
ORNL/LTR-2016/704

Detection with Enhanced Energy
Windowing – Phase I Report

David Bass
Alexander Enders
December 2016

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

http://www.osti.gov/scitech/
http://www.ntis.gov/help/ordermethods.aspx
http://www.osti.gov/contact.html

ORNL/LTR-2016/704

Nuclear Security and Isotope Technology Division

DETECTION WITH ENHANCED ENERGY WINDOWING
PHASE I REPORT

David Bass
Alexander Enders

Date Published:
December 2016

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

1. Introduction ... 1

1.1 Project Description .. 1
1.2 Phase I ... 1
1.3 Phase II .. 2
1.4 Documentation .. 2

2. How to Use the DEEW Files .. 3
2.1 Extracting the DEEW.zip File .. 3
2.2 The Liberty BASIC Application ... 4

2.2.1 Application Setup ... 4
2.2.2 Running the Application .. 4
2.2.3 Input Files .. 4
2.2.4 Output Files .. 5
2.2.5 Source Code ... 5

2.3 The C# Application ... 6
2.3.1 Application Setup ... 6
2.3.2 Running the Application .. 6
2.3.3 Input Files .. 7
2.3.4 Output Files .. 7
2.3.5 Source Code ... 7

2.4 Comparing Outputs ... 7
2.4.1 Whitespace Differences ... 8
2.4.2 Rounding Differences .. 8
2.4.3 Output Path Difference .. 8
2.4.4 Date & Time Difference .. 8

2.5 Relevant Notes .. 8
2.5.1 Changing the Location of the Input Files Directory .. 8
2.5.2 Testing Subsets of Input Data .. 9

3. Further Assistance .. 9

1

1. INTRODUCTION

This document reviews the progress of Phase I of the Detection with Enhanced Energy Windowing
(DEEW) project. It contains a brief description of the project, instructions for setting up and running the
applications, and guidance to help make reviewing the output files and source code easier.

1.1 PROJECT DESCRIPTION

The DEEW project is the implementation of software incorporating an algorithm conceived by Bruce D.
Geelhood (Bruce). This algorithm reviews data generated by radiation portal monitors (RPMs), and
utilizes advanced and novel techniques for detecting radiological and fissile material while not alarming
on Naturally Occurring Radioactive Material (NORM). Independent testing by the Johns Hopkins
Applied Physics Laboratory, documented in AOD-13-0337 (“Preliminary Report on Phase II of the PVT-
AIP Program: Verification and Validation of Results from 256-Channel Energy Windowing Algorithms”,
version 1.0, dated August 2013) indicated that the Enhanced Energy Windowing algorithm showed
promise at reducing the probability of alarm in the stream of commerce compared to existing algorithms
and other developmental algorithms, while still maintaining adequate sensitivity to threats.

Bruce originally implemented his algorithm using an application called Liberty BASIC, an interpreted
programming language intended to help non-Software Development professionals create software
applications. The Domestic Nuclear Detection Office (DNDO) then began working with Oak Ridge
National Laboratory (ORNL) to re-implement the code in a more modern software development language
(C#) so it can be utilized by radiological detection software and devices. Taking this measure provides a
more efficient, secure and robust application, and broadens opportunities for technological advancement
into Windows applications, Web applications, Web services, distributed components, and more.

The project has been broken into two phases. The goal of the first phase is to translate the existing
Liberty BASIC code to C# to the degree it can be refactored in the second phase. The goal of the second
phase is to refactor/re-design the C# code into a more componentized application, which other
applications can interact with. The first phase of the project is completed, and this document and the
accompanying data is intended to aid in reviewing the results of Phase I.

1.2 PHASE I

The translated C# replicates the algorithm Bruce accomplished in Liberty BASIC for the Roosville
Stream of Commerce (SoC) input files. Running each application against this input data produces the
same results. Specifically, there are three output files produced which should be nearly identical: the
EW_BR log (aka, Background Ratio log), the Sigma log and the Spectra log. This document provides
information on how to run the Liberty BASIC and C# applications, and compare their output results.
Phase I is simply a translated version of what Bruce implemented in Liberty BASIC, with minimal re-
design. Minor refactoring was done for basic file I/O (i.e., reading input files and writing output files),
but the majority of the code has simply been translated from Liberty BASIC to C#. Regardless of not
having re-architected the code structure yet (which is the goal of Phase II), this simple translation shows
immediate benefits in performance (over 40 times faster), providing a friendlier graphical user interface
for testing, and being written with a more flexible, modern and widely known language.

