/x bits are set
and whether they are a group owning the directory. For this example, note that alice can access root-world,
bob-world, and bob-group, but not root-user, root-group, or bob-user. Next we will expose this Lustre
filesystem through to an LXC container by bind-mounting it to a path that the container has access to.

Since the container runs in a chroot inside the host’s global directory hierarchy, the host can access the
container’s filesystem. As such it can perform a mount command on behalf of the container, where the
mount point is relative to the host’s directory structure. The command below will cause /lustre on the host
to be bind-mounted in the container at emph/lustre on startup.

lxc.mount.entry=/lustre \
/home/alice/.local/share/lxc/lxc_lustre/rootfs/lustre \
none defaults,bind 0 0

The new user namespace will attempt to set its mappings on startup, but the host kernel will consult
the /etc/subuid and /etc/subgid files to see that the requested mappings are allowed. Since those files are on
the host filesystem and managed by the host root user, they are trusted. In this demonstration, we want to
allow alice to map her own UID 6000. The mapping also allows 65533 contiguous other UIDs starting at
100000 on the host. Since UID 100000 and above on the host are unprivileged, all of the allowed mappings
within the container will be unprivileged as well. Bob’s UID is excluded from this list, so his UID cannot
be mapped into the container. /etc/subuid:

alice:100000:65533
alice:6000:1

The file /etc/sugid is configured in an analogous way, except the users group has GID 100:

alice:100000:65533
alice:100:1

LXC needs to be aware of the allowed mapping as well. This makes up what the container will attempt
to write to /proc/CONTAINER_PID/uid_map and /proc/CONTAINER_PID/gid_map on startup. The kernel
consults /etc/subuid and /etc/subgid and the write will succeed since the mappings were defined above.

66

lxc.id_map = u 0 6000 1
lxc.id_map = g 0 100 1
lxc.id_map = u 1 100000 65534
lxc.id_map = g 1 100000 65534

To allow a specific user to modify the cgroups for the container, the following scriptable commands
were needed:

for controller in /sys/fs/cgroup/*; do
sudo mkdir -p $controller/$USER/lxc
sudo chown -R $USER $controller/$USER
echo $$ > $controller/$USER/lxc/tasks

done

After starting the container with lxc-start –name lxc_lustre and and gaining a prompt either with
lxc-attach –name lxc_lustre /bin/bash or ssh, the expected mappings are visible in
/proc/CONTAINER_PID/uid_map and /proc/CONTAINER_PID/gid_map:

[root@lxc_lustre lustre]# cat /proc/1299/uid_map
0 6000 1
1 100000 65533

[root@lxc_lustre lustre]# cat /proc/1299/gid_map
0 100 1
1 100000 65533

[root@lxc_lustre lustre]#ls -l
total 36
drwxrwx--- 3 root root 4096 Oct 14 08:27 alice-group
drwx------ 3 root root 4096 Oct 14 08:27 alice-user
drwxrwxrwx 3 root root 4096 Oct 14 08:27 alice-world
drwxrwx--- 2 65534 65534 4096 Oct 14 08:15 root-group
drwx------ 2 65534 65534 4096 Oct 14 08:15 root-user
drwxrwxrwx 3 65534 65534 4096 Oct 14 08:27 root-world
drwxrwx--- 3 65534 root 4096 Oct 14 08:28 bob-group
drwx------ 2 65534 root 4096 Oct 14 08:23 bob-user
drwxrwxrwx 3 65534 root 4096 Oct 14 08:28 bob-world

The output from ls confirm that alice’s UID of 6000 was mapped to 0 (root) on the host and GID 100
(users) was mapped to the root group. Notice how unmapped UIDs and GIDs become 65534 inside the
user namespace, which is UIDMAX. While user 65534 can have a name assigned to it (e.g. nfsnobody),
it has no real permissions on the system. This prevents alice from being able to access root-user even if she
maps 65534 within the container or sets her effective UID to 65534 (this is allowed since she has root
privileges within the container).

We next attempt to perform some filesystem operations from within the container to directories on the
bind-mount:

67

[root@lxc_lustre lustre]# mkdir root-world/test
[root@lxc_lustre lustre]# ls -l root-world/
total 4
drwxr-xr-x 2 root root 4096 Oct 14 09:24 test
[root@lxc_lustre lustre]#mkdir root-group/test
mkdir: cannot create directory ‘root-group/test’: Permission denied
[root@lxc_lustre lustre]# ls -l bob-group/
total 4
drwxr-xr-x 2 root root 4096 Oct 14 08:28 test
[root@lxc_lustre lustre]# chown root bob-group/
chown: changing ownership of ‘bob-group/’: Operation not permitted

We can see that alice can create a directory in root-world since it has the ’other’ w bit set. However,
creating the directory /lustre/root-group/test is disallowed because even though alice is a member of the
group root in the container, she is not a member of root on the host, which is GID 65534 in the container.
Also note how the group for bob-user, bob-group, and bob-test is root within the container and alice can
read files in bob-group. This means bob can share files with alice even as alice accesses the directories
from within the user namespace. Attempts to change ownerships of bob’s directories fail, because the
host kernel will map root within the container to alice’s UID of 6000 and the Lustre filesystem will not
allow UID 6000 to change directories owned by UID 3000 (bob).

Since the check whether a particular UID is allowed to access or change a file are done on the Lustre
server, it must be the case that Lustre is only supplied with UIDs from a trusted source. The host kernel,
running the Lustre client kernel module is trusted, but alice’s container is not. Since user namespaces
ensure that the UIDs from the container are mapped to allowed UIDs before being sent to the Lustre client,
the Lustre server can trust the supplied UID. In the absence of user namespaces, since the host must be
trusted, it was not possible to give tenants root access to a customized compute environment with similarly
configured shared filesystems.

68

9.3 HPCCG

9.3.1 Description

We performed a set of tests using the High-Performance Computing Conjugate Gradient (HPCCG)
benchmark to establish baseline performance for basic application execution. The tests gather data from
execution of the benchmark on the Native (host) machine, and when run under Docker and KVM.

HPCCG was developed by Michael Heroux from Sandia National Laboratories and is included in the
Mantevo mini-apps [77]. The code is written in C++ and support serial and parallel (MPI & OpenMP)
execution. The benchmark performs an iterative refinement until reaching a solution within a given
threshold, or until a maximum number of iterations are performed.

This application is relevant for HPC from a few perspectives. Firstly, it provides use case for metrics
regarding application memory and compute usage. Also, previous studies have found iterative algorithms
to be resilient to some errors [14], possibly at the cost of taking longer to converge on an appropriate value,
which is relevant for HPC resilience purposes. Additionally, the HPCCG benchmark has been identified as
a more representative metric for current scientific applications and was identified by Heroux and Dongarra
as a candidate alternative metric for future Top 500 indexes [48].

9.3.2 Setup

The software configuration for the test used HPCCG v1.0 compiled with the GNU g++ v4.8.2
compiler. The host and guest Linux kernel was the same (version 3.10.0-123.8.1.el7.x86_64), with the host
(Native) running Red Hat Enterprise Linux (RHEL) v7.0 and the guests running CentOS v7.0 (free
alternative that is binary compatible with RHEL v7.0). The parallel tests used Open MPI version 1.6.4 that
is shipped with CentOS v7.

The tests were done on the project’s testbed at ORNL3. The machines have dual Intel(R) Xeon(R) CPU
E5-2650 processors running at 2.8 GHz, with 32 cores and a total of 65 GiB of physical memory per node.
The virtualization based tests used KVM v1.5.3-60.el7_0.7 with the VM allocated resources fixed at 31
CPUs and 48G of memory. The VE tests used Docker v0.11.1-22.el7 configured with libcontainer and the
VE was allocated resources fixed at 31 CPUs and 48G of memory.

HPCCG accepts three parameters that define the dimensions for the problem, nx, ny, and nz. The
serial tests were run using nx = ny = nz = N for increasing values of N up to the max memory
available4. The parallel tests were run using the same dimensions, which results in a larger overall problem
size based on the number processors used, i.e., overall problem size is nx ∗ ny ∗ (NumProcs ∗ nz) [77].
The parallel tests used two nodes (NumProcs = 2) with one VM (VE) per node. The tests were run with
max_iterations=150 and tolerance=0.0, which results in all tests running to the maximum
number of iterations every time. The benchmark was run 20 times, with dimensions of 100, 200, 300, 400,
and 4305, using the loops shown in Figure 9.6 for serial and parallel (MPI) tests, respectively. The output
from a serial run of the benchmark is shown in Figure 9.5, with the Total execution time and Total
MFLOPS highlighted in green.

3For reference purposes, the tests were done on nodes or-c46 and or-c46 of the testbed.
4The max memory was the maximum that would be available in the Native/Docker/KVM configurations such that all could have

the same max, even though our Native tests could have had a bit more memory than that used in VE/VM configurations.
5The selection of N = 430 was empirically determined through testing to see what was max value usable with a single processor

for given memory resources allocated to VE/VM. In parallel case, the increase problem size exceeds the available memory and
results in a max dimension for tests of N = 300.

69

bash:$ time -p ./test_HPCCG 100 100 100!

Initial Residual = 2647.23!

Iteration = 15 Residual = 35.0277!

 …<cut>…!

Iteration = 149 Residual = 7.9949e-21!

Mini-Application Name: hpccg!

Mini-Application Version: 1.0!

Parallelism: !

 MPI not enabled: !

 OpenMP not enabled: !

Dimensions: !

 nx: 100!

 ny: 100!

 nz: 100!

Number of iterations: : 149!

Final residual: : 7.9949e-21!

!

!

!

!

********** Performance Summary (times in sec)
***********: !

Time Summary: !

 Total : 6.28416!

 DDOT : 0.366029!

 WAXPBY : 0.56881!

 SPARSEMV: 5.34828!

FLOPS Summary: !

 Total : 9.536e+09!

 DDOT : 5.96e+08!

 WAXPBY : 8.94e+08!

 SPARSEMV: 8.046e+09!

MFLOPS Summary: !

 Total : 1517.47!

 DDOT : 1628.29!

 WAXPBY : 1571.7!

 SPARSEMV: 1504.41!

real 6.45!

user 6.37!

sys 0.08!

Figure 9.5. Example output from HPCCG benchmark.

1 # Serial test
2 for count in {1..20} ; do
3 for dim in 100 200 300 400 430 ; do
4 time -p ./test_HPCCG $dim $dim $dim
5 done
6 done
7

8 # Parallel test
9 for count in {1..20} ; do

10 for dim in 100 200 300 ; do
11 time -p mpirun -np $numproc --hostfile hosts \
12 ./test_HPCCG.mpi $dim $dim $dim
13 done
14 done

Figure 9.6. Example showing how the HPCCG serial and parallel (MPI) tests were run.

The startup for the VM based test with KVM is shown in Figure 9.7. The startup for the VE based tests
with Docker are shown in Figure 9.8. In the serial case, all tests were run on a single host inside a single
VE. In the parallel test case, a “master” VE was started and is where the mpirun executes and connects to
the “slave” VE(s). The MPI process launch uses SSH to start the remote processes in the “slave” VE(s).
Note, the master and slave VE(s) run on separate hosts and are connected via the 10Gig network.

70

1 # Edit 48GiB, 31CPUs
2 sudo virsh edit centos7kvm
3 # Start VM
4 sudo virsh start centos7kvm
5 # Login to vm an run benchmark test
6 ssh centos@<vm_ip_addr>

Figure 9.7. Example showing the commands used for KVM/libvirt VM startup.

1 # -- Single VE for Serial Tests --
2 # Limit to 48GiB, not explicitly restricting Num cpus
3 # Run benchmark test from shell in container
4 sudo docker run -m 48g -t -i naughtont3/centos7cxx /bin/bash
5

6

7 # -- (Part-1) MASTER VE for Parallel Tests --
8 # Limit to 48GiB, not explicitly restricting Num cpus
9 # Run benchmark test from shell in container

10 sudo docker run -m 48g --name master --privileged \
11 -ti -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
12 or-c46.ornl.gov:5000/blakec/centos7cxx-sshd-mpi /bin/bash
13

14 # -- (Part-2) SLAVE VE for Parallel Tests --
15 # Limit to 48GiB, not explicitly restricting Num cpus
16 # Run benchmark test from shell in container
17 sudo docker run -m 48g -d --name slave-1 --privileged \
18 -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
19 or-c46.ornl.gov:5000/blakec/centos7cxx-sshd-mpi

Figure 9.8. Example showing the commands used for Docker VE startup. The serial test runs
in a single VE, while the parallel version run across two VEs (master/slave).

9.3.3 Discussion & Observations

9.3.3.1 HPCCG (serial & parallel)

All results in Figure 9.9 are averaged over 20 runs of HPCCG (serial), e.g., test_HPCCG nx ny
nz. These results are consistent with previous studies that reported roughly 2-4% overheads in
hypervisor-based virtualization environments. The HPCCG (serial) application execution time & MFLOPS
shown in Figure 9.9, with details in Tables 9.2 & 9.3, reflect this moderate overhead for the VM case and
show near-native performance for the VE case.

As shown in Tables 9.4 & 9.5, the serial tests had more consistent MFLOPS performance (except in 1
instance) with Docker runs of HPCCG (serial) than with Native runs of HPCCG (serial), i.e., lower
standard deviation over 20 runs. (It is currently unclear why this was the case.) However, the actual Docker
vs. Native values were almost the same, with Native achieving slightly better performance (lower Time and
higher MFLOPS).

Table 9.5 also shows that over 20 runs the standard deviation in KVM based execution of
HPCCG (serial) was very high (σ = 15 to σ = 30). Further testing will be needed to determine the cause
of this fluctuation but it may be due to a lack of resource pinning when the benchmark was run. Overall,
the Time tests with HPCCG (serial) showed very consistent values for application runtime over the 20 runs,
with the exception of two instances with KVM (kvm-300 and kvm-400).

While these baselines were for single node (HPCCG serial mode), they provide a basis for future

71

0"

100"

200"

300"

400"

500"

100" 200" 300" 400"

Se
co
nd

s(

Problem(size((N)(
(Dimensions(nx=ny=nz=N)(

Time(Summary:(Total(

Na*ve"

Docker""

KVM"

(a) HPCCG (serial) Time in seconds

1300$

1350$

1400$

1450$

1500$

1550$

100$ 200$ 300$ 400$

M
Fl
op

s'

Problem'size'(N)'
(Dimensions'nx=ny=nz=N)'

MFLOPS'Summary:'Total'

Na*ve$

Docker$$

KVM$

(b) HPCCG (serial) MFLOPS

Figure 9.9. HPCCG (serial) under Native, Docker and KVM at different problem sizes N .

0	

50	

100	

150	

200	

100	 200	 300	

Se
co
nd

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

Time	 Summary:	 Total	

Na)ve	

Docker	 	

KVM	

(a) HPCCG (parallel) Time in seconds

2700	
2750	
2800	
2850	
2900	
2950	
3000	
3050	
3100	

100	 200	 300	

M
Fl
op

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

MFLOPS	 Summary:	 Total	

Na,ve	

Docker	 	

KVM	

(b) HPCCG (parallel) MFLOPS

Figure 9.10. HPCCG (parallel) under Native, Docker and KVM at different problem sizesN .

comparisons later in the project. The near native performance of Docker and fast launch times make it a
very interesting candidate for further tests with workloads that do not require multiple kernels.
Additionally, the tools for Docker launch and execution environment customization show great promise.
The integration of more advanced capabilities, e.g., user namespace isolation, will also enhance the
viability of this approach to virtualization.

We also repeated these tests same tests with a parallel build of HPCCG, which used MPI and two
compute nodes. These HPCCG (parallel) tests were using just two ranks, each on separate hosts/VE/VM.
The HPCCG problem size was varied as with HPCCG (serial) tests up to the maximum available memory.
The parallel version factors in the number of processors (ranks) to scale the problem up accordingly and
therefore the N = 400 case exceeded the available memory for the HPCCG (parallel) tests. The results for
Time and MFlops are shown in Figure 9.10.

9.3.3.2 HPCCG MPI scale-up

In addition to repeating MPI based runs to match the serial HPCCG test we also ran some very small
scale-up tests with HPCCG. While the testbed is still being setup, we had two nodes available so did the
scale-up based on the number of cores-per-node (32). The test includes more variation in the number of
ranks used and illustrates increased number of ranks per node with roughly fixed problem size. The results

72

from these tests are shown in Figure 9.11, which show the average value over 5 runs at each NumProc.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

291	 231	 183	 145	 115	 101	 91	 85	 80	 76	 72	

Se
co
nd

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

Time	 Summary:	 Total	

Na.ve	

Docker	 	

KVM	

(a) Scale-up test with HPCCG MPI Time in seconds

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

291	 231	 183	 145	 115	 101	 91	 85	 80	 76	 72	

M
Fl
op

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

MFLOPS	 Summary:	 Total	

Na.ve	

Docker	 	

KVM	

(b) Scale-up test with HPCCG MPI MFLOPS

Figure 9.11. MPI scale-up test of HPCCG (parallel) under Native, Docker and KVM with a
problem sized for approximately 50% of 48GiB/per node. (See details in Table 9.10)

The values for N try to keep the problem size at roughly 50% of available memory. The VE and VM
are allocated 48G of memory and the Native system has 64G, so the Native tests are slightly lower
percentage of total memory but it is reasonably close for our purposes. As with the earlier tests, the value
of nx = ny = nz = N and the same number of nodes (2) are used with these tests for a total of 64 cores
(32 per node). The number of ranks used in the tests ranged between 1 to 64 (mpirun -np X ...) to
show scale-up as detailed in Table 9.1. The N value was calculated so that nx ∗ ny ∗ (NumProcs ∗ nz) is
roughly equivalent to 50% (PctMem = 50%) of the memory (TtlMem = 48GiB).

MemPerRank =
TtlMem× PctMem

NumProcs

N =
⌊

3
√
MemPerRank

⌋
For example, with 64 MPI ranks NumProcs = 64, each getting MemPerRank amount of data, we set
the value of the dimension parameter for HPCCG to N = 72, assuming TtlMem ≈ 48G→ 49747160.

388649.68 =
49747160× 0.50

64

72 =
⌊

3
√
388649.68

⌋

73

NumProcs MemPerRank N (dim)
1 24873580.00 291
2 12436790.00 231
4 6218395.00 183
8 3109197.50 145
16 1554598.75 115
24 1036399.17 101
32 777299.38 91
40 621839.50 85
48 518199.58 80
56 444171.07 76
64 388649.69 72

Table 9.1. HPCCG MPI ranks and associated dimension parameter nx = ny = nz = N , and amount
of per-rank memory for problem sized for approximately 50% of 48GiB memory per node.

74

Dimensions Native Docker KVM
100 6.293491 6.304308 6.4892095
200 51.36137 51.43617 52.79015
300 176.93065 177.30215 184.34125
400 412.2705 412.85375 426.21125

Table 9.2. HPCCG (serial) Times in seconds averaged over 20 runs under Native, Docker and KVM
at different problem sizes N (Dimensions N = nx = ny = nz).

Dimensions Native Docker KVM
100 1515.2195 1512.6185 1469.752
200 1485.33 1483.3495 1445.288
300 1455.2405 1452.1705 1397.405
400 1480.3515 1478.2645 1432.4365

Table 9.3. HPCCG (serial) MFLOPS averaged over 20 runs under Native, Docker and KVM at dif-
ferent problem sizes N (Dimensions N = nx = ny = nz).

