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1. INTRODUCTION 

Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded 

effective kernels that loop over several energy groups at once, rather that looping over one group at a 

time [1].  These kernels have produced roughly a 2x speedup on the MOC sweeping time during 

eigenvalue calculation.  However, the self-shielding subgroup calculation had not been reevaluated 

to take advantage of these new kernels, which typically requires substantial solve time.  The 

improvements covered in this report start by integrating the multigroup kernel concepts into the 

subgroup calculation, which are then used as the basis for further extensions.   

 

The next improvement that is covered is what is currently being termed as “Lumped Parameter 

MOC”.  Because the subgroup calculation is a purely fixed source problem and multiple sweeps are 

performed only to update the boundary angular fluxes, the sweep procedure can be condensed to 

allow for the instantaneous propagation of the flux across a spatial domain, without the need to 

sweep along all segments in a ray.  Once the boundary angular fluxes are considered to be 

converged, an additional sweep that will tally the scalar flux is completed.   

 

The last improvement that is investigated is the possible reduction of the number of azimuthal angles 

per octant in the shielding sweep.  Typically 16 azimuthal angles per octant are used for self-

shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less 

sensitive to the number of angles than the full eigenvalue calculation.   

 

2. BACKGROUND ON IMPROVEMENTS 

The general theory behind the subgroup calculation is going to be omitted from this section, only 

outlining the theory behind the improvements that have been made to it.  For a more basic 

background on subgroup, consult Reference 2. 

2.1 Solving All “Pseudogroups” Concurrently 

The pre-existing subgroup calculation scheme in MPACT is shown in Figure 1, where there are three 

loops: 1) over the resonant groups, 2) over the subgroup categories for that group, and 3) over the 

subgroup levels.  As can be seen, inside these loops, there is an iteration loop where a transport 

sweep for each resonant group, category, and level are performed.   

 

Figure 1. Pseudocode for Pre-existing Subgroup Scheme with Group on Outermost Loop 

 

For most MPACT calculations, there are 4 categories per group and 4 levels. But the number of 

categories can be changed by choosing a different subgroup set, based on the user input [3].  The 
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number of levels is dependent upon the library being used.  Additionally, all results covered in this 

work make use of the 47-group library developed by ORNL [4], which contains 17 resonant groups 

(from group 10 to group 26). 

 

To take advantage of the new multigroup kernels that have been implemented into MPACT, the 

scheme needs to be restructured slightly.  To make this concept easier, we are going to say that each 

resonant group, category, level combination makes up a single “pseudogroup”.  So the number of 

pseudogroups for the entire subgroup calculation will be the product of the number of resonant 

groups times the average number of subgroup categories per group times the number of subgroup 

levels.  In theory, the number of categories can vary from group to group, though this does not seem 

to be the case for the 47-group library, which yields 272 pseudogroups.  Based on this concept, a 

transport kernel could be constructed to sweep over all pseudogroups concurrently, but the source, 

cross section, scalar flux, and angular flux need to be stored for each up-front, whereas in the 

previous scheme, only one group of storage was necessary at a time.  Figure 2 shows the pseudocode 

for the refactored scheme, taking advantage of the multigroup kernel concept: 

 

Figure 2. Pseudocode for Subgroup Scheme Using the Multigroup Transport Kernel 

 

As one might expect, the memory of storing source and flux data for 272 pseudogroups can be a 

concern.  One way of keeping the memory low, while still allowing the scheme to make use the 

multigroup kernels is to divide the pseudogroups up using batches.  Figure 3 shows the pseudocode 

for the batched approach, where each batch contains a starting and stopping pseudogroup index: 
 

Figure 3. Pseudocode for Subgroup Scheme Using the Multigroup Transport Kernel and Batching 
 



Subgroup Self-Shielding Efficiency Improvements 

 

CASL-U-2016-1063-001 3 Consortium for Advanced Simulation of LWRs 

The performance of the pseudogroup consolidation alone was not reported.  However, based on the 

results from Ref. 1, which observed a speedup of roughly 1.4x using 47-group kernels without 

current tallies, it would not be unreasonable to expect a similar performance boost, especially if the 

number of pseudogroups in a batch is roughly 40-50.  The performance of this in addition to the next 

improvement are the focus of the results in Section 3. 

 

When using the multigroup kernels during the eigenvalue sweep [1], a Jacobi approximation is 

applied to the scattering source since all groups are solved in the same kernel and the inscatter 

source is not updated during the kernel sweep.  This approximation typically requires more outer 

iterations over the Gauss-Seidel approach.  It is worth noting that when applying these kernels to the 

subgroup calculation, no additional iterations are required because there is no approximation to the 

source, though this is not surprising. 