2

1.3 PHASE II

The Liberty Basic code is a single, monolithic, 13,000-line piece of code. While there are a few functions
defined at the end of the program (less than 10), the entire file input, processing, and file output is
performed in one very large module. Some variables are global, and some others are re-used for different
purposes throughout the code. As a result, maintaining or improving any aspect of the code requires
nearly God-like mastery of the entire code and all its interdependencies. Bruce has this mastery, but
current technology is not sufficient to replicate Bruce. Breaking this large code into more manageable
sections of code (objects) is the intent of Phase II, but this is a non-trivial effort as it requires a detailed
understanding of what is being done in each portion of the code and how that can affect processing
elsewhere in the code.

1.4 DOCUMENTATION

Documentation associated with the original Liberty BASIC code written by Bruce was included with the
package of information sent with this document. Other than comments in the C# code files, this
document is the only documentation available for the C# application and its code at this stage of the
project.

3

2. HOW TO USE THE DEEW FILES

This section attempts to give guidance to set up and execute the Liberty BASIC and C# applications, and
give some helpful tips for reviewing the three primary output files.

2.1 EXTRACTING THE DEEW.ZIP FILE

A compressed ZIP file (DEEW.zip) was delivered with this document. When extracted (unzipped),
DEEW.zip will create the directory structure shown below. The directories identified in blue are related
to the C# compiled application and its source code. Directories identified in green are related to the
Liberty BASIC application source code. And those identified in orange are related to the input and output
data for both applications. These files were intended to be extracted directly on the root drive (C:\). The
default settings for both the Liberty BASIC and C# applications depend on the input files being in the
directory structure laid out below; however, the location of the files can be changed relatively easily (see
the section, Changing the Location of the Input Files Directory on how to do this).

Once unzipped, the DEEW folder contains three subdirectories: CSharp, LibertyBASIC and Data. The
CSharp directory contains subdirectories holding the compiled executable used to run the C# application
and a copy of the working source code. Similarly, the LibertyBASIC directory contains 1 subdirectory
holding the functioning Liberty BASIC source code. Liberty BASIC is an interpreted language and its
programs have to be run within the Liberty BASIC software application; therefore, there is no Compiled
Application directory for this app.

The Data directory contains several important subdirectories. RoosN contains the data files used as input
when running both the C# and Liberty BASIC application. Underneath RoosN, the CSharpOutput
directory is where output files are written when the C# application is run, and the LibertyBasicOutput
directory is where output files are written when the Liberty BASIC application is run. The Temp
directory was included as a convenience for testing the applications on smaller subsets of input data (see
the section, Testing Subsets of Input Data for guidance on how to do this). The other directory located

4

underneath Data is called Sample Run from 11-22-2016. This directory contains the three primary output
files resulting from running both applications on November 22, 2016, using the files in the RoosN
directory as input.

2.2 THE LIBERTY BASIC APPLICATION

2.2.1 Application Setup

If the DEEW.zip file was unzipped in a directory other than the root of the C:\ drive, or if the directory
structure was altered in any way, then the Liberty BASIC application needs to know where the input files
are located. To set this up, see the section, Changing the Location of the Input Files Directory, before
running the application.

Liberty BASIC must be installed in order to run this application.

2.2.2 Running the Application

Once Liberty BASIC is installed and running properly, load the file EEW62.bas in the Liberty BASIC
Editor. This file is located in the ..\DEEW\LibertyBASIC\Source Code directory. Once the file is loaded,
simply press and hold the <Shift> key and press the <F5> key to run the application, or click the Run
button in the tool bar (which looks like this:).

2.2.3 Input Files

The Liberty BASIC application uses the files located in the ..\DEEW\Data\RoosN directory for input.

Important Note - Changing the Directory Structure
If the DEEW.zip file is unzipped anywhere other than directly on the C:\ drive, then both the
Liberty BASIC and C# applications will need to have settings changed to point to the appropriate
directory for where the input files reside. To change these settings, see the section, Changing the
Location of the Input Files Directory.