Dimensions Native Docker KVM
100 0.00931357 0.005463481 0.085735511
200 0.146079607 0.610579775 0.598340949
300 0.751579199 0.31564575 4.333634987
400 0.62727787 0.978753443 8.432111397

Table 9.4. Standard Deviation of HPCCG (serial) Times in seconds averaged over 20 runs under
Native, Docker and KVM at different problem sizes N (Dimensions N = nx = ny = nz). Large
values are highlighted in red.

Dimensions Native Docker KVM
100 2.240769311 1.311653336 18.71753824
200 4.218194924 16.89799536 15.75161232
300 6.168290282 2.584735505 30.945298
400 2.250406455 3.498747859 27.07518737

Table 9.5. Standard Deviation of HPCCG (serial) MFLOPS averaged over 20 runs under Native,
Docker and KVM at different problem sizes N (Dimensions N = nx = ny = nz). Large values are
highlighted in red.

75

9.4 iperf: TCP Bandwidth

9.4.1 Description

We ran basic network performance measurements using the iperf benchmarking / tuning utility [54].
The tests provide data about the Native (host) performance and the comparison when running under Docker
and KVM.

9.4.2 Setup

The tests were limited to the 10GigE interface in the testbed. The tests focused on the TCP bandwidth
between two nodes in the testbed. The tests used iperf version 2.0.5-2 for x86-64. The tests were run as
shown below in Figures 9.12 using the standard client/server setup for to the tool. The The host and guest
Linux kernel was the same (version 3.10.0-123.8.1.el7.x86_64), with the host (Native) running Red Hat
Enterprise Linux (RHEL) v7.0 and the guests running CentOS v7.0. This is the same hardware and
software configuration used for the HPCCG tests discussed in Section 9.3 on page 69.

The virtualization based tests used KVM v1.5.3-60.el7_0.7 with the VM allocated resources fixed at 31
CPUs and 48G of memory. The VE tests used Docker v0.11.1-22.el7 configured with libcontainer and the
VE was allocated resources fixed at 31 CPUs and 48G of memory. The default TCP window size was used
for all tests, which was 95.8 KBytes for the Native and KVM client. The Docker client defaulted to a TCP
window size of 22.5 KBytes, with one exceptional case that defaulted to 49.6 KBytes.

1 # Start server, binding to 10Gig interface
2 [mpiuser@160d5aae2f91 ~]$./iperf_2.0.5-2_amd64 -s -B 10.255.1.10
3

4 # Start client TCP test
5 [mpiuser@160d5aae2f91 .ssh]$./iperf_2.0.5-2_amd64 -c 10.255.1.10

Figure 9.12. Example showing the commands for staring the server and client of iperf test.

9.4.3 Discussion & Observations

The tests were each run 10 times and the averages are shown in Table 9.6. The Native tests achieve
most of the 10GigE bandwidth, and Docker achieved near native performance. The KVM configuration did
much worse than Native and Docker, which is an issue we plan to look into further as we proceed with the
networking tasks. This initial testing was simply to gain a baseline for a basic bridged networking
configuration. One possible point for further testing will be to see how the KVM performance changes if
we use a ‘virtio’ interface instead of the ‘e1000’ interfaces. Further details about the KVM configuration
used in this round of testing are given in Appendix C.

Platform Transfer (Gbytes) TCP Bandwidth (Gbits/sec)
Native 11.5 9.89
Docker 10.88 9.331
KVM 3.086 2.651

Table 9.6. Network Bandwidth for TCP tests with iperf between two nodes on the 10GigE interface.

76

9.5 On-demand Network Enclaving via SDN & OpenStack’s Neutron

9.5.1 Description

An important element in creating customizable secure enclaves is the ability to support on-demand
tenant resources, while maintaining isolation between tenants. We completed the setup and demonstrated
on-demand tenant network provisioning using OpenStack and Software Defined Networking (SDN).

9.5.2 Setup

There are two Arista 7150S-64 10GigE switches in the testbed. The vendor provides plugins and
drivers for OpenStack integration of Layer 2 and Layer 3 functionality. The Layer 2 plugin enables the
OpenStack networking service, Neutron, to communicate with Arista’s CloudVision eXtension (CVX)
through an Arista mechanism driver (plugin) using the Arista EOS command API (eAPI) to provision
tenant networks (Figure 9.13). The eAPI allows applications and scripts to have complete programmatic
control over the switch. CVX has visibility of the entire network environment and provisions VLANs on
switch interfaces so that the compute instances on the compute nodes have connectivity to the appropriate
tenant VLANs. In response to router create/delete and interface add/remove requests in the OpenStack
environment, appropriate SVIs (Switched Virtual Interfaces) are created on respective switches.

CVX: Arista’s CloudVision eXtension
eAPI: Arista’s EOS command API
OVS: Open vSwitch

Create Tenant
Network via

Neutron plugin

OVS

Arista L3
Service Plugin

CVX

Arista TOR

Compute

node

Arista

ML2

Arista L3
Node

Spine

Neutron

OVS

eAPI

Figure 9.13. Illustration of OpenStack interface creating dynamic tenant networks via
Arista’s Neutron L2 plugin.

The demonstration was performed using the Arista Level-2 plugin for OpenStack’s Neutron
component. This configuration allows an authenticated OpenStack user to create and delete their own
private networks for use by their compute instances. Figure 9.13, shows a screen capture of the OpenStack
interface for creating a new Neutron network, which is the interface to the underlying Neutron ML2 Arista
plugin (depicted in block diagram) that communicates with the switch to create the new VLAN. The

77

network isolation is maintained at the Arista switch via VLAN’s that are dynamically created from the
OpenStack dashboard interface, i.e., users do not interface with the switch/network controller directly.

Remarks There were some initial complications related to configuration of the software/hardware that
slowed the setup of the OpenStack/Arista environment. Most of these were resolved after an upgrade to the
embedded operating system on the Arista switch, i.e., upgraded to EOS-4.14.6M.

9.5.3 Discussion & Observations

In the SE testbed environment we use SDN to control VLAN trunking at the switch level. The
per-tenant networks (VLANs) are created by either standard users and/or system administrators using
OpenStack. To demonstrate the functionality, we performed a basic workflow test and verified the
configurations at the switch level using an out-of-band network administrator utility.6 Figure 9.14,
illustrates the creation of a dynamically allocated tenant network (“T4NET”); also shown is the before and
after view at the switch level for the defined VLANs. In Figure 9.14, the new tenant network “T4NET”
corresponds to switch VLAN 304 named “VLAN0304”.

New dynamic VLAN
(tenant network “T4NET”)

Figure 9.14. View of dynamically created tenant network “T4NET” with OpenStack and dis-
play of underlying switch details (before/after add).

Later, when the user removes the network via the Dashboard interface, the switch is updated to delete
the corresponding VLAN (e.g., “VLAN0304”). The network definitions can persist beyond VM
instantiation, i.e., deleting an OpenStack compute instance does not remove the associated networks. Thus,
the tenant (or administrator) can define networks and reuse them across multiple experiments. In
Figure 9.15), we show the life-cycle from the low-level switch view:

• the tenant network (T4NET at VLAN0304) exists,
6Appendix D contains a series of screen captures demonstrating the steps involved in on-demand network enclaving with SDN

& Neutron.

78

• the tenant’s VM instances are terminated, and
• then the tenant network is removed (T4NET at VLAN0304).

Again, these captures were taken from the low-level utility for the Arista switch. A standard user would not
need to function at this level and would only see the OpenStack Dashboard or CLI interface to the Neutron
definitions.

1. T4NET Exists
(VLAN304)

2. VMs Instances
Terminated

3. T4NET Removed
(VLAN304)

Figure 9.15. View of Arista switch details for life-cycle of dynamic tenant network
(“T4NET”), which was created and later deleted using OpenStack Dashboard.

79

9.6 Network Isolation Testing

9.6.1 Description

The tenants in a secure enclave may have private regions on the network. This network isolation can be
used to restrict node access to a particular user. A VLAN will be the primary network isolation mechanism
employed in our efforts. Therefore, we reviewed some of the most common attacks against VLANS,
including: (i) MAC flood attack, (ii) DHCP Starvation Attack, (iii) Multicast Brute Force Attack, and
(iv) VLAN Hopping attack. We then created a set of tests to evaluate these attacks within an OpenStack
Neutron testbed to determine the effects of these “attacks”.

Note, in conjunction with this effort, we performed a literature review to identify metrics that could be
used to quantify isolation. There was very little work found with a focus on the measurement of isolation.
Therefore, due to this lack of existing prior work, the most practical approach will be to define relevant
areas in which isolation will be necessary, e.g., network isolation, memory isolation, CPU isolation, etc.
Then create tests that probe each of these individual isolation areas. The probing may range from brute
force to more elegant approach. A suitable metric would then be a pass/fail, where a configuration or
implementation is said to “pass” if all the probes measuring the isolation properties are unsuccessful in
breaking these properties, and “fail” if the probes do break the isolation properties. Hence, in this section
we discuss a set of network isolation tests that were developed for the evaluation of mostly brute force
VLAN tests using this boolean pass/fail metric.

9.6.2 Setup

The tenant networks used VLAN tagging mechanism to isolate the network traffic. We performed a
review of standard “VLAN attacks” to develop a set of preliminary network isolation tests. The tests are
intended to probe the integrity of the isolation mechanisms used in OpenStack’s Neutron component. The
setup for the tests included two nodes, each with 1 KVM VM, which are assumed to both be apart of 1
enclave. The enclave was arbitrarily assigned VLAN 6. The two VMs “ping” back and forth in order to
produce traffic. The attacker is connected to the same switch with 1 VM using VLAN 10 (Figure 9.16).

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Green:%%Legi2mate%User%

Red:%%%%%%Malicious%User%

Legend%

Enclave%1% Enclave%2%

Figure 9.16. Network isolation testbed configuration.

The assumptions here are that the host is not used, only a VM with a bridged network and the VLAN
differs than that of the target. The data for the experiment was gathered using tcpdump, which was run on

80

each host and each guest. The purpose is to monitor traffic to determine if a leakage takes place. 7

9.6.3 Discussion & Observations

A description of the current isolation tests is given below along with a summary of results in Table 9.7.
Note, a failed test means the isolation remained intact – so we want the “attack tests” to fail. In general, the
isolation mechanisms were maintained (tests failed) with the exception of the DHCP-starvation test, which
was able to exhaust available addresses.

1. MAC Flood Test

• Tests switch’s configuration of MAC table per port
• Goal: Overflow MAC table on port, making switch operate like a hub

2. Multicast Brute Force Attack

• Tests processing speed of switch
• Goal: Multicast packets will leak into VLANs of other users

3. VLAN Hopping (Double Tagging)

• Tests configuration of VLAN filtering
• Goal: Malicious user able to join other VLANs

4. DHCP Starvation Attack

• Tests ability to interfere with dynamic host addressing services
• Goal: Malicious user able to consume all possible IPs for new enclave

Test Name Status Remarks
MAC Flood Failed Attach from VLAN10 should overflow switch memory,

but does not. Did produce DoS attack due to
flooding of switch. Can inject packets into other
VLANs if using the management VLAN (VLAN 1)

Multicast Brute Force Failed No leakage, increased ping overhead ~2ms
VLAN Hopping Failed Due to having only one switch for test
DHCP Starvation Success Worked in separate scenario. Three VMs on

one host with one handing out IPs. DHCP server
failed to hand out IPs after roughly a minute.

Table 9.7. Summary of isolation testing results. (Note: Failed test→ Isolation remained intact.)

9.6.3.1 Description of Isolation Tests

Here we provide a bit more detail about what each tests is doing with illustrative graphics to clarify the
objective of the isolation test.

7Note, these isolation tests were run on a separate testbed than the primary SE testbed, which did not include the Arista switch.
The evaluation system for the isolation tests did contain a single physical network switch with SDN support.

81

MAC Flood Test This tests a switch’s configuration for the per port MAC table. If the test is successful,
the attack will overflow the MAC table on a specific port causing the switch to operate like a hub. The
general intention of the MAC Flooding test is outlined in Figure 9.17.

Green:&&Legi*mate&User&

Red:&&&&&&Malicious&User&

Legend&

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Flood%Network%with%
Ethernet%Packets:%
Source%MACs%are%
Random%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Switch%MAC%table%
is%overwhelmed%
and%other%traffic%
is%slowed%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

VLAN%Traffic%is%
broadcast%to%all%
connected%nodes!%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Start

Step 1: Enclave2 Floods Network
 with Ethernet Packets,
 Source MACs are Random

Step 2: Switch MAC table is
 overwhelmed and other traffic
 is slowed

Step 3: VLAN Traffic is broadcast
 to all connected nodes!
 (Attack succeeds)

Figure 9.17. Illustration of the steps for “MAC Flooding”.

Multicast Brute Force Attack This tests the processing speed of a switch. If the test is successful, the
multicast packets will leak into the VLAN(s) of other users. Thus allowing the attacker to inject packets
into VLAN(s) outside the the enclave where they were created. This test is outlined in Figure 9.18.

Green:&&Legi*mate&User&

Red:&&&&&&Malicious&User&

Legend&
Start

Step 1: Enclave2 Floods network in
 rapid succession with mulicast
 packets in hopes of leaking
 packets into other VLANs .

Step 2: Switch receives packets
 too quickly and leaks packets.
 (Attack succeeds)

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Flood%network%in%
rapid%succession%
with%mul=cast%
packets%in%hopes%of%
leaking%packets%into%
other%VLANs%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Switch%receives%
packets%too%quickly%
and%leaks%packets%

Enclave%1% Enclave%2%

Figure 9.18. Illustration of the steps for the “Multicast Brute Force Attack”.

82

VLAN Hopping (Double Tagging) This tests if an ingress filtering on the connected switch is configured
properly. The connected switch is the second switch on the packet’s path in the route to destination. If the
test is successful, a malicious user could potentially join other VLANs. The test is outlined in Figure 9.19.

Green:&&Legi*mate&User&

Red:&&&&&&Malicious&User&

Legend&
Start

Step 1: Enclave 2, on VLAN 10, sends
 packets tagged with VLAN 6.

Step 2: Packets pushed to victim VLAN,
 no return traffic can pass.
 (Attack succeeds)

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Switch #1

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Switch #2

Send%packets%
tagged%with%
VLAN%6%

Switch%uses%na>ve%VLAN%(port%specific)%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Switch #1

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Switch #2

Send%packets%
tagged%with%
VLAN%6%

Switch%uses%na>ve%VLAN%(port%specific)%

Packets%pushed%
to%vic>m%VLAN.%
No%return%traffic%

Figure 9.19. Illustration of the steps for the “VLAN Hopping (Double Tagging) Attack”.

DHCP Starvation Attack This test is slightly different than the others as it is not testing the VLAN
directly, but is generally applicable to network addressing. This attack tests the configuration of the DHCP
server and the allocation of addresses on the network. If the test is successful, a malicious user could have
all possible IP addresses allocated, leaving none for new enclaves (Figure 9.20). Also, in theory if a rogue
DHCP server could be launched, this could provide a basis for interposing on IP services in the network.

Green:&&Legi*mate&User&

Red:&&&&&&Malicious&User&

Legend&
Start

Step 1: Enclave 2, on VLAN 10, sends
 packets tagged with VLAN 6.

Step 2: Packets pushed to victim VLAN,
 no return traffic can pass.
 (Attack succeeds)

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Network backplane

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Switch #1

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Switch #2

Send%packets%
tagged%with%
VLAN%6%

Switch%uses%na>ve%VLAN%(port%specific)%

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Compute Node

L2Agent

Guest

Switch #1

VLAN%(6)% VLAN%(6)% VLAN%(10)%

Enclave%1% Enclave%2%

Switch #2

Send%packets%
tagged%with%
VLAN%6%

Switch%uses%na>ve%VLAN%(port%specific)%

Packets%pushed%
to%vic>m%VLAN.%
No%return%traffic%

Figure 9.20. Illustration of the steps for the “DHCP Starvation Attack”.

83

9.7 Controlling VM access to Lustre with IO-Forwarding

9.7.1 Description

In the Virtual Machine (VM) case, there are multiple kernel instances, one belonging to the host and
another to the guest. The VMs use QEMU/KVM for the OS isolation mechanism and filesystem re-exports
or forwarders from the host to the guest VM as filesystem partitioning mechanisms. For Lustre
re-exporting we compared the performance of two remote procedure call (RPC) protocols: Network File
System (NFS) and Virtualized FileSystem (VirtFS). The VirtFS implementation is based on an RPC
protocol from Plan9 that is supported in the standard Linux kernel but disabled by default.

9.7.2 Setup

The KVM host connected to the Lustre storage servers by a 10 GigE interface. These KVM hosts ran
on Red Hat Enterprise Linux 7 (Linux 3.12 + kernel options beginning with CONFIG_NET_9P and
CONFIG_9P_FS). A Lustre 2.7.0 client allowed the KVM hosts to mount the entire Lustre file system.
KVM based VMs ran inside these KVM hosts using the same server kernel version and 9p kernel options
as the KVM hosts. Then either NFS or VirtFS were employed as IO forwards to expose subtrees of the
host’s Lustre file system in the guest VMs. The various IO tests were performed against the file system in
these KVM guest systems. When using VirtFS as the IO forwarder, user-level networking (i.e, QEMU’s
‘-net user’ option) was employed. The setup is summarized as follows:

1. Host with 9p extensions enabled and Lustre 2.7 client mounts Lustre parallel filesystem
2. 1 VM instance with 9p extensions enabled instantiated
3. Host exports only certain Lustre areas to the VM
4. VM has indirect access to Lustre via exported fs

• VM access to Lustre marshaled by NFS / VirtFS

5. Run benchmarks from within the VM

Single process FIO with NFS and VirtFS passthrough: The FIO test suite was employed to obtain I/O
performance for a single I/O process from a single VM using both NFS and VirtFS as the filesytem
passthrough. Table 9.8 show the results. The command used to produce the results displayed in Table 9.8:

fio --stonewall --ioengine=sync --iodepth=1 --rw=write --bs=1024k \
--direct=0 --size=128g --numjobs=1 --fallocate=none --loops=3 \
--ramp_time=10s --end_fsync=1

Single VM, single I/O process with VirtFS and NFS passthrough results
FIO Lustre Read (MB/s) Lustre Write (MB/s)

Native 1123.4 1154.9
NFS 75.18 69.62

VirtFS 599.2 697.0

Table 9.8. FIO single client I/O performance (IO-Forwarding from host to VM).

84

Multiple process FIO with VirtFS passthrough: The FIO test suite was employed to examine how I/O
performance would scale using the VirtFS passthrough. The command used to produce the results
displayed in Table 9.9:

fio --stonewall --ioengine=sync --iodepth=1 --rw=write/read --bs=1024k \
--direct=0 --size=128g --numjobs=N --fallocate=none --loops=3 \
--ramp_time=10s --end_fsync=1

Where N was 1,2,4,6,8,16 and --rw was either read or write

Single VM, multiple I/O processes with VirtFS passthrough results
NumProcs VirtFS Read (MB/s) VirtFS Write (MB/s)

1 599.2 697.0
2 1057.3 1177.3
4 1095.2 1174.6
6 1102.2 1177.8
8 1120.7 1176.9

16 1090.4 1176.6

Table 9.9. FIO multiple processes writing I/O performance. Note, all on single host (1 node). IO-
Forwarding from host to VM via VirtFS.

