
ORNL/TM-2016/572

M3MS-16OR0401086 – REPORT ON
NEAMS WORKBENCH SUPPORT FOR
MOOSE APPLICATIONS

Robert A. Lefebvre
Brandon R. Langley
Adam B. Thompson

September 23, 2016

Approved	for	public	
release.	Distribution	is	

unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

ORNL/TM-2016/572

Reactor and Nuclear Systems Division

M3MS-16OR0401086 – Report on NEAMS Workbench Support for MOOSE Applications

Robert A. Lefebvre
Brandon R. Langley
Adam B. Thompson

Date Published: September 2016

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

CONTENTS ... iii	
ABSTRACT ... iv	
LIST OF FIGURES ...v	
1.	 INTRODUCTION ...1	
2.	 MOOSE FRAMEWORK APPLICATION INPUT ..1	

2.1	 GetPot Input Processor ...1	
2.2	 NEAMS Workbench Input Processor ..2	
2.3	 NEAMS Workbench Input Definition and Validation ..3	
2.4	 NEAMS Workbench MOOSE Input Creation ...7	
2.5	 NEAMS Workbench MOOSE Input Considerations ...8	

3.	 WORKBENCH APPLICATION EXECUTION ...9	
3.1	 Runtime Environment ..10	
3.2	 MOOSE BISON Runtime Environment ..10	
3.3	 Future Runtime Environment Considerations ..11	

4.	 VISUALIZATION INTEGRATION STATUS ..11	
5.	 SUMMARY ...12	

iv

ABSTRACT

This report summarizes the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS)
Workbench from Oak Ridge National Laboratory (ORNL) and the integration of the MOOSE framework.
This report marks the completion of NEAMS milestone M3MS-16OR0401086. This report documents
the developed infrastructure to support the MOOSE framework applications, the applications’ results,
visualization status, the collaboration that facilitated this progress, and future considerations.

v

LIST OF FIGURES

Figure 1. GetPot Block, Sub Block, and Named Parameter Syntax. ..1	
Figure 2, MOOSE Application Input Syntax Error Message Example. ...2	
Figure 3. The NEAMS Workbench MOOSE BISON Input Quick Navigation Illustration.3	
Figure 4. MOOSE BISON Input Definition Illustration. ..5	
Figure 5. Workbench Validation Panel Illustration Depicting Missing Required Input.6	
Figure 6. Workbench Valid Input Illustration with Satisfied Input Definition. ..6	
Figure 7. Simple MOOSE Input Block Template. ..7	
Figure 8. Simple MOOSE Input Sub Block Template. ...7	
Figure 9. Simple MOOSE Input Named Parameter Template. ...7	
Figure 10. Parameterized MOOSE Input Block Template. ..7	
Figure 11. Parameterized MOOSE Input Sub Block Template. ...7	
Figure 12. Parameterized MOOSE Input Named Parameter Template. ...7	
Figure 13. Workbench BISON Input Auto-Completion Illustration. ...8	
Figure 14. Workbench Unit of Execution Illustration. ...9	
Figure 15. Workbench Unit of Execution MOOSE BISON Example. ...9	
Figure 16. MOOSE BISON-OPT Example Invocation. ...10	
Figure 17. MOOSE BISON Runtime Environment Example Invocation. ...11	
Figure 18. Workbench MOOSE BISON Runtime Invocation Example. ...11	

vi

1

1. INTRODUCTION

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench is a new initiative for the
2016 fiscal year. It will facilitate the transition from conventional tools to high-fidelity tools by providing
a common user interface for model creation, review, execution, and visualization for integrated codes.
The Workbench can use common user input by templating engineering scale specifications to application-
specific input requirements. This will enable multi-fidelity analysis of a system from a common input.
The expansion of codes integrated under the Workbench will broaden the NEAMS tools user community
and facilitate more science and engineering. This task was officially started in June of 2016 with a focus
to support MOOSE applications, with BISON being the pilot application.

