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ABSTRACT 

The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System 

(NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, 

and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial 

customer. Ideally, the optimized integration of these systems will provide economic and operational 

benefits to the overall system compared to independent operation, and it will enhance the stability and 

responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of 

grid power. 

This report describes development of a model for optimizing the cost of an NHES, which includes a 

nuclear power plant, a gas power plant, electric storage, and an industrial customer. The overall objective 

is to create a power system (NHES) that effectively and economically responds to variable grid demand. 

Variable grid demand correlates to increased use of intermittent renewable power, and it may lead to 

increased requirements for load following for the reactor integrated into the NHES. This would decrease 

cost savings and reduce the benefits of reduced emissions associated with nuclear power plants. This 

research addresses alternative optimization strategies for minimizing the levelized cost of electricity and 

other noneconomic factors while accommodating increased variance in grid electric demand. 

Integrated nuclear hybrid energy systems are being investigated to leverage the emission-free energy of 

nuclear power without inducing a performance decrement that typically comes with reactor load 

following. By tightly integrating a nuclear reactor with an industrial customer, the variance in the grid’s 

electric demand can be accommodated while maintaining the amount of nuclear power placed into 

service. This approach will become increasingly important as variable renewable power increases. To this 

end, the industrial customer in an NHES will use thermal and/or electrical energy from the reactor at 

times of decreased grid electrical demand. 

It will be a challenge for nuclear hybrid energy systems to be cost-attractive when compared to 

integration only through the grid. Grid integration offers several advantages, such as independence of 

operation and a subsequent decoupling of feedback effects. Conversely, integrating the system can cost-

optimize all of the sub-systems simultaneously while hedging against uncertainty through diversified 

energy sources. Cost-based optimization of an integrated nuclear hybrid energy system requires a balance 

of components’
1
 sizing (power capacity), the operational priorities, and overall availability, reliability, 

and utility while meeting its grid supply requirements. 

A base case configuration for a nuclear hybrid energy system was created to develop and exercise the 

methodology for NHES analysis. This NHES includes a nuclear power plant, a natural gas power plant, a 

grid-scale storage battery, and an industrial customer. The overall cost of the power system includes 

capital, operations and maintenance, and fuel costs, but it also must account for any unmet demand costs, 

as well as the cost of environmental impacts such as emissions costs, if any. These costs carry uncertainty 

or volatility in either their point estimates or their future value, which will impact optimization of the 

overall system. 

System optimization also depends on the electric power demand distribution in the cumulative 

distribution and the time series history. Optimization based on the cumulative distribution alone does not 

account for the effects of power ramping or clustered peaking; nor does it account for the required 

periodic reactor refueling outage.  Thus, rational optimization must be based on explicit time series and 

incorporate a model of standard operations. 

                                                      
1
For this discussion, component refers to the different power plants within the NHES rather than individual systems 

or subsystems within each power plant. 
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Besides economic evaluation, system optimization must include noneconomic performance figures of 

merit such as permissible ramping rates, power maneuvers, and component availability and reliability. 

When possible, these noneconomic figures of merit should be converted to cost figures, but this 

conversion can carry high uncertainty. 

Preliminary analyses show that the optimization of the system component capacities—that is, the relative 

sizing of the nuclear power plant, the gas power plant, and the storage battery—are highly sensitive to gas 

prices and unmet demand costs. Increasing either gas prices or unmet demand costs (or both) also 

increases the attractiveness of nuclear power. The storage battery is beneficial to the system when unmet 

demand prices are sufficiently high, especially when coupled with a peaking gas plant. Optimization is 

also highly sensitive to uncertainty and volatility in the grid demand profile, whether considered from a 

cumulative demand function or from a time-series demand profile. 

The physics-based performance assumptions used for the initial economic analysis (such as allowed 

ramping rates) are insufficient to analyze and compare system physical performance. The level of 

physical and operational detail within the model needed to contrast, compare, and optimize the system 

requires high fidelity, dynamic, multiphysics models to track physical phenomena through the integrated 

system. Ongoing and future work will develop and use more detailed physics-based models to more 

precisely describe system performance, providing feedback on the development of robust optimization 

results and operational requirements and heuristics. 

1. INTRODUCTION AND BACKGROUND 

Idaho National Laboratory, Argonne National Laboratory, and Oak Ridge National Laboratory are 

developing multiphysics-based models to evaluate a tightly coupled Nuclear Hybrid Energy System 

(NHES). An initial configuration with a nuclear power plant, a gas plant, a storage battery, and an 

industrial customer is being developed and tested (Harrison 2016). 

One intention of NHES is to facilitate higher penetration of both nuclear power and renewable power onto 

the grid while maintaining grid stability, reliability, and affordability. Renewable power sources are 

intermittent and unpredictable by nature. This is particularly true for wind power. When renewable 

penetration is small, the grid can handle these fluctuations. However, as the amount of volatile power 

increases, grid stability becomes more difficult to maintain. 

One way to increase stability and accommodate the volatility is to introduce a buffer to the grid. In 

current practice, hydropower and peaking gas plants handle the volatility. Hydropower is low-cost and 

dispatchable (within some operational constraints), but it is geographically limited to areas with sufficient 

available reservoirs and is subject to weather effects. Gas plants operate reliably, but they produce 

undesirable emissions. They also trade operational volatility for fuel price volatility. 

Nuclear reactors can be operated in load following operation, reducing the need for gas plants, but this 

induces a performance decrement to the reactor. An alternative method for using a reactor as a grid buffer 

is to couple a nuclear reactor’s thermal output to an intermediate system, or thermal manifold, allowing 

the reactor to shift thermal power between a power conversion system and a thermal customer. 

Such a system must be economically competitive in order to be attractive to utilities and industry. The 

following sections develop the methodology for that economic analysis as applied to the reference NHES 

case. 
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2. NUCLEAR HYBRID ENERGY SYSTEM BASE CASE 

2.1 THE POWER PLANTS 

The NHES configuration includes nuclear and gas-fired power plants. The nuclear power plant is a 

generic light water reactor (LWR) operating at 32.6% thermal efficiency
2
 for electric power conversion 

(U.S. Energy Information Administration 2015) and a 90% capacity factor (U.S. Energy Information 

Administration 2016). It is assumed that the nuclear power plant is optimized for continuous steady-state 

full-power operation, but it is also capable of load following. 

 

Two types of gas-fired power plants are described herein. The first is a conventional combined cycle plant 

operating at 48.4% thermal efficiency (U.S. Energy Information Administration 2015) and 87% capacity 

factor (U.S. Energy Information Administration 2016). This is typical of baseload power installations. 

The second type is a conventional combustion turbine operating at 31.6% thermal efficiency (U.S. Energy 

Information Administration 2015) and 30% capacity factor (U.S. Energy Information Administration 

2016), typical of a peaking power installation. Thus, gas-fired power plants may operate as either 

baseload (combined cycle) or on as needed peakers (combustion turbine).  Both power plant types are 

described in the individual cost analysis discussion in Section 3.2.3 and are currently used for power 

generation. However, the base case analysis focuses on the combustion turbine to highlight the difference 

between the baseload nuclear plant and the peaking gas plant. The combined cycle gas plant will have 

better cost performance than the combustion turbine (see Section 3.2.3), but it is intended to operate as a 

baseload generator with a higher capacity. Since an integrated system would not include both a baseload 

natural gas plant and a baseload nuclear plant, the baseload gas plant is not included in the analysis. 

2.2 THE BATTERY 

A grid-scale battery is also included in the NHES. This is not a power plant per se, but rather it is energy 

storage that acts as a buffer during periods when power supply cannot meet demand. Multiple grid-scale 

battery storage systems are currently in development (Rastler 2010), and a representative system, 

specifically a lithium ion system, is used in this analysis. This analysis assumes an energy 

storage/transmission efficiency of 90%, a typical efficiency noted for grid-scale battery storage (Rastler 

2010). 

 

The lithium ion battery described by the Electric Power Research Institute (EPRI) scales up to 100 MWe
3
, 

with a discharge time of up to 1 hour. This implies an energy storage capacity of 100 MWeh (Rastler 

2010). 

2.3 THE INDUSTRIAL CUSTOMER 

For the preliminary analysis, the industrial customer is simply treated as a thermal power sink without 

regard for the required inlet temperature. The industrial customer in future work will include more 

specific temperature and absolute power requirements. Additionally, the end industrial product is not 

specified or tracked. The only economic effect the industrial customer provides is in the purchase of 

thermal power. 

                                                      
2
The thermal efficiency is calculated based on the heat rate as given in BTU/kWeh in the source document. The 

energy equivalence between BTU and kWh is 1 kWh = 3,412.142 BTU; thus, a heat rate of 10,479 BTU/kWeh for 

nuclear power yields a thermal efficiency of 3,412.142/10,479 = 0.3256 = 32.6%. 
3
Power is given in megawatt-electric or megawatt-thermal and is abbreviated MWe or MWt, denoting electrical 

power or thermal power, respectively. Energy is given in megawatt-electric-hours or megawatt-thermal-hours and is 

abbreviated MWeh or MWth, denoting electrical energy or thermal energy, respectively. 
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2.4 THE THERMAL MANIFOLD 

The analysis includes a thermal manifold to direct thermal power between the power conversion system 

and the industrial customer. In its simplest terms, the thermal manifold acts as a distributor for hot steam 

from the heat exchanger outlet and a collector for subcooled water for the heat exchanger inlet. 

 

3. FIGURE OF MERIT DEFINITION AND ANALYSIS METHODOLOGY 

3.1 THE COST-BASED FIGURE OF MERIT 

3.1.1 The Rationale for the Cost-Based Figure of Merit 

In this analysis, the most universally applicable figure of merit for comparing performance is the total 

cost of the system when meeting a given set of performance requirements. Thus, for a given set of 

competing NHES configurations, the most attractive (optimal) configuration is the one requiring the 

minimum cost to successfully meet the performance requirement. 

 

This statement of optimization is in some measures incomplete; in general economic analyses, the most 

attractive option is the one which maximizes the net present value or, equivalently, provides the greatest 

internal rate of return for the investment. The results obtained from more widely used statements of 

optimization do not necessarily disagree with the results obtained from cost minimization. Rather, they 

require additional information, such as the market price of any industrial product generated by the NHES. 

For example, the market for hydrogen, a potential industrial product, is well characterized and mature. 

While it may seem straightforward to include market prices for the industrial product, this introduces an 

additional set of optimization parameters such as storage and transportation. For the purposes of 

analyzing and optimizing a system architecture and configuration to demonstrate system compatibility, 

stability, and operability, these parameters are set aside for potential inclusion in future analyses. 

3.1.2 Definition of Costs 

The cost for each component
4
 of the NHES is summed from four general categories, but not all 

components will incur costs in all categories. 

 

 Capital costs for the construction, which is converted into a capital recovery cost, given in $/year
5
 

 Fixed operation and maintenance (O&M) costs, given in $/year
6
. 

 Variable O&M costs given in $/marginal unit. For power plants, this is $/megawatt-hour, either 

thermal or electric (usually electric). For an industrial facility, this is $/unit of material produced. 

External environmental costs, given in $/marginal units, are similar to the variable operation and 

maintenance costs above. These costs would include carbon taxes or other emission costs. 

                                                      
4
The reactor, gas plant, and battery are considered to be individual components. The thermal manifold is assumed to 

be part of the reactor, and the switchyard is assumed to be covered by the combination of the reactor, gas plant, and 

battery. 
5
Capital recovery costs are given in $/year because the capital cost is essentially the mortgage for the construction 

costs, and the year is a standard period for integrating the energy produced to account for anticipated seasonal 

fluctuations. This allows a direct conversion to $/MWeh for capital cost. 
6
Fixed O&M costs use $/year for the same reason as the capital recovery costs. 
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3.1.3 Cost Estimation 

3.1.3.1 Capital recovery cost 

The capital recovery cost is a function of multiple parameters:  

 total capital cost, including interest during construction – 𝐶,  

 interest
7
 rate charged during payback – 𝑟, and  

 the number of periods of payback – 𝑛.  

 

These parameters yield the payment
8
, 𝐴, as: 

𝐴 = 𝐶𝑟 (1+𝑟)𝑛

(1+𝑟)𝑛−1
. 

 

For power plants, the capital cost 𝐶 can be considered a function of the nameplate power 𝑃 of the plant, 

such that 𝐶 = 𝐶(𝑃). Assuming the interest rate and number of payback periods is insensitive to the 

nameplate power, the payment becomes: 

𝐴 = 𝐶(𝑃)𝑟 (1+𝑟)𝑛

(1+𝑟)𝑛−1
. 