Single process IOR with NFS and VirtFS passthroughs: The IOR test suite was employed to obtain
I/O performance for a single I/O process from a single VM using both NFS and VirtFS as the filesytem
passthrough to the VM. Below is the command used to produce the results displayed in Table 9.10:

IOR -a POSIX -b 128g -o 128G_file -F -E -g -v -e -w -r -k -t 4m -i 5 -d 10

Single VM, single I/O process with VirtFS and NFS passthrough results
IOR Lustre Read (MB/s) Lustre Write (MB/s)

Native 951.0 907.3
NFS 76.40 76.64

VirtFS 747.74 761.5

Table 9.10. IOR single client file-per-process I/O performance (IO-Forwarding from host to VM).

Multiple process IOR with VirtFS passthrough: Parallel performance of the Lustre filesystem was
evaluated through the VirtFS passthrough using the IOR test suite. Processes numbers ranged 1 to 16
within the VM. Thus the largest aggregate file size from the single VM was 2 TB. Below is the command
used to generate the results of Table 9.11.

mpirun -np <NumProcs> IOR -a POSIX -b 128g -o 128G_file \
-F -E -g -v -e -w -r -k -t 4m -i 5 -d 10

Here the MPI library was employed to parallelize the IOR runs even though they were all on one VM.

85

Single VM, multiple I/O processes with VirtFS passthrough results
NumProcs VirtFS Read (MB/s) VirtFS Write (MB/s)

1 747.74 761.50
2 1169.36 1234.71
4 1197.24 1232.71
8 1212.29 1235.13

16 1178.39 1233.02

Table 9.11. I/O Performance for multiple IOR processes per VM client.

9.7.3 Discussion & Observations

All I/O tests were performed from within a single KVM based VM residing on a single host. Caching
effects were mitigated in our I/O tests by using file sizes per process that were 2 times the amount of RAM
and aggregate file sizes ranged from 128 GB to 2 TB. Both Table 9.9 and Table 9.11 display quick, clear
convergence to almost constant performance levels that held despite growing aggregate file sizes. This is a
clear indication that caching effect were minimized.

NFS as a filesystem passthrough performed at least 10 times slower than native and 8 to 10 times
slower than VirtFS in all tests. Single client, single process performance from VirtFS was about 30% less
performant than single client, multiple process performance. The latter displayed close to native
performance from 2 through 16 processes and showed signs that perhaps its performance was capped by
the 10 GigE, 1250 MB/sec, link to storage (See Table 9.11). An immediate unanswered question here is
the upper limits to the performance of the VirtFS passthrough method. VirtFS established itself as a viable
candidate for filesystem partitioning in future work.

Future investigations will explore how the VirtFS I/O passthrough performs as I/O tasks span multiple
VMs. Additional work will also explore bandwidth limits of the VirtFS passthrough.

86

9.8 Controlling VE access to Lustre with kernel isolation

9.8.1 Description

In the VE case, there is a single kernel instances, e.g., Linux, that accesses a Lustre parallel file-system
(PFS). The VE uses kernel isolation (containers) and bind-mounting to control the guest’s access to the
PFS. Our tests of a VE accessing a PFS used LXC for its user namespace capability. With this
configuration, overheads are minimized both in the virtualization mechanism (containers as lightweight
VM’s) and by avoiding multiple filesystem layers to bridge the PFS to inside the user’s environment.

9.8.2 Setup

The filesystem directory structure was set up such that through a combination of bind-mounting for
isolation and user namespaces for access rights enforcement, a VE is restricted both in its visibility of the
filesystem namespace and its capability to perform filesystem modifications other than the designated
unprivileged user.

The tests were run with hosts using Red Hat Enterprise Linux 7 (Linux 3.12 + kernel options
CONFIG_USER_NS). The host kernel was using a Lustre 2.7.0 client that was connected via 10 GigE to
the Lustre storage servers. The tests used The guest LXC containers ran unprivileged on the host (via user
namespaces), but the guests had root access within the container.8

The steps for preparing the VE tests were the following:

1. Host mounts Lustre parallel filesystem
2. Host “bind mounts” a section of Lustre filesystem for use by a user from within the VE
3. Two LXC based VE instances (on separate hosts)
4. VE has indirect access to Lustre via mounted fs

• VE access to Lustre marshaled by Linux VFS

5. Run benchmarks from VE

FIO benchmark: We use the FIO benchmark to compare single tenant performance between the Native
(host-level access with no virtualization) to VE performance.
Test command for results shown in Table 9.12:

fio --stonewall --ioengine=sync --iodepth=1 --rw=write --bs=1024k \
--direct=0 --size=128g --numjobs=2 --fallocate=none --loops=3 \
--ramp_time=10s --end_fsync=1

Metric Native VE
Write Throughput (MB/s) 1107.4 1109.5

CPU Load (%) 70.25 65.13

Table 9.12. FIO performance comparison between Native and VE (bind-mount from host to VE).

8Note, the VE benchmark tests did not require root permissions in the guest context but ran with this option to demonstrate that
there was no additional overhead.

87

compute0 compute1 compute2 compute3 compute4

VE VE VE VEVE

compute5 compute6 compute7 compute8 compute9

VE VE VE VEVE

mds

MDT

tenant0 tenant2tenant1 tenant3 tenant4

tenant5 tenant7tenant6 tenant8 tenant9

oss1

oss3

OSTs

oss2

oss4

Shared
Management
Infrastructure
(OpenStack,

Puppet)

Customizable
Compute

Environments

Shared
Network

Infrastructure
(SDN

controlled)

Shared
Storage

Infrastructure

Figure 9.21. Diagram showing the multiple tenant setup using several VEs over multiple hosts
all connected to Lustre shared storage.

IOR Setup: Parallel performance of the Lustre filesystem was evaluated using IOR comparing the
performance between 1 and 2 nodes (1 process per VE per node).
Test command for Table 9.13:

ior -b 128g -t 4m -a POSIX -F -i 5 -E -C -g -v -e -w -r -d 10

Processes Native Write (MB/s) Native Read (MB/s) VE Write (MB/s) VE Read (MB/s)
1 907.3 951.0 939.7 951.8

2 (1 per node) 1629.2 1794.7 1818.2 1865.2

Table 9.13. IOR performance comparison between Native and VE, for 1 and 2 nodes (processes).

Multi-tenant IOR Setup: We also ran the IOR benchmark using a more realistic multi-tenant
configuration across multiple hosts. The software setup was the same as previously described but the tests
spanned multiple hosts, each running a VE representing a separate tenant (Figure 9.21). The results of this
10 node IOR benchmark test are shown in Figure 9.22.

9.8.3 Discussion & Observations

The LXC based VE achieved near native I/O performance in both filesystem benchmarks. The FIO
tests verified that performance of the VE setup is the same as native performance on a single client.
Running tests with IOR took advantage of the parallel capabilities of the Lustre filesystem and showed that
performance scales equally well between the native and VE cases as the number of VE’s (or tenants) are
accessing the filesystem concurrently.

Although parallel filesystem benchmarks are typically used to measure I/O performance of a single
tenant, running a single parallel job, this setup is demonstrative of concurrent streaming I/O from multiple

88

Figure 9.22. IOR performance over 10 nodes comparing Native and VE (LXC). Illustrates
VE isolation without I/O performance penalty.

VE’s. Our tests were coordinated for the purpose of obtaining an aggregate value, but a scenario where
VE’s are engaging in uncoordinated I/O would also be able to take advantage of Lustre’s parallel
performance. These tests are representative of streaming I/O however.

We observed a few instances where the VE performed slightly better than native, which is presumably
due to variations in the scheduling policy for processes and containers in the Linux kernel. The Lustre
security is maintained by restricting all access to standard VFS operations within the VE, i.e., only the host
kernel has a network client to the storage servers.

89

Chapter 10

Secure Compute Vulnerability Assessment

10.1 Introduction

This work consists of many components interconnected via some form of interconnect. These
components include secure compute, network, and shared storage. In order to provide isolation for each
user, the scope of the secure compute component will be reviewed to assess the existing vulnerabilities that
are present. The components that will be evaluated include the Xen hypervisor, the Kernel-based virtual
machine (KVM), Linux containers (LXC), Docker, and a brief examination of the Linux kernel.

10.2 Evaluation

To perform this assessment, we compiled relevant common vulnerabilities and exposures (CVEs) and
characterized these vulnerabilities based on the type of exploit and the different regions of the platform that
are vulnerable to those attacks.

In order to fully clarify the operating model upon which our assessment is based, we made several
assumptions of the environment. The following assumptions were made:

1. Users are allocated resources on a per node basis. Specifically, this assumes that any resources
allocated on a physical node should be given solely to that user. This is a single tenant environment.
By making this assumption, we are restricting the amount of possible attacks by removing denial of
service (DoS) attacks against the hosting node.

2. A user may only access to a VM or VE. In other words, the user should never be given access to the
host directly.

3. The host and the guest will likely be running some version of the Linux kernel. The use of OS level
virtualization solutions forces this assumption to be true as the same kernel must be used on both the
host and guest. However, with the use of system-level virtualization, this assumption may still hold
but it is not necessarily true that both the host and guest will use the same kernel.

These assumptions limit the goals of the attackers to three types: (i) privilege escalation of the attacker,
(ii) unauthorized access to memory and storage including shared storage, and (iii) arbitrary code execution
on the host.

A very serious type of attack is for the attacker to gain privileges on the host (i.e. type (i)). By doing
this, the attacker can raise their privilege from a normal user to that of a superuser on the system allowing

90

Solution Rel. CVEs Privilege Escalation Unauthorized Access Arbitrary Code Exec.
Xen 53 43.4% 37.4% 18.9%

KVM 26 34.6% 23.1% 42.3%
LXC 2 50% 50% 0%

Docker 3 66.7% 33.3% 0%

Table 10.1. Virtualization solutions and their corresponding attack vulnerabilities.

Solution Rel. CVEs x86 Emu. Devices Userspace tools Hardware VMM/Kernel
Xen 53 22.6% 22.6% 20.8% 5.7% 28.3%

KVM 26 7.7% 69.2% 0% 0% 23.1%
LXC 2 0% 0% 50% 0% 50%

Docker 3 0% 0% 100% 0% 0%

Table 10.2. Virtualization solutions and their vulnerabilities’ targeted region of the system.

the installation of malicious software that could allow for long term superuser access (i.e. kernel-level
rootkit). Additionally, the attacker will have the ability to subvert the network isolation provided by
VLANs and may attempt to join other VLANs in order to sniff traffic or perform network-based attacks on
other nodes. Shared-storage systems would also be vulnerable if a system becomes compromised as
described, because the attacker with root privileges can assume any UID on the system. If mechanisms
such as user namespaces, sVirt, 3rd party authentication (e.g. Kerberos), are either not used or subverted,
the attacker is free to access all other users’ data on the shared file system.

Unauthorized access to memory and storage, (ii), is similar to (i) with respect to the violations of
isolation between users and users’ data. This is evident with the ability of the attacker to be able to obtain
sensitive data in memory or on the secondary storage. However, the largest threat of such an attack is to
obtain sensitive information that is stored on the host. With the assumption of a single tenant environment,
the threat is lessened but still present.

In (iii), an attacker may execute arbitrary code on the host machine. Allowing the attacker to perform
such actions could compromise the integrity and trust of the host.

We have isolated our assessment to three areas: system-level virtualization solutions, OS level
solutions, and the host and guest kernels. Within the scope of system-level virtualization, we will be
examining both the Xen hypervisor and KVM. For OS level virtualization, LXC and Docker are assessed
and the Linux kernel is reviewed as it will likely be used for both the host and guest kernel, though not
necessarily the same kernel version for both.

The results of this analysis are summarized in Table 10.1 and Table 10.2.

10.2.1 System-level Virtualization

Within the scope of system-level virtualization, we will be performing a vulnerability assessment on
two solutions: (i) Xen and (ii) KVM. For both of these hypervisors, we will characterize the potential
attacks based on the region of the system targeted to perform the exploit, the type of exploit (i.e., the three
types listed prior), and the operating dependency for the Xen hypervisor (e.g., an attack that is only
successful when using full virtualization rather than para-virtualization). The regions of the systems that
may be potentially targeted include the emulation of the x86 and AMD64 platforms, any emulated devices

91

available for use by the VM including para-virtualized devices, user-level tools and libraries, the hypervisor
and hypervisor related libraries, and the underlying hardware architecture.

10.2.1.1 The Xen Hypervisor

The Xen hypervisor [8] has been available for use from 2003 to present with versions 3.4 and 4.2-4.4
currently supported. The version limitation has restricted our assessment only to the these versions. While
this does not include the full lifespan of the Xen hypervisor, it is sufficient to obtain a reasonable, modern
assessment.

We have found that there are 124 total CVEs with respect to Xen. However, after limiting these CVEs
based on our assumptions, this reduces the amount of valid CVEs to 53. Of these CVEs, almost an
identical amount are based on Xen operating in either full virtualization, known as HVM, or
para-virtualization with full virtualization required for 28.3% of the CVEs and para-virtualization required
for 24.5%. The remaining CVEs had no specific operating dependency.

Privilege escalation provides for 43.4% of the CVEs for the Xen hypervisor. The attacks are present for
privilege escalation of both unprivileged and privileged users in the guest environment with the escalation
resulting in the potential to escape from the VM and access the host. Unauthorized access to memory or
storage accounts for 37.7% of the CVEs suggesting that both privilege escalation and unauthorized access
to sensitive information will be the primary attacks used in future zero-day exploits for Xen.

The regions of the systems that are targeted for these CVEs are primarily related to the hypervisor or
hypervisor-level tools with 28.3%. Both the platform emulation and emulated devices are next with 22.6%
each. User-level tools make up 20.8% of the CVEs and hardware related regions having the smallest
amount with 5.7%. These results suggest that the regions of the system that require protection from future
exploits are varied and not easily hardened with external mechanisms such as Xen’s Xen security module
(XSM), which implements a protection mechanism much like SELinux.

It should be noted that the CVEs we examined specific to Xen have all been fixed.

10.2.1.2 KVM

The KVM hypervisor [57] is a relatively new hypervisor in comparison to Xen and takes a more
traditional approach to performing full system-level virtualization (i.e. trap-and-emulate style). Because it
is only performing full system-level virtualization, the complexity of the hypervisor is less than that of Xen
and it is evident with respect to this assessment.

Currently, there are 26 CVEs matching our assumptions related to KVM or the user-level supporting
tools known as QEMU, which is used for VM initialization as well as device emulation. Of these CVEs,
there was a relatively even distribution of CVEs among the three types of attacks we are focusing on for
this work. Arbitrary code execution has the largest proportion of CVEs with 42.3% and privilege escalation
accounting for 34.6%. Unauthorized memory access had a total of 23.1% of the CVEs.

There are only three regions of the system that have vulnerabilities. Device emulation and
implementation errors within the hypervisor itself consume a combined 92.3% of the CVEs, while x86 and
AMD64 emulation consume the rest.

These types of vulnerabilities and regions of the system effected suggest that the simplistic
implementation of KVM provides far more benefits with respect to limiting vulnerabilities than Xen’s more
complex implementation. Additionally, many of the vulnerabilities are specific to device emulation, which
is handled, primarily, in userspace on the host. This means an attacker would need to perform additional
attacks in order to fully compromise the host.

92

Like Xen, all of the CVEs listed for KVM have been fixed.

10.2.2 OS level virtualization

With respect to LXC and Docker, both work are inter-related as Docker made use of LXC by default
prior to the 0.9 version where Docker moved to libcontainer as the default virtualization solution. However,
Docker can still make use of LXC rendering all vulnerabilities specific to LXC also potentially affecting
Docker as well.

To evaluate this work, the same categories used in Section 10.2.1 will be applied here. Obviously
changes must be made with respect to the regions of the system that may be exploited due to the different
techniques involved in providing OS level virtualization as apposed to system-level virtualization. Thus,
the categories related to the emulation of the x86 and AMD64 as well as device emulation will be dropped
from this evaluation. However, the regions including userspace tools that leverage LXC (e.g., libvirt),
hardware related, and the kernel.

10.2.2.1 LXC

With respect to LXC, there are few vulnerabilities as compared to the system-level virtualization
approaches. Currently, there are four CVEs specific to LXC, i.e. CVE-2011-4080, CVE-2013-6436,
CVE-2013-6441, and CVE-2013-6456. However, due to the single tenant environment, CVE-2013-6436
should not be considered as exploiting this vulnerability will result in a DoS attack. Likewise,
CVE-2013-6456 is not a vulnerability within LXC but within Libvirt, which may be used to create VEs.
Because the attacker would need access to the host, we are excluding this vulnerability from analysis.

In CVE-2011-4080, there was a logical implementation error with respect to permissions to read the
kernel’s ring buffer (i.e., dmesg). The error dealt with the dmesg_restrict system call that, when set
to 0 allows unprivileged users to perform dmesg. When the system call is set to 1, the user must have the
CAP_SYS_ADMIN capability set in order to perform dmesg. The vulnerability occurs when a
unprivileged user becomes root within the container. At this point, the user is able to perform the
dmesg_restrict system call and set it to 0 allowing the unprivileged view of the system log. This
vulnerability has since been fixed.

The CVE-2013-6441 vulnerability is not actually related to the implementation of LXC, but to a
template used by LXC to assist in the building of a VE. Templates are simply scripts used to build VEs.
This template is the lxc-sshd.in template and the issue is during VE creation, the script performs a
bind mount of the host’s /sbin/init executable with r/w permission inside the guest. A malicious user
could modify or replace the host’s init with their own and escalate privilege by creating another guest
that uses this template. Oddly, the vulnerability is not fixed in all distributions of Linux, though it only
affects LXC versions prior to 1.0.0.beta2 and can be fixed by modifying one line of the template.

10.2.2.2 Docker

There are three vulnerabilities specific to Docker. These vulnerabilities include CVE-2014-3499,
CVE-2014-5277, and vulnerability that was not assigned a CVE number.

CVE-2014-3499 is specific to version 1.0.0 of Docker. In this vulnerability, Docker failed to assign the
correct permissions to the management sockets allowing them to be read or written by any user. This could
allow a user to take control of the Docker service and its privilege. This vulnerability was has since been
fixed.

93

The vulnerability described by CVE-2014-5277 is specific to a fallback from HTTPS to HTTP if an
attempt to connect to the Docker registry fails. This presents the possibility for an attacker to force the
Docker engine to fallback to HTTP if a man-in-the-middle attack was used. Because HTTP is used rather
than HTTPS, unauthorized access to any information sent over the network will occur. In the worst case,
authentication information may be leaked due to an exploit of this vulnerability. This vulnerability was
fixed in Docker version 1.3.1.

The unassigned vulnerability effects Docker versions 0.11 and prior. In these versions, Docker failed to
restrict all kernel capabilities to the guest and instead only restricted a specific set of capabilities. This
could allow a malicious guest to walk the host file system by opening inode 2, which always refers to the
root file system on the host. This was fixed in version 0.12.

10.2.3 The Linux Kernel

The Linux kernel is present in some form for all of the system-level and OS level virtualization
solutions. Currently, the Linux kernel is known to have as many as 1199 CVEs from 1999 to present. Of
these CVEs, 33.1% consist of the three types of attacks we have presented above with the majority of these
related to the unprivileged access to memory and storage. The Linux kernel also contains a significant
attack vector with as many as 339 system calls as of the Linux 3.17 kernel. This is in addition to many
more kernel modules and subsystems with interfaces open to userspace.