2. MOOSE FRAMEWORK APPLICATION INPUT

The MOOSE framework uses the GetPot [http://getpot.sourceforge.net/] input file and command line
parser. The GetPot project is an anagram of the Linux ‘getopt’ utility which is used to process program
command line arguments. GetPot extends command line argument processing with a hierarchical input
format that describes blocks, sub-blocks, and named parameter values of an input. The MOOSE
application instantiates an extension of the GetPot utility included in the LibMesh code repository
[https://libmesh.github.io/doxygen/getpot_8h_source.html]. GetPot provides constructs that make it easy
for users to enter their input into their MOOSE application. The extraction of this user input by the
MOOSE application is concise and easy to use.

The MOOSE framework provides a capable input infrastructure that allows MOOSE applications to
communicate an input definition, the available blocks, sub-blocks, and named parameters, to the user via
a --dump or --yaml command line option. The --dump option produces the input definition in the GetPot
format with certain input information (e.g., named parameter legal value enumerations) in comment
fields. The --yaml command line option produces a YAML [YAML Ain’t Markup Language:
http://yaml.org/] formatted input definition. The YAML-formatted input definition provides a more
complete input definition for input validation, but it still lacks some important reference information
which will be discussed in a later section.

2.1 GETPOT INPUT PROCESSOR

GetPot is licensed under GNU Lesser General Public License 2.1, which allows extensions and
redistributions. As such, LibMesh has incorporated the GetPot code and has made minor improvements.
The GetPot block can contain comments, sub-blocks, and named parameters. The GetPot sub-block can
also contain named parameters, comments, and nested sub blocks.

[block_name]
 # block content
 [./sub_block_name]
 # sub block content
 parameter_name = parameter_value
 [./]
[]

Figure 1. GetPot Block, Sub-Block, and Named Parameter Syntax.

The GetPot API allows for extraction of typed parameter values (integer, real, etc) for easy program
integration. The input hierarchy is interpreted as sections, block_name/sub_block_name, which
translates reasonably well into familiar Unix file hierarchies.

2

The GetPot input format is easy for users to learn, and the GetPot application programming interface
(API) is easy to incorporate into C++ programs. However, GetPot input errors are not easily interpreted.
Figure 2 depicts a typical syntax error message produced by a MOOSE application using GetPot.

Error: the following unidentified entries were found in your input
file:
word

*** ERROR ***
Your input file may have a syntax error, or you may have forgotten to
put quotes around a vector, ie. v='1 2'.

Figure 2. MOOSE application input syntax error message example.	

The error message does include the word at fault, but it fails to provide the textual location, line, and
column, of the word in the input file. This is not an issue if the fault is unique enough that a simple text
search reveals the textual location. However, this does limit programmatic access to the textual location,
preventing a user interface from helping facilitate resolution of the issue. 	

2.2 NEAMS WORKBENCH INPUT PROCESSOR

The NEAMS Workbench input processor uses lexicographical analysis—the Lexer—to present words.
The Workbench uses the words’ textual location to the input parser—the Parser—for semantic analysis.
The result is a parse-tree data structure that represents all of the user-specified data, including hierarchy,
regardless of correctness. Once the Lexer and Parser have produced a complete understanding of the user
input, the validation engine can be invoked for a comprehensive validation check.

It is more complex to implement the Lexer and Parser than the GetPot implementation, but they provide a
more robust capability that better facilitates users’ input introspection and validation. The increase in
program memory as a result of tracking textual location information is deemed worth the computational
resources needed to allow effective error communication to the user.

The NEAMS Workbench extracts the textual location of blocks, sub-blocks, and named parameters from
the parse-tree, and it presents quick-navigation items which use the textual locations to allow the user to
jump to a section of interest. This is made possible by using the section’s line and column. This is
important regardless of the validity of the user’s input, which could be under construction. The input is
reprocessed as soon as the user has changed input, allowing quick-navigation items to remain current.
Figure 3 depicts the NEAMS Workbench with two BISON input files open. Two input files are shown in
the navigation panel, and their sections are listed. Selecting one of these sections will place the
Workbench text editor’s cursor at the beginning of that section. The section’s textual location information
is used to highlight where the section begins and ends.