2.2 Lumped Parameter MOC 

Because the subgroup calculation solves a purely absorbing problem with a fixed source, the 

transport sweeps can be vastly simplified by condensing the angular flux propagation into one 

operation, instead of sweeping across all segments along a ray.  Because the MOC kernels in 

MPACT sweep over two angles travelling in opposite directions (forward/backward) at the same 

time, effectively two equations are needed (Eqs 1a and 1b): 

 

 𝜑𝑝𝑔
𝑜𝑢𝑡,𝑓𝑜𝑟

= 𝜑𝑝𝑔
𝑖𝑛,𝑓𝑜𝑟

𝐴𝑝𝑔 + 𝐵𝑝𝑔 (1a) 

 𝜑𝑝𝑔
𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = 𝜑𝑝𝑔

𝑖𝑛,𝑏𝑎𝑐𝑘𝐴𝑝𝑔 + 𝐶𝑝𝑔 (1b) 

 

To visualize this consider a ray in a simple pin cell problem (Figure 4).  On the left is the 

discretization showing 5 segments along the ray (blue) with the incoming and outgoing angular 

fluxes at the ends of the ray.  On the right is the same problem but with all 5 segments condensed 

into one.  To reiterate, this is only valid and effective because the source is not changing between 

iterations as is the case during the eigenvalue calculation sweeps.  Thus, the 𝐴/𝐵/𝐶 lumped 

parameters can be used in a fast, intermediate kernel that only updates the outgoing angular flux. 

 

  
Figure 4. Visualization of MOC Ray Tracing (left) and Lumped Parameter (right) on a Pin Cell 

 

There are a couple of ways of deriving the equations for the lumped parameters.  However, it is not 

difficult to convince yourself that 𝐴 will be a product of the exponential terms for each segment (Eq. 

2a).  With 𝐴 in hand, 𝐵 and 𝐶 can be easily calculated using the incoming and outgoing angular flux 

values (Eqs. 2b and 2c), assuming a typical sweep is performed in calculating the factors.  A more 
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detailed derivation with more explicit formulas for 𝐵 and 𝐶 is available in Appendix A, but the 

implementation in MPACT is consistent with the formulas outlined in Eq. 2. 

 

 

𝐴𝑝𝑔 =∏𝑒−Σ𝑡,𝑖,𝑝𝑔𝑙𝑖

𝑁𝑠𝑒𝑔

𝑖=1

 (2a) 

 𝐵𝑝𝑔 = 𝜑𝑝𝑔
𝑜𝑢𝑡,𝑓𝑜𝑟

− 𝜑𝑝𝑔
𝑖𝑛,𝑓𝑜𝑟

𝐴𝑝𝑔 (2b) 

 𝐶𝑝𝑔 = 𝜑𝑝𝑔
𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 − 𝜑𝑝𝑔

𝑖𝑛,𝑏𝑎𝑐𝑘𝐴𝑝𝑔 (2c) 

 

It is worth noting that the notation in Eqs. 1 and 2 are heavily simplified to avoid clutter, but the 

lumped parameters will need to be calculated and saved for each angle and ray.  However, given that 

these will only be three values over O(100) segments, the storage for this is not concerning. 

 

Figure 5 shows the pseudocode for lumped parameters, building off of the multigroup kernel with 

batching.  The important changes here to note are that 1) there is an initial sweep to calculate the 

lumped parameters (line 6), 2) there are several “fast” sweeps that simply apply the factors to update 

the angular flux (per Eq. 1 and line 8), and 3) a final, standard sweep is completed to tally the scalar 

flux (line 11), which is required for the equivalence cross section calculation (line 13).    

 

Figure 5. Pseudocode for Subgroup Scheme Using the Multigroup Transport Kernel,  

Batching, and Lumped Parameter Approach 
 

Since only the last iteration yields a scalar flux distribution, the convergence residual for this scheme 

is based on the angular flux updates instead of the scalar flux, which is used in the current scheme.  