10.3 Recommendations

From the assessment that was performed, there are conclusions that may be made. First, system-level
virtualization solutions are more vulnerable than OS level virtualization solutions. Another conclusion that
can be made focuses on the isolation of the majority of vulnerabilities to specific regions of the system.
Based on these conclusions recommendations will be made for the possible design of a secure compute
environment.

As stated prior, system-level virtualization solutions have many more vulnerabilities than OS level
virtualization solutions. Based on the results of Section 10.2.1, this is likely due to the complexity of the
implementation necessary to perform safe virtualization of the underlying architecture as well as the
multiplexing of hardware through emulated devices. However, many of the vulnerabilities for KVM are
due to emulated devices, which reside in userspace. Based on this, a recommendation for this work is to
make use of a mechanism such as sVirt if system-level virtualization is used. The use of sVirt may limit the
damage from the exploit of these vulnerabilities.

The majority of vulnerabilities for KVM, LXC, and Docker are in specific regions of the system. This
is important because future zero-day vulnerabilities will likely be in the same regions. For KVM, the
vulnerabilities are primarily found in device emulation. LXC and Docker primarily have vulnerabilities in
userspace tools or scripts. The protection of these areas can simplify the protection of the host and maintain
the isolation between users. It is recommended that these solutions be used to provide the virtualization
layer for this work.

94

Chapter 11

Network & Storage Vendor Analysis

11.1 Key Vendors and their role in SDN

All network traffic between physical servers eventually must be connected through real network
switching appliances. Each of these hardware devices are built to industry connection standards while
providing proprietary hardware, software and capability to make them more desirable on the open market.
In addition to the industry developers working on OpenFlow [115], OpenDaylight [91], and
OpenStack [94], there are many key network vendors embracing these software platforms and tools as an
industry standard. This section is a brief overview of the key players in this field and a discussion of current
capabilities and contributions of each.

11.1.1 Arista

Arista Networks, employs the EOS (Extensible Operating System), a Linux based platform, that
provides resiliency and programmability across their network products. The purpose of this extension is to
provide uniformity in management, the end user does not define and manage individual network appliances
as much as the entire enterprise system as a whole. Modern networks require agility and scalable
provisioning to handle changes in deployment and recovery from changes or outages. They support
OpenFlow, and DirectFlow (Section 2.1.2). Arista supports the OpenFlow v1.3 API providing the ability to
control flows through a centralized OpenFlow controller. In addition, Arista has developed DirectFlow, an
Arista proprietary technology, which allows controller-less direction of flows using the capabilities within
their EOS platform. Support for OpenFlow is provided through an interface on top of their DirectFlow
API. Arista’s support for OpenFlow on top of DirectFlow can be categorized as a hybrid SDN technology
relying upon functionally independent switching infrastructure that can take configurations from a
centralized controller. In addition to OpenFlow, Arista supports application interface plugins for
OpenStack and was one of the first vendors to support VXLAN. Arista offers centralized management via
zero touch provisioning, and uses Extensible Messaging and Presence Protocol (XMPP) [122] to configure
groups of network devices. Arista supports multi chassis link aggregation (MLAG) making active use of all
links in the network. Network redundancy and making all paths available is important to the modern data
center and relevant to reconfigurable networks [6].

95

11.1.2 Brocade

Brocade’s entry in SDN is the Brocade VCS (Virtual Control System) Enhancing the existing Linux
based OS with embedded OpenFlow API capability such that the inclusion and addition of specific plugins
to handle OpenFlow SDN are not necessary. Brocade favors a higher level of support for virtualization as a
key feature of its entry. This is accomplished by combining the OpenFlow command control features with
additional support for data plane overlay protocols such as VXLAN. Brocade supports Open Stack. In
addition to selling Ethernet, and Fiber Channel equipment, they also have SDN and NFV products. They
recently purchased the company Vyatta, and now offer a virtualized firewall product, and OpenDaylight
based Vyatta SDN controller [11, 12, 13].

11.1.3 Cisco

Cisco is undoubtedly the largest player in the networking appliance market. They have embraced SDN
as the path forward with Cisco ONE (Open Networks Environment). Ironically they have the most to lose
from the trend toward SDN as they hold the majority of legacy systems in the marketplace. The SDN
environment commoditizes Cisco’s enterprise strategy, allowing competitor devices to seamlessly share the
network control space. Cisco has SDN support for OpenFlow [21] on their Nexus series, in addition to
their Open Network Environment initiative. Cisco also supports VXLAN. Cisco supports multi chassis link
aggregation (MLAG) which they call Virtual Port Channel (VPC). Cisco is also championing another form
of application driven network configuration called Application Centric Infrastructure (ACI) [20]. ACI
appears to be primarily a Cisco backed initiative. For automation Cisco supports standard command-line
interface (CLI), API mechanisms, and can operate with configuration management tools such as
Puppet [60], or Chef [18].

11.1.4 Dell

Dell has partnered with BigSwitchNetworks to provide its SDN support. This means Dell will use
BigSwitch’s Switch Light OS. The offering works on newer switches with all features and partial features
on legacy Dell switches. Dell’s network lineup consists of their Force10 acquisition, and the
Power Connect series. Both product lines can work well as bare metal switches using Cumulous
Linux [26], or can interoperate with Vendor specific APIs through a central controller such as the NEC
ProgrammableFlow Networking Suite [84]. Both Power Connect and legacy Force10 lines now support
Cumulus Networks [26]. They also support a Dell backed managed SDN solution [28].

The SDN offering from HP is the most generic on the market. HP’s switch fabric ASICs are the most
flexible in their intrinsic control capabilities and therefore can handle virtually any possible combination of
routing paths possible on their ports. Utilizing a custom version of Linux, HP has most of the common
open source SDM solutions available, and even allows the user to use their own flavor of Linux, such as
RedHat, SuSE, or Ubuntu on the switches if they so desire [49].

11.1.5 Juniper

Juniper Networks has incorporated the Junos OS as their solution to SDN and virtualization support.
Their approach is to provide a platform that allows the OS to work with all of their products and to add
functionality through extensions and applications running on the OS. This means that the OS has been
designed to provide support for these functions rather than the functionality itself. Junos has a modular
approach that allows their range of network appliances to be configured to meet specific needs. Different

96

models therefore may have specific versions of modules that share similar features with other models but
are written for that device. The underlying OS is common for all [56].

11.1.6 Mellanox

Mellanox is known for their high speed, low latency InfiniBand appliance. They expanded into
Ethernet networking and have one rack unit on top of rack switches. These are non-blocking and have full
Layer 2, and Layer 3 functions, as well as SDN support [81]. They have introduced aggregating switches
into a fabric using a technology called Virtual Modular switching. This is similar to MLAG and VPC,
except, if you lose one of these switches, you don’t lose half of your bandwidth [80].

11.1.7 Network Vendor Conclusion

All of the major vendors are supporting SDN to various degrees. Some are embracing their own
solutions, while others are embracing the open source community and standards, often including industry
standards combined with proprietary capability. Cisco, and Arista are looking at making bare metal
switches and using Cumulus Linux as their operating systems. The advantage to OS and SDN standards is
the ability for network appliance vendors to focus on the ASIC and hardware development. The adoption
of open-source software technologies by switch vendors poses challenges for differentiation in a
competitive marketplace. It would be reasonable to expect that switch vendors will continue to adopt open
source software and open standards while continuing to differentiate by offering more advanced features
through proprietary software and interfaces. For the secure enclaves project, we will focus on the use of
broadly supported SDN capabilities to alleviate reliance on vendor proprietary technologies [36].

A summary of the vendor compliance with the OpenFlow standard is given by Nunes et al. [89], which
is repeated here for easy access in Table 11.1.

Maker Switch Model Version
Hewlett-Packard 8200zl, 6600, 6200zl, 5400zl, and 3500/3500yl v1.0

Brocade NetIron CES 2000 Series v1.0
IBM RackSwitch G8264 v1.0
NEC PF5240 PF5820 v1.0

Pronto 3290 and 3780 v1.0
Juniper Junos MX-Series v1.0
Pica8 P-3290, P-3295, P-3780 and P-3920 v1.2

Table 11.1. Main current available commodity switches by makers (vendors), compliant with the
OpenFlow standard (from Table-II of [89]).

11.2 Storage Vendor Overview

There are several vendors that support network storage or more specifically NFS (Network File
Systems). Most of these are a form of classic large enterprise centralized archive storage such as SAN
(Storage area network) servers or just simply additional servers that have large RAID (Redundant Array of
Inexpensive Disks) arrays. In an HPC deployment model they would be externally connected peripheral
services, not aligned with the compute nodes directly. Some of these hardware based storage configurations

97

can be adapted using the OpenStack services to perform a more abstracted storage service within the cloud,
but few exist that have been configured to handle the rigors of the HPC compute environment. The
following is a sparse list due largely because few vendors have started servicing the HPC market directly,
and fewer still provide the necessary bandwidth and configuration for high demand access adopting rather
the slower and more accessible archive transfer model. The following is a synopsis of the vendors that have
either directly adopted the design path necessary to support HPC or systems that are part of emergent
technology that can easily meet the rigors of HPC.

11.2.1 Seagate/Xyratex

Seagate corporation is one of the longest standing disk drive manufacturers in the world, and has
supported SAN and RAID server technology for years. Recently they acquired Xyratex [123] and started to
aggressively pursue the storage appliance market. This division of Seagate offers several high speed
redundant storage offerings but further examination reveals that they all have a very common platform
topology and are equally scalable. This discussion will cover one of their smaller build outs, the
ClusterStor

TM
1500 as an example, the other models in this family are mainly scaled-up size and

capabilities of either racks of this model or larger versions of the same. The ClusterStor devices are built
upon the successful Seagate OneStor enterprise/data center platform.

11.2.1.1 Security

The ClusterStor series is ICD 503 (Intelligence Community Directive) (DCID 6/3 PL4) Compliant,
including MAC (Mandatory Access Control) and uses explicit auditing of both usage tracking, access
logging. The policy “least privilege” is enforced using audit logging and encryption. The system supports
multiple separate file zone classifications on a single server or filesystem.

11.2.1.2 ClusterStor Platform

This appliance is marketed directly for high performance computing and uses the open source Lustre
filesystem [66] taking advantage of its parallel file structure. The intrinsic customized OS a modified
SELinux (Security Enhanced Linux) loaded on the ClusterStor 1500 organizes the storage blocks base
units with network interface and Expansion ports referred to as SSU (Scalable Storage Units), System
administrators can alternatively attach additional physical storage devices called ESU (expandable Storage
Units), these physical appliances contain access controllers and additional disks but lack the network
interfaces for external connection. In most common configuration each data file is striped across the entire
assigned filesystem organization on SSU and ESU so that access is handled in parallel. The physical disk
drives are abstracted in a sub layer directly handling I/O read and write requests in a synchronized
simultaneous manner. Custom SATA (serial AT attachment the AT from the original IBM PC AT model
circa 1980’s) [107], ASIC devices provide the synchronized access scalable between the nominal 1GB/s up
to 100 GB/s. A single ClusterStor SSU unit can have up to three additional ESU units attached, for full
physical expansion build out. The SSU contains the management unit that handles all of Lustre’s metadata
services.

11.2.1.3 Physical Drive Capability

Each of the drive bays can handle any of the available 2.5” SATA disk drives commonly available on
the market, however all of the published specifications assume that the dual port 6Gb/s SAS drives are used

98

for maximum performance. The number of drives installed is limited by the size and model of the SSU and
ESU attached, the embedded Lustre filesystem abstracts the system to a single storage space that can be
linearly scaled out with additional units and across other Lustre servers.

11.2.1.4 Data Throughput

A single physical system can provide between 1 GB/second up to 100 GB/s however a parallel cluster
of systems can theoretically support throughput rates of a sustained 1 TB/s [22].

11.2.1.5 Specification Table ClusterStorTM 1500

The following is a table of capabilities and specification for the range of the model 1500, any of the
other larger models will be similar with a higher capacity, the basic throughput will be identical to a
configuration with multiple smaller devices. The difference in models appears to be mainly to consolidate
physical space requirements by sharing a larger enclosure. Table 11.2 was copied from the ClusterStor
1500 product bulletin courtesy Seagate Inc [22].

Parameter Description
Filesystem Performance 1.25GB/s up to 110GB/s sustained read and write

Raw OST Capacity 80TB (4TB SAS HDDs) to 10.PB (6TB SAS HDDs)
Usable File System 60.4TB (4TB SAS HDDs) to 7.9.PB (6TB SAS HDDs)

Lustre Network Protocol Infiniband QDR / FDR or Ethernet 10Gb/s 40Gb/s
File System Lustre 2.1 (with Seagate add ons)

Maximum Files 280 Million
SSU Storage units (2) 2.5” HDDs 300GB RAID 1 1+1 (21) 3.5” RAID 6, 8+2
ESU Storage Units (21) 3.5” RAID 6, 8+2

Hot Swappable HDDs, Redundant Power/Cooling supplies
Operating System SELinux

Management Network Dual 1 Gigabit Ethernet

Table 11.2. Seagate ClusterStor product specifications (table source: [22]).

11.2.2 Oracle ZFS Storage Appliance

The ZFS is originally designed to support VM and cloud storage requirements, it follows an
architecture paradigm of mapping a HDD (hard disk drive) with large arrays of DRAM storage. This
format is referred to as Hybrid Data Pool (HDP) [126].

11.2.2.1 Resiliency

The HDP topology uses the HDD physical drives for resiliency of the data. Access requests use the
high speed scalable DRAM arrays and periodic backups are made to the slower HDD and checked against
read and write/store requests. The user access is handled directly from the DRAM and mimics the smaller
CACHE memory access used on most high efficiency compute nodes. Simultaneous access to the DRAM
array provides the system with parallel failover and self healing filesystem capability.

99

11.2.2.2 Vitualization Support

Although designed largely for enterprise applications, the Oracle ZFS system does include plug-ins to
support virtualization. Including OpenStack and other cloud implementations.

11.2.2.3 Filesystem Support

The Oracle ZFS specifically includes support for Oracle data base file structures, although there is no
listed support for Lustre or GPFS, there is no indication that these appliances cannot be reconfigured to use
either. This will require additional research and inquiries to ascertain. The system also supports the
OpenStack Cinder (block storage server) [126].

Parameter Description
Filesystem Performance 1.25GB/s up to 110GB/s sustained read and write

Usable File System 60.4TB (4TB SAS HDDs) to 7.9.PB (6TB SAS HDDs)
Lustre Network Protocol Infiniband QDR or Ethernet 1Gb/s 10Gb/s

File System Oracle Solaris ZFS
Hot Swappable HDDs, Redundant Power/Cooling/ supplies

Operating System Semi custom Linux
Management Network 1-10 1 Gigabit Ethernet ports

Table 11.3. Oracle ZFS Storage appliance specifications (table source: [126]).

11.2.3 Additional Systems

The other storage systems of note are not geared specifically toward HPC, but rather fit into standard
Enterprise/Cloud service models. These include SAN (Storage Area Network) servers from HP and Dell,
Fujitsu and others. In most cases these are currently used in OpenStack storage server applications,
additional research is need to ascertain the performance specifications when used in an HPC environment
with Lustre and GPFS. Certainly all of the models collected for this study can be upgraded with Mellanox
Infiniband and 10 + GB Ethernet controllers, but the backplanes and server structure does not specify the
advantage nor ability to increase beyond native network interface speeds. Most of these are iSCSI (Internet
Small Computer System Interface) which is a relatively slow interface compared to the two identified
vendor products.

100

Chapter 12

Conclusion

Supporting multi-tenant environments within HPC systems holds the promise of supporting a diverse
set of workloads at significantly higher levels of performance and scalability than a traditional utility
compute cloud environment. Traditional cloud computing environments address the security challenge of
multi-tenancy through judicious use of full machine virtualization, network virtualization, and per-tenant
storage. This approach sacrifices performance, scalability, and usability in favor of secure multi-tenancy.
Our work is focused on providing multi-tenant environments, “secure enclaves”, at very low overhead
through the use of carefully selected isolation mechanisms at the compute, network and storage layers.

12.1 Synopsis

The customization of multi-tenant environments is directly influenced by the underlying isolation
mechanisms used to limit access and maintain control of the computing environment. In this report we
reviewed terminology and relevant technologies, which helps to elucidate the topic of secure compute
customization and dynamically configurable networks.

A review of virtualization classifications is provided in Section 2.2, which detailed the different types
of OS-level and system-level virtualization. The main distinction between different virtualization
technologies has to do with the degree of integration with a host kernel. Throughout this report we have
used the terms virtual environment (VE) and virtual machine (VM) to distinguish between
container-based (single kernel) and hypervisor-based (multiple kernel) virtualization. A brief background
of SDN and NFV is discussed in Section 2.3. A review of key terminology and relevant SDN concepts is is
discussed in Section 2.1.2. This includes a review of state-of-the-art technologies and emerging standards
such as OpenFlow and OpenDayLight. We also provide background information on two HPC filesystems,
Lustre and GPFS, in Section 2.4. A short review of relevant security classifications is discussed in
Section 2.5. This was followed by information on supporting security technologies (Section 2.6) that are
particularly relevant for secure storage, e.g., FIPS, Kerberos, GSSAPI.

In Section 3, we reviewed current operating system protection mechanisms and virtualization
technologies that provide the basis for customizable environments. This included various OS-level
mechanisms like namespaces, cgroups and LXC/Docker. This was followed by a review of two
hypervisor-based solutions Xen (type-I hypervisor) and KVM (type-II hypervisor). This included details
about kernel versions when various capabilities were introduced, which provides information about
dependencies when choosing different solutions for deployment. Security mechanisms and virtualization
were discussed in Section 3.3, which included information on the sVirt framework that enhances the libvirt

101

virtualization interface to support a security framework. The currently supported sVirt backends, SELinux
and AppArmor are also described. This section finishes with a review of Linux Capabilities in
Section 3.3.4.

Chapter 4 provides an overview of methods for implementing reconfigurable networks with specific
focus on utilizing reconfiguration as a mechanism to support secure enclaves. This overview of methods
includes traditional SDN, Hybrid SDN, and the use of OpenStack Neutron. A more detailed treatment of
Neutron based approaches is provided in Section 4.8.

In Chapter 5, we focused on the security mechanisms provided by Lustre and GPFS, highlighting
protections and identifying vulnerabilities. Based on this, in Chapter 6 we described several “bridging
technologies”, which can be used to supplement protections at different layers in the software stack. This is
particularly relevant for addressing specific weaknesses in storage isolation, when trying to also maintain
high performance IO operations. For example, in Section 8.2 we outline the application of “bridging
technologies” to protect the gaps in Lustre and GPFS to for a more secure HPC storage solutions.

Based on this information, in Chapter 8 we presented our vision for a Secure Enclaves System
Architecture. The architecture is centered around the careful use of isolation mechanisms at different layers
in the software stack to offer protection, while maintaining performance. The prototype for this approach is
described in Section 9.1, and is based on OpenStack (Chapter 7). The technologies used in the prototype
are evaluated through a series of experiments that demonstrate the performance of VM and VE use cases in
conjunction with different compute, network and storage tests (Chapter 9).