3

Figure 3. The NEAMS workbench MOOSE BISON input quick navigation.

The section information and textual location information are also used for input validation.

2.3 NEAMS WORKBENCH INPUT DEFINITION AND VALIDATION

The NEAMS Workbench Input Validation Engine supports 21 types of input definition rules for
validation, but the MOOSE framework input only requires 8 validation rules. These 21 rules have been
observed in previously supported input.

1. MinOccurs indicates the minimum occurrence of a component allowed in a context.
2. MaxOccurs indicates the maximum occurrence of a component allowed in a context.
3. ValType indicates the allowed type of a component (e.g., real, integer).
4. ValEnums indicates the allowed enumerated values of a component.
5. MinValInc indicates the minimum inclusive value of a component allowed.
6. MaxValInc indicates the maximum inclusive value of a component allowed.
7. MinValExc indicates the minimum exclusive value of a component allowed.
8. MaxValExc indicates the maximum exclusive value of a component allowed.
9. ExistsIn indicates the context set in which a component must exist.
10. NotExistsIn indicates the context set in which a component must not exist.
11. SumOver indicates the context in which a component must sum to a specified value.
12. SumOverGroup indicates the context and component group in which a component must sum to

a specified value.
13. ProdOver indicates the context in which a component must multiply to a specified value.
14. ProdOverGroup indicates the context and component group in which a component must

multiply to a specified value.

4

15. IncreaseOver indicates the content in which the components values must monotonically be
increasing (weakly or strictly).

16. DecreaseOver indicates the content in which the components values must monotonically (weak
or strict) be decreasing (weakly or strictly).

17. ChildAtMostOne indicates the set of sub section components from which at most one may exist.
18. ChildExactlyOne indicates the set of sub section components from which exactly one must exist.
19. ChildAtLeastOne indicates the set of sub section components from which at least one must

exist.
20. ChildCountEqual indicates the set of sub section components from which the total number of

occurrences must be equal to a specified number.
21. ChildUniqueness indicates the set of sub section components from which each component must

be unique.

The MOOSE framework input currently only requires MinOccurs, MaxOccurs, ValType, ValEnums,
MinValInc, MaxValExc, ExistsIn, ChildAtLeastOne, and ChildUniqueness. The minimum occurrence
and maximum occurrence, value type, and value enumeration are rules that deal immediately with the
component they are validating and are subsequently easy to understand and implement. The ExistIn,
ChildAtLeastOne, and ChildUniqueness rules are more complex, requiring input context facilitated by an
XPath [http://www.w3schools.com/xsl/xpath_syntax.asp]-like query mechanism which heavily relies on
paths to components in the input as represented by the parse-tree.

The complete set of rules describing all input is stored in an input definition file commonly referred to as
a schema. An ORNL-local MOOSE repository was extended to include a new command line option,
--definition, that dynamically produces the schema file containing most information needed for input
validation. The schema represents the same hierarchies that are available in the input with the addition of
validation rules and metadata such as component description, default, input type and template
categorization. The input type and template categorization are used to facilitate input auto-completion of
the component from within the Workbench during file content creation. Figure 4 depicts a snippet of
MOOSE BISON input definition illustrating the ValType, and ChildAtLeastOne rules and Description
metadata field. The type of the variable value within the DirechletBC component must be a
String. The ChildAtLeastOne rule indicates that the variable component could be specified in
either the GlobalParams, relatively located at "../../GlobalParams/variable/value,"
or the DirechletBC component as a subcomponent located at "variable/value." 	
 	

5

GlobalParams{
…
 variable{ … }
…
} % end of GlobalParams
…
BCs{
…
 DirichletBC{
 …
 ChildAtLeastOne=["../../GlobalParams/variable/value"
 "variable/value"]
 variable{
 Description = "The name of the variable this boundary
condition applies to"
 value{
 ValType = "String"
 }
 } % end of variable
 …
 } % end of DirichletBC
…
} % end of BCs
	
	

Figure 4. MOOSE BISON input definition illustration.