 

This function can thus be separated into two parts, one corresponding to the capital cost and one 

corresponding to the financial parameters. For example, with a capital cost of $5,000/kWe, an annual 

interest rate of 5%, and a 40-year payback period, the annual capital recovery payment is then: 

 

𝐴 =
$5000

kWe
∗ 0.05 (1.05)40

(1.05)40−1
=

$291.4

kWe
=

$291.4k

MWe
. 

 

Thus, for a 1,000 MWe nuclear power plant using these parameters, the annual capital recovery payment 

is $291.4M. The annual capital recovery payment for other components on a per-kilowatt or other per-

unit basis can be calculated similarly. Each year the U.S. Energy Information Administration (EIA) 

provides cost estimates for power plants (U.S. Energy Information Administration 2015), and EPRI 

provides cost estimates for battery storage (Rastler 2010). Costs for nuclear and gas turbine power plants 

and battery storage appear in Table 1. The table also includes annual capital recovery payments using the 

EIA assumption of 5.6% over 30 years. 
 

Table 1. Capital costs for power plants 

Power plant type Capital cost 

($/kWe)
9
 

Annual capital recovery 

($/kWe/y) 

Advanced nuclear 5,366 373.3 

Conventional combined cycle 912 63.5 

Conventional combustion turbine 968 67.3 

Lithium ion battery storage 1,300
10

 90.4 

 

In typical analyses, these costs are converted into $/MWeh by calculating the total energy produced in a 

year based on the capacity factor of the power plant. For example, a 1,000 MWe nuclear power plant with 

                                                      
7
For this analysis, the term interest includes the cost of capital. 

8
The annual capital recovery payment is a fixed amount following construction. Dividing the fixed payment amount 

by the total energy produced yields a cost (or payment amount) per unit of energy. 
9
The costs from EIA given in Table 4 and other related tables are indexed to 2013$, and the costs given by EPRI are 

assumed to be in 2010$. Converting 2013$ and 2010$ to 2016$ requires an increase of ~3.6% and ~10% (Bureau of 

Labor and Statistics n.d.), respectively, which is within the expected uncertainty in actual capital costs. Thus, the 

costs are not escalated from the source document. 
10

The reference provides a range of $1,085–$1,550/kWe; $1,300 was chosen as representative. 
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a capacity factor of 90% will produce approximately 7.89 × 10
6
 MWeh annually. Spreading the $373M 

annual payment over this produced energy yields a capital recovery cost of $47.28/MWeh. This spreading 

of costs over the energy produced yields the levelized cost; this is the typical cost communicated and 

compared in power generation cost analyses. 

3.1.3.2 Fixed O&M costs
11

 

Fixed O&M costs are incurred by a component regardless of the operational status. That is, the 

components incur the costs whether power (or another unit with value) is produced or not. These costs are 

typically scaled to per-kilowatt or other per-unit-capacity basis for a given period of time, usually per 

year. The EIA provides these estimates as well (U.S. Energy Information Administration 2015). EPRI 

assumes a fixed percentage
12

 of the capital cost due to the small or nonexistent, experience based on 

actual O&M costs (Nuclear Energy Institute 2016). These appear in Table 2. 

 
Table 2. Fixed O&M costs for power plants 

Power plant type Fixed O&M cost  

($/kWe/year) 

Advanced nuclear 93.23 

Conventional combined cycle 13.16 

Conventional combustion turbine 7.34 

Lithium ion battery storage 13.00 

 

Similar to the capital recovery costs, fixed O&M costs are typically spread over the total power produced. 

For the 1,000 MWe nuclear power plant example, the $93M annual cost yields a fixed O&M cost of 

$11.81/MWeh. This also assumes linear scaling (see Section 3.1.3.6). 

3.1.3.3 Variable O&M costs 

The variable O&M costs are costs incurred by a component only during operation. That is, the 

components incur the costs only when power (or another unit with value) is produced. These costs are 

typically given on a per-megawatt-hour or per-unit basis. EIA provides these estimates for the nuclear and 

gas plants, as well (U.S. Energy Information Administration 2015). EPRI does not include variable O&M 

costs for battery storage in units of $/MWeh since the design and operation of battery storage is dissimilar 

to that of power plants. As a placeholder, this analysis assumes a battery storage variable cost similar to 

that of the combustion turbine since both are dispatched less frequently than the baseload plants.
13

 These 

variable O&M costs appear in Table 3. Note that this does not include fuel costs. 

 
Table 3. Variable O&M costs for power plants 

Power plant type Variable O&M cost 

($/MWeh) 

Advanced nuclear 2.14 

Conventional combined cycle 3.60 

Conventional combustion turbine 15.44 

Lithium ion battery storage 15.00 

 

                                                      
11

Fixed O&M costs can include safety-related inspections or maintenance, emergency staffing, or other costs 

associated with mandatory or regulatory activities. 
12

EPRI assumes a low-end estimate of 0.5% and a high-end estimate of 2%; this analysis uses 1%. 
13

The assumption of $15/MWeh is an arbitrary assumption, and as such represents an area of uncertainty. 
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For comparison, the Nuclear Energy Institute (NEI) tracks total nonfuel O&M costs for the nuclear fleet 

(Nuclear Energy Institute 2016). The EIA-based example of the 1,000 MWe nuclear reactor as described 

above, having $11.81/MWeh of fixed costs and $2.14/MWeh of variable costs, yields an estimate of 

$13.95/MWeh of total nonfuel O&M costs. NEI provides a recorded range of ~$19-$27/MWeh and an 

overall average of $21/MWeh, a difference of ~$7/MWeh or ~50% of the estimate. This is a fairly 

significant discrepancy; however, the NEI data include actual data from the existing US nuclear fleet, 

which includes multiple older, smaller reactors which may skew the overall average. The EIA uses 

existing data as a starting point, but we presume it makes some assumptions about increased efficiencies 

and cost savings in operations. For the purposes of this analysis, and to be consistent with the use of EIA 

estimates for the gas plants, it is assumed that the EIA value of ~$14/MWeh is valid for new construction 

reactors. 

The costs referenced above do not include fuel, but fuel costs for both nuclear and gas turbine power 

plants can be estimated from additional sources. For nuclear fuel, the NEI tracks fuel costs for the US 

nuclear reactor fleet (Nuclear Energy Institute 2016), while for natural gas, the recent market price in 

$/cubic feet
14

 is tracked by EIA (U.S. Energy Information Administration 2016). The lithium ion battery 

storage does not have fuel cost since it draws electrical power. These costs appear in Table 4. Note that 

there is a range of fuel costs since it is tied directly to a commodity market with various degrees of 

volatility. 

Table 4. Fuel costs for power plants 

Fuel type 
Fuel cost ($/MWeh) 

assuming $2–$4/mcf 

Use $3/mcf 

Advanced nuclear 6–8  

Conventional combined cycle 13.67–27.33 Use 20.50 

Conventional combustion turbine 20.90–41.79 Use 31.35 

 

This analysis assumes a constant or long-term average value of $3/mcf for gas. This leads to a 

$31.35/MWeh fuel cost for the combustion turbine. 

3.1.3.4 External environmental costs 

As with the variable O&M costs, external environmental costs are assumed to only be incurred during 

operation, specifically during the burning of fossil fuels that leads to the release of CO2. There is no 

current carbon cost in the US, but a slack variable is included as a placeholder for future reference. 

 

Carbon emission from natural gas is on the order of 53 kg/million British thermal units (BTUs) (U.S. 

Energy Information Administration n.d.), and the emission per kWeh depends on the thermal efficiency 

of the power cycle. Table 5 shows the carbon emission for the two types of gas-fired plants considered in 

both g/kWeh and MT/MWeh. 

 
Table 5. CO2 emissions for power plants 

Plant type Emission rate (MT/MWeh) 

Conventional combined cycle 0.374 

Conventional combustion turbine 0.572 
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One cubic foot is equivalent to 1,032 BTUs, the heat rate for a conventional combined cycle plant is 7,050 

BTU/kWeh, and for a conventional combustion turbine it is 10,783 BTU/kWeh (U.S. Energy Information 

Administration 2015). Thus, a conventional combined cycle plant requires 6,831 ft
3
 per MWeh, and a conventional 

combustion turbine requires 10448.6 ft
3
 per MWeh. Since prices are typically given in dollars × 1,000 cf (mcf), this 

is more usefully given as 6.8 mcf/MWeh and 10.4 mcf/MWeh. 
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Typical values of proposed carbon costs are on the order of tens of dollars per metric ton (MT) to 

hundreds of dollars per MT. For simplicity and clarity, the carbon cost can also be converted to an 

equivalent cost increment for natural gas. Since a combustion turbine emits 0.572 MT/MWeh and 

requires 10.4 mcf/MWeh, it emits 0.055 MT/mcf of natural gas consumption. With an example carbon 

cost of $10/MT, this implies a $0.55/mcf increase in natural gas prices. At a carbon cost of $100/MT, this 

implies a $5.50/mcf increase in natural gas prices. Alternatively, a $1/mcf increase in natural gas prices is 

equivalent to a carbon cost increase of $18.2/MT.  Thus, from a cost perspective, there is no difference 

between $3/mcf natural gas with an $18.2/MT carbon cost, and $4/mcf natural gas with no carbon cost. 

3.1.3.5 Decommissioning and decontamination (D&D), capital upgrades, and other costs 

D&D, upgrades, and other costs are implicitly included in capital recovery and O&M costs. For nuclear 

fuel, the cost of fuel storage and disposition is implicitly included in the fuel cost. 

3.1.3.6 A caveat on cost scaling 

The cost estimates presented above assume constant linear scaling, especially in the capital and O&M 

costs. For example, one assumption is that a reactor costs $5,366/kWe, whether it is a 500 MWe or a 

1,300 MWe reactor. This is likely a valid assumption for most commercial-scale reactor construction 

projects and their subsequent operation. However, moving from the current 500 MWe to 1,300 MWe 

operational experience toward small reactors on the order of 50 MWe each may invalidate that assumed 

overnight construction cost. For example, a 50 MWe reactor may cost $10,000/kWe. This is not likely to 

impact the preliminary analysis of the base case, but it should be noted for future analyses. 

3.2 EVALUATION OF INDIVIDUAL SYSTEM COSTS 

3.2.1 Derivation of Generic Cost 

The total cost for each component is the summation of the category costs: 

 

𝐶𝐶 = 𝐴𝐶 + 𝑂𝐶
𝐹 + 𝑂𝐶

𝑉 + 𝐹𝐶 + 𝐸𝐶, 

 

where the subscript 𝑐 represents the generic component, and 

𝐶𝐶 is the total cost, 

𝐴𝐶 is the capital recovery cost, 

𝑂𝐶
𝐹 is the fixed O&M cost, 

𝑂𝐶
𝑉 is the variable O&M cost, 

𝐹𝐶 is the fuel cost, and 

𝐸𝐶 is the environmental cost. 

 

As given, these represent the total costs over some time period, potentially over the full lifetime of the 

system. To convert this total cost to a levelized cost, the equation becomes: 

 

𝑐𝐶 =
𝐴𝐶+𝑂𝐶

𝐹+𝑂𝐶
𝑉+𝐹𝐶+𝐸𝐶

𝑄𝐶
=

𝐴𝐶+𝑂𝐶
𝐹

𝑄𝐶
+ 𝑜𝐶

𝑉 + 𝑓𝐶 + 𝑒𝐶, 

 

where for each component 𝑐, 

𝑐𝐶 is the total levelized cost, 

𝑄𝐶 is the total energy produced, 

𝑜𝐶
𝑉 is the levelized variable O&M cost, 

𝑓𝐶 is the levelized fuel cost, and 
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𝑒𝐶 is the levelized environmental cost. 

 

As discussed in Section 3.1.3.1, converting the capital recovery cost and the fixed O&M cost into 

estimated levelized costs requires an assumed capacity factor for a priori estimates. For continuous-

operation baseload units such as the nuclear and combined cycle plants, this assumption is accurate. For 

the combustion turbine and battery, this assumption can be considered accurate when placed into 

uncoupled or unintegrated service. However, for a tightly integrated system, the assumed capacity factors 

may be inaccurate and will thus require explicit calculation.  This will yield an effective levelized cost. 