The evaluations that have been carried out thus far in the project are described in Section 9. The first
test (Section 9.2) focuses on experiments using the Linux user namespace to differentiate guest/host user
contexts and provide different access rights accordingly. The next evaluation (Section 9.3) provided a
baseline for running a scientific application under native and virtualized settings. This included numbers
for the HPCCG benchmark run natively and on Docker and KVM. Section 9.4 provides basic network
bandwidth/latency numbers for VM, VE, and native tests using the 10G network interface. In Section 9.5
we detail the demonstration of on-demand network enclaving via SDN using OpenStack’s Neutron
component.1 This was followed by a series of network isolation tests (Section 9.6) that probed the VLAN
mechanisms to determine if simple brute force attacks could succeed against OpenStack’s Neutron.2 The
final two experiments are focused on controlling access to storage, specifically controlling VM and VE
access to a parallel filesystem (Lustre). In Section 9.7, two different IO-Forwarding methods were
compared to evaluate the performance of re-exporting a host mounted Lustre filesystem to a guest VM. The
VirtFs/9pfs showed very good performance for IOR and FIO benchmark tests. The other tests (Section 9.8)
looked at the VE instance and showed that a combination of bind mounts and user namespaces could
provide secure near native performance for accessing Lustre from the VE.

In Chapter 10, we analyzed several current virtualization solutions to assess their vulnerabilities. This
included a review of common vulnerabilities and exposures (CVEs) for Xen, KVM, LXC and Docker to
gauge their susceptibility to different attacks. The CVE data indicated that many of the errors tend to occur
in the same types of code regions, e.g., device & instruction emulation, across the different virtualization
implementations.

SDN and NFV vendor technologies are reviewed in Section 11.1, including Arista, Brocade, Cisco,
Dell, Juniper, and Mellanox. Each of these vendors are supporting SDN and NFV to various degrees either

1Appendix D contains a series of screen captures demonstrating the steps involved in on-demand network enclaving with SDN
& Neutron.

2The isolation tests were performed out in a separate testbed than the on-demand tests, simply because of setup times and the
scheduling of tests in the project.

102

by adoption of open source community technologies or through a combination of proprietary technologies
and open APIs. A summary of vendor compliance to the OpenFlow standard is presented in Section 11.1.7.
In Section 12.2.5 an overview of notable issues and limitations for SDN/NFV is discussed. Although SDN
and NVF are becoming the operational standards of large compute resource deployments, the
implementation of these standards is still being refined [89]. Additionally, several HPC storage appliances
were examined in Chapter 11.2 to decide if particular vendors provide more complete security protections
than other products.

12.2 Observations

We will now briefly discuss observations from this end of year report. The intent is to briefly
summarize, or highlight, important points that are useful for creating secure high performance computing
environments.

12.2.1 Benchmarks

Compute Our testing verified prior studies showing roughly 2-4% overheads in application execution
time & MFLOPS when running in hypervisor-based virtualization environment as compared to native
execution. We observed near-native application performance (time & MFLOPS) when running under
container-based virtualization as compared to native execution. Also, we observed more consistent
MFLOPS performance (except in 1 instance) with Docker runs of HPCCG than with Native runs of
HPCCG, i.e., lower standard deviation over 20 runs, which is currently unexplained. However, the actual
Docker vs. Native values were mostly the same, with Native achieving slightly better performance (lower
Time, higher MFLOPS).

The standard deviation (over 20 runs) of HPCCG running on KVM was very high (σ = 15 to σ = 30).
This may be due to a lack of resource pinning (e.g., CPU pinning), but further tests will be needed to
confirm this suggestion. Regarding Time tests with HPCCG, all runs except two with KVM (kvm-300 and
kvm-400) had very consistent values over the 20 runs, i.e., low standard deviation in Time in seconds for
HPCCG runtime.

I/O The evaluations performed with single kernel (VE) and multiple kernel (VM) environments showed
very promising results. We were able to maintain parallel filesystem isolation for multi-kernel instances
using an IO-Forwarding approach. The FIO benchmarks showed near native write performance at one
process per node for a VM accessing a Lustre share that was exported from the host via VirtFS/9pfs. The
IOR benchmark results also showed very good results, compared to purely native access to Lustre, with
roughly 15-20% less than native performance for the VirtFS/9pfs re-export to VM. We found that the
performance of the VirtFS approach is greatly dependent on the msize (payload size) parameter for the
9pfs protocol. Our initial tests using the default VirtFS msize showed roughly equivalent performance
between VirtFS and NFS. However, changing this to an msize=1M resulted in good performance that
improves as the the number of processors (writers/readers) increases. As for usability, the VirtFS requires a
kernel recompilation to include the 9pfs and 9pnet capabilities, but the code is part of the standard Linux
source.

The VE based tests for controlled access to a Lustre filesystem showed excellent performance. The
LXC based tests achieved near native I/O performance in both filesystem benchmarks (IOR and FIO). The
CPU load in the FIO tests were roughly equal as well, with the VE case actually having a slightly lower

103

percentage of CPU load than native. The IOR tests showed that both read and write performance was
effectively the same for native and the VE instances. Note, there was a slightly better than native
performance in the VE tests, which was assumed to be related to differences in the scheduling of containers
within the Linux kernel. This trend was maintained in a slightly larger demonstration that employed 10
nodes using VE’s running the IOR benchmark – the VE read/write was equal or above native performance.
Regarding security, the Lustre storage network was separated from the guest VE context by marshalling all
accesses through standard VFS operations within the VE. Only the host had a network interface attached to
the Lustre storage network (LNET) and all VE access passed through the bind-mounted Lustre share. In
the future, UID/GID mapping functionality that is emerging in Lustre v2.7 will offer complementary
security capabilities.

12.2.2 User namespaces & Container Isolation

We identified Linux namespaces as a promising mechanism to isolate shared resources. This includes
the most recent kernel additions (Linux ≥ 3.13) that include the user namespace, which was evaluated in
Section 9.2 to support shared-storage isolation. Those experiments confirmed that different UIDs could be
mapped between the guest/host environments when accessing shared resources. The near-native
performance results of HPCCG running in a Docker-based container, which uses namespaces to implement
the isolation, is another reason we believe this to be an interesting avenue to pursue for secure compute
customization.

Since user namespaces is a very recent addition to the kernel, its use cases are still evolving and
higher-level tools like Docker are still working on formalizing an interface for users. The flexibility of user
mappings is almost entirely inherited by LXC, but this interface used in the evaluation in Section 9.2 is still
cumbersome and prone to mistakes. Discussions amongst developers engaged in the effort to bring user
namespaces to Docker have converged on a model where a single username docker-root is designated to be
always mapped to root within the container. Other users (besides root on the host) will be mapped
one-to-one inside the container. This approach was taken in order to speculatively meet general user
requirements, but it will not work for customizable computing environments where only a small subset of
host users should be mapped into the VE. Otherwise, docker-root would be able to modify the files of all of
those users. The second problem is with docker-root being shared between containers that access a
shared-filesystem. If the chroot’ed environments of VEs overlap, then docker-root on one VE may be able
to interfere with docker-root on the other container. If they could replace files with malicious binaries, and
then convince the victim docker-root to run the binaries, they would then be able to access files of all users
on the victim’s VE.

OS Containers There are two very interesting projects emerging that are focused on container based
isolation, namely LXD and Magnum. These were described and contrasted in Section 7.2. The
LXD (Linux Container Daemon) project from Canonical provides an API for managing LXC containers
with user namespaces enabled by default [72]. However, like Docker, it currently takes a simplified
approach to the mapping of user IDs from host-to-VE. Currently, LXD will only support a single
contiguous range of users mapped into the container (e.g. UID 100000 on host maps to UID 0 in the
container and UID 165534 maps to UID 65534 in the container).

The Magnum Containers-As-A-Service project is focused on providing container orchestration within
OpenStack. Magnum provides a new OpenStack abstraction called a “bay”, which is where containers are
placed. The Magnum “bay” provides a tenant the ability to place containers on one or more physical

104

compute nodes (actually Nova instances, so virtual compute nodes are also supported). This provides a
higher level of abstraction and leverages much of the functionality available in OpenStack. The Magnum
effort, currently, only supports the Docker container format via libcontainer. The status of user namespaces
in Docker, as of June 2015, is incomplete. Docker currently has sufficient support for single-user isolated
containers that enforce unprivileged access to a shared filesystem. This feature is now targeted for the
Docker 1.8 release, which has a target release date of 4-August-2015.

For the use case presented in this work, we would desire the flexibility offered by bare LXC containers
to set up (1) an unprivileged user on the host to map to root within the container and (2) specific ranges of
UIDs that should be mapped one-to-one. It is possible that this functionality may be added to Docker or
LXD after initial user namespace functionality has been merged.

Based on the current features in LXD and Magnum, as summarized in Table 7.1, if a container
environment supporting user namespaces were required today (June 2015), the best path would be using
LXD as the container management system and the nova-compute-lxd driver for integration with
OpenStack. However, the Magnum Container-As-A-Service and Docker functionality is schedule to be
released soon and we plan to continue our evaluation in future work.

12.2.3 Vulnerability Assessment

Based on the vulnerability assessment, system-level virtualization solutions have many more
vulnerabilities than OS-level virtualization solutions. As such, we recommend that sVirt be used with
system-level virtualization solutions in order protect the host against exploits. Also, the majority of
vulnerabilities related to KVM, LXC, and Docker are in specific regions of the system. Therefore, future
zero-day attacks are likely to be in the same regions. Also, protecting these areas can simplify the
protection of the host and maintain the isolation between users.

12.2.4 Security Classifications

Regarding the security classifications discussed in Section 2.5, the technologies presented in this work
belong to the class C1 in their default configuration. This is because the technologies leverage Linux as
their OS and Linux meets the three requirements for class C1. More clearly, Linux as used in this work by
VMs and VEs satisfies these requirements by (1) using DAC, (2) having users with passwords, and (3) user
applications are unprivileged while the kernel is privileged. For any of the virtualization platforms to be
considered of class C2, they would need to both sanitize objects before use and re-use and provide logging
for various actions performed on the system. Sanitization is an easier problem to solve if the VM or VE is
just considering adding a further layer of isolation, where the VM or VE is not a multi-user environment
itself. In this case, the host already ensures objects are sanitized before re-use by another process. With
respect to the B1 classification that requires use of label-based Mandatory Access Controls, VMs could use
SELinux and Audit to meet the requirements, but SELinux cannot run inside the container. That being said,
if the use case is limited to a single application running within a VE, SELinux can be enabled on the host
and sVirt can be used to label the container’s processes and enforce a MAC policy unique to that VE.

Since RHEL7 was released only in June 2014, and this is the first release where Red Hat has supported
containers, we found mention of one bug in the audit framework and expect several other refinements will
be needed to reach the classifications acquired by RHEL 5 and 6.

Protection Levels: We also reviewed the details of DCID 6/3 Protection Levels [27] to clarify where we
stand with respect to compliance in the OpenStack SE testbed. The concept of Protection Levels applies

105

Least Security
Required

Most Security
 Required

Protec'on	 Levels	 1	 -‐	 5	
	

PL1:	
No	 separa'on	 in	 clearance,	 formal	
approval,	 or	 need-‐to-‐know	 for	 users	

	

PL2:	
At	 least	 one	 user	 lacks	 the	 need-‐to-‐know	
for	 some	 informa'on	 on	 the	 system	

	

PL3:	
At	 least	 one	 user	 lacks	 formal	 approval	 for	
some	 informa'on	 on	 the	 system	

	
PL4:	

At	 least	 one	 user	 lacks	 sufficient	 clearance	
for	 all	 informa'on	 on	 the	 system,	 but	 all	
users	 have	 a	 secret	 clearance	

	

PL5:	 At	 least	 one	 user	 lacks	 any	 clearance	 for	
informa'on	 on	 the	 system	

Figure 12.1. Summary of DCID 6/3 Protection Levels (PL) for inter-tenant security require-
ments.

only to “confidentiality”. There are five Protection Levels, PL1-PL5, which are summarized in Figure 12.1.
Based on this information, and input provided by the customer, PL3 seems like the primary target for
security constraints for the SE testbed. A review of the PL3 requirements and an initial evaluation for the
SE testbed (i.e., PL3 and OpenStack) is given in Appendix A.

12.2.5 Networking

There are many very promising options for networking due to the increased demand for cloud based
services. This will help drive the technology for use in smaller markets like HPC. Additionally, several
limitations or challenges were recognized with current networking technologies ranging from vendor
dependence, technology complexity & management overheads and scalability.

Reconfigurable Network The growth of SDN is pushing enabling interesting experiments in the
network infrastructure, without having to have direct access to the internal network software in the switch.
The ability to use OpenFlow and other standards based interfaces to dynamically change the network
enables more agile reconfiguration of the network. Thus, enabling per-tenant configurations that would
otherwise require manual interactions by network operations staff.

OpenStack The maturing of OpenStack is yielding benefits for networking functionality. The Neutron
interfaces provide a standard method for configuring the network in a compute environment. This also
allows other projects to focus on new functionality and leverage the Neutron interfaces to integrate with the
network. This is also a way for vendors to expose their functionality in a relatively portable manner, e.g.,
Arista’s ML2 plugin for Neutron. This facilitates the creation of on-demand networking that can be tailored
to particular multi-tenant use cases.

106

Monolithic Vendor Dependence The first notable limitation is the monolithic vendor dependence.
Large-scale data centers require routers and switches to meet the needs of the core network. The number of
vendors providing these large-scale solutions is small and each have developed proprietary SDN
technologies alongside open standards such as OpenFlow. The adoption of proprietary SDN interfaces to
orchestrate these large-scale resources may result in vendor lock-in. Given this, insulating applications
from these proprietary SDN interfaces should be a top priority either by only exposing open standards
based APIs or through the development of middleware that insulates the application from the underlying
proprietary API. As such, in the context of secure enclaves we will focus on the use open standards based
APIs or the use of middleware such as OpenStack Neutron that will then interface with vendor proprietary
APIs through Neutron plugins.

Complexity A dynamic reconfigurable network environment will let users, or tenants, request resources
to include compute, storage, and networking. This functionality is made possible through standards based
APIs that can control the configuration of individual networking components. While an API simplifies the
mechanism by which network configuration takes place, the complexity of configuring many individual
components to satisfy what might appear to be a simple tenant requirement remains. By using standard
templates for common requirements that can be layered upon one another we can manage this complexity
while simultaneously ensuring that network security policies can be verified and enforced. Using a template
based approach, common low-risk configurations can be configured on-demand by the tenant, while other
templates might require approval through a formal change request process. For example one tenant wishing
to communicate with another tenant would require both tenants to agree and potentially be approved by a
third-party. Once the request is reviewed, the tenant could be authorized to use the specified template.

Scaling Issues Vendors have their own method of managing a large number of devices and different ways
of building large non-blocking fabrics. These design paradigms may include:

• Leaf and spine, to host.
• Leaf and spine to top of rack.
• Standard core, distribution, access models.

Each of these designs scale differently and optimal placement of a workload in these fabrics is
dependent on a variety of factors [40]. Supporting multiple tenants within these environments while
providing optimal data plan performance and scalability to meet tenant requirements will require a
thorough understanding of the overall architecture and how compute and storage resources are
interconnected within the networking architecture [105]. For the secure enclaves project we will make the
simplifying assumption that tenants (enclaves) will be placed on compute resources that are interconnected
in a fully non-blocking network. Orchestrating optimal placement of enclaves within alternate networking
architectures based on performance and scale requirements, while an interesting challenge, is not a priority
in our current work.

Another important aspect of scalability is the number of concurrent isolated enclaves that can be
supported within a single network fabric. One mechanism of implementing isolation of enclaves is to map
enclaves to one or more distinct VLANs. Under IEEE 802.1Q the maximum number of VLANs is limited
to 4,094 (due to a 12-bit VID field minus reserved values 0x000 and 0xFFF). Using this technique would
limit the number of supported enclaves within a single fabric to 4,094. Latest generation switching
technologies that provide support for VxLAN scale to supporting up to 16 million logical networks. This is
accomplished by encapsulating Layer 2 Ethernet frames within Layer 4 UDP packets. Many switch
vendors and Open vSwitch are now offering VxLAN support [85, 73, 15].

107

12.2.6 Secure Storage

We acknowledge that there is a cost in terms of administrative complexity when combining OS
isolation layers and filesystem technologies. Where practical, we suggest the use of automation tools such
as OpenStack [94] and Puppet [60], both of which have significant momentum in HPC and cloud
communities. This is evidenced by the rapid appearance of projects integrating new technologies, such as
containers with user namespaces as in the nova-compute-lxd project [88]. The ability to automate
the storage aspects such as with Dynamic LENT Configuration adds an additional isolation capability, but
in order for it to be feasibly implemented, it must also be able to integrate with the encompassing
automation workflow.

A compelling argument could be made for avoiding this complexity and adopting a complete solution
stack from a vendor. Vendors such as IBM, Seagate and Oracle strive to deliver a complete secure storage
solution. They will certainly have fewer layers and individual components to manage than a Lustre
filesystem with virtualization-based isolation layered on. The disadvantage is in terms of flexibility. A
Lustre deployment comes with enormous flexibility for customization, and features are continually being
released by the community. The vendor based solutions to secure storage, even those that support Lustre,
will always lag behind in the supported features due to the overheads and delays in certification of the
features within their products. That also assumes that the features are aligned with their general product
plans, which may differ from individual site specific objectives and roadmaps. This is effectively comes
down to a balance on the “cost of ownership” for the secure storage portion of a system.

Throughout this report we have noted where particular security mechanisms are at odds with the
performance of the storage system. This will be an ongoing competition between these goals, but we
believe that the isolation-centric approach that we have discussed and evaluated forms a unique and
effective solution for secure HPC storage.

12.3 Future Plans

We conclude with a few remarks about plans moving forward and possible avenues for further
investigation.

The paravirtualized filesystem (VirtFS) [55] work that we investigated this year showed very good
results. The enhanced security model offered by VirtFS called “mapped” would be something worth
looking into in future investigations. The “mapped” model stores access credentials in the extended
attributes of files that are stored on disk. The access credentials stored are relative to client-user accessing
the file, so different guest VMs can have completely isolated filesystem views. There are also indications
that the “mapped” VirtFS security model could be used to share a parallel filesystem mount (e.g. GPFS),
but since this relies on a backing filesystem format change by using extended attributes, this may break
compatibility with Lustre. Nonetheless, the security model of VirtFS with 9p is very interesting and we are
interested in investigating how it can isolate shared storage. This combined with the
Filesystem-As-A-Service work that is currently being pursued in the context of the OpenStack Manila
project seem like a nice pairing. It would be very interesting to investigate replacing the pNFS based RPC
mechanism for exporting the backend filesystem with Manila using a 9pfs based remote procedure call
(RPC) mechanism. This could initially be done with the centralized approach currently maintained in the
Manila project, and later moved to something more similar to the approach employed in our evaluations
where the re-export is done on a per-host basis instead of on a per-controller (central) manner. Note, the
DIOD project [31] may be of interest for this Manila/9pfs investigation.

108

Additional benchmarking that scales up the resources would be interesting. In the context of VMs and
IO-Forwarding, it would be useful to see how mulit-stream and increased node count influences the
benchmark results for VirtFS/9pfs exporting Lustre to VMs. Another option for further evaluations with
VMs and VirtFS would be to see if different virtio drivers effect performance. For example, the
virtio-blk-data-plane backend could be tested for avoiding the use of the QEMU block layer,
and instead using Linux Asynchronous I/O (AIO).

Another area that might provide interesting future avenues for investigation is the use of VM recording
to perform security audits. There has been prior work to log all non-deterministic input, allowing execution
replay [37] to aid in forensics and debugging. These capabilities might also be advantageous for performing
audits and even attestation that specific code was executed in [46] user-customizable environments.