The input validation engine uses these rules to provide immediate feedback to the user. Figure 5 depicts
user feedback driven by the rules illustrated in Figure 4. Because the variable does not exist in the
DirichletBC or GlobalParams block, a validation error is presented to the user which reads ‘line:36
column:3 – Validation Error: DirichletBC has zero of:
[“../../GlobalParams/variable/value” “variable/value”] – at least one
must occur.’ Clicking this message in Workbench navigates the user’s cursor to the location of the
validation error, facilitating quick review and resolution. By defining the variable named parameter,
the input definition is satisfied, and the validation error is no longer presented to the user. The validation
error references line 36, column 3, which is the textual location of the sub-block containing the validation
error.

6

Figure 5. Workbench validation panel showing missing required input.

Figure 6 depicts resolution of the validation error by specifying the variable name parameter in the
GlobalParams block.

Figure 6. Workbench valid input with satisfied input definition.

7

2.4 NEAMS WORKBENCH MOOSE INPUT CREATION

At its most basic level, the Workbench is a text editor that makes input creation natural. However, the
Workbench can jump start the user with added benefits such as auto-completion of input and input
introspection. Input auto-completion uses a template construct in which the template contains
placeholders for data of interest. For MOOSE input there is a minimum of three template constructs: the
block, the sub-block, and the named parameter. These three templates could be presented as examples
with text to be replaced by the user, minimizing the user’s required input formatting or required syntax
specification. Figure 7 depicts the simplest MOOSE block input template, which requires the user to edit
block to be the appropriate block name. Figure 8 depicts the simplest sub-block template, again requiring
the user to replace text, sub_block with the appropriate sub-block name. Figure 9 depicts the named
parameter MOOSE input template, which requires the user replace both parameter and value with the
appropriate name and value of the component.

[block]
[]

Figure 7. Simple MOOSE input block template.

[./sub_block]
[../]

Figure 8. Simple MOOSE input sub-block template.

parameter = value
Figure 9. Simple MOOSE input named parameter template.

The templates shown above aid the uninitiated user in legal syntax of the input, but they do little more. In
Figure 9, the effort to replace all but one character slows the user. Preferred templates would contain the
respective block, sub-block, and parameter, along with default values listing options available to the user
for a given context. To do this, the input definition, in conjunction with the parse-tree and user’s input
cursor, are required. The user’s input cursor provides the textual location, line, and column to Workbench,
which can perform an input component lookup into the parse-tree. This lookup provides the input
component of focus, subsequently providing the component’s path to Workbench. Workbench uses the
component’s path to conduct the needed lookup into the input definition. The component’s input
definition communicates all possible input to the Workbench that is available to insert into the file at the
user’s cursor location. Figure 10, Figure 11, and Figure 12 illustrate the preferred, appropriately
parameterized, block, sub-block, and named parameter templates. Workbench provides the
<InputName> and <InputValue> attributes to satisfy the template.

[<InputName>]
[]

Figure 10. Parameterized MOOSE input block template.

[./<InputName>]
[../]

Figure 11. Parameterized MOOSE input sub block template.

<InputName> = <InputValue>
Figure 12. Parameterized MOOSE input named parameter template.

Figure 13 depicts a MOOSE BISON input with an auto-complete list presented to the user illustrating all
available components at line 35. The auto-complete list incorporates the component’s name and
description, and Workbench uses the input definition for available components in conjunction with the

8

parse-tree to filter components as appropriate. For example, components that have already been specified,
fulfilling the components maximum occurrence rule, are not available for additional insertion, as it
violates the maximum occurrence rule.

Figure 13. Workbench BISON input auto-completion.

Significant capabilities have been initiated to support MOOSE application input, and there are still areas
to be improved, as well as user feedback and significant input features to be captured.