3.2.2 Total Nuclear Power Cost 

For the nuclear reactor, the total cost is the summation of the category costs and is expressed as: 

 

𝑐𝑁 =
𝐴𝑁+𝑂𝑁

𝐹+𝐹𝑁

𝑄𝑁
+ 𝑜𝑁

𝑉. 

 

This formulation differs in two ways from the form given in Section 3.2.1. First, the environmental costs 

are zeroed. This is based on the assumption that environmental costs are a function of carbon emission 

only. Second, fuel costs are not strictly considered to be levelized costs. That is, the fuel cost is not only a 

function of the usage. This is due to the nature of the usage of nuclear fuel. Nuclear fuel is purchased in 

batches of discrete fuel units which are loaded and discharged from the reactor based on total energy 

extracted (burnup) and schedule (periodic outages). When discharged, the fuel has no salvage value, so 

any deviation from the expected energy value is a sunk cost. It is possible to account for this disparity in 

the purchase of the next batch of fuel, but introducing a highly variable operational regime (such as load 

following) may prevent the implementation of an effective purchasing strategy. 

 

Assuming a typical $7/MWeh levelized fuel cost and a 90% capacity factor will yield a fixed fuel cost of 

$55.23/kWe/year. Using this value and other values from the tables above, the nuclear power cost is then: 

 

𝑐𝑁 = 𝑃𝑁
$373.30+$93.23+$55.23

𝑄𝑁 × 𝑘𝑊𝑒 × 𝑦𝑒𝑎𝑟
+

$2.14

MWeh
= 𝑃𝑁

$521.76

𝑄𝑁 × 𝑘𝑊𝑒 × 𝑦𝑒𝑎𝑟
+

$2.14

MWeh
, 

 

where 

𝑃𝑁 is the rated power (in kWe) of the nuclear power plant. 

 

Thus, for a 10
6
 kWe nuclear power plant with a 90% capacity factor, the 𝑄𝑁 is 7.89 × 10

6
 MWeh/year, 

yielding: 

𝑐𝑁 =
$521.76

7.89 MWeh
+

$2.14

MWeh
=

$68.27

MWeh
 

 

However, the capacity factor may not be a single value based on the operational regime. For example, an 

operational regime that includes scheduled ramping for approximate broad-scale load following, such as 

for weekend versus weekday loads, would induce a lower capacity factor. Moving from a capacity factor 

of 0.9 to 0.7 would change the levelized cost to 

𝑐𝑁 =
$521.76

6.14 MWeh
+

$2.14

MWeh
=

$87.11

MWeh
. 

 

Thus, the levelized cost is a very strong function of the actual capacity factor. Generally, the levelized 

cost can be rewritten as
15

 

                                                      
15

The 8766 used in the denominator refers to hours in a sidereal year of 365.25 days. This makes the analysis 

insensitive to accounting for leap years. 
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𝑐𝑁 =
$521.76

8.766∗𝑘𝑁
+

$2.14

MWeh
, 

 

where 

𝑘𝑁 is the capacity factor defined as actual energy produced divided by potential energy produced. 

 

From this perspective, the variable O&M cost of $2.14/MWeh is essentially the marginal cost of nuclear 

power at a given capacity factor. In fact, the $2.14/MWeh is the maximum cost to produce an additional 

MWeh of nuclear power since increasing the overall production decreases the levelized cost. 

 

3.2.3 Total Gas Power Cost 

The total gas cost is given by: 

𝑐𝐺 =
𝐴𝐺+𝑂𝐺

𝐹

𝑄𝐺
+ 𝑜𝐺

𝑉 + 𝑓𝐺 + 𝑒𝐺. 

 

For the combined cycle plant, the cost is then 

𝑐𝐺𝐶 =
$63.50+$13.16

𝑄𝐺𝐶
+

$3.60

MWeh
+

$20.50

MWeh
+ 𝑒𝐺𝐶 =

$76.66

8.766∗𝑘𝐺𝐶
+

$24.10

MWeh
+ 𝑒𝐺𝐶. 

 

Similarly, the cost for the combustion turbine plant is 

𝑐𝐺𝑇 =
$67.30+$7.34

𝑄𝐺𝑇
+

$15.44

MWeh
+

$31.35

MWeh
+ 𝑒𝐺𝑇 =

$74.64

8.766∗𝑘𝐺𝑇
+

$46.79

MWeh
+ 𝑒𝐺𝑇. 

 

These two cost equations show that the combined cycle plant is at a lower cost than the combustion 

turbine plant. However, these two different types of gas power plants are intended for different purposes, 

as described in Section 2.1. The combined cycle is a baseload plant, and the combustion turbine is a 

peaking plant. This analysis assumes the use of the combustion turbine since the gas plant will be used as 

a peak power plant. 

 

Marginal costs for gas plants also depend on the environmental costs. Assuming no environmental costs, 

the marginal costs are then $24.10/MWeh for combined cycle and $46.78/MWeh for combustion turbine. 

At a $10/MT carbon cost, the environmental costs are an additional $3.74/MWeh for combined cycle and 

$5.72/MWeh for combustion turbine. Section 3.1.3.4 discusses the inclusion of environmental costs with 

gas prices. 

3.2.4 Total Battery Cost 

The total battery cost is given by 

𝑐𝐵 =
𝐴𝐵+𝑂𝐵

𝐹

𝑄𝐵
+ 𝑜𝐵

𝑉 =
$90.40+$13.00

𝑄𝐵
+

$15.00

MWeh
=

$103.40

𝑄𝐵
+

$15.00

MWeh
. 

 

Note that the capacity factor for the battery storage is not defined since it is not strictly a power 

production term. 

3.2.5 Unmet Demand Cost 

Unmet demand cost is included to account for deficits in power provided to the grid relative to the 

demand. The unmet demand cost is arbitrarily set at $130/MWeh, which is the US average retail price of 
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electricity delivered to residential customers
16

 (U.S. Energy Information Administration n.d.). This cost 

may be adjusted to provide a forcing function to promote the prevention of unmet demand. While the cost 

of unmet demand is not tied directly to production costs, this analysis considers it a cost levied against the 

system for not meeting the demand on the system. 

 

4. CASE ANALYSIS 

4.1 SUMMARY OF THE PROGRESSION OF ANALYTICAL METHODS AND RESULTS 

This section summarizes the progression of the analytical methods and results, starting with the simplest 

analysis in Section 9.1, and increasing in complexity through Section 9.6. 

4.2 SIMPLE ESTIMATE 

Section 9.1 introduces a coupled nuclear reactor and combustion turbine gas plant. The nuclear reactor is 

rated at 1,000 MWe with a 90% capacity factor, and the gas plant is rated at 250 MWe with a capacity 

factor of 40%. This yields a system average of 1,000 MWe and a levelized cost of $68.26/MWeh. In 

theory, this is sufficient to meet a 1,000 MWe average demand. However, this simplistic analysis does not 

account for the variation in demand that real grid response must meet. Additionally, while this approach is 

valid when analyzing collections of individual power plants and describing their behavior as a whole, it 

breaks down when analyzing a discrete integrated system of a single reactor with a single gas power 

plant. 

4.3 APPLICATION OF THE DEMAND PROFILE 

Section 9.2 introduces the concept of treating an actual demand profile as a cumulative distribution of 

hourly demands. Using historical data for a full year of 8,760 hours, the example 1,000 MWe-average 

cumulative distribution is plotted in Fig. 8. The initial system proposed to meet the demand is the same 

1,000 MWe reactor and 250 MWe gas plant as in Section 9.1. The demand is met by the dispatch logic 

given below: 

 The reactor is only used for demand less than 1,000 MWe. 

 The reactor and gas are used for demand between 1,000 and 1,250 MWe. 

 At demands greater than 1,250 MWe, the difference is left unmet. 

 

The energy balance for this case is detailed in Table 8. The reactor has a resulting capacity factor of 93% 

(potentially unrealistic for long-term operation), and the gas plant has a capacity factor of 27%, but 

110,000 MWeh of demand is left unmet. Accounting only for production cost, the total levelized cost is 

$67.31/MWeh. This is less than the simplistic analysis in Section 9.1 at $68.25/MWeh because of the 

higher nuclear capacity factor. However, accounting for the 110,000 MWeh of unmet demand increases 

the total cost to $68.92/MWeh. 

4.4 INCLUDING THE BATTERY 

To decrease the unmet demand, a 100 MWe battery is introduced into the system in Section 9.3. This 

creates a system with a peak supply of 1,350 MWe, which is sufficient to cover 95% of the demand 

distribution from Fig. 8. The demand is met by the dispatch logic shown below: 

 The reactor is only used for demand less than 1,000 MWe. 

                                                      
16

This analysis uses the average retail residential price for unmet demand since it is assumed that the system will be 

competing with other customers during periods of unmet demand, and the retail residential price is the highest price 

on the grid. 
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 The reactor and gas are used for demand between 1,000 and 1,250 MWe. 

 The reactor, gas, and battery are used for demand between 1,250 and 1,350 MWe. 

 At demands greater than 1,350, the difference is left unmet. 

 

The energy balance for this case is detailed in Table 9. The reactor capacity factor remains at 93%. The 

battery has a capacity factor of 17%, but the gas plant capacity factor increases to 30%. The gas plant 

capacity factor increases due to the need to recharge the battery. In this case, only 40,000 MWeh are left 

unmet. Accounting only for production costs, the levelized cost is $68.46/MWeh. When unmet demand 

costs are included, the levelized cost is $69.05/MWeh. This implies that increasing nuclear, gas, or battery 

capacity to prevent unmet demand increases the total cost, especially with battery capacity. This is 

consistent with concerns regarding overbuilding baseload on the overall grid. Conversely, unmet demand 

decreases to a fraction of a percent of total demand, which implies increased grid stability. 

4.5 SIMPLE OPTIMIZATION OF THE INTEGRATED ELECTRICITY SYSTEM 

The capacities of the reactor, gas plant, and battery are optimized in Section 9.4, wherein their respective 

capacity factors are set to 90%/40%/40%, as illustrated in Fig. 11. Using these values as targets, the first 

iteration estimates capacities of 1,030/190/100 MWe for the reactor/gas plant/battery, respectively. 

However, applying these capacities to the demand distribution yields a levelized cost, including unmet 

demand, of $70.04/MWeh. Further, the actual capacity factors are 91%/32%/22% rather than 

90%/40%/40% as planned. The energy balance for this case is detailed in Table 10. 

 

A second optimization step attempts to account for the steep slope in the distribution curve at 900 MWe 

as seen in Fig. 8. The estimated capacities of 900/300/100 MWe yield capacity factors of 97%/43%/24%, 

respectively, and a total cost of $66.65/MWeh. However, the capacity factor for the nuclear plant (97%) is 

higher than reasonable, and the unmet demand increases relative to the first optimization attempt. The 

energy balance for this case is detailed in Table 11. 

 

Using numerical methods to enforce capacity factors of 90% in the reactor and 40% in the gas plant, the 

next optimization attempt estimates capacities of 1,050/125/100 MWe for the reactor/gas plant/battery. 

This yields a total cost of $71.02/MWeh, but the unmet demand again increases relative to the second 

attempt. The energy balance for this case is detailed in Table 12. 

 

Using numerical methods with bounds on the capacities and capacity factors as given in Table 14, the 

cost-optimal solution is 1,012/193/100 MWe, with capacity factors of 92%/35%/26% for the reactor/gas 

plant/battery, respectively. The levelized cost is $69.55/MWeh, which is higher than several previous 

cases, but it meets the requirements of the bounded capacity factors. Optimizin—instead of minimizing—

unmet demand yields an identical solution since unmet demand is already more expensive than installing 

additional capacity. Changing the battery size limits while still minimizing unmet demand changes the 

solution to 1,012/200/200 MWe and increases the cost to $70.06/MWeh. This explicitly trades increased 

battery capital cost and decreased battery capacity factor for decreased unmet demand. 

 

Returning to the cost-optimization approach while retaining the 200 MWe limit for the battery, the 

optimized solution is 1,012/193/102 MWe for nuclear/gas/battery. 

4.6 INTRODUCTION OF THE TIME SERIES 

The work in Sections 9.2 through 9.4 consider the demand profile as a cumulative distribution, such that 

there is a probability of having demand less than or equal to some given value.  Similar to the analysis in 

Section 9.1, this is a valid approach for analyzing large sets of power plants operating in a large grid, 

where aggregate demand and aggregate supply are sufficient to describe the overall system.  However, 



 

13 

 

this is invalid for analyzing the immediate demand on a single power system. Instead, the real demand 

profile is a time series in which the current demand moves to a subsequent demand within some range; for 

the example demand profile, this is ±~10%. 