Also, we anticipate that hardware extensions that were added to Intel and AMD processors to support
system-level virtualization with KVM or Xen will be adapted for VE environments as well. Intel VT-d
extensions allow a guest to directly communicate with a PCIe function and thus remove the host’s
networking bridge from the path in VE network connectivity. Also Extended Page Tables (EPT) give a
guest access to dedicated physical memory. The Intel Software Guard Extensions (SGX) are another
hardware capability that is of particular interest for future evaluations with secure enclaves [53]. Research
in these areas as applied to VMs are bringing them closer to OS-level VEs to capitalize on the ability to
access virtualized hardware resources without a hypervisor (KVM or Xen VMM) [112, 62]. A new
open-source project LXD is aiming to make use of hardware isolation capabilities as a “lightvisor” for
LXC containers in addition to bringing management features such as live migration and OpenStack
integration [72, 101].

The area of networking, quantifying the scalability of SDN controllers is an active research
question [50]. A through review of the scalability of the Arista SDN functionality employed for our
on-demand enclaving experiments would be useful. Also, an investigation of the robustness of the
OpenStack Neutron API and SDN API would be useful for determining how well they can withstand
attacks or bad/ill-formed requests from clients.

We have done initial isolation testing for network isolation, which should be continued and enhanced.
Additionally, a thorough evaluation of storage isolation would be useful. In addition, we are particularly
eager to determine whether we can provide enough protections to overcome the lack of file encryption in
Lustre, or if alternate methods like disk encryption for at-rest data would be viable. For GPFS, it would be
interesting to quantify the overhead of using native encryption in conjunction with the isolation-centric
storage architecture outlined in this report. Also, further analysis of security vulnerabilities for selected
storage related technologies and vendor products would be interesting.

In our investigation of the security features of Lustre, we found many features that are in-development,
where some are nearing release-readiness such as shared key authentication/encryption [30] and dynamic
LNET configuration [67], while others are under heavy development as in UID/GID mapping [109], and
subtree support [69]. Along with Kerberos support [120], a thorough evaluation of these features, to
include scale-up testing, would be very interesting.

Lastly, as noted previously the emerging work in Containers-As-A-Service is of great interest for
future work on secure enclaves. As the Magnum and LXD projects stabilize, the results should be
evaluated and compared for usability and performance. There are several announcements and roadmap
milestones slated for those projects that will be of direct benefit for refinements to the secure enclaves
prototype, e.g., OpenStack Magnum, user namespace support in Docker 1.7, OpenStack support for
LXD and bare-metal containers.

109

12.4 Final Remarks

In closing, the container-based virtualization showed great promise for providing efficient and secure
high-performance compute enclaving. This was demonstrated with filesystem benchmarks (IOR & FIO)
that showed the VE achieved near native performance. Additionally, hypervisor-based virtualization can
achieve very good performance with IO-Forwarding based on VirtFS (9pfs), which was also demonstrated
via filesystem benchmarks (IOR & FIO). The ability to leverage OpenStack and SDN to achieve
on-demand network enclaving enables many interesting options for creating user-customizable compute
enclaves. Using these capabilities, a prototype for an isolation-centric approach to secure high-performance
computing has been created at ORNL and will be further refined in the following year of the project.

110

Acknowledgments

This work was supported by the United States Department of Defense (DoD) and used resources of the
DoD-HPC Program and the Compute and Data Environment for Science (CADES) at Oak Ridge National
Laboratory (ORNL).

We would like to thank John Quigley from ORNL’s Information Technology Services Division for his
assistance on OpenStack and CADES related configurations.

111

Bibliography

[1] IBM InfoSphere BigInsights Version 2.1.2. Comparison of HDFS features and GPFS features.
IBM. URL: http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.
im.infosphere.biginsights.product.doc/doc/over_filesystem_comparison.html.

[2] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, September 2007. Publication Number: 24593, Revision: 3.14.

[3] AppArmor Libvirt: Confining virtual machines in libvirt with AppArmor. URL:
http://wiki.apparmor.net/index.php/Libvirt [cited 23-nov-2014].

[4] AppArmor Security Project History. URL:
http://wiki.apparmor.net/index.php/AppArmor_History [cited 30-nov-2014].

[5] AppArmor Security Project Wiki. URL: http://wiki.apparmor.net [cited 29-nov-2014].

[6] Software driven cloud networking, 2014. Arista Inc. URL:
http://www.arista.com/en/products/software-driven-cloud-networking/articletabs/0

[cited 20-dec-2014].

[7] Siamak Azodolmolky. Software Defined Networking with OpenFlow, volume 1. Packt Publishing
Ltd, first edition, October 2013. URL: https:
//www.packtpub.com/networking-and-servers/software-defined-networking-openflow

[cited 20-dec-2014].

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the nineteenth ACM
symposium on Operating System s Principles (SOSP19), pages 164–177. ACM Press, 2003.

[9] Fabrice Bellard. QEMU, A Fast and Portable Dynamic Translator. In USENIX 2005 Annual
Technical Conference, Anaheim, CA, USA, April 2005.

[10] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver Niehörster, and André Brinkmann.
Non-intrusive virtualization management using libvirt. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, pages 574–579, 3001 Leuven, Belgium, Belgium, 2010.
European Design and Automation Association. doi:10.1109/DATE.2010.5457142.

[11] Brocade Vyatta controller, 2014. Brocade Inc. URL: http://www.brocade.com/products/all/
software-defined-networking/brocade-vyatta-controller/index.page [cited 20-dec-2014].

112

http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/over_filesystem_comparison.html
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/over_filesystem_comparison.html
http://wiki.apparmor.net/index.php/Libvirt
http://wiki.apparmor.net/index.php/AppArmor_History
http://wiki.apparmor.net
http://www.arista.com/en/products/software-driven-cloud-networking/articletabs/0
https://www.packtpub.com/networking-and-servers/software-defined-networking-openflow
https://www.packtpub.com/networking-and-servers/software-defined-networking-openflow
http://dx.doi.org/10.1109/DATE.2010.5457142
http://www.brocade.com/products/all/software-defined-networking/brocade-vyatta-controller/index.page
http://www.brocade.com/products/all/software-defined-networking/brocade-vyatta-controller/index.page

[12] Network Functions Virtualization (NFV), 2014. Brocade Inc. URL:
http://www.brocade.com/products/all/network-functions-virtualization/index.page

[cited 20-dec-2014].

[13] OpenStack overview, 2014. Brocade Inc. URL:
http://www.brocade.com/solutions-technology/technology/openstack/index.page [cited
20-dec-2014].

[14] Greg Bronevetsky and Bronis de Supinski. Soft Error Vulnerability of Iterative Linear Algebra
Methods. In Proceedings of the 22nd Annual International Conference on Supercomputing, ICS ’08,
pages 155–164, New York, NY, USA, 2008. ACM. doi:10.1145/1375527.1375552.

[15] Jefferey Butt. Cisco CTO warrior software-only SDN has ‘limitations’. eWeek Online Magazine,
June 2013. URL: http://www.eweek.com/networking/
cisco-cto-warrior-software-only-sdn-has-limitations.html [cited 20-dec-2014].

[16] CAP_SYS_ADMIN: the new root. URL: http://lwn.net/Articles/486306/ [cited
30-nov-2014].

[17] cgroups: Linux Control Groups Documentation. URL:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt [cited 30-nov-2014].

[18] Chef: Automation for Web-Scale IT. URL: https://www.chef.io/ [cited 21-dec-2014].

[19] Cinder: Block Storage for OpenStack. URL: https://wiki.openstack.org/wiki/Cinder [cited
29-jan-2015].

[20] Cisco application centric infrastructure, 2014. Cisco Inc. URL:
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/

application-centric-infrastructure/index.html [cited 20-dec-2014].

[21] Cisco plug-in for OpenFlow, 2014. Cisco Inc. URL: http://www.cisco.com/c/en/us/td/docs/
switches/datacenter/sdn/configuration/openflow-agent-nxos/cg-nxos-openflow.pdf

[cited 20-dec-2014].

[22] Seagate ClusterStor Product Bulletin. URL:
http://www.seagate.com/products/enterprise-servers-storage/

enterprise-storage-systems/clustered-file-systems/#specs [cited 29-jan-2015].

[23] Crispin Cowan. Securing Linux Applications With AppArmor, August 2007. Presentation at
DEFCON-15 in Las Vegas, NV, August, 2007. URL:
https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-cowan.pdf [cited
30-nov-2014].

[24] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research and
Development, 25(5):483–490, September 1981.

[25] CRIU: Checkpoint/Restore In Userspace. URL: http://www.criu.org [cited 29-nov-2014].

113

http://www.brocade.com/products/all/network-functions-virtualization/index.page
http://www.brocade.com/solutions-technology/technology/openstack/index.page
http://dx.doi.org/10.1145/1375527.1375552
http://www.eweek.com/networking/cisco-cto-warrior-software-only-sdn-has-limitations.html
http://www.eweek.com/networking/cisco-cto-warrior-software-only-sdn-has-limitations.html
http://lwn.net/Articles/486306/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.chef.io/
https://wiki.openstack.org/wiki/Cinder
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/openflow-agent-nxos/cg-nxos-openflow.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/openflow-agent-nxos/cg-nxos-openflow.pdf
http://www.seagate.com/products/enterprise-servers-storage/enterprise-storage-systems/clustered-file-systems/#specs
http://www.seagate.com/products/enterprise-servers-storage/enterprise-storage-systems/clustered-file-systems/#specs
https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-cowan.pdf
http://www.criu.org

[26] Cumulus Linux hardware compatibility list, 2014. Cumulus Networks. URL:
http://cumulusnetworks.com/support/linux-hardware-compatibility-list/ [cited
20-dec-2014].

[27] Protecting Sensitive Compartmented Information Within Information Systems (DCID 6/3) –
Manual, May 24, 2000. URL: http://fas.org/irp/offdocs/dcid-6-3-manual.pdf [cited
15-jun-2015].

[28] Dell and the software defined network, 2014. Dell Inc. URL: http://en.community.dell.com/
techcenter/networking/w/wiki/4904.dell-and-the-software-defined-network [cited
20-dec-2014].

[29] Department of Defense. Trusted Computer System Evaluation Criteria. December 1985. Note, also
referred to as the “Orange Book.”.

[30] Andreas Dilger. Lustre File System: IU Shared Key Authentication and Encryption. Open SFS,
2013. URL: https://jira.hpdd.intel.com/browse/LU-3289.

[31] diod: An I/O forwarding server based on the 9P protocol. URL:
https://code.google.com/p/diod/ [cited 1-feb-2015].

[32] diod source code at github. URL: https://github.com/chaos/diod [cited 1-feb-2015].

[33] diod performance tests with Lustre. URL: https://code.google.com/p/diod/wiki/performance
[cited 5-feb-2015].

[34] Computer Security Division. Compliance With NIST Standards And Guidelines. Nationa Institute
for Standards and Technology, 2014. URL:
http://csrc.nist.gov/groups/SMA/fisma/compliance.html.

[35] Docker: An open platform for distributed applications for developers and sysadmins. URL:
https://www.docker.com [cited 05-dec-2014].

[36] Jim Duffy. Cisco, Arista disaggregating? Network World Online Magazine, 2014. URL:
http://www.networkworld.com/article/2844941/cisco-subnet/

cisco-arista-disaggregating.html [cited 20-dec-2014].

[37] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen. Execution
replay of multiprocessor virtual machines. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’08, pages 121–130, New York,
NY, USA, 2008. ACM. URL: http://doi.acm.org/10.1145/1346256.1346273,
doi:10.1145/1346256.1346273.

[38] Renato Figueiredo, Peter A. Dinda, and José Fortes. Resource Virtualization Renaissance (Guest
Editors’ Introduction). IEEE Computer, 38(5):28–31, May 2005.

[39] Open Networking Foundation. Software-defined networking: The new norm for networks, April
2012. URL: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
white-papers/wp-sdn-newnorm.pdf [cited 20-dec-2014].

114

http://cumulusnetworks.com/support/linux-hardware-compatibility-list/
http://fas.org/irp/offdocs/dcid-6-3-manual.pdf
http://en.community.dell.com/techcenter/networking/w/wiki/4904.dell-and-the-software-defined-network
http://en.community.dell.com/techcenter/networking/w/wiki/4904.dell-and-the-software-defined-network
https://jira.hpdd.intel.com/browse/LU-3289
https://code.google.com/p/diod/
https://github.com/chaos/diod
https://code.google.com/p/diod/wiki/performance
http://csrc.nist.gov/groups/SMA/fisma/compliance.html
https://www.docker.com
http://www.networkworld.com/article/2844941/cisco-subnet/cisco-arista-disaggregating.html
http://www.networkworld.com/article/2844941/cisco-subnet/cisco-arista-disaggregating.html
http://doi.acm.org/10.1145/1346256.1346273
http://dx.doi.org/10.1145/1346256.1346273
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

[40] Dan Froelich. PCI express 4.0 electrical previews parts i & ii, 2014. PCI SIG. URL:
https://www.pcisig.com/developers/main/training_materials/get_document?doc_id=

b5e2d4196218ec017ae03a8a596be9809fcd00b5 [cited 20-dec-2014].

[41] R. P. Goldberg. Architecture of Virtual Machines. In Proceedings of the workshop on virtual
computer systems, pages 74–112, New York, NY, USA, 1973. ACM Press.
doi:http://doi.acm.org/10.1145/800122.803950.

[42] R. P. Goldberg. Survey of Virtual Machine Research. IEEE Computer, 7(6):34–45, June 1974.

[43] Douglas Gourlay. Arista: Making SDN a Reality, 2013. URL:
http://www.bradreese.com/blog/4-1-2013.pdf [cited 21-jun-2015].

[44] General Parallel File System (GPFS) 3.5 System Administration for Linux, November 2013. Avanet
Services IBM Training Student Notebook (Course code H005 ERC 1.0).

[45] Andreas Grünbacher. POSIX Access Control Lists on Linux. In Proceedings of the USENIX Annual
Technical Conference, pages 259–272. USENIX, June 2003. URL:
http://users.suse.com/~agruen/acl/linux-acls.

[46] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel. Accountable virtual
machines. In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–16, Berkeley, CA, USA, 2010. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1924943.1924952.

[47] Red Hat. (Whitepaper) KVM - Kernel-based Virtual Machine, September 1, 2008. URL:
http://www.redhat.com/resourcelibrary/whitepapers/doc-kvm [cited 29-nov-2014].

[48] Michael A. Heroux and Jack Dongarra. Toward a New Metric for Ranking High Performance
Computing Systems. Technical Report SAND2013-4744, Sandia National Laboratories, June 2013.
URL: http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf [cited 29-nov-2014].

[49] SDN infrastructure technology, 2014. HP Inc. URL: http://goo.gl/XLErKS [cited 20-dec-2014].

[50] Jie Hu, Chuang Lin, Xiangyang Li, and Jiwei Huang. Scalability of control planes for software
defined networks: Modeling and evaluation. In Proceedings of the IEEE/ACM International
Symposium on Quality and Service (IWQoS’14). IEEE, 2014. URL:
http://www.cs.iit.edu/~xli/paper/Conf/scale-SDN-IWQOS14.pdf [cited 20-dec-2014].

[51] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K. Panda. A case for high performance
computing with virtual machines. In Proceedings of the 20th International Conference on
Supercomputing (ICS), pages 125–134, New York, NY, USA, 2006. ACM Press.
doi:http://doi.acm.org/10.1145/1183401.1183421.

[52] IBM. GPFS Advanced Administration Guide. IBM Knowledge Center, 2014. URL: http:
//www-01.ibm.com/support/knowledgecenter/#!/SSFKCN/gpfs41/gpfs.v4r1_welcome.html.

[53] Intel R© Corporation. Intel R© Software Guard Extensions Programming Reference, October 2014.
Order Number: 329298-002US. URL:
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf [cited
22-jun-2015].

115

https://www.pcisig.com/developers/main/training_materials/get_document?doc_id=b5e2d4196218ec017ae03a8a596be9809fcd00b5
https://www.pcisig.com/developers/main/training_materials/get_document?doc_id=b5e2d4196218ec017ae03a8a596be9809fcd00b5
http://dx.doi.org/http://doi.acm.org/10.1145/800122.803950
http://www.bradreese.com/blog/4-1-2013.pdf
http://users.suse.com/~agruen/acl/linux-acls
http://dl.acm.org/citation.cfm?id=1924943.1924952
http://www.redhat.com/resourcelibrary/whitepapers/doc-kvm
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://goo.gl/XLErKS
http://www.cs.iit.edu/~xli/paper/Conf/scale-SDN-IWQOS14.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1183401.1183421
http://www-01.ibm.com/support/knowledgecenter/#!/SSFKCN/gpfs41/gpfs.v4r1_welcome.html
http://www-01.ibm.com/support/knowledgecenter/#!/SSFKCN/gpfs41/gpfs.v4r1_welcome.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[54] iperf : A tools to measure network performance. URL: https://iperf.fr [cited 04-dec-2014].

[55] Venkateswararao Jujjuri, Eric Van Hensbergen, Anthony Liguori, and Badari Pulavarty. VirtFS—A
virtualization aware File System pass-through. In Ottawa Linux Symposium, pages 1–14, December
2010.

[56] Software Defined Networking, 2014. Juniper Inc. URL:
http://www.juniper.net/us/en/products-services/sdn/index.page [cited 20-dec-2014].

[57] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: the linux virtual
machine monitor. In OLS ’07: The 2007 Ottawa Linux Symposium, pages 225–230, July 2007.

[58] Frank Kraemer. Software defined storage in action with GPFS v4.1, October 2014. Presentation at
Linux Foundation’s CloudOpen Europe 2014 Conference, Düsseldorf, Germany. URL:
http://events.linuxfoundation.org/sites/events/files/slides/

SDS-in-action-with-GPFSv41-kraemerf-102014.pdf [cited 27-jan-2015].

[59] Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. Vaxcluster: A closely-coupled
distributed system. ACM Trans. Comput. Syst., 4(2):130–146, May 1986. URL:
http://doi.acm.org/10.1145/214419.214421, doi:10.1145/214419.214421.

[60] Puppet Labs. Puppet Documentation Index. URL: https://docs.puppetlabs.com/puppet/ [cited
02-dec-2014].

[61] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei Xia, Patrick Bridges,
Stephen Jaconette, Mike Levenhagen, Ron Brightwell, and Patrick Widener. Palacios and Kitten:
High Performance Operating Systems For Scalable Virtualized and Native Supercomputing.
Technical Report NWU-EECS-09-14, Northwestern University, July 20, 2009. URL:
http://v3vee.org/papers/NWU-EECS-09-14.pdf.

[62] Ye Li, Richard West, and Eric Missimer. A virtualized separation kernel for mixed criticality
systems. In Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’14, pages 201–212, New York, NY, USA, 2014. ACM. URL:
http://doi.acm.org/10.1145/2576195.2576206, doi:10.1145/2576195.2576206.

[63] Linux Kernel-based Virtual Machine (KVM). URL: http://www.linux-kvm.org [cited
29-nov-2014].

[64] Linux VServer project. URL: http://linux-vserver.org [cited 19-nov-2014].

[65] Community Lustre Roadmap. OpenSFS community Lustre Roadmap. URL:
http://lustre.opensfs.org/community-lustre-roadmap [cited 31-jan-2015].