Choosing the correct convergence criteria is important to ensure consistency between these two 

schemes.  The current scheme imposes a maximum change of 1𝑥10−6 for the scalar flux in any 

region for each pseudogroup.  Since the new scheme will perform an additional sweep once the 

angular flux is considered to be converged, a similar maximum change is imposed on the angular 

flux, but with a criteria of 1𝑥10−5.  In practice, this has been observed to be conservative, in most 

cases requiring one additional iteration.  However, this is tolerable since it is only one additional 

“fast” iteration. 
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One should also keep in mind a situation where this approach would not be beneficial, which is in 

problems with fully vacuum radial boundary conditions in serial.  In this scenario, only one iteration 

would be necessary since the boundary conditions do not need to be converged as an zero incoming 

angular flux is correct.  This, however, is not a likely scenario given most problems are executed 

with quarter symmetry and in parallel. 

 

2.3 Reducing Azimuthal Angles 

One additional improvement that will be covered separately in the results section is the notion that 

fewer azimuthal angles are necessary in the quadrature when performing the subgroup calculation.  

The self-shielding parameters in the 47-group library were generated using 8 azimuthal angles per 

octant [4].  In theory, the answers may improve when using only 8 angles, compared to the 16 angles 

that are default, but it is also suspected that the subgroup results may be more insensitive than for the 

eigenvalue sweeps.  

 

3. RESULTS 

The improvements covered in the previous section have been applied to three tests problems that 

will be presented here, all from the VERA progression problem suite [5]: 1) a single quarter 

assembly lattice [VERA Problem 2a, Figure 6] and 2) a 2D slice of the 3x3 assembly cluster [VERA 

Problem 4a-2D, Figure 7], and 3) a 2D quarter core model [VERA Problem 5a-2D core layout in 

Figure 8].  It is worth noting that the 5a-2D case also includes baffle and reflector regions that are 

not included in the figure.  All cases used a 0.05 cm ray spacing, 16 azimuthal angles per octant, and 

2 polar angles in a Tabuchi-Yamamoto [6] quadrature with 3 radial rings in the fuel and 8 azimuthal 

divisions.  As mentioned before, all cases used a 47-group cross section library generated by ORNL 

[4].  Both problems 2a and 4a-2D were run in serial on local ORNL clusters with AMD processors.  

P5-2D was run on Titan [7] using 73 spatial decomposition domains. 

 

In all Tables 1-3, the number of batches used to partition the pseudogroups is varied between 1-10, 

with the average number of pseudogroups in each batch reported along with the total time spent 

performing the subgroup calculation (sec) and the total memory for the problem.  Additionally, 

results from the pre-existing one-group sweeping scheme (1G) is reported as well as the memory for 

the multigroup scheme (MG) allocating 47-groups of data, which is most directly comparable to the 

case with 6 batches at a maximum of 46 groups per batch.  The time for the MG scheme is not 

reported since it is expected to be very close to the 1G time, since it was originally implemented to 

use 1G for the self-shielding and MG for the eigenvalue calculation. 

 

3.1 VERA Problem 2a 

Figure 6 shows the visualization of the Problem 2a geometry, which is a simple 17x17 lattice of 

2.1% enriched pins using quarter symmetry. 
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Figure 6. Geometry Visualization of VERA Problem 2a [5] 

 

Table 1 shows the results for Problem 2A.  There are several conclusions that can be drawn from 

this.  The first is that batching can significantly reduce the memory burden of the new scheme, 

requiring only a little more memory than compared to the old scheme, without sacrificing much 

performance.  Another is that the new scheme is significantly faster, providing roughly a 2.8x 

speedup when using 5 batches, which is the current default. 

 

Table 1. Results for Problem 2a 

# 

Batch 

Average          

Batch Size 

(pseudogroups) 

Subgroup 

Time 

(sec) 

Total 

Memory 

(GB) 

1 272.0 8.17 0.50 

2 136.0 8.25 0.35 

3 90.7 8.26 0.30 

4 68.0 8.42 0.27 

5 54.4 8.70 0.26 

6 45.3 8.78 0.25 

7 38.9 8.87 0.25 

8 34.0 8.92 0.25 

9 30.2 9.52 0.25 

10 27.2 9.58 0.25 

1G --- 24.36 0.20 

MG --- --- 0.23 

 

3.2 VERA Problem 4a-2D 

Figure 7 shows the visualization of Problem 4a-2D, where the red pins denote 2.1% enriched fuel 

pins and green denotes 2.6%.  It can also be seen that there are several pyrex rods (red annular 

regions with white center) in the 2.6% enriched assemblies. 
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Figure 7. Geometry Visualization of VERA Problem 4a-2D [5] 

 

Table 2 shows the results for Problem 4a-2D.  In general, the trends are very similar to 2a with 

nearly a 2.8x speedup with 5 batches.  This is not very surprising, particularly since both were 

executed in serial.   