 

Section 9.5 thus uses the demand profile as a time series instead of a cumulative distribution; this is more 

representative of an actual physical system. It also introduces the concept of noneconomic figures of 

merit, specifically the number of power maneuvers required to meet demand, including the number of full 

discharges of the battery. 

 

Analyzing the performance of the 1,012/193/102 MWe case through the time series, the nuclear capacity 

factor remains 92%. However, the gas capacity factor decreases to 28% (less than the target minimum of 

35%) because the battery provides relatively little total power to the grid and thus requires less charging 

from the gas plant. The battery fully discharges 130 times and is unavailable for 15% of the year. The 

unmet demand increases, and the total cost increases to ~$71/MWeh. 

 

This performance decrement is due to the clustering of power peaks as shown in Fig. 12. For this case, the 

battery discharges 130 times and is unavailable for ~15% of the year. 

 

Optimizing the system by minimizing cost for the time series yields a solution of 1,007/100/38 MWe, 

with capacity factors of 92%/35%/4% for nuclear/gas/battery, respectively, with a cost of $72.77/MWeh. 

This solution is greater than the $71/MWeh above, but it meets the operational constraint of having at 

least 35% capacity factor for the gas plant. Optimizing the system by minimizing unmet demand yields a 

1,007/129/200 MWe system with a cost of $73.46/MWeh. 

 

The analysis so far has assumed that the reactor can change power with no limit on magnitude, rate, or 

frequency of power maneuvers, but this is an unrealistic assumption. The demand time series for the 

1,007 MWe reactor requires 5,316 power maneuvers over 8,760 hours. Additionally, the hourly power 

demand change ranges from -10% to +13%. Assuming a 10%/hour limit on the reactor and optimizing for 

cost, the optimal solution is a 1,007/100/28 MWe system. This is a reasonable result since the -

10% change is within the -10% limit allowed for the reactor, and any change over +10% is met by gas or 

battery, or it is left unmet. 

 

Imposing a 5%/hour ramp limit on the reactor changes the cost-optimized system to a 998/100/0 MWe 

nuclear/gas/battery system, with a cost of $72.65/MWeh. However, the imposition of the ramping limit 

creates excess energy if demand changes more negative than -5%/hour. This excess energy—

270,000 MWeh in this case—is essentially wasted since the grid demand must be exactly balanced by 

supply. 

4.7 INTRODUCTION OF THE THERMAL POWER CUSTOMER 

Section 9.6 introduces an alternate customer for thermal power from the reactor. By directly coupling the 

customer to the reactor output, thermal power that is not necessary for electricity production can be 

diverted for the customer’s use. This alternate customer allows the reactor to run at steady-state without 

performing power maneuvers. For this analysis, this tight coupling is assumed to have no inefficiencies. 

 

Using the thermal efficiency of 32.6%, 3 MWth can be sent to the customer in exchange for 1 MWeh that 

is not sent to the grid. Thus, the 27,000 MWeh of excess electrical energy is equivalent to 81,000 MWth 

for the industrial customer use. At a nominal cost of ~$10/MWth for gas-produced heat, this is an annual 

cost savings of ~$800k. 
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Changing the reactor’s operational profile from load following to full-power steady-state implies a 100% 

capacity factor. Including a 36-day refueling outage brings the capacity factor back to ~90%. The cost-

optimized solution for the system shown in Fig. 14 is a 919/300/0 MWe nuclear/gas/battery system with 

capacity factors of 90% and 44%, and it has a cost of $79.31/MWeh. 

4.8 TRADE STUDIES 

Section 9.7 examines the impact of changing gas and unmet demand prices. The base analysis assumes a 

gas price of $3/mcf. Taking the 919/300/0 MWe nuclear/gas/battery system with a cost of $79.31/MWeh 

and perturbing the gas price demonstrates the gas price impact on system optimization. Decreasing the 

gas price to $2/mcf pushes the capacity factor for the gas plant from 44% up to the maximum constraint 

of 45% and yields a levelized cost of $78.11. The increased gas capacity factor displaces some nuclear 

capacity, decreasing the reactor from 919 MWe to 915 MWe. Further decreasing the cost of gas to $1/mcf 

does not change the power plant capacities, but it does decrease the levelized cost to $76.91/MWeh. 

 

Conversely, increasing the cost of gas (which may include a carbon cost) to $5/mcf pushes the gas 

capacity factor to its minimum constraint of 35%, increases the reactor capacity to 987 MWe, and results 

in a levelized cost of $80.91/MWeh. Further increasing the cost of gas to $6/mcf only impacts the 

levelized cost, increasing it to $81.48/MWeh. 

 

Thus, at the given set of capital and O&M costs and operational requirements (such as capacity factors), 

the interval of gas prices which impact the optimization of the system is $2/mcf to $5/mcf. Below or 

above these costs, the system is bound by the operational requirements and the only impact is on the 

overall levelized cost. 

 

Changing the gas price does not impact the use of an electric battery. Instead, the electric battery is 

impacted by the cost of unmet demand. The base analysis assumes a $130/MWeh unmet demand cost, 

and the optimized system does not include a battery. However, increasing this to $200/MWeh does not 

increase demand for the battery; instead, it increases the nuclear capacity to 961 MWe and decreases the 

gas capacity factor to 38%, yielding a levelized cost of $84.44/MWeh. This trend holds to an unmet 

demand cost of $800/MWeh; this requires 988/300/16 MWe nuclear/gas/battery, and the levelized cost is 

$125.18/MWeh. The battery does not reach its maximum constraint of 200 MWe until the unmet demand 

reaches $1500/MWeh; this system has a levelized cost of $171.44/MWeh. 

 

Thus, the battery is an attractive addition to the system only when the cost of unmet demand far exceeds 

the cost of production. 

4.9 SOURCES AND IMPACTS OF UNCERTAINTY IN THE MODELING AND ANALYSIS 

There are multiple sources of uncertainty in the cost modeling, most of them in the costs themselves. The 

capital costs, O&M costs, fuel costs, and unmet demand costs are subject to various degrees of 

uncertainty and/or volatility. However, there is a fundamental difference between uncertainty and 

volatility. 

4.9.1 Cost uncertainty 

Capital costs are subject mainly to uncertainty. This implies that the costs can be estimated, including 

contracting with an architect/engineering firm for the construction of the plant. In particular, nuclear 

power plant construction cost is highly uncertain. Actual costs for current construction, referencing the 

Summer and Vogtle plants, range from ~$4,500–$6,500/kWe. These are two very similar plants in 
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adjacent states, but this effectively gives a mean of $5,500/kWe and a range of ~20%. Conversely, the 

capital costs of existing gas power plants, either combined cycle or combustion turbine, are less uncertain. 

 

The impact of uncertainty is that the initial costs, specifically the capital costs, are in doubt, but once they 

are fixed, the uncertainty is permanently removed from that factor. For example, after the construction of 

the power plant, the uncertainty in the capital recovery payment has been completely eliminated, 

assuming fixed financing. 

 

Additionally, the capital and O&M costs of the storage battery are highly uncertain given the current state 

of the technology. The actual performance of the storage battery is highly uncertain as well, which must 

be accounted for in a more detailed model, such as the one proposed in Section 5. 

4.9.2 Cost volatility in addition to uncertainty 

O&M, fuel, and unmet demand costs carry uncertainty but potentially high volatility. The O&M costs 

likely have low uncertainty and low volatility since they represent mature market services for well-

known, well-established practices. Not only can services be procured through a mature, operating market 

from multiple competitors, but the anticipated change in service costs for future procurement is relatively 

low. 

 

Fuel, especially natural gas, carries low point uncertainty because there is a mature and functional market 

for the commodity. However, the price is subject to the effects of supply shocks, demand shocks, market 

speculation, and regulatory intervention. Thus the recurring costs are subject to high uncertainty when 

attempting to optimize the system for future market impacts. 

 

For this analysis, the gas cost was considered constant through the full time series, which is not 

necessarily a valid assumption. This simplification is akin to using a long-term average or assuming a 

contractually guaranteed price. Moving beyond a single calendar year would require accounting for multi-

year variation in the gas prices. 

 

Unmet demand costs have similar behavior. These are subject to both contractual obligations and external 

market influences. Thus, optimizing a system based on assumptions about the costs of unmet demand 

carry uncertainty throughout the lifetime of the system. 

 

Another important source of uncertainty and volatility is the demand profile itself. The analysis and 

optimization examples in this work assume a demand profile that includes hourly ramps and expected 

seasonal, weekly, and daily fluctuations. While the demand profile is based on actual demand data, as 

experienced by the system, it is subject to multiple external factors. An important source of uncertainty in 

the profile is the impact of increasing renewables, especially those which coincide with power peaks or 

power valleys. The shape and time series of that demand distribution are important factors for optimizing 

the system, and the amount by which they vary through time will have tremendous impact on the 

economic performance of the system. 

 

Finally, the cost of emissions represents an additional uncertainty and/or volatility in the optimization. 

The cost of emissions was not explicitly modeled, but the impacts can be inferred from the analysis of gas 

prices. As demonstrated in Section 9.7, as gas prices increase, nuclear power becomes more attractive 

relative to gas power. 
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4.10 ANALYTICAL SUMMARY 

Meeting instantaneous electric demand requires executing power maneuvers in the reactor, gas power 

plant, and/or battery from one hour to the next. The solution for minimizing the system cost while 

meeting the instantaneous electric demand depends on the treatment of the demand profile. Using only a 

statistical treatment (cumulative distribution) ignores the hourly variation. Using the time series and 

minimizing cost by simultaneously optimizing the capacities and capacity factors of the reactor, gas 

power plant, and battery requires assumptions on the operational capabilities and constraints of each 

component. Increasing the physical fidelity of the model leads to an increase in the expected levelized 

cost of the system due to the hourly power maneuvers, which must accommodate swings of ±10%. The 

optimal solution also depends on the costs of gas (including carbon costs) and unmet demand. 

 

5. THE DYNAMIC MODEL 

The progression of analyses performed in Section 4 demonstrates that the optimization results depend on 

the set of assumptions for component performance. As that set of assumptions increases in physical 

fidelity, the optimization space becomes limited, and the noneconomic figures of merit are more sensitive 

to increasing fidelity than the total system cost. For example, the cost difference among several NHES 

arrangements may be on the order of 1%, as demonstrated in Table 13. Valve actuation, thermal cycling, 

feedback propagation, and other physical phenomena are not captured using broad performance 

assumptions. The performance data necessary for accurate performance analysis must come from a set of 

detailed, dynamic, multiphysics models. 

 

The detailed, dynamic, multiphysics modeling of an NHES is a multidomain problem requiring 

translation of complex physical problems such as those dealing with electrical, thermal hydraulic, and 

control systems. Dynamic models under development attempt to capture an appropriate level of physical 

detail of each system to properly inform an economic cost optimization study. The reference case study 

under development is the same tightly coupled system. A tightly coupled system thermally couples a 

nuclear reactor, balance of plant, and industrial process via an energy manifold along with electrical 

coupling of the balance of plant, industrial process, a secondary energy supply, an energy storage system, 

switch yard, and an electrical grid. 

 

All physical model activities are performed using the open source equation-based Modelica programming 

language within the commercial Dymola development environment. Developing all models using 

Modelica allows key benefits, such as direct compatibility of independently developed models. No 

additional software interfaces or other manipulations are required. See (Harrison 2016) for additional 

discussion of the dynamic models and Modelica. 

5.1 THE TIGHTLY COUPLED NHES 

Fig. 1 represents the current NHES under consideration including the various connections between each 

of the components. Blue lines indicate fluid streams (e.g., steam/water), red lines indicate electricity, and 

yellow are control/sensor signals. Idaho National Laboratory is working on a model for hydrogen 

production through high temperature steam electrolysis, as well as the model of the gas power plant; 

Argonne National Laboratory is working on a battery model; and Oak Ridge National Laboratory is 

working on the reactor model, thermal manifold model, switchyard model, and the overall system layout 

and model integration. These models will be used to simulate subsystem actuation, power production, 

thermal cycling, and overall technical performance. Table 6 further identifies each of the modeled 

components. 
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Fig. 1. Tightly coupled hybrid energy system. 