Important Note – Liberty BASIC Running Time
The Liberty BASIC application takes roughly 7 to 9 hours to run to completion using the Roosville
(RoosN) input files, depending on processing speed and available memory. See the section,
Testing Subsets of Input Data for guidance on testing a subset of the input files in less time.

Important Note – Input Files
The input directory for the Liberty BASIC application must have a directory with the name
“RoosN” as the final directory in the path. This is due to hard-coding of the directory name in the
Liberty BASIC code for this application.

5

2.2.4 Output Files

The Liberty BASIC application will produce several output files. These output files will be placed in the
..\DEEW\Data\RoosN\LibertyBasicOutput directory. If a LibertyBasicOutput directory does not exist
where the input files are located, Liberty BASIC will try to create it (it will not check permissions or
prompt first). There are three output files we’re concerned with:

• EEW_062Q111_RoosN_EW_BR_Log.csv
• EEW_062Q111_RoosN_Sigma_Log.csv
• EEW_062Q111_RoosN_Spectra_Log.csv

These three files will be re-created after each execution of the Liberty BASIC application. The other files
produced by the Liberty BASIC app are not relevant to whether or not the algorithm is performing
correctly, and they are not needed.

2.2.5 Source Code

The ..\DEEW\LibertyBASIC\Source Code directory contains the following 4 files, which are discussed
below:

• EEW062a.lsn.bas.Original
• EEW62.bas
• RoundingIssues.bas
• Info.txt

EEW062a.lsn.bas.Original
This is the original Liberty BASIC application written by Bruce Geelhood. It served as the source of the
code to be translated to C# and has not been modified during this project.

EEW62.bas
This is also a copy of the Liberty BASIC application originally written by Bruce; however, it has had
modifications made to it. As code was being translated into C#, changes were made to this code for
several reasons. Many of the changes in the code are accompanied with a comment to explain the change.
Here is a list of reasons for most (if not all) of the changes:

• A few bugs were found and corrected. All changes made to implement bug fixes are denoted
with “DAB: UPD:” and followed by an explanation of why the change was made.

• The format of the some of the numerical output was modified. These changes were made so
the format of certain numeric values would be consistent, and also to allow large numeric values
to be shown (some numbers were being truncated). These changes are denoted with “DAB:
FMT:” and are followed by an explanation of why the change was made.

• Changes were made to simplify the selection of the directory to process. Since Phase I of this
project focuses on the Roosville Stream of Commerce (SoC) data, there is only one directory to
process. Therefore, the original code was modified to process only this directory. These
changes are noted with “DAB: DIR:”.

• Changes were made to send the output to a directory other than where the input files are
located. This was done so the C# and Liberty BASIC applications could use the same input files.
These changes are noted with “DAB: OUT:”.

• While tracking down discrepancies produced between the Liberty BASIC and C# output, there
was a need to set breakpoints in the Liberty BASIC code. This was difficult in some cases where

6

‘if’ and ‘for’ blocks were combined on a single line of code, and a breakpoint could not identify
when a block of code executed. Therefore, some blocks of ‘if’ and ‘for’ statements were broken
out into separate lines to allow breakpoints to be set when the code was executed. Since these
changes did not affect the flow or logic of the code, they are not commented.

• Some of the debugging and processing flags not needed for Phase I were turned off. These
changes are mainly in the first 100 lines (or so) of code, and simply entail setting values to 0 or 1
to turn a setting on or off. These changes are not commented.

To ensure the integrity of the Liberty BASIC code, Bruce was informed when bug fixes were made and
why they were being made. He was also sent a copy of this document and the modified Liberty BASIC
code for his own evaluation.

RoundingIssues.bas
As soon as file comparisons began being made between the Liberty BASIC and C# application output
files, the discovery was made of differences between the rounding of decimal values in the two languages
(this was no surprise and was somewhat expected). This file is a short program written to demonstrate the
rounding issues discovered in Liberty BASIC. For more information on this issue, see the Rounding
Differences section.

Info.txt
This file mentions what the other three files in this directory are intended for. It was included to assist
anyone who did not read this document in its entirety.