 

Table 2. Results for Problem 4a-2D 

# 

Batch 

Average          

Batch Size 

(pseudogroups) 

Subgroup 

Time 

(sec) 

Total 

Memory 

(GB) 

1 272.0 80.22 1.99 

2 136.0 78.25 1.43 

3 90.7 77.55 1.25 

4 68.0 79.52 1.16 

5 54.4 80.59 1.11 

6 45.3 77.62 1.07 

7 38.9 84.96 1.04 

8 34.0 79.43 1.04 

9 30.2 81.97 1.04 

10 27.2 84.11 1.04 

1G --- 222.91 0.88 

MG --- --- 1.02 
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3.3 VERA Problem 5a-2D 

Figure 8 shows the P5-2D core layout, which consists of three different enrichment zones.  Not 

shown in the figure are the baffle and reflector regions. 

  

 
Figure 8. Geometry Visualization of VERA Problem 5a-2D [5] 

 

Table 3 shows the results for 5a-2D, which were run on 73 processors on Titan [7].  The trends here 

are a little different and provide some interesting ideas.  First of all, we see that 1 batch takes the 

most time.  This is suspected to be an anomaly introduced by the spatial decomposition data passing, 

which now is passing buffers of data that contains a very substantial number of pseudogroups.  This 

effect seems to be mitigated when increasing the batches, where an optimum point is reached around 

5 batches.  Because 5a-2D is a substantially larger problem than 2a and 4a-2D, the memory required 

is directly correlated, requiring nearly 68 GB with 1 batch, though spread across 73 processors.  

With 5 batches this is reduced considerably and is only marginally larger than the MG storage 

requirements by an average of 63 MB per process, indicating that the memory requirements for the 

improvements demonstrated in this report are indeed very small.   

 

In terms of overall speedup, a nearly 3.9x speedup is observed.  While a large portion of this is 

attributable to the lumped parameter approach, it is likely that this speedup is increased over what 

was observed in 2a and 4a-2D because the data passing is using larger buffers.  In the 1G scheme, 

the angular flux data is passed using one-group buffers, whereas the new scheme passes using 

buffers of several groups. 
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Table 3. Results for Problem 5a-2D 

# 

Batch 

Average          

Batch Size 

(pseudogroups) 

Subgroup 

Time 

(sec) 

Total 

Memory 

(GB) 

1 272.0 76.32 67.53 

2 136.0 56.14 44.98 

3 90.7 52.10 37.98 

4 68.0 48.97 34.41 

5 54.4 48.82 33.03 

6 45.3 49.58 32.89 

7 38.9 50.97 32.87 

8 34.0 49.38 32.87 

9 30.2 52.31 32.87 

10 27.2 53.96 32.87 

1G --- 188.95 23.74 

MG --- --- 28.40 

 

3.4 Reducing Azimuthal Angles 

Table 4 shows the results from 5a-2D reducing the varying the number of azimuthal angles per 

octant with 16 used as the reference (and 16 were used for the eigenvalue sweep in all cases).  As we 

can see, using only 4 azimuthal angles is too few, but using 8 angles yields a difference of only 14 

pcm, with a negligible impact on pin powers.  Additionally, running with 32 angles (for 

completeness) shows that there is nothing to gain by running with more.  If 8 azimuthal angles were 

agreed to be acceptable, the overall speedup compared to the current approach would be slightly 

over 7x. 

 

Table 4. Results for Problem 5a-2D Varying Azimuthal Angles for Shielding Calculation 

Azimuthal 

Angles Per 

Octant keff 

Diff 

(pcm) 

Pin Power 

Time 

(sec) 

Total 

Mem. 

(GB) 

RMS 

(%) 

MAX 

(%) 

4 1.00233 -78 0.036 0.079 15.48 25.39 

8 1.00297 -14 0.006 0.014 26.81 27.75 

16 1.00311 0 --- --- 48.82 33.03 

32 1.00313 2 0.002 0.005 94.96 45.22 

 

Appendix B contains the output from MPACTdiff.py [8] from VERA Problems 1 through 3 and 6 

changing the number of azimuthal angles from 16 to 8 for the shielding calculation.  Problem 1 

demonstrates substantially more sensitivity with 30-40 pcm change observed, except for 1e, where a 

0.005 ray spacing is used (all others use 0.05).  Problems 2, 3, and 6 show similar sensitivity as 5a-

2D with typically 10-20 pcm difference observed. 