 
Table 6. Identification and brief description of a tightly coupled NHES 

Identifier Component Description Example 

1 Primary heat 

system  

Provides baseload heat and power Nuclear reactor 

2 Energy 

manifold 

Diverts thermal energy between subsystems Steam distribution 

3 Balance of plant Serves as primary electricity supply from energy not 

used in other subsystems. 

Turbine and condenser 

4 Industrial 

process 

Generates high value product using heat from the 

energy manifold/secondary energy supply and 

electricity from the switch yard. 

Steam electrolysis or 

desalination 

5 Energy storage Serves as energy buffer to increase overall system 

robustness. 

Batteries and firebrick 

6 Secondary 

energy supply 

Delivers small amounts of topping heat required by 

industrial process.  

Gas turbine make-up 

7 Switch yard Distributes electrical load between subsystems. Electricity distribution 

8 Electrical grid Sets the behavior of the grid connected to the NHES Large grid behavior (not 

influenced by NHES) 

9 Control system 

center 

Additional systems are required to provide proper 

system control, test scenarios, etc. 

Control/supervisory 

systems and event drivers 

 

One of the more challenging aspects of dynamic modeling is the ability to properly specify the 

appropriate temperatures, pressures, flow rates, etc., that will enable the models to reach a steady state 

condition. This steady state condition is then used as the initialization point for subsequent dynamic 

studies of interest from which dynamic inputs to the model can be added. 

 

To use the dynamic system model for the economic cost evaluation it is necessary to use a steady state 

nominal condition at time zero and then follow the appropriate demand profile of interest. The resulting 

1 2 3 

4 

6 

5 7 

9 

8 
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behavior of the dynamic system can then be integrated into an economic evaluation. Although various 

aspects of several systems are still under development to handle load following requirements, a modified 

overall system was generated to demonstrate the eventual load following capability of the overall hybrid 

system.  

 

The system shown in Fig. 2 was used to simulate 10 hours of dynamic turbine power operation based on a 

demand profile. The results are shown in Fig. 3. The steam turbine load following example highlights the 

important aspect of unmet demand discussed previously. The power changes are accomplished via 

manipulation of actuators such as the turbine control valve position. At approximately hour three the 

power set point is above the deliverable power. Situations such as this are tracked to inform the economic 

evaluation. 

 

  

 
Fig. 2. Modified tightly coupled energy system. 
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Fig. 3. The normalized power set point and steam turbine output. 

6. CONTINUING AND FUTURE WORK 

In addition to dynamic system modeling, instrumentation and control systems and the system supervisory 

logic control systems are under development. These systems will define the operation for the different 

power sources, including the priority for meeting industry versus grid demand and the priority order 

(nuclear before gas, or vice versa) for power plant dispatch. 

 

The output from the system models are used to generate the economic and noneconomic figures of merit 

for a given demand profile. This performance score is returned to an optimization engine to generate a 

new set of parameters and control logic. This analysis flow for the optimization is shown in Fig. 4. 

 



 

20 

 

 

Fig. 4. NHES model analysis and optimization (Harrison 2016). 

The dynamic analysis will become operational in FY17. 

 

7. SUMMARY 

Preliminary analyses show that the optimization of the system must be performed in a discrete time series 

rather than as a statistical distribution. The statistical distribution approach is valid for analyses in which 

the average behavior of a large set of power plants is sufficient to describe the overall system 

performance. NHES analysis requires tracking the performance of single power plants meeting definite 

demands. 

Further, component capacities—that is, the relative sizing of the nuclear power plant, the gas power plant, 

and the storage battery—are highly sensitive to gas prices and unmet demand costs. Increasing either gas 

prices or unmet demand costs (or both) also increases the attractiveness of nuclear power. The storage 

battery is beneficial to the system when unmet demand prices are sufficiently high, especially when 

coupled with a peaking gas plant, but is otherwise unnecessary in this system architecture. 

The work on nuclear hybrid energy systems shows that the nuclear hybrid systems have potential 

attractive application, especially in gas price regimes higher than current prices, but lower than historic 

highs. Development of dynamic multiphysics models to capture important system behavior while 

attempting to meet specific demand profiles is well under way. These models will provide a more realistic 

simulation of a power system and will inform the portions of the cost evaluations that economics alone 

cannot. Future work will integrate the behavior of the dynamic models into a cost optimization 

methodology and examine the impact of market forces on the industrial customer’s outputs. 
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9. APPENDIX 

9.1 SIMPLE ADDITIVE COST ESTIMATE 

The EIA analysis assumes a typical or nominal capacity factor as described in Section 2.1. This capacity 

factor determines the levelized cost as described in Section 3.2. However, the EIA analysis assumes that a 

large number of independent, identical units all arrive at an average value of that capacity factor while 

operating to meet an aggregate grid demand. The architecture of the nuclear hybrid energy system has a 

single unit of each type operating to meet a specific grid demand at a single point. Thus, the actual 

capacity factor for a unit in the nuclear hybrid energy system will not necessarily reflect that expectation 

of the fleet average. 

 

The levelized costs as a function of capacity factor for nuclear and gas plants, with no emissions cost, are 

shown in Fig. 5.  

 

 

Fig. 5. Levelized cost of nuclear and gas as a function of capacity factor (emissions cost = $0/MT). 

The orange line in the figure shows that the levelized cost of nuclear operating at a 90% capacity factor 

(~$68/MWeh) is approximately equal to a gas turbine plant (green line) operating at 40% capacity factor, 

or to a combined cycle plant (red line) operating at 20% capacity factor. Assuming that fuel prices, 

especially gas prices, remain constant, this implies that for a system composed of a nuclear reactor and a 

gas turbine plant, an operating regime that results in a 90% capacity factor for the nuclear power plant and 

a 40% capacity factor for the gas turbine would have a total levelized cost of ~$68/MWeh. 

 

The 90% capacity factor is assumed to be a long-term maximum for the nuclear reactor based on fleet 

history. Individual reactors can exceed 90% for a given year or for multiple consecutive years, but the 

overall capacity factor tends to remain near 90% (Nuclear Energy Institute n.d.). 
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As a specific example, a given system includes a 1,000 MWe (1 × 10
6
 kWe) LWR and a 250 MWe (0.25 

× 10
6
 kWe) gas turbine plant. This system has an average of 900 MWe nuclear and 100 MWe gas for a 

total of 1,000 MWe. 

 

At a 90% capacity factor, the nuclear energy production is 7.889 × 10
6
 MWeh/year, and the total annual 

cost is 

𝐶𝑁 = $521.76 × 1 × 106 + $2.14 ∗ 7.889 × 106 = $538.64 × 106. 

 

In this equation, 1 × 10
6
 is the power in kWe. This translates to a nuclear levelized cost of $538.64/7.889 

MWeh = $68.28/MWeh. 

 

At a 40% capacity factor, the gas power production is 0.876 × 10
6
 MWeh/year, and the total annual cost 

is: 

𝐶𝐺𝑇 = $74.64 ×  0.25 × 106 + $46.79 × 0.876 × 106 = $59.65 × 106 
 

In this equation, 0.25 × 10
6
 is the power in kWe. This yields a gas levelized cost of $59.65/0.876 MWeh = 

$68.09/MWeh. 

 

The total energy production for this 1,000 MWe average system is 8.765 × 10
6
 MWeh, and the total cost 

is $598.29M; the levelized system cost is thus $68.26/MWeh, which is approximately equal to the nuclear 

cost of $68.28/MWeh. 

9.2 EVALUATION OF TOTAL SYSTEM COST—REACTOR AND GAS TURBINE SYSTEM 

The notional image of the integration of a nuclear reactor and a gas turbine with a common connection to 

the grid appears in Fig. 6. 

  

 

Fig. 6. Reactor and gas turbine with common connection to the grid. 

The figure above shows that the total power generated by the reactor and the gas turbine must sum to 

meet the grid demand. 

 

In the first example from Section 9.1, the average supply was ~1000 MWe, but the total capacity built 

was 1,250 MWe, leading to a 250 MWe surplus. This implies a system capacity factor of ~80%. This also 

implies a maximum power production capacity of 1,250 MWe when not coupled to a battery storage 
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system, which in turn implies a ratio of the maximum available power to the average power of 

1250/1000 = 1.25. 

 

The actual ratio of maximum demand to average demand for the existing power grid shows some regional 

variation. PJM, a regional transmission organization named for the Pennsylvania-New Jersey-Maryland 

interconnection, serves 61 million customers in multiple states in the Eastern Interconnection. PJM 

provides hourly demand data in MWeh per hour (effectively MWe)
17

 from 2015 for 10 regions (PJM 

n.d.); the data are shown in Table 7. 
 

Table 7. Power peaking by region 

Region 
Demand (MWe) 

Max/mean Mean/min 
Max Mean Min 

PJM Mid-Atlantic Region 55,129 31,709 19,450 1.74 1.63 

Allegheny Power 9,594 5,621 3,526 1.71 1.59 

Commonwealth Edison Company 20,162 11,179 7,376 1.80 1.52 

Dayton Power & Light Company 3,269 1,990 1,186 1.64 1.68 

American Electric Power 24,739 14,869 9,662 1.66 1.54 

Duquesne Light Company 2,804 1,634 1,014 1.72 1.61 

Dominion Virginia Power 21,651 11,150 6,694 1.94 1.67 

American Transmission Systems, Inc. 12,356 7,764 4,915 1.59 1.58 

Duke Energy Ohio & Kentucky 5,123 3,105 1,896 1.65 1.64 

East Kentucky Power Cooperative 3,490 1,423 752 2.45 1.89 

Total hourly sum
18

 143,698 90,443 57,111 1.59 1.58 

Overall maximum  2.45 1.89 

Overall Minimum 1.59 1.52 

 

The table shows that the maximum regional max/mean ratio and mean/min ratio occurred in the East 

Kentucky Power Cooperative at 2.45 and 1.89, respectively. Using this range for the example system of 

1,000 MWe, the 1,000 MWe mean demand would correspond to a ~2,450 MWe maximum demand and a 

~529 MWe minimum demand. This would exceed the aggregate supply by 1,200 MWe at the maximum 

demand and leave 721 MWe idle at the minimum demand. 

 

The minimum regional max/mean ratio occurred in American Transmission Systems, Inc., at 1.59, while 

the minimum regional mean/min ratio occurred in Commonwealth Edison Company at 1.52. Applying 

these values to the example system, the maximum demand is ~1,590 MWe—a 340 MWe deficit—and the 

minimum demand is ~658 MWe—a 592 MWe surplus. 

 

Using the full system hourly aggregate demand, or total hourly sum as the basis for the peaking range, the 

max/mean is 1.59, and the mean/min is 1.58. This again implies a 340 MWe deficit, as well as a 618 

MWe surplus. 

 

However, the max/mean and mean/min values do not convey a complete set of information. The demand 

is a quasi-stochastic variable, meaning that its approximate value can be estimated a priori, but the actual 

value is a function of multiple external stochastic variables such as weather events. Therefore, the demand 

is more appropriately analyzed through statistical methods. 

 

One method is the use of a cumulative distribution plot. Fig. 7 shows the cumulative density of the ratio 

of demand to the mean for the total hourly sum from the PJM data. 

                                                      
17

The demand is provided in one-hour segments, with integrated demand in MWeh. Thus, this is effectively the 

average power demand in MWe. 
18

This is the total hourly demand across all regions. 
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Fig. 7. Cumulative density demand/mean demand. 

The figure shows that the median value (50%) occurs at ~0.97, while the mean (1.00) has a cumulative 

density value of 55%. 

Fig. 8 converts this into a demand density using the 1,000 MWe average demand example from above. 

 

Fig. 8. Cumulative density din MWe. 

Fig. 8 shows that the system has a median demand of ~970 MWe. Examining the cumulative density 

gives a power range of ~1000 MWe at the 56% cumulative density and ~1250 MWe at the 88% 
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cumulative density. This implies that the 1,000 MWe reactor and 250 MWe gas turbine can cover 88% of 

expected demand and that the 1,000 MWe reactor alone can cover 56% of the expected demand. 

 

The presumption that the 1,000 MWe reactor would cover the demand up to 1,000 MWe and continue to 

operate leads to the construction of a dispatch curve. Fig. 9 shows an example dispatch curve. 

 

 

Fig. 9. Example dispatch curve (U.S. Energy Information Administration n.d.). 

 

In this case, as in most general electricity market cases, the two power plants are dispatched in a 

preferential order based on the marginal cost of production. For the nuclear power plant, the marginal cost 

is $2.14/MWeh, and for the gas turbine, it is $46.79/MWeh. Therefore, the nuclear power plant would be 

called upon first. 