[66] Lustre community portal. URL: http://lustre.opensfs.org [cited 28-jan-2015].

[67] Lustre Ticket LU-2456: Dynamic LNet Config Main Development Work. Descr: This ticket has
been created to track the main development work for the Dynamic LNet Config project. URL:
https://jira.hpdd.intel.com/browse/LU-2456 [cited 06-feb-2015].

116

https://iperf.fr
http://www.juniper.net/us/en/products-services/sdn/index.page
http://events.linuxfoundation.org/sites/events/files/slides/SDS-in-action-with-GPFSv41-kraemerf-102014.pdf
http://events.linuxfoundation.org/sites/events/files/slides/SDS-in-action-with-GPFSv41-kraemerf-102014.pdf
http://doi.acm.org/10.1145/214419.214421
http://dx.doi.org/10.1145/214419.214421
https://docs.puppetlabs.com/puppet/
http://v3vee.org/papers/NWU-EECS-09-14.pdf
http://doi.acm.org/10.1145/2576195.2576206
http://dx.doi.org/10.1145/2576195.2576206
http://www.linux-kvm.org
http://linux-vserver.org
http://lustre.opensfs.org/community-lustre-roadmap
http://lustre.opensfs.org
https://jira.hpdd.intel.com/browse/LU-2456

[68] Lustre Ticket LU-3291: IU UID/GID Mapping Feature. Descr: Tracking bug for Indiana
University’s UID/GID mapping and cluster project. URL:
https://jira.hpdd.intel.com/browse/LU-3291 [cited 27-jan-2015].

[69] Lustre Ticket LU-5989: add subdirectory mounting support for Lustre. Descr: add subdirectory
mounting support for Lustre. URL: https://jira.hpdd.intel.com/browse/LU-5989 [cited
31-jan-2015].

[70] Lustre hands-on at SC2011. Lustre Hands-On at SC2011 Presentation. No Links to proceedings.
URL: http://cdn.opensfs.org/wp-content/uploads/2011/11/Lustre-hands-on-SC2011.pdf
[cited 01-jan-2015].

[71] LXC - Linux Containers: Userspace tools for the Linux kernel containment features. URL:
https://linuxcontainers.org [cited 19-nov-2014].

[72] LXD: The Linux Container Daemon. URL: http://www.ubuntu.com/cloud/tools/lxd [cited
30-nov-2014].

[73] Bob Lynch. OpenFlow: Can it scale? SDN Central, June 2013. URL:
https://www.sdncentral.com/technology/OpenFlow-sdn/2013/06/ [cited 20-dec-2014].

[74] The Magnum Containers-as-a-Service Project for OpenStack. URL:
https://wiki.openstack.org/wiki/Magnum [cited 18-jun-2015].

[75] Manila: Shared file system service for OpenStack. URL:
https://wiki.openstack.org/wiki/Manila [cited 29-jan-2015].

[76] Welcome to Manila: An OpenStack File Share Service, 2014. Presentation from Juno (Atlanta)
Summit. URL: https://wiki.openstack.org/wiki/Manila/JunoSummitPresentation [cited
30-jan-2015].

[77] Mantevo mini-application downloads. URL: http://www.mantevo.org/packages.php [cited
29-nov-2014].

[78] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in campus networks.
Technical report, March 2008. Stanford University, University of Washington, MIT, Princeton
University, University of California Berkeley, Washington University in St. Louis. URL:
http://archive.openflow.org/documents/openflow-wp-latest.pdf [cited 20-dec-2014].

[79] Peter Mell and Timothy Grance. The NIST definition of cloud computing. Technical Report
800-145, National Institute of Standards and Technology, September 2011. URL:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf [cited 29-nov-2014].

[80] Mellanox OpenStack and SDN/OpenFlow Solution Reference Architecture, 2014. Mellanox Inc.
URL: http://www.mellanox.com/sdn/pdf/Mellanox-OpenStack-OpenFlow-Solution.pdf
[cited 20-dec-2014].

[81] Mellanox’s software defined networking (SDN), 2014. Mellanox Inc. URL:
http://www.mellanox.com/sdn/ [cited 20-dec-2014].

117

https://jira.hpdd.intel.com/browse/LU-3291
https://jira.hpdd.intel.com/browse/LU-5989
http://cdn.opensfs.org/wp-content/uploads/2011/11/Lustre-hands-on-SC2011.pdf
https://linuxcontainers.org
http://www.ubuntu.com/cloud/tools/lxd
https://www.sdncentral.com/technology/OpenFlow-sdn/2013/06/
https://wiki.openstack.org/wiki/Magnum
https://wiki.openstack.org/wiki/Manila
https://wiki.openstack.org/wiki/Manila/JunoSummitPresentation
http://www.mantevo.org/packages.php
http://archive.openflow.org/documents/openflow-wp-latest.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.mellanox.com/sdn/pdf/Mellanox-OpenStack-OpenFlow-Solution.pdf
http://www.mellanox.com/sdn/

[82] James Morris. sVirt: Hardening Linux virtualization with mandatory access control, 2009.
Presentation at Linux Conference Australia (LCA). URL:
http://namei.org/presentations/svirt-lca-2009.pdf [cited 23-nov-2014].

[83] Thomas D. Nadeau and Ken Gray. SDN: Software Defined Networks. O’Reilly Media, first edition,
September 2013.

[84] ProgrammableFlow networking, 2014. NEC Inc. URL: http://www.necam.com/SDN/ [cited
20-dec-2014].

[85] The scaling implications of SDN, June 2011. NetworkHeresey.com. URL:
http://networkheresy.com/2011/06/08/the-scaling-implications-of-sdn/ [cited
20-dec-2014].

[86] B.Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for computer networks.
IEEE Communications Magazine, 32(9):33–38, September 1994. doi:10.1109/35.312841.

[87] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC-4120: The Kerberos Network Authentication
Service (V5), July 2005. URL: http://www.ietf.org/rfc/rfc4120.txt [cited 31-jan-2015].

[88] nova-compute-lxd source code at github. URL: https://github.com/zulcss/nova-compute-lxd
[cited 5-feb-2015].

[89] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti.
A survey of software-defined networking: Past, present, and future of programmable networks.
IEEE Communications Surveys & Tutorials, 16(3):1617–1634, Third 2014.
doi:10.1109/SURV.2014.012214.00180.

[90] FAQ: What is OpenDaylight?, 2014. OpenDaylight.org. URL:
http://www.opendaylight.org/project/faq#1 [cited 20-dec-2014].

[91] OpenDaylight technical overview, 2014. OpenDaylight.org. URL:
http://www.opendaylight.org/project/technical-overview [cited 20-dec-2014].

[92] OpenSFS. About OpenSFS. OpenSFS, 2015. URL: http://opensfs.org/about/.

[93] OpenSFS. Lustre R© File System, Version 2.4 Released. OpenSFS, 2015. URL:
http://opensfs.org/press-releases/lustre-file-system-version-2-4-released.

[94] OpenStack: The Open Source Cloud Operating System. URL:
https://www.openstack.org/software [cited 4-feb-2015].

[95] OpenStack Operations Guide, 2014. Abstract: This book provides information about designing and
operating OpenStack clouds. URL:
http://docs.openstack.org/openstack-ops/content/index.html [cited 21-jun-2015].

[96] OpenStack Security Guide, 2014. This book provides best practices and conceptual information
about securing an OpenStack cloud. URL:
http://docs.openstack.org/security-guide/content/index.html [cited 23-nov-2014].

118

http://namei.org/presentations/svirt-lca-2009.pdf
http://www.necam.com/SDN/
http://networkheresy.com/2011/06/08/the-scaling-implications-of-sdn/
http://dx.doi.org/10.1109/35.312841
http://www.ietf.org/rfc/rfc4120.txt
https://github.com/zulcss/nova-compute-lxd
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://www.opendaylight.org/project/faq#1
http://www.opendaylight.org/project/technical-overview
http://opensfs.org/about/
http://opensfs.org/press-releases/lustre-file-system-version-2-4-released
https://www.openstack.org/software
http://docs.openstack.org/openstack-ops/content/index.html
http://docs.openstack.org/security-guide/content/index.html

[97] OpenVZ: Container-based virtualization for Linux. URL: http://www.openvz.org [cited
19-nov-2014].

[98] Oracle; Intel. Lustre File System: Operations Manual Version 2.0, 2011. URL:
https://wiki.hpdd.intel.com/display/PUB/Documentation.

[99] Sarp Oral, David A. Dillow, Douglas Fuller, Jason Hill, Dustin Leverman, Sudharshan S. Vazhkudai,
Feiyi Wang, Youngjae Kim, James Rogers, James Simmons, and Ross Miller. OLCF’s 1 TB/s,
Next-Generation Lustre File System. OLCF at ORNL, 2013. URL:
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap151.pdf [cited
27-jan-2015].

[100] Adrian Otto and Steven Dake. Magnum: Containers-as-a-Service for OpenStack, May 18-22, 2015.
Presentation at OpenStack Summit, Vancouver, Canada. URL:
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/

magnum-containers-as-a-service-for-openstack [cited 18-jun-2015].

[101] James Page and Ryan Harper. LXD vs KVM: Getting closer to the metal with the LXD lightervisor,
May 18-22, 2015. Presentation at OpenStack Summit, Vancouver, Canada. URL: https:
//www.openstack.org/summit/vancouver-2015/summit-videos/presentation/lxd-vs-kvm

[cited 18-jun-2015].

[102] January 2015. Personal communication with administrative staff deploying and maintaining
leadership class Lustre installation at ORNL.

[103] Grégoire Pichon. Experiments with io proxies over lustre, September 23, 2014. Presentation at the
2014 Lustre Administrators and Developers Workshop (LAD’14). URL: http://www.eofs.eu/
fileadmin/lad2014/slides/18_Gregoire_Pichon_LAD2014_IOProxies_over_Lustre.pdf

[cited 1-feb-2015].

[104] Red Hat. Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide, 2014.
URL: http://goo.gl/Y4rB5D [cited 30-nov-2014].

[105] Arjun Roy, Kenneth Yocum, and Alex C. Snoeren. Challenges in the emulation of large scale
software defined networks. University of California, San Diego, 2013. URL:
http://cseweb.ucsd.edu/~snoeren/papers/forgery-apsys13.pdf [cited 20-dec-2014].

[106] Rusty Russell. virtio: Towards a de-facto standard for virtual I/O devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103, July 2008. doi:10.1145/1400097.1400108.

[107] Wikipedia: Serial ATA. URL: http://en.wikipedia.org/wiki/Serial_ATA [cited 1-feb-2015].

[108] SELinux: Security Enhanced Linux. URL: http://selinuxproject.org [cited 29-nov-2014].

[109] Stephen Simms and Josh Walgenbach. Scope Statement For UID/GID Mapping in Lustre 2.X,
November 10, 2012. Revision v2. URL:
http://wiki.opensfs.org/images/3/31/UID_GID_Scope_Statement_v2.pdf [cited
27-jan-2015].

119

http://www.openvz.org
https://wiki.hpdd.intel.com/display/PUB/Documentation
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap151.pdf
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/magnum-containers-as-a-service-for-openstack
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/magnum-containers-as-a-service-for-openstack
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/lxd-vs-kvm
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/lxd-vs-kvm
http://www.eofs.eu/fileadmin/lad2014/slides/18_Gregoire_Pichon_LAD2014_IOProxies_over_Lustre.pdf
http://www.eofs.eu/fileadmin/lad2014/slides/18_Gregoire_Pichon_LAD2014_IOProxies_over_Lustre.pdf
http://goo.gl/Y4rB5D
http://cseweb.ucsd.edu/~snoeren/papers/forgery-apsys13.pdf
http://dx.doi.org/10.1145/1400097.1400108
http://en.wikipedia.org/wiki/Serial_ATA
http://selinuxproject.org
http://wiki.opensfs.org/images/3/31/UID_GID_Scope_Statement_v2.pdf

[110] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and Jay Lepreau. The
Flask security architecture: System support for diverse security policies. In Proceedings of the 8th
Conference on USENIX Security Symposium, volume 8 of SSYM’99. USENIX Association, 1999.

[111] Swift: Object Storage for OpenStack. URL: https://wiki.openstack.org/wiki/Swift [cited
29-jan-2015].

[112] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. Eliminating the hypervisor attack
surface for a more secure cloud. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 401–412, New York, NY, USA, 2011. ACM. URL:
http://doi.acm.org/10.1145/2046707.2046754, doi:10.1145/2046707.2046754.

[113] Visolve SSH Team. OpenSSH Whitepaper. Visolve. URL:
http://www.visolve.com/ssh.php#Kerberos_Authentication.

[114] Juliean Tinnes and Chris Evans. Security in-depth for Linux software, October 2009. URL:
https://www.cr0.org/paper/jt-ce-sid_linux.pdf [cited 30-nov-2014].

[115] Vivek Twari. SDN and OpenFlow for beginners with hands on labs. First edition. URL:
http://www.amazon.com/SDN-OpenFlow-beginners-hands-labs-ebook/dp/B00EZE46D4/ref=

sr_1_1?ie=UTF8&qid=1410613111&sr=8-1&keywords=SDN [cited 20-dec-2014].

[116] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V.
Anderson, Steven M. Bennett, Alain Kägi, Felix H. Leung, and Larry Smith. Intel R© Virtualization
Technology. IEEE Computer, 38(5):48–56, May 2005.

[117] Geoffroy R. Vallée, Thomas Naughton, Christian Engelmann, Hong H. Ong, and Stephen L. Scott.
System-level virtualization for high performance computing. In Proceedings of the 16th Euromicro
International Conference on Parallel, Distributed, and network-based Processing (PDP) 2008,
pages 636–643, Toulouse, France, February 13-15, 2008. IEEE Computer Society, Los Alamitos,
CA, USA. URL: http://www.csm.ornl.gov/~engelman/publications/vallee08system.pdf,
doi:http://doi.ieeecomputersociety.org/10.1109/PDP.2008.85.

[118] Feiyi Wang, Sarp Oral, Galen Shipman, Oleg Drokin, Tom Wang, and Isaac Huang. Understanding
lustre filesystem internals. Technical Report ORNL/TM-2009/117, National Center for
Computational Sciences, April 2009. URL:
http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf

[cited 1-feb-2015].

[119] Wikipeda. Generic Security Services Application Program Interface. OpenSFS, 2015. URL: http:
//en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface.

[120] Wikipeda. Lustre GSSAPI/Kerberos Repair. OpenSFS, 2015. URL:
http://wiki.opensfs.org/Lustre_GSSAPI/Kerberos_Repair [cited 31-jan-2015].

[121] Wikipedia. Federal Information Processing Standards. Wikipedia. URL:
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standards.

[122] RFC-3920: Extensible Messaging and Presence Protocol (XMPP): Core, October 2004. IETF
Network Working Gropu, P. Saint-Andre, Ed. URL: http://www.ietf.org/rfc/rfc3920.txt
[cited 21-dec-2014].

120

https://wiki.openstack.org/wiki/Swift
http://doi.acm.org/10.1145/2046707.2046754
http://dx.doi.org/10.1145/2046707.2046754
http://www.visolve.com/ssh.php#Kerberos_Authentication
https://www.cr0.org/paper/jt-ce-sid_linux.pdf
http://www.amazon.com/SDN-OpenFlow-beginners-hands-labs-ebook/dp/B00EZE46D4/ref=sr_1_1?ie=UTF8&qid=1410613111&sr=8-1&keywords=SDN
http://www.amazon.com/SDN-OpenFlow-beginners-hands-labs-ebook/dp/B00EZE46D4/ref=sr_1_1?ie=UTF8&qid=1410613111&sr=8-1&keywords=SDN
http://www.pdp2008.org
http://www.pdp2008.org
http://www.computer.org
http://www.computer.org
http://www.csm.ornl.gov/~engelman/publications/vallee08system.pdf
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/PDP.2008.85
http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
http://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
http://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
http://wiki.opensfs.org/Lustre_GSSAPI/Kerberos_Repair
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
http://www.ietf.org/rfc/rfc3920.txt

[123] Xyratex. URL: http://www.xyratex.com [cited 28-jan-2015].

[124] S.H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-defined networking.
IEEE Communications Magazine, 51(2):136–141, February 2013.
doi:10.1109/MCOM.2013.6461198.

[125] Lamia Youseff, Keith Seymour, Haihang You, Jack Dongarra, and Rich Wolski. The impact of
paravirtualized memory hierarchy on linear algebra computational kernels and software. In
Proceedings of the 17th International Symposium on High Performance Distributed Computing
(HPDC’08), pages 141–152, New York, NY, USA, 2008. ACM.
doi:http://doi.acm.org/10.1145/1383422.1383440.

[126] Oracle ZFS Product Bulliten. URL:
https://go.oracle.com/LP=3687?elqCampaignId=6317&src1=ad:pas:go:dg:

stor&src2=wwmk14054304mpp001&SC=sckw=WWMK14054304MPP001 [cited 29-jan-2015].

121

http://www.xyratex.com
http://dx.doi.org/10.1109/MCOM.2013.6461198
http://dx.doi.org/http://doi.acm.org/10.1145/1383422.1383440
https://go.oracle.com/LP=3687?elqCampaignId=6317&src1=ad:pas:go:dg:stor&src2=wwmk14054304mpp001&SC=sckw=WWMK14054304MPP001
https://go.oracle.com/LP=3687?elqCampaignId=6317&src1=ad:pas:go:dg:stor&src2=wwmk14054304mpp001&SC=sckw=WWMK14054304MPP001

Appendix A

Protection Level

A.1 Protection Level

The DCID 6/3 manual [27] defines a Protection Level (PL) as:

“An indication of the implicit level of trust that is placed in a system’s technical capabilities. A
Protection Level is based on the classification and sensitivity of information processed on the
system relative to the clearance(s), formal access approval(s), and need-to-know of all direct
and indirect users that receive information from the IS without manual intervention and
reliable human review.” [27]

Table A.1 outlines the requirements for DCID 6/3 Protection Level 3 (PL3) [27]. The table includes
annotations in column three to suggest how we meet, or could meet, the needs in the OpenStack based
Secure Enclaves (SE) testbed. Note, this is an initial PL3+OpenStack evaluation and will likely be refined
as we progress.

The 2nd and 3rd columns are symmetric, with column 3 providing the annotations describing how the
current SE testbed meets, or could meet, requirements based on project reports/design and current
installation options. Items that seem to be primarily under the customer’s control/discretion are marked as
“Customer defined”. Finally, items that are entirely open or need further consideration are marked in red
with “NEEDED / OPEN”.

122

Table A.1. Review of DCID Protection Level 3 requirements and assessment of how these needs are
met, or could be met, for OpenStack based SE testbed.