2.5 NEAMS WORKBENCH MOOSE INPUT CONSIDERATIONS

MOOSE currently uses the LibMesh extension of GetPot input processor. This input processor lacks the
textual location information needed by Workbench to facilitate complex on-demand input validation. The
Workbench input processor fulfills these needs, but it duplicates some functional capabilities. In the
future, consolidation of these capabilities will facilitate MOOSE and Workbench development teams and
will ensure that the user experience remains as consistent as possible.

During an August 2016 collaboration meeting between the MOOSE and Workbench development teams,
some deficiencies were recognized in the MOOSE input infrastructure. Subsequently, the appropriate
MOOSE development issues were opened and added to a NEAMS Workbench development milestone
[https://github.com/idaholab/moose/milestone/4]. Resolution of these issues will facilitate generating a
complete schema.

Generation of the input schema from the MOOSE application is an essential capability in facilitating
Workbench’s understanding of the MOOSE application. The contribution of the ORNL-local MOOSE
repository’s --definition feature back to the Idaho National Laboratory (INL) master MOOSE repository
is needed to facilitate this capability.

9

The MOOSE framework greatly facilitates reuse and extension of input components, which allows
accelerated application development. However, this has produced a focus on single MOOSE applications.
This single application focus causes ambiguity as to which application can run the input. To facilitate the
Workbench input generation, validation, and execution, a Unit of Execution construct was added, as
depicted in Figure 14.

=application
<Application Input>
end

Figure 14. Workbench unit of execution.

Figure 15 illustrates the of the MOOSE BISON application’s unit of execution within the Workbench.

Figure 15. Example Workbench unit of execution for MOOSE BISON.

The unit of execution is accounted for by Workbench at the time of execution by the Workbench runtime
environment.

3. WORKBENCH APPLICATION EXECUTION

A mission of the Workbench is to facilitate transition from conventional tools to high-fidelity tools. Many
of these codes involve different means of invocation, and some have multiple means of invocation. To
facilitate execution of these applications, a generic runtime environment interface was created. The intent
of the runtime is to provide a consistent interface by which the Workbench can interact with each
application in all necessary modes of operation (e.g., serial, parallel, and scheduled execution). The
runtime is designed to provide a clean, convenient, consistent means for users to invoke NEAMS toolkit
applications via the command line, separate from graphical user interface that is Workbench.

10

3.1 RUNTIME ENVIRONMENT

After careful consideration, the Python [www.python.org] scripting language was chosen for its
combination of cross-platform support, object-oriented design, code readability, and power. The runtime
is an object-oriented polymorphic design allowing reuse and extension. A generic base class provides the
complete interface to communicate command line options and usage and to facilitate job setup, execution,
and finalization of an application’s input execution.

Some applications have no runtime environment, requiring the user to manually conduct all steps
associated with running the applications. For example, the user might be required to copy the problem
input file into a specific location with a specific file name, input,, and then invoke the application, thus
producing temporary files and output file(s). This is error prone and should not be important to the user or
to Workbench as this logic is application specific. The solution is to contribute a new runtime script—
new_app.py—to the runtime repository, where the new_app.py overrides the setup, execution, or
finalization logic as needed to fulfill the runtime interface. The setup logic might create a working
directory, TMPDIR, and then copy the problem.inp into the TMPDIR as TMPDIR/input. The
execution might invoke the application executable, passing application messages back to the calling
application (command console, Workbench, etc.). The finalize logic might (1) combine the output files
located in TMPDIR into logical order, (2) copy the output back into problem.out, residing next to
problem.inp, and (3) delete the TMPDIR to clean up after itself.

Whatever the specific application logic is, there an application.py script will be available to allow
consistent invocation and potentially providing great convenience for the application’s typical command
line user. As the runtime environment matures and additional features are added (queuing system, etc.) for
the base class, all incorporated runtimes will benefit.

3.2 MOOSE BISON RUNTIME ENVIRONMENT

As of August 2016, the MOOSE BISON application, bison-opt, was understood to require its
invocation to occur in the directory in which the input resides. Figure 16 depicts a typical invocation of
the MOOSE BISON application.