2.3 THE C# APPLICATION

2.3.1 Application Setup

If the DEEW.zip file was unzipped in a directory other than the root of the C:\ drive, or if the directory
structure was altered in any way, then the C# application needs to know where the input files are located.
To set this up, see the section, Changing the Location of the Input Files Directory.
The C# application requires the Microsoft .NET Framework version 4.5.2 or later to be installed on the
machine.

2.3.2 Running the Application

To run the C# application, simply double-click the DEEW.exe file in the ..\DEEW\CSharp\Compiled
Application directory. Below are a few noteworthy mentions for running the C# application.

• Ensure the “Directory of files to process” field displays the directory where the Roosville SoC files
(i.e., the RoosN directory) are located. If it does not, see the section Changing the Location of
the Input Files Directory to see how to change this setting.

• Since this application is not the final product, it does not implement much input validation or
error handling. The UI was kept simple and put together rather quickly, so other user-friendly
features were also kept to a minimum.

7

• The Cancel button in the user interface can be temperamental since the app is very IO intensive.
If the Cancel button doesn’t work on the first click, try clicking it again. Closing the app also
cancels the current run.

2.3.3 Input Files

The C# application uses the files located in the ..\DEEW\Data\RoosN directory for input.

2.3.4 Output Files

The C# application will produce several output files. These output files will be placed in the
..\DEEW\Data\RoosN\CSharpOutput directory. If a CSharpOutput directory does not exist where the
input files are located, the application will try to create it (it will not check permissions or prompt first).
We are concerned with the same three output files from this app:

• EEW_062Q111_RoosN_EW_BR_Log.csv
• EEW_062Q111_RoosN_Sigma_Log.csv
• EEW_062Q111_RoosN_Spectra_Log.csv

These three files will be re-created after each execution of the C# application. The only other file
produced by the C# application is the Error Log file, and it is not relevant or needed.

2.3.5 Source Code

In the ..\DEEW\CSharp\Source Code directory is a Visual Studio 2015 (VS 2015) solution file (.sln)
called Deew.sln. Loading this solution file using VS 2015 will load all of the source code for this
application.

As mentioned in the introduction of this document, this implementation of the C# code is mostly a direct
translation of the Liberty BASIC code, with minimal refactoring or re-designing. This translation is
intended to show Bruce’s algorithm can be replicated in a more modern language, and a future version of
the software will be refactored and optimized. Therefore, the architecture of the C# code will look similar
to the Liberty BASIC code.

2.4 COMPARING OUTPUTS

To make comparing the output files easier, the file names were kept the same and they were placed into
two different subdirectories, side-by-side (i.e., the CSharpOutput and LibertyBASICOutput directories).
Due to the size of the files, a file comparison tool should be used when comparing them. While
translating the code into the C# application, the Beyond Compare tool was used.

There are a few known differences between the output files, which are described below.

Important Note – C# Running Time
The C# application takes roughly 7 to 9 minutes to run to completion using the Roosville (RoosN)
input files, depending on processing speed and available memory. See the section, Testing Subsets
of Input Data for guidance on testing a subset of the input files in less time.

8

2.4.1 Whitespace Differences

One known difference, which can easily be ignored in most file comparison tools, is the occasional
discrepancy in spacing (having an extra space in one output file but not the other). With this known
difference, it is usually helpful to compare the files as text files and ignore minor differences such as
these.

2.4.2 Rounding Differences

There are differences in some numbers where the last digit in a decimal is different by 1 value. For
example, the value 4.1234 in Liberty BASIC’s output may show up as 4.1235 in C#’s output. Code was
written in C# to correct rounding issues when values are formatted for output, but the code in Liberty
BASIC was kept in its original form. Therefore, portions of the output files do not match up exactly due
to this rounding discrepancy, and show values off by 1 decimal position. The program
(RoundingIssues.bas in the Liberty ..\DEEW\LibertyBASIC\Source Code directory) was written to
demonstrate this issue.

2.4.3 Output Path Difference

The path pointing to the output directory will be different, as one points to the LibertyBasicOutput path
and the other to CSharpOutput.

2.4.4 Date & Time Difference

The date and time the application was run will be different. This is only located at the top of the Sigma
and Spectra log files.