Category Requirements How we meet requirements
C1. Access Control

1. Denial of physical access with-
out supervision

2. Procedures in place for control-
ling access

3. Process/mechanism for users to
grant access to data for other
users

4. Process/mechanism for user
to determine data’s sensitivity
level

1. Customer defined
2. Customer defined
3. Presumably Swift can do this
4. NEEDED/OPEN

C2. Discretionary Access
Control 1. System should use DAC 1. Linux uses this by default

C3. Account Manage-
ment Procedures 1. Account type identification

2. Account establishment, activa-
tion, modification, and termi-
nation

1. Covered by Keystone and
Linux

2. Linux tools covered local sys-
tem and Keystone for the rest

123

Table A.1 – continued from previous page
Category Requirements How we meet requirements
C4. Audit Procedures

1. Records must include date/-
time, system locale, entity and
resources involved, and the ac-
tion

2. Protection of audit logs
3. Audit data maintained for at

least 5 years and reviewed
weekly

4. Records must include logon/lo-
goff, access to security-relevant
objects and directories, console
activities, and system-level ac-
cesses by privileged users

5. Include existence/use of audit
reduction/analysis tools

6. Audit trail recording changes
to its list of user formal access
permissions (only needed if #5
is automated)

7. Individual accountability
8. Periodic testing of the security

posture

1. Use Auditd
2. Use SELinux
3. Customer defined
4. Use Auditd
5. Use Auditd’s suite of tools
6. Use Auditd
7. Use Auditd
8. Customer defined

C5. Identification and
Authentication 1
(must be specified)

1. Initial authenticator content
and administrative proce-
dures for initial authenticator
distribution

2. Individual and group authenti-
cators

3. Length, composition, and gen-
eration of authenticators

4. Change process
5. Aging of static authenticators
6. History of static authenticators

and non-replication of individ-
ual authenticators

7. Protection of authenticators
with respect to confidentiality
and integrity

1. Customer defined
2. Customer defined, but individ-

ual authenticators likely to be
user passwords/keys

3. NEEDED/OPEN
4. Customer defined, but mecha-

nism is contained in Keystone
5. Customer defined
6. Customer defined
7. SELinux can cover integrity,

confidentiality should be cov-
ered

124

Table A.1 – continued from previous page
Category Requirements How we meet requirements
C6. Identification and
Authentication 2 1. User generated passwords may

be verified for strength in an au-
tomated way (optional)

2. Remote access users shall em-
ploy a strong authentication
mechanism

1. NEEDED/OPEN
2. SSH

C7. Least Privilege
1. Each user/process is granted

the most restrictive set of privi-
leges or accesses needed for au-
thorized tasks

1. LXC, Docker with capabilities
& user namespaces. Users are
restricted to unprivileged ac-
count

C8. Marking
1. Procedure/mechanism to en-

sure that either the user or the
system marks all data stored/-
transmitted to reflect the sensi-
tivity level of that information

1. NEEDED/OPEN

C9. Parameter Transmis-
sion 1. Security parameters (e.g., la-

bels or markings) are reliably
associated with information ex-
changed between systems

1. NEEDED/OPEN

C10. Recovery
1. Recoveries should be done in a

trusted and secure manner
1. NEEDED/OPEN

C11. Resource Control
1. Memory must be scrubbed

prior to allocation/re-allocation
1. Linux (>= 2.6.30) can do this

prior to re-allocation to another
process

125

Table A.1 – continued from previous page
Category Requirements How we meet requirements
C12. Screen Lock

1. There should be screen locking
functionality unless impossible
to have. Should be able to:

(a) Enable explicitly or due
to idleness

(b) Lock requiring a pass-
word to unlock

(c) Not be a substitute for
logging out

1. Seems out of scope, otherwise
it will be NEEDED/OPEN

C13. Separation of roles
1. The ISSO and ISSM should be

different people 1
1. Customer defined

C14. Session controls
1. Users should be notified on lo-

gin that they will be monitored,
recorded, and subject to audit

2. Users advised use of system
is giving consent to audit and
unauthorized use could result
in civil/criminal penalties

1. Not in design, but can be done
via to /etc/motd or /etc/
issue

C15. Enforcement of Ses-
sion Controls 1. Procedures for controlling/au-

diting concurrent logons from
different workstations

2. Station/session time-outs
3. Limited logon retries
4. Some action on unsuccessful

logons

1. Use Auditd
2. Modify ClientAliveInterval in

/etc/ssh/sshd_config
3. Modify MaxAuthTries in

/etc/ssh/sshd_config
4. Use iptables to block IP

1Terminology: The Information System Security Officer (ISSO) is responsible to the ISSM for the maintained operational
security of the Information System (IS). The Information System Security Manager (ISSM) is the manager responsible for an
organization’s IS security program.

126

Table A.1 – continued from previous page
Category Requirements How we meet requirements
C16. Storage
(one of following) 1. Information stored in an area

approved for open storage
2. Information stored in an area

approved for continuous per-
sonnel access

3. Information secured as appro-
priate for closed storage

4. Information encrypted via
NSA-approved encryption
mechanism as appropriate for
the data

1. Customer defined
2. Customer defined
3. Customer defined
4. GPFS supports encryption,

Lustre does not support
encryption

C17. Data transmission
(one of following) 1. Distributed only within area ap-

proved for open storage
2. Distributed via a PDS
3. Distributed using NSA-

approved encryption
4. Distributed using a trusted

courier

1. Customer defined
2. Customer defined
3. Not currently in our docs, focus

on isolation. NEEDED/OPEN
4. n/a

C18. Documentation
1. A system security plan
2. A security concept of opera-

tions
3. Guide/manual for the system’s

privileged users
(a) Configuring, installing

and operating the system
(b) Making optimum use of

security features
(c) Identifying known secu-

rity vulnerabilities related
to the system

4. Certification test plans and pro-
cedures detailing the imple-
mentation of the features/assur-
ances for the required PL

5. Report of test results
6. General user’s guide

1. Customer defined
2. Partially covered in SE report,

other pieces up to customer
3. Most covered in SE reports
4. Customer defined
5. Some tests in SE reports
6. Some of user’s guide can be

taken from SE reports

127

Table A.1 – continued from previous page
Category Requirements How we meet requirements
C19. System Assurance

1. Features/procedures to validate
the integrity/operation of soft-
ware, hardware, firmware

2. Features/procedures for pro-
tecting OS integrity

3. Control of access to software,
hardware, and firmware

4. Assurance of the integrity of
above

5. Isolation of (above) by means
of partition/domains/etc.

6. Using up-to-date vulnerability
assessment tools to test the sys-
tem

1. Do not have, but could if nec-
essary. NEEDED/OPEN

2. Use SELinux
3. Customer defined
4. NEEDED/OPEN
5. Use of VEs / VMs
6. Do not have this, but may be

covered in Y2 robustness deliv-
erables. NEEDED/OPEN

C20. Testing
1. n/a 1. Customer defined

128

Appendix B

Docker

B.1 Docker Files

The following source listings provide an example of a Docker image description file. These listings
also provide details about the configurations used in our testing.

Listing B.1. Example Dockerfile for CentOS v7 image that includes the HPCCG bench-
mark and GNU compilers.

1 # $Id: Dockerfile.centos7cxx 825 2015-06-11 19:31:04Z tjn3 $
2 # TJN adding G++ to CentOS7 for HPCCG testing
3 #
4 # To rebuild image:
5 # sudo docker build -t="naughtont3/centos7cxx" .
6 # sudo docker push naughtont3/centos7cxx
7

8 FROM centos:centos7
9 MAINTAINER "Thomas Naughton" <naughtont@ornl.gov>

10

11 ADD etc/yum.repos.d/epel-ornl.repo /etc/yum.repos.d/epel-ornl.repo
12 ADD etc/yum.repos.d/rhel7.repo /etc/yum.repos.d/rhel7.repo
13 CMD ["chmod","0644","/etc/yum.repos.d/epel-ornl.repo","/etc/yum.repos.d/rhel7.repo"]
14

15 RUN yum -y update; yum clean all
16 RUN yum -y install epel-release; yum clean all
17 RUN yum -y install libcgroup-tools; yum clean all
18 RUN yum -y install gcc gcc-c++ libstdc++ libstdc++-devel; yum clean all
19 RUN yum -y install wget net-tools; yum clean all
20

21 CMD ["mkdir","-p","/benchmarks"]
22 ADD benchmarks/HPCCG-1.0.tar.gz /benchmarks
23 ADD benchmarks/Makefile.HPCCG /benchmarks/HPCCG-1.0/Makefile.HPCCG
24 ADD benchmarks/Makefile.HPCCG+mpi /benchmarks/HPCCG-1.0/Makefile.HPCCG+mpi
25 ADD benchmarks/Makefile.HPCCG /benchmarks/HPCCG-1.0/Makefile

129

Listing B.2. Example Dockerfile that extends base CentOS7-HPCCG image to include
Open MPI, an mpiuser and configurations for inter-container MPI launch via SSH.

1 # BC adding OpenMPI and SSHD to CentOS7/HPCCG bundle
2 #
3 # To rebuild image:
4 # sudo docker build -t="blakec/centos7-sshd-mpi" .
5 # sudo docker push blakec/centos7-sshd-mpi
6

7 FROM naughtont3/centos7cxx
8 MAINTAINER "Blake Caldwell" <blakec@ornl.gov>
9 ENV container docker

10

11 # Install the real systemd
12 RUN yum -y swap -- remove fakesystemd -- install systemd systemd-libs
13

14 # Install all packages and create mpiuser with authentication by ecdsa key
15 RUN yum -y install openssh-clients openssh-server openmpi openmpi-devel net-tools; \
16 yum clean all; \
17 adduser mpiuser; \
18 su -c "echo ’export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:\$LD_LIBRARY_PATH’ >> ~

mpiuser/.bashrc" mpiuser; \
19 su -c "echo ’export PATH=/usr/lib64/openmpi/bin/:\$PATH’ >> ~mpiuser/.bashrc" mpiuser

; \
20 su -c "/usr/bin/ssh-keygen -t ecdsa -f ~/.ssh/id_ecdsa -q -N ’’" mpiuser; \
21 su -c "cat ~/.ssh/id_ecdsa.pub >> ~/.ssh/authorized_keys" mpiuser; \
22 ssh-keygen -t ecdsa -f /etc/ssh/ssh_host_ecdsa_key -q -N ""; \
23 su -c "echo -n ’* ’ > ~/.ssh/known_hosts && cat /etc/ssh/ssh_host_ecdsa_key.pub >>

~/.ssh/known_hosts" mpiuser
24

25 # Configure systemd removing unecessary unit files
26 RUN (cd /lib/systemd/system/sysinit.target.wants/; \
27 for i in *; do [$i == systemd-tmpfiles-setup.service] || rm -f $i; done); \
28 rm -f /lib/systemd/system/local-fs.target.wants/*; \
29 rm -f /lib/systemd/system/systemd-remount-fs.service; \
30 rm -f /lib/systemd/system/sockets.target.wants/*udev*; \
31 rm -f /lib/systemd/system/sockets.target.wants/*initctl*; \
32 rm -f /lib/systemd/system/basic.target.wants/*; \
33 rm -f /lib/systemd/system/anaconda.target.wants/*; \
34 rm -f /lib/systemd/system/console-getty.service; \
35 rm -f /etc/systemd/system/getty.target.wants/*; \
36 rm -f /lib/systemd/system/getty@.service; \
37 rm -f /lib/systemd/system/multi-user.target.wants/getty.target; \
38 /usr/bin/systemctl enable sshd.service
39 VOLUME ["/sys/fs/cgroup"]
40

41 # start systemd
42 CMD ["/usr/sbin/init"]

130

Appendix C

libvirt

C.1 libvirt Files

The following source listings provide an example of a libvirt configuration file. These files describe the
“virtual hardware” configuration for the virtual machine. These listings also provide details about the
configurations used in our testing.

Listing C.1. Example libvirt XML for CentOS v7 image, which is setup for bridged net-
working.

1 <domain type=’kvm’>
2 <name>centos7kvm</name>
3 <uuid>70564581-691f-43b5-aeab-c0793fab9071</uuid>
4 <memory unit=’KiB’>50331648</memory>
5 <currentMemory unit=’KiB’>50331648</currentMemory>
6 <vcpu placement=’static’>31</vcpu>
7 <os>
8 <type arch=’x86_64’ machine=’pc-i440fx-rhel7.0.0’>hvm</type>
9 <boot dev=’hd’/>

10 </os>
11 <features>
12 <acpi/>
13 </features>
14 <clock offset=’utc’/>
15 <on_poweroff>destroy</on_poweroff>
16 <on_reboot>restart</on_reboot>
17 <on_crash>destroy</on_crash>
18 <devices>
19 <emulator>/usr/libexec/qemu-kvm</emulator>
20 <disk type=’file’ device=’disk’>
21 <driver name=’qemu’ type=’qcow2’ cache=’none’/>
22 <source file=’/var/lib/libvirt/images/centos7-x86_64.qcow2’/>
23 <target dev=’vda’ bus=’virtio’/>
24 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x04’ function=’0x0’/>
25 </disk>
26 <disk type=’file’ device=’disk’>
27 <driver name=’qemu’ type=’raw’/>
28 <source file=’/var/lib/libvirt/images/user-data.img’/>
29 <target dev=’vdb’ bus=’virtio’/>
30 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ function=’0x0’/>
31 </disk>
32 <controller type=’usb’ index=’0’>
33 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ function=’0x2’/>
34 </controller>

131

35 <controller type=’pci’ index=’0’ model=’pci-root’/>
36 <interface type=’bridge’>
37 <mac address=’52:54:00:17:bd:79’/>
38 <source bridge=’br-eth2’/>
39 <model type=’e1000’/>
40 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’ function=’0x0’/>
41 </interface>
42 <serial type=’pty’>
43 <target port=’0’/>
44 </serial>
45 <console type=’pty’>
46 <target type=’serial’ port=’0’/>
47 </console>
48 <memballoon model=’virtio’>
49 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ function=’0x0’/>
50 </memballoon>
51 </devices>
52 </domain>

132

Appendix D

Network Enclaving Demo

D.1 On-Demand Network Enclaving via SDN & Neutron

The following provides a brief demonstration of on-demand enclaving with OpenStack’s Neutron. The
screen captures were taken while performing a test to show the functionality in the ORNL SE testbed. The
text windows show details from OpenStack Command Line Interface (CLI) utilities and details from the
underlying Arista switch via its CLI interface. The output from the Arista switch is only for demonstration
purposes, a user would not need to interface with the switch directly. For reference, the Arista CLI screen
captures all have the prompt set to “CADES-OS-ARISTA#”.

OpenStack Networks

Create Tenant
Network

Figure D.1. Demo: OpenStack Networks

133

Create a new tenant network

Figure D.2. Demo: Create a new tenant network (1/2)

Create a new tenant network

New dynamic VLAN
(tenant network “T4NET”)

Figure D.3. Demo: Create a new tenant network (2/2)

134

Launch Tenant VMs on new “T4NET”

Add “T4NET” to
Launch Instance

Figure D.4. Demo: Launch Tenant VMs on new “T4NET”

VMs on Dynamic Tenant Network

Figure D.5. Demo: VMs on Dynamic Tenant Network

135

Horizon VM Console & Ping Test

Figure D.6. Demo: Horizon VM Console & Ping Test

Details on Neutron Networks & Nova VMs

Figure D.7. Demo: Details on Neutron Networks & Nova VMs

136

Show Active VMs and Networks (Arista)

Figure D.8. Demo: Show Active VMs and Networks (Arista)

Separate example with different Tenants*

* Note: Separate experiment that shows multiple networks
 for different Tenants (Tenant1 & admin).

Figure D.9. Demo: Separate example with different Tenants

137

Terminate VM Instances

Figure D.10. Demo: Terminate VM Instances

Show Terminated VMs Are Gone (Arista)

VMS Gone but Network remains (VLAN304)

Figure D.11. Demo: Show Terminated VMs Are Gone (Arista)

138

Delete Tenant Network from OpenStack

“T4NET”
(304*)

Removed

Figure D.12. Demo: Delete Tenant Network from OpenStack

Summary: Tenant VLAN Remove (Arista)

1. T4NET Exists
(VLAN304)

2. VMs Instances
Terminated

3. T4NET Removed
(VLAN304)

Figure D.13. Demo: Summary - Tenant VLAN Remove (Arista)

139

	Front Matter
	Cover Page
	Document Availability
	Title Page

	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Project Scope
	Customizable Computing Resources
	Threat Model

	Report Outline

	Background
	Terminology
	Virtualization
	Networking

	Virtualization Classification
	OS Level Virtualization
	System-level Virtualization

	SDN and Network Function Virtualization
	Storage Architectures
	The Lustre Storage Architecture
	The GPFS Storage Architecture

	Security Classifications
	Supporting Security Technologies
	NIST
	FIPS
	GSSAPI
	Kerberos

	System Management Tools
	Puppet
	OpenStack

	Virtualization
	OS level virtualization
	Namespaces
	Cgroups
	Linux-VServer
	OpenVZ
	LXC
	Docker

	System level virtualization
	Xen
	KVM

	Virtualization and Security Mechanisms
	sVirt
	SELinux
	AppArmor
	Capabilities

	Reconfigurable Networks
	Typical Networking Environment
	Static Networks Involving VRF and Preconfigured VLANS
	Software Interfaces for Reconfigurable Networks
	Traditional SDN
	Hybrid SDN
	Overlay Network
	SDN with OpenStack
	Implementing Neutron Routers
	Networking with LXD

	Security in HPC Storage
	Lustre
	Isolation
	Authentication
	Authorization
	Integrity
	Features in Development
	Gaps

	GPFS
	Authentication
	Authorization
	Encryption
	Features & Gaps

	Discussion
	Comparisons of Security with Lustre and GPFS
	Performance in Lustre and GPFS

	Bridging Technologies for Secure Storage
	Virtualization
	VLAN/Network Segmentation
	I/O Forwarding
	NFS
	VirtFS
	DIOD

	OpenStack Implementation Details
	Core OpenStack Components
	Horizon – Dashboard
	Nova – Compute
	Neutron – Networking
	Keystone – Identity Services
	Glance – Image Service
	Swift – Object Storage
	Cinder – Block Storage

	Emerging OpenStack Components
	Manila – Filesystem-As-A-Service
	Magnum – Containers-As-A-Service
	LXD – System-Containers-As-A-Service
	LXD vs. Magnum

	Secure Enclaves System Architecture
	Isolation-Centric Architecture
	Instances of the Isolation-Centric Architecture
	Parallel filesystem with host-based subtree limitations for VM
	Parallel filesystem with host-based subtree limitations for VE

	Evaluation
	Secure Enclave Testbed Description
	SDN in Testbed

	User namespaces
	Shared-storage use case

	HPCCG
	Description
	Setup
	Discussion & Observations

	iperf: TCP Bandwidth
	Description
	Setup
	Discussion & Observations

	On-demand Network Enclaving via SDN & OpenStack's Neutron
	Description
	Setup
	Discussion & Observations

	Network Isolation Testing
	Description
	Setup
	Discussion & Observations

	Controlling VM access to Lustre with IO-Forwarding
	Description
	Setup
	Discussion & Observations

	Controlling VE access to Lustre with kernel isolation
	Description
	Setup
	Discussion & Observations

	Secure Compute Vulnerability Assessment
	Introduction
	Evaluation
	System-level Virtualization
	OS level virtualization
	The Linux Kernel

	Recommendations

	Network & Storage Vendor Analysis
	Key Vendors and their role in SDN
	Arista
	Brocade
	Cisco
	Dell
	Juniper
	Mellanox
	Network Vendor Conclusion

	Storage Vendor Overview
	Seagate/Xyratex
	Oracle ZFS Storage Appliance
	Additional Systems

	Conclusion
	Synopsis
	Observations
	Benchmarks
	User namespaces & Container Isolation
	Vulnerability Assessment
	Security Classifications
	Networking
	Secure Storage

	Future Plans
	Final Remarks

	Acknowledgments
	Bibliography
	Protection Level
	Protection Level

	Docker
	Docker Files

	libvirt
	libvirt Files

	Network Enclaving Demo
	On-Demand Network Enclaving via SDN & Neutron