 

Converting the demand distribution of data in Fig. 8 into MWeh yields the following: 

 ~8.80 × 10
6
 MWeh total over 8,760 hours

19
 

 ~4.27 × 10
6
 MWeh at less than 1000 MWe over 4,918 hours

20
 

 ~3.15 × 10
6
 MWeh between 1000 MWe and 1250 MWe over 2,823 hours 

 ~1.38 × 10
6
 MWeh at greater than 1250 MWe over 1,019 hours 

 

Assuming the reactor provides its full power for all demands over 1,000 MWe, this yields 3,842 hours of 

operation, giving a capacity factor of 0.44 with 3.84 × 10
6
 MWeh. This is split with 2.823 × 10

6
 MWeh 

between 1,000 MWe and 1,250 MWe, and 1.019 × 10
6
 MWeh over 1,250 MWeh. Allowing the reactor to 

act as a load follower and provide power for the demands at less than 1,000 MWe, with a minimum 

demand of ~630 MWe, adds 4.27 × 10
6
 MWeh to yield a total of 8.11 × 10

6
 MWeh. The 8.11 × 10

6
 

MWeh produced over the year of operation corresponds to a nuclear capacity factor to 0.93. This capacity 

factor is approximately equal to the goal of 0.90 as described in Section 9.1. 

 

                                                      
19

This yields an average demand of 1,004 MWe; this is a result of the binning and rounding of the distribution. 

Additionally, the 8,760 hours differs from the 8,766 above because it is a set of data from a non-leap-year. 
20

1,000 MWe is at the ~55% cumulative density point in Fig. 8, meaning ~4,800 hours have demand less than or 

equal to 1,000 MWe. The 4,918 value is taken from the underlying data. 
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The gas turbine provides 250 MWe for all hours with demand greater than 1250 MWe, yielding 

0.254 × 10
6
 MWeh; it also provides 0.327 × 10

6
 MWeh between 1000 MWe and 1250 MWe. This total 

production of 0.581 × 10
6
 MWeh gives a capacity factor of 0.27. This is less than the goal capacity factor 

to match the cost of nuclear power. 

 

These values are broken out in more detail in Table 8. 
 

Table 8. Power production in a nuclear/gas system 

 Demand Nuclear Gas turbine Total Deficit 

Energy @ <1000 MWe (10
6
 MWeh) 4.27 4.27 0 4.27 0 

Energy @ 1000–1250 MWe (10
6
 MWeh) 3.15 2.823 0.327 3.15 0 

Energy @ >1250 MWe (10
6
 MWeh) 1.38 1.019 0.254 1.27 0.11 

Total energy (10
6
 MWeh) 8.80 8.11 0.581 8.70 0.11 

Capacity factor  0.926 0.265   

 

 

The total costs for this system are as follows: 

 𝐶𝑁 = $521.76 × 106 + $2.14 × 8.11 × 106 = $539.11 × 106 

 𝐶𝐺𝑇 = $74.64 × 0.25 × 106 + $46.79 × 0.581 × 106 = $45.84 × 106 

 Total cost of $584.95 × 10
6
 and total energy production of 8.691 × 10

6
 MWeh 

 

This gives levelized costs of $539.11/8.11 MWeh = $66.47/MWeh for the nuclear and $45.84/0.581 

MWeh = $78.90/MWeh for the gas turbine. The total average is $584.95/8.691 MWeh = $67.31/MWeh. 

 

However, this yields a deficit of ~110,000 MWeh (0.11 × 10
6
 MWeh) for demands greater than 1,250 

MWe. Assuming the cost of $130/MWeh for unmet demand, this increases the system cost by ~$14M, 

which in turn increases the total system cost to $68.92/MWeh produced. The system can thus benefit from 

dispatchable battery storage to meet peaking demand at greater than 1,250 MWe. 

9.3 EVALUATION OF TOTAL SYSTEM COST: REACTOR, GAS TURBINE, AND 

BATTERY SYSTEM 

The power deficit for these hours of demand reaches a maximum of ~340 MWe, but it averages 

~75 MWe. Adding a battery, as shown in Fig. 10, can help in both increasing the capacity factor of the 

gas turbine and decreasing the total unmet demand. The battery will charge from the gas turbine at 

demands less than 1,250 MWe and discharge at demands greater than 1,250 MWe. 
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Fig. 10. Reactor, gas turbine, and battery with common connection to the grid. 

The battery is rated at 100 MWe with a 90% efficiency, so for example, it requires one hour of charging 

at 100 MWe to provide 90 MWeh of energy. The maximum annual energy the battery can provide 

through discharge is 0.394 × 10
6
 MWeh, requiring 0.438 × 10

6
 MWeh to charge since it charges and 

discharges at the same power. 

 

Adding the 100 MWe battery to the 1,000 MWe reactor and the 250 MWe gas turbine increases the 

maximum available power to 1,350 MWe. Referring to Fig. 8, this is now sufficient to meet 95% of the 

total demand. 

 

This changes the energy production balance provided to the grid to: 

 ~8.80 × 10
6
 MWeh total over 8,760 hours 

 ~4.27 × 10
6
 MWeh at less than 1,000 MWe over 4,918 hours 

 ~3.15 × 10
6
 MWeh between 1,000 MWe and 1,250 MWe over 2,823 hours 

 ~0.76 × 10
6
 MWeh between 1,250 MWe and 1,350 MWe over 582 hours 

 ~0.63 × 10
6
 MWeh at greater than 1,350 MWe over 437 hours 

 

The battery produces 0.029 × 10
6
 MWeh in the demand regime between 1250 MWe and 1350 MWe, an 

average of 50 MWe. It also produces 100 MWe over the 437 hours of operation at demand greater than 

1,350 MWe for an additional 0.044x10
6
 MWeh. Thus, the battery produces a total of 0.073 MWeh over 

1,019 hours, an average of ~72 MWe when in operation. This gives it an effective capacity factor of 0.19. 

This 0.073 MWeh requires 0.081 MWeh of additional gas turbine power produced during operation at 

less than 1,250 MWe demand. The new balance appears in Table 9. 
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Table 9. Power production in a nuclear/gas/battery system 

Power range and energy 

produced 

Demand Nuclear Gas turbine Battery Total Deficit 

<1000 MWe (10
6
 MWeh) 4.27 4.27 0 0 4.27 0 

1000–1250 MWe (10
6
 MWeh) 3.15 2.823 0.327 0 3.15 0 

1250–1350 MWe (10
6
 MWeh) 0.76 0.582 0.146 0.032 0.76 0 

>1350 MWe (10
6
 MWeh) 0.63 0.437 0.109 0.044 0.59 0.04 

Energy for storage   0.084    

Total energy (10
6
 MWeh) 8.80 8.11 0.666 0.076 8.77 0.03 

Capacity factor  0.926 0.304 0.173   

 

The nuclear power produced remains the same at 8.11 × 10
6
 MWeh. The gas turbine power increases to 

0.663 × 10
6
 MWeh, a capacity factor of 0.30; however, the power to the grid from the gas turbine remains 

0.581 × 10
6
 MWeh. The battery sends 0.073 × 10

6
 MWeh to the grid, for a system total of 8.764 × 10

6
 

MWeh against a demand of 8.8 × 10
6
 MWeh; this leaves ~40,000

21
 MWeh as unmet demand. 

 

Given the values above, the mean power supplied to the grid is 926 MWe from nuclear, 66 MWe from 

gas, and 9 MWe from the battery, for a total of 1,001 MWe. The mean power produced is 926 MWe from 

nuclear and 76 MWe from gas, for a total of 1,002 MWe, with that minor difference coming from the 

90% conversion efficiency in the battery. 

 

The total costs for this system are: 

 𝐶𝑁 = $521.76 × 106 + $2.14 × 8.11 × 106 = $539.11 × 106 

 𝐶𝐺𝑇 = $74.64 × 0.25 × 106 + $46.79 × 0.666 × 106 = $49.82 × 106 

 𝐶𝐵 = $103.4 × 0.10 × 106 + $15.00 × 0.076 × 106 = $11.48 × 106 
 

This gives levelized costs of $66.47/MWeh for nuclear (as earlier), and $93.16/MWeh for the gas/battery 

combination. The system cost is $68.46/MWeh, which reflects the fact that nuclear provides 92.5% of the 

total energy. Including the unmet demand cost of $130/MWeh over 40,000 MWeh, the system cost is 

$69.05/MWeh; this is calculated as $600.41M for the energy provided, $5.2M for the unmet demand, and 

8.77 × 10
6
 MWeh provided. The cost of $69.05/MWeh is marginally higher than the battery-free system 

cost of $68.92. However, an advantage of including the battery in the system is that it decreases the 

exposure to volatility in the unmet demand costs. 

9.4 OPTIMIZATION OF THE REACTOR, GAS, AND BATTERY SYSTEM 

The a priori example sizing is not likely an optimal arrangement of the overall system. For this analysis, 

the optimization of the system is the minimization of the levelized cost, which can be achieved through 

the maximization of the capacity factor of the constituent components based on an ordered dispatching of 

sources. Fig. 11 shows the levelized costs as functions of capacity factors, including battery storage. 

 

                                                      
21

 Values are rounded in the tables. 
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Fig. 11. Levelized cost of nuclear and gas as a function of capacity factor (emissions cost = $0/MT). 

The figure shows that the levelized cost for nuclear at the 0.9 capacity factor corresponds to the costs for 

the capacity factors of ~0.4 for both gas turbine and battery. Thus, assuming a maximum 0.9 capacity 

factor for nuclear, the maximization goal from the capacity factor perspective is 0.4 for both gas and 

battery. 

 

The current nuclear capacity factor is higher than expected for a nuclear system; decreasing the capacity 

factor means increasing its power output. For the current capacity factor of 0.926 and 926 MWe average 

output, the new size to achieve a 0.9 capacity factor is 1,030 MWe. 

 

Increasing the capacity factor while producing the same total power requires decreasing the size of the 

plant. The current capacity factor of 0.303 and average output of 76 MWe for the gas turbine implies a 

new size of 190 MWe rather than 250 MWe. 

 

Using these two new power plant sizes with the existing 100 MWe battery in the power demand 

distribution gives a maximum power of 1,320 MWe rather than 1,350 MWe. The average expected power 

is 1,021 MWe (0.9 × 1030 + 0.4 × 190 + 0.4 × 90 × 0.5
22

). 

 

This changes the energy production balance provided to the grid to: 

 ~8.80 × 10
6
 MWeh total over 8,760 hours 

 ~4.77 × 10
6
 MWeh at less than 1,030 MWe over 5,405 hours 

 ~2.22 × 10
6
 MWeh between 1,030 MWe and 1,220 MWe over 1,988 hours 

 ~0.99 × 10
6
 MWeh between 1,220 MWe and 1,320 MWe over 780 hours 

 ~0.83 × 10
6
 MWeh at greater than 1,320 MWe over 587 hours 

 

                                                      
22

The battery must charge at 100 MWe for one hour to provide one hour at 90 MWe. Conversely, it must charge at 

one hour at 100 MWe to provide 54 minutes at 100 MWe. This reflects that inefficiency, and then it is halved to 

account for the fact that the battery must spend equal time charging and discharging. 
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Table 10 shows the first attempt to optimize the system based on the assumption of equalizing capacity 

factors. 

Table 10. Power production in a nuclear/gas/battery system—Optimization Step 1 

Power range and energy 

produced 

Demand Nuclear Gas 

turbine 

Battery Total Deficit 

<1,030 MWe (10
6
 MWeh) 4.77 4.77 0 0 4.77 0 

1,030–1,220 MWe (10
6
 MWeh) 2.22 2.048 0.172 0 2.22 0 

1,220–1,320 MWe (10
6
 MWeh) 0.99 0.803 0.148 0.039 0.99 0 

>1,320 MWe (10
6
 MWeh) 0.83 0.605 0.112 0.059 0.776 0.054 

Energy for storage   0.108    

Total energy (10
6
 MWeh) 8.80 8.226 0.540 0.098 8.756 0.054 

Capacity factor  0.912 0.324 0.224   

 

The total costs for this system are: 

 𝐶𝑁 = $521.76 × 1.03 × 106 + $2.14 × 8.226 × 106 = $555.02 × 106 

 𝐶𝐺𝑇 = $74.64 × 0.19 × 106 + $46.79 × 0.540 × 106 = $39.45 × 106 

 𝐶𝐵 = $103.4 × 0.10 × 106 + $15.00 × 0.098 × 106 = $11.81 × 106 

 𝐶𝑈 = $130 × 54000 = $7.02 × 106 
 

Thus, the levelized cost is $70.04/MWeh, including the unmet demand costs; this is approximately 1.4% 

greater than the original base case sizing. However, the point of optimization is to decrease the cost, and 

this has increased the cost. This is due in part to the increase in the nuclear levelized power, from 

$66.47/MWeh to $67.47/MWeh, a 1.5% increase. This comes from both a decrease in the capacity factor 

and an increase in the total capital cost. 