2.5 RELEVANT NOTES

2.5.1 Changing the Location of the Input Files Directory

The default settings for both the Liberty BASIC and C# applications rely on the input files being in the
C:\DEEW\Data\RoosN directory; however, the location of the input files can be changed. If the input
files are placed in a different directory, a couple of settings in the C# and Liberty BASIC applications will
need to be modified to point to the input files.
To change the input directory in the Liberty BASIC application, follow these steps:

1. Open the file EEW62.bas in the Liberty BASIC Editor.
2. The beginning of the file has a few comments. Line 15 is the first line of executable code and

should start with the following: LogDir$ = "C:\Deew\Data\RoosN\"
3. On this line of code, change the directory to point to where the input files are located.
4. The Liberty BASIC application will now look for the input files in the newly designated path.

To change the input directory in the C# application, follow these steps (see the image of a partial screen-
shot below for visual details):

1. Run the DEEW.exe application.
2. Click the DEEW Algorithm Settings button in the left-hand pane.
3. Update the first setting, which should be Directory of Stream of Commerce (SoC) files to process.

This field can be updated by typing a directory name in or using the ellipsis button () to select
a directory. If the directory entered does not exist, the border of this setting will turn red.

4. The C# application will now look for the input files in the newly designated path.

9

2.5.2 Testing Subsets of Input Data

Running the applications against the entire set of Roosville data (roughly 2,500 occupancies) takes
considerable time, particularly running the Liberty BASIC app. In addition to running them against the
entire set of data, they can be run against a subset of the data. Included in the directory structure the
DEEW.zip file created is a directory called Temp, located under the Data\RoosN directory. This was set
up as a convenience to move data files into. In order to test a subset of the data, simply move files from
the RoosN directory into the Temp directory. The applications will only process the files in the RoosN
directory, not those in Temp. When doing this, it is important to move all three files associated with each
occupancy. For example, to test 10 occupancies, leave 10 of the *.backgd.csv, *.info.txt and *.raw.csv
files in the RoosN directory (for a total of 30 files), and move the rest to the Temp directory. The next
time the applications run, both of them will process only the 10 occupancies in the RoosN directory.
Move the files back from the Temp to the RoosN directory to have them processed again.

3. FURTHER ASSISTANCE

The contact information below can be used should any questions or issues arise during the review.

Project Manager: Alex Enders Software Engineer: David Bass
Phone: (865) 574-9083 Phone: (865) 576-0009
Email: endersal@ornl.gov Email: bassda@ornl.gov

Important Note – Moving Data Files
When moving files between the RoosN and Temp directories, it is important to move all three file
types (*.backgd.csv, *.info.txt and *.raw.csv) for any given occupancy. For example, to move the
occupancy Roosville.MT.4._D20100621_T230821_O0055_CRO256_U_PVT from RoosN to Temp,
the following files must be moved to avoid errors during file processing:

• Roosville.MT.4._D20100621_T230821_O0055_CRO256_U_PVT.backgd.csv
• Roosville.MT.4._D20100621_T230821_O0055_CRO256_U_PVT.info.txt
• Roosville.MT.4._D20100621_T230821_O0055_CRO256_U_PVT.raw.csv

mailto:endersal@ornl.gov
mailto:bassda@ornl.gov

	CONTENTS
	1. Introduction
	1.1 Project Description
	1.2 Phase I
	1.3 Phase II
	1.4 Documentation

	2. How to Use the DEEW Files
	2.1 Extracting the DEEW.zip File
	2.2 The Liberty BASIC Application
	2.2.1 Application Setup
	2.2.2 Running the Application
	2.2.3 Input Files
	2.2.4 Output Files
	2.2.5 Source Code

	2.3 The C# Application
	2.3.1 Application Setup
	2.3.2 Running the Application
	2.3.3 Input Files
	2.3.4 Output Files
	2.3.5 Source Code

	2.4 Comparing Outputs
	2.4.1 Whitespace Differences
	2.4.2 Rounding Differences
	2.4.3 Output Path Difference
	2.4.4 Date & Time Difference

	2.5 Relevant Notes
	2.5.1 Changing the Location of the Input Files Directory
	2.5.2 Testing Subsets of Input Data

	3. Further Assistance