/software/neams/moose/bison/bison-opt -i problem.inp

Figure 16. MOOSE BISON-OPT example invocation.

The bison.py runtime environment encapsulates the bison-opt command line options, the job
setup, execution, and finalize logic with ~200 lines of Python. Most of these lines are propagating the
dozens of command line options through the BISON runtime environment. Figure 17 depicts an example
invocation of the BISON runtime environment. Note the complete path to the problem.inp input file.
This is not only convenient, but it is also often considered standard.

11

/software/neams/rte/bison.py -i /path/to/input/dir/problem.inp
Figure 17. MOOSE BISON runtime environment example invocation.

The Workbench can use this interface to allow users’ invocation of multiple MOOSE application inputs
in the same interface, as depicted in Figure 18.

Figure 18. Workbench MOOSE BISON runtime invocation example.

3.3 FUTURE RUNTIME ENVIRONMENT CONSIDERATIONS

The runtime environment greatly facilitates the Workbench in its interactions with applications. Current
interface has been shown to facilitate local execution of MOOSE BISON applications. With little
additional work, more MOOSE applications could easily be added. More work is expected to integrate
applications with little or no existing runtime environment. Finally, remote high performance clusters
with potential scheduler/queuing interfaces must be designed and integrated to best facilitate large or
long-running jobs.

4. VISUALIZATION INTEGRATION STATUS

The Workbench development team conducted a review of the LLNL VisIt visualization tool and Kitware
Inc., ParaView visualization application APIs. Integration of both into the Workbench is desired. A
complicating factor is the tools’ common dependency on different versions of Kitware Inc.’s
Visualization Tool Kit (VTK). A Workbench and VisIt collaboration meeting was held in August 2016
with Dr. Harinarayan Krishnan of Lawrence Berkeley National Laboratory (LBNL), and it was concluded
with a prototype integration of the VisIt Viewer component in Workbench. A collaboration meeting with
Bob O’Bara from Kitware, Inc., was held in late September 2016 to discuss the Kitware software
solutions, including the ParaView visualization application.

12

In addition to the review of the VisIt and ParaView APIs, the MOOSE BISON data and visualization
methods were reviewed with staff in CASL and the MOOSE development team. Integration of VisIt and
ParaView and streamlining results acquisition and visualization are areas for continued work in FY17.

5. SUMMARY

The NEAMS Workbench is a new initiative for the 2016 fiscal year. It is intended to facilitate the
transition from conventional tools to high-fidelity tools by providing a common user interface for model
creation, review, execution, and visualization for integrated codes. In FY16, the Workbench development
team collaborated with Cody Permann and the MOOSE development team at INL to integrate the initial
pilot application, MOOSE BISON, into the Workbench. MOOSE BISON input can be created, reviewed,
and executed on a local machine. Opportunities for input infrastructure collaboration, improvement in
input validation, and results visualization of MOOSE applications still remain and will be addressed in
FY17. Due to the design of the MOOSE framework, with little additional effort, additional MOOSE
applications can easily be integrated into the Workbench, leveraging the features accomplished in FY16.

To facilitate the broad set of applications to be integrated into the Workbench, an object-oriented,
polymorphic Python runtime environment was initiated. This runtime environment provides a consistent
interface by which the Workbench or command line user can invoke integrated applications. Additionally,
the runtime environment provides a central location by which application invocation conveniences
(queuing support) will be centralized.

Visualization integration is still being investigated. In FY16, collaboration meetings were held involving
the VisIt visualization tool attended by Dr. Harinarayan Krishnan of LBNL, and ParaView attended by
Bob O’Bara of Kitware, Inc. The MOOSE BISON data and visualization methods were reviewed with
staff members from CASL and the MOOSE development team. There are opportunities to incorporate
existing VisIt and ParaView visualization capabilities into Workbench. Custom VTK capabilities can also
be implemented to streamline data analysis workflows that are frequently observed in the application
space.