 

The gas/battery power cost increased 3.8% from $93.16/MWeh to $96.72/MWeh. Further, the unmet 

power increased 35% from 40,000 MWeh to 54,000 MWeh. Ignoring the unmet demand costs shows that 

the system costs increased from $68.46/MWeh to $69.24/MWeh, a 1.1% increase. 

 

Additionally, the average power provided actually decreased to 939 MWe nuclear, 49 MWe gas, and 11 

battery for a total of 999 MWe. The increase in nuclear power was more than offset by decreases in gas 

and battery power, demonstrating that the nuclear reactor displaced the other power sources. 

 

Thus, a second attempt at optimization must account for these effects. One of the strongest effects is the 

steep ascent in the cumulative demand curve at ~900 MWe illustrated in Fig. 8. This steep ascent 

indicates frequent operation, which translates directly into an increased capacity factor for power plants 

operating in that regime. 

 

For this attempt at optimization, the nuclear reactor capacity is set at 900 MWe, and the gas turbine 

capacity is increased to 300 MWe. The battery remains at 100 MWe. The a priori capacity factor 

expectation is set at 0.9 for nuclear and 0.4 for both gas and battery, for an average power of 948 MWe. 

The maximum power is 1,300 MWe. 

 

This changes the energy production balance provided to the grid to: 

 ~8.80 × 10
6
 MWeh total over 8,760 hours 

 ~2.15 × 10
6
 MWeh at less than 900 MWe over 2,686 hours 

 ~4.62 × 10
6
 MWeh between 900 MWe and 1,200 MWe over 4,527 hours 

 ~1.06 × 10
6
 MWeh between 1,200 MWe and 1,300 MWe over 854 hours 

 ~0.97 × 10
6
 MWeh at greater than 1,300 MWe over 693 hours 

 



 

 

 

A-11 

 

Table 11 shows the second attempt to optimize the system based on the assumption of maximizing gas 

exposure to steep cumulative effects. 

Table 11. Power production in a nuclear/gas/battery system—Optimization Step 2 

Power range and energy produced Demand Nuclear Gas turbine Battery Total Deficit 

<900 MWe (10
6
 MWeh) 2.15 2.15 0 0 2.15 0 

900-1200 MWe (10
6
 MWeh) 4.62 4.074 0.546 0 4.62 0 

1200-1300 MWe (10
6
 MWeh) 1.06 0.769 0.256 0.035 1.06 0 

>1300 MWe (10
6
 MWeh) 0.97 0.624 0.208 0.069 0.90 0.069 

Energy for storage   0.116    

Total energy (10
6
 MWeh) 8.80 7.617 1.126 0.104 8.73 0.069 

Capacity factor  0.966 0.429 0.237   

 

The total costs for this system are: 

 𝐶𝑁 = $521.76 × 0.9 × 106 + $2.14 × 7.617 × 106 = $485.88 × 106 

 𝐶𝐺𝑇 = $74.64 × 0.3 × 106 + $46.79 × 1.126 × 106 = $75.08 × 106 

 𝐶𝐵 = $103.4 × 0.10 × 106 + $15.00 × 0.104 × 106 = $11.9 × 106 

 𝐶𝑈 = $130 × 69000 = $8.97 × 106 
 

The total system cost, including unmet demand, is $66.65/MWeh, a 5% decrease in total cost relative to 

Step 1. However, the unmet demand increased by 28% over Step 1 to 0.8% of total demand, further 

increasing the total exposure to uncertainty in that cost. Additionally, while emissions costs have been 

excluded thus far, the gas turbine power generation increased by 109% from Step 1. This exposes the 

system to uncertainty in both fuel costs and emissions costs. For this case, the average power provided is 

996 MWe: 869 MWe nuclear, 115 MWe gas, and 12 MWe battery. As in the previous cases, the actual 

production is 869 MWe nuclear and 128 MWe gas. 

 

The capacity factor of 0.966 for the nuclear power plant is much higher than reasonable because it is not 

sustainable over multiple years of operation. Thus, the next step in the optimization is to develop a better 

rule set to decrease the nuclear capacity factor while decreasing the exposure to uncertainty in both the 

unmet demand and the gas and emissions costs. 

 

A more exact method for reaching the target capacity factor is to determine the power level at which the 

nuclear power plant would operate with a 90% capacity factor and then the power levels at which the gas 

plant and battery would operate at an integrated 40% capacity factor. 

 

Using numerical optimization methods within Microsoft Excel, the solution yields a nuclear reactor at 

1,050 MWe, a gas power plant at 125 MWe, and the battery at 100 MWe
23

. 

 

Table 12 shows the third attempt to optimize the system based on the assumption of maximizing gas 

exposure to steep cumulative effects. 

 

  

                                                      
23

The EPRI report gives 100 MWe as the maximum available capacity (Rastler 2010). This limit will be relaxed in 

Section 9.4. 



 

 

 

A-12 

 

Table 12. Power production in a nuclear/gas/battery system—Optimization Step 3 

Power range and energy produced Demand Nuclear Gas Turbine Battery Total Deficit 

<1,050 MWe (10
6
 MWeh) 5.04 5.04 0 0 5.04 0 

1,050–1,175 MWe (10
6
 MWeh) 1.51 1.43 0.08 0 1.51 0 

1,175–1,275 MWe (10
6
 MWeh) 1.04 0.89 0.11 0.04 1.04 0 

>1,275 MWe (10
6
 MWeh) 1.21 0.93 0.11 0.09 1.13 0.08 

Energy for storage   0.14    

Total Energy (10
6
 MWeh) 8.80 8.29 0.44 0.13 8.72 0.08 

Capacity Factor  0.901 0.405 0.329   

 

The total costs for this system are: 

 𝐶𝑁 = $565.58 × 106 

 𝐶𝐺𝑇 = $30.09 × 106 

 𝐶𝐵 = $12.29 × 106 

 𝐶𝑈 = $11.16 × 106 
 

The total system cost, including unmet demand, is $71.02/MWeh. The nuclear cost is $68.24/MWeh, 

which is the expected result at a capacity factor of 90%. The gas cost is $67.81/MWeh, which is the 

expected result at a capacity factor of ~40%. The integrated gas and battery cost is $98.56/MWeh. 

 

The unmet demand again increased, this time to 86,000 MWeh. This again increases the overall cost. 

Table 13 gives a summary of the case analyses thus far. 
 

Table 13. Summary of case analyses 

Source Parameter Base 1 Base 2 Opt 1 Opt 2 Opt 3 

Nuclear Power (MWe) 1,000 1,000 1,030 900 1,050 

CF 0.926 0.926 0.911 0.966 0.901 

Energy Provided (10
6
 MWeh) 8.11 8.11 8.222 7.614 8.287 

Cost ($M) 539 539 555 486 566 

Cost ($/MWeh) 66 66 68 64 68 

Gas Power (MWe) 250 250 190 300 125 

CF 0.265 0.302 0.323 0.431 0.405 

Energy Provided (10
6
 MWeh) 0.58 0.58 0.434 1.013 0.300 

Energy Produced (10
6
 MWeh) 0 0.66 0.538 1.134 0.444 

Cost ($M) 46 75 73 67 30 

Battery Power (MWe) 0 100 100 100 100 

CF -- 0.185 0.236 0.276 0.329 

Energy Provided (10
6
 MWeh) 0 0.073 0.093 0.109 0.086 

Cost ($M) 0 11 12 12 12 

Unmet Energy (10
6
 MWeh) 0.110 0.037 0.053 0.066 0.086 

Cost ($M) 14 5 7 9 11 

Total Energy Provided (10
6
 MWeh) 8.692 8.765 8.749 8.736 8.717 

Cost ($M) 599 605 613 582 619 

Cost ($/MWeh) 69 69 70 67 71 

 

The cost-optimal solution for the PJM total hourly sum distribution can be found using a bounded 

numerical search. The constraints placed on the optimization and the optimized results are presented in 

Table 14. 

  



 

 

 

A-13 

 

Table 14. Cost-optimized parameters 

Parameter Minimum Maximum Optimal 

Nuclear capacity (MWe) 500 1,100 1,012 

Gas capacity (MWe) 100 300 193 

Battery capacity (MWe) 0 100 100 

Nuclear capacity Factor 0.88 0.92 0.92 

Gas capacity factor 0.35 0.45 0.35 

Battery capacity factor 0 0.45 0.26 

 

Using these values leads to 62,000 MWeh of unmet demand and a total cost of $69.55/MWeh. 

 

An alternative approach to optimization requires the sizing of the power plants to avoid any unmet 

demand. While the unmet demand figure of merit can be converted directly to an economic figure of 

merit by applying a cost, as done thus far in the analysis, this cost can carry much greater uncertainty than 

the other economic figures. However, the maximum power available using the constraints given in Table 

14 is 1,500 MWe; the maximum demand as shown in Fig. 8 is nearly 1,600 MWe. 

 

Seeking the unmet-demand-optimized solution using the same constraints yields an identical solution 

since the cost of unmet demand is already set much higher than the cost of any other power source. Two 

of the optimized parameters that are at the limit of their constraints are the nuclear and gas capacity 

factors. Doubling the allowed battery capacity to 200 MWe changes the optimal solution to 

1,012/210/200 MWe and capacity factors 0.92/0.35/0.16 for nuclear/gas/battery. This decreases the unmet 

demand to 14,000 MWeh but increases the total cost to $70.06/MWeh. This implies that increasing the 

battery capacity to meet the highest peak demand requires decreasing its overall capacity factor, which 

offsets any cost differential from decreased unmet demand. 

 

Reverting to a cost-optimized solution using that same revised 200 MWe limit actually approaches the 

original solution at 1,012/193/102 MWe for nuclear/gas/battery. This indicates that building additional 

battery capacity is economically unattractive compared to paying the assumed cost penalty for unmet 

demand. 

9.5 NONECONOMIC FIGURES OF MERIT 

The cost-optimized parameters given in Section 9.4 rely on the analysis of a cumulative density function 

for an example set of demands. Analysis of unmet demand demonstrates the utility in the conversion of 

noneconomic factors (such as the amount of unmet demand, an energy-based figure of merit) to an 

economic value. However, noneconomic figures of merit cannot always be directly converted for case 

comparison. The most immediate noneconomic figure of merit is tied to power maneuvers. 

 

The analysis thus far has used a cumulative distribution with no time-based element. Using the actual 

hour-by-hour demand profile yields additional insight, specifically with respect to power maneuvers. 

Additionally, the hourly demand profile yields insight into the frequency of the full discharge of the 

storage battery; this induces wear and fatigue on the battery itself while increasing the actual amount of 

unmet demand. 

 

The actual power demand and generation is shown in Fig. 12 and is based on the 1,012/193/102 MWe 

capacities from above. The demand profile is generated from the total hourly sum data described in Table 

7. 
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Fig. 12. Power generation time series by type, unoptimized and unconstrained. 

The time series methodology assumed that the demand was met by: 

 nuclear up to its capacity (1,012 MWe), then 

 gas up to its capacity (193 MWe, total of 1,205 MWe), then 

 battery up to its capacity (102 MWe, total of 1,307 MWe), and then 

 unmet demand. 

 

The difference is that the battery usage is concentrated within specific demand peaks. The battery is not a 

purely dispatchable source; rather, it must be charged before discharge. The analysis assumes a total 

available storage capacity of 1 hour at its peak power, which in this case is 102 MWeh. 

 

For example, assuming the battery has a full charge of 102 MWeh, if the total demand over the hour is 

1,250 MWe, then the battery discharges 45 MWeh, leaving 57 MWeh in the battery. If the next hour 

demand is less than 1,205 MWe, the gas plant can charge the battery. However, if the next hour demand 

increases to 1,300 MWe, the total energy available from the battery is 57 MWeh, leaving a 38 MWeh 

deficit, even though the total demand is less than the total peak power of the system. This is a problem 

since peak demands tend to cluster in time. This means that the battery is unavailable for large periods of 

time at peak power once it has fully discharged. In fact, the battery fully discharges 130 times in this time 

series and is unavailable for 1,271 hours, or approximately 15% of the year. 

 

Due to these performance decrements, the results from the time series analysis shows that the nuclear 

capacity factor remains ~0.92, but the gas capacity factor decreases to ~0.28 because the actual battery 

provision to the grid is 0.014 MWeh rather than the 0.105 MWeh predicted from the cumulative density 

estimate. This indicates that the total energy required to the battery decreases, as well. This lower capacity 

factor is outside the constraint range as defined in Table 14. As a result, the unmet demand increases from 

60,000 MWeh to 144,000 MWeh, and the total cost increases to ~$71/MWeh. 

 

Cost-optimizing this system using the same constraints as the cumulative density estimate yields a 

solution of 1,007/100/38 MWe for nuclear/gas/battery, with capacity factors of 0.92/0.35/0.044. The 
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unmet demand increased to 339,000 MWeh, and the total system cost is $72.77/MWeh. This cost is 

greater than the $71/MWeh quoted above, but this meets the requirements of a gas capacity factor of at 

least 0.35. 

 

Fig. 13 shows the updated time series to reflect this constrained solution. 

 

 
Fig. 13. Power generation time series by type, first optimization with constraints. 

 

Data presented in Fig. 13 show more frequent battery charging at lower power and an increased unmet 

demand versus the data presented in Fig. 12. In this case, the battery discharged fully 172 times and was 

unavailable for 2,329 hours, or 27% of the year. 

 

Choosing instead to minimize the unmet demand yields a solution of 1,007/129/200 MWe for the 

nuclear/gas/battery, with capacity factors of 0.92/0.35/0.037. However, the battery still discharges fully 

136 times and is unavailable for ~20% of the year (1,808 hours), and the unmet demand is still 253,000 

MWeh. This leads to a cost of $73.46/MWeh. It should be noted that there is relatively little movement in 

the overall cost, even with relatively large shifts in power capacities. This implies that the notion of 

optimization may have large solution spaces with slim margins of cost improvement among different 

configurations, especially when including uncertainties. 

 

Another power maneuver factor is in the actual operation of the nuclear power plant. The analysis so far 

has assumed that the nuclear power plant can change its power from hour to hour without any limit. 

However, using the time series demonstrates the wide range of power swings. For example, the 1,007 

MWe nuclear power plant from the current example state of optimization performs 5,319 power 

maneuvers over the 8,760 hours of operation, or 61% of the hours of operation.
24

 This is obviously 

                                                      
24

The reactor ramps up or down when demand is less than the rated power. At demands greater than the rated power, 

the reactor operates at steady state. When the reactor moves from a demand less than the rated power to one greater 

than the rated power, the reactor ramps up or down, or vice versa. Thus, even though 1,007 MWe is approximately 

58% of the cumulative distribution shown in Fig. 8 (~5,081 hours), there are hours of transition between those 

operating regimes that also count toward the number of power maneuvers. 
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undesirable. Further, the hourly power maneuvers range in magnitude from -10% to +13%; this again is 

undesirable. French experience shows that load following (up to 5%/minute) is acceptable (Nuclear 

Energy Agency 2011), but there is an assumption that frequent power maneuvers should be minimized. 

As an initial requirement, it can be assumed that the nuclear power plant may not ramp more than an 

absolute magnitude of more than 10%/hour. For example, when operating at 800 MWe, the power in the 

next hour can be between 880 MWe and 720 MWe. A demand of 900 MWe, although within the rated 

power of the reactor, cannot be achieved by the reactor and must be met by gas. Conversely, a demand of 

700 cannot be exactly met by the reactor and the excess power must therefore be diverted to another sink. 

Implementing this requirement on top of the existing 1,007/100/38 MWe capacities causes little change in 

the overall performance. The number of power maneuvers was essentially constant at 5,319, and the cost 

remained $72.77/MWeh. Since the power swing range is between -10% and +13%, this is a reasonable 

result since the gas plant can be brought online to meet the +3% demand change. 

Optimizing the system with constraints yields capacities of 1,007/100/28 MWe for nuclear/gas/battery 

and a total cost of $72.68/MWeh, with 5,319 power maneuvers and 26.8% unavailability in the battery. 

This also has 341,000 MWeh of unmet demand. 

Optimizing with a 5% ramp limitation yields 998/100/0 MWe for nuclear/gas/battery. The cost decreases 

to $72.65/MWeh, but the unmet demand is 368,000 MWeh, and the excess production is 26,600 MWeh. 

Additionally, this requires 5,358 power maneuvers. 

9.6 INTRODUCTION OF THE INDUSTRY CUSTOMER 

An alternate approach to minimizing power maneuvers while maximizing capacity factor in the nuclear 

power plant is to find another customer for the power. In this case, the customer is a thermal power 

customer. This is shown in Fig. 14. 
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Fig. 14. Industry customer integration. 

In practice, the thermal power from the reactor would need to go through a thermal routing system, 

sending the power to either the power conversion system or the industrial customer. This has been 

referred to as a thermal manifold (Harrison 2016). For the purposes of this preliminary analysis, the 

thermal manifold is assumed to have no assoicated cost
25

 or inefficiencies. 

For this analysis, the industry customer is assumed to use a fixed amount of thermal power, and it is 

further assumed that the customer uses direct thermal power from the reactor rather than converting 

electrical power back to thermal power. For the LWR, a standard thermal efficiency of 32.6% is 

assumed.
26

 Thus, 1 MWe can be traded for ~3 MWt at the industry customer. Finally, it is assumed that 

any thermal power not provided by the reactor is made up by a natural gas source. When the industrial 

system does not receive thermal power from the reactor, the industrial system draws natural gas, 

providing 1,032 BTU/cubic foot, or ~3 × 10
-4

 MWth/cubic foot. At ~$3/mcf, the cost of gas heat is 

~$10/MWth. 

The configuration of 998/100/0 MWe, and a 5% maximum ramp yields a maximum excess power of ~82 

MWe, which yields ~246 MWt for industrial processes. For the noncoupled system, the costs are: 

 𝐶𝑁 = $537.98 × 106 

 𝐶𝐺𝑇 = $23.80 × 106 

 𝐶𝐵 = $0 × 106 

 𝐶𝑈 = $47.88106 

                                                      
25

The thermal manifold costs are assumed to be included with the nuclear power plant costs. 
26

See Section 2.1. 
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The electricity cost is $609.67 × 10
6
, which translates to $72.65/MWeh. 

 

Adding the industrial thermal energy costs requires 

𝐶𝐼 = 246 MWt ×  8760 h ×
$10

MWth
= $21.55 × 106. 

 

Thus for a noncoupled system, the total cost is $631.31M, with a total useful power output of 8.39 × 10
6
 

MWeh, an industrial consumption of 2.15 × 10
6
 MWth, an unmet demand of 0.37 × 10

6
 MWeh, and an 

unused excess of 0.027 × 10
6
 MWeh. Allowing the reactor to meet some of the thermal demand of the 

industrial customer decreases the industrial consumption by 0.08 × 10
6
 MWth, which is an $800,000 

annual savings. 

 

The most direct way to account for this cost benefit is to accrue the savings in the cost of the electrical 

power system. Thus, the cost for the electricity is $72.57/MWeh; this is a minimal benefit. 

 

However, this assumes the reactor still works in load following mode. Instead, the reactor operates at full 

power except for a 36-day
27

 refueling outage. The 36 days will be chosen as the 864 consecutive hours 

with the least total demand from the total hourly sum distribution, with a 24-hour linear startup and 

shutdown on either side of the outage. 

 

The cost-optimized solution for a reactor operating at full power steady state supplying thermal power to 

an industrial process has a 919 MWe reactor and a 300 MWe gas plant without a storage battery. These 

have capacity factors of 0.90 and 0.44, respectively; the nuclear capacity factor is fixed based on the 

required operating profile. The industry partner is allowed to vary up to 1,000 MWt demand, and the 

optimal solution is 1,000 MWt. The nuclear reactor provides 0.808 × 10
6
 MWth to industry, for a savings 

of $8.1M. This provides the total electricity cost of $79.31/MWeh. This much higher total cost is due to 

the greatly increased unmet demand of 627,000 MWeh, an incurred cost of $81.5M. 

9.7 TRADE STUDIES IN GAS AND UNMET DEMAND COSTS 

Following the analyses in Section 9.6, the cost-optimized solution starts to rely on gas power in both the 

electricity and industry partner as the primary leverage. Allowing the gas power plant to have a capacity 

of 500 MWe and a capacity factor of 0.65 makes the optimal solution a nuclear power plant at 739 MWe 

and a gas plant at 500 MWe, still without a battery. The gas plant has a capacity factor of 0.58. The 

industry partner still requires 1,000 MWt, and the levelized cost of electricity, including the savings 

accrued from displacing natural gas, is $73.03. 

 

Allowing the natural gas plant to grow larger with a higher capacity factor indicates that the use of a 

baseload gas plant, such as a combined cycle plant, rather than a peaking plant, is more appropriate. It 

also indicates that low gas prices tend to cause gas to displace nuclear power when optimizing the system. 

 

To demonstrate this displacement effect, doubling the cost of gas to $6 per thousand cubic foot (mcf) 

changes the optimal solution to a 907 MWe reactor and a 500 MWe gas plant at 0.90 and 0.35 capacity 

factors, respectively, with a levelized cost of $79.80. 

 

Returning to optimization with a peaking plant and using the same optimization ranges as those in Table 

14, the impacts of increasing gas prices are shown in Table 15.  

                                                      
27

The typical outage in the US lasts 36 days (Nuclear Energy Institute n.d.). 
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Table 15. Impact of gas prices on system optimization 

Optimized Parameter Gas Price ($/mcf) 

1 2 3 (base) 4 5 6 

Nuclear (MWe) 915 919 962 987 

Gas (MWe/cap. fac.) 300/0.45 300/0.44 300/0.38 300/0.35 

Battery (MWe) 0 

Unmet (10
6
 MWeh) 631 626 577 556 

Industry (MWt) 1,000 

Cost ($/MWeh) 76.91 78.11 79.31 80.29 80.91 81.48 

 

The gas price range that impacts plant capacity is $2/mcf to $5/mcf. The gas plant operates at maximum 

capacity factor for prices less than $2/mcf and at minimum capacity factor for prices greater than $5/mcf. 

However, this range is highly dependent on constraining the capacity of the gas power plant between 100 

and 300 MWe and capacity factor between 0.35 and 0.45. Relaxing either of those constraints will change 

the gas price impact range and the set of optimized capacities. For reference, increasing the cost of natural 

gas from $3/mcf to $5/mcf is also equivalent to introducing a $36/MT carbon cost. 

 

The other effect is that the battery is unnecessary at any gas price for the given cost of unmet demand. 

The optimized system has essentially found that paying a penalty for unmet demand is more attractive 

than paying for a low-capacity factor, relatively high-cost battery. This is primarily due to the nuclear 

plant outage period, which has an average demand of 852 MWe.  This means that a 100 MWeh total 

capacity battery is insignificant. 

 

Varying the price of unmet electricity illustrates the cost ranges of attractiveness for the battery, as shown 

in Table 16. 

 
Table 16. Impact of unmet demand prices on system optimization 

Optimized 

parameter 

Unmet demand price ($/MWeh) 

130 (base) 200 400 600 800 1,000 1,200 1,400 1,500 

Nuclear (MWe) 915 961 987 988 990 992 

Gas (MWe/cap. 

fac.) 

300/0.45 300/0.38 300/0.35 

Battery (MWe) 0 16 82 147 183 200 

Unmet (106 

MWeh) 

631 578 556 556 554 546 540 538 536 

Industry (MWt) 1,000 

Cost ($/MWeh) 79.31 84.44 98.08 111.63 125.18 138.58 151.80 164.91 171.44 

 

Table 16 shows that increasing the cost of unmet demand initially increases the amount of nuclear power 

necessary to increase the overall power available, but battery storage is still not preferred. After reaching 

$600/MWeh for unmet demand, the battery becomes an attractive option. However, it does not reach full 

capacity (200 MWe) until unmet demand prices are ~$1,500/MWeh. This lack of demand is a result of 

the intense clustering of the peaks. The battery is fully discharged rapidly and often. This can be 

overcome by increasing the power and capacity factor of the gas plant (again more closely resembling a 

baseload combined cycle plant), but this may displace the need for a battery altogether. 

 