 

4. CONCLUSIONS 

In this report, several different improvements were discussed and demonstrated, such as solving all 

pseudogroups concurrently, moving to a “lumped parameter” approach for MOC, and reducing the 

number of azimuthal angles per octant only for the shielding calculation.  The performance 
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combining the first two improvements was assessed on three tests problems ranging from a single 

quarter assembly lattice to a quarter core 2D slice.  Both serial cases demonstrated a speedup of 

around 2.8x, whereas the parallel 2D quarter core yielded nearly a 3.9x speedup.  Additionally, the 

memory burden to achieve these gains was found to be tolerable, with a vast majority of the increase 

resulting from utilizing the multigroup kernel approach. 

 

When considering reducing the number of azimuthal angles, it was found that using 8 azimuthal 

angles per octant compared to 16 which is typically used introduces only a 10-20 pcm difference, 

while providing additional speedup.  This in combination with the previous two improvements yields 

over a 7x speedup on the 2D quarter core problem. 
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APPENDIX A. SAMPLE LUMPED PARAMETER DERIVATION 

 

As a sample derivation for the lumped parameters 𝐴, 𝐵, and 𝐶, consider a simple pin cell problem 

typically consisting of 5 segments, which can be lumped into one, as in Figure A.1. 

 

  
Figure A.1. Visualization of MOC Ray Tracing (left) and Lumped Parameter (right) on a Pin Cell 

 

Below are the equations for the forward equations for each segment when sweeping. 

 

Forward Evaluation: 

1: 𝜑1 = 𝜑𝑖𝑛,𝑓𝑜𝑟𝑒−Σ𝑡,1𝑙1 +
𝑄1

Σ𝑡,1
(1 − 𝑒−Σ𝑡,1𝑙1) 

2: 𝜑2 = 𝜑1𝑒−Σ𝑡,2𝑙2 +
𝑄2

Σ𝑡,2
(1 − 𝑒−Σ𝑡,2𝑙2) 

3: 𝜑3 = 𝜑2𝑒−Σ𝑡,3𝑙3 +
𝑄3

Σ𝑡,3
(1 − 𝑒−Σ𝑡,3𝑙3) 

4: 𝜑4 = 𝜑3𝑒−Σ𝑡,4𝑙4 +
𝑄4

Σ𝑡,4
(1 − 𝑒−Σ𝑡,4𝑙4) 

5: 𝜑𝑜𝑢𝑡,𝑓𝑜𝑟 = 𝜑4𝑒−Σ𝑡,5𝑙5 +
𝑄5

Σ𝑡,5
(1 − 𝑒−Σ𝑡,5𝑙5) 

 

Substituting this into one another, an expression can be found directly between 𝜑𝑖𝑛,𝑓𝑜𝑟 and 𝜑𝑜𝑢𝑡,𝑓𝑜𝑟: 

𝜑𝑜𝑢𝑡,𝑓𝑜𝑟 =

(

 
 
(((𝜑𝑖𝑛,𝑓𝑜𝑟𝑒−Σ𝑡,1𝑙1 +

𝑄1
Σ𝑡,1

(1 − 𝑒−Σ𝑡,1𝑙1)) 𝑒−Σ𝑡,2𝑙2 +
𝑄2
Σ𝑡,2

(1 − 𝑒−Σ𝑡,2𝑙2)) 𝑒−Σ𝑡,3𝑙3

+
𝑄3
Σ𝑡,3

(1 − 𝑒−Σ𝑡,3𝑙3))𝑒−Σ𝑡,4𝑙4 +
𝑄4
Σ𝑡,4

(1 − 𝑒−Σ𝑡,4𝑙4)

)

 
 
𝑒−Σ𝑡,5𝑙5 +

𝑄5
Σ𝑡,5

(1 − 𝑒−Σ𝑡,5𝑙5) 
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Rearranging this, we can see that this relationship can be described by: 𝜑𝑜𝑢𝑡,𝑓𝑜𝑟 = 𝜑𝑖𝑛,𝑓𝑜𝑟𝐴 + 𝐵 

 

 

𝜑𝑜𝑢𝑡,𝑓𝑜𝑟 = 𝜑𝑖𝑛,𝑓𝑜𝑟𝑒−Σ𝑡,1𝑙1𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5

+

(

 
 
(((

𝑄1
Σ𝑡,1

(1 − 𝑒−Σ𝑡,1𝑙1)) 𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5

+
𝑄2
Σ𝑡,2

(1 − 𝑒−Σ𝑡,2𝑙2)𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5)+
𝑄3
Σ𝑡,3

(1 − 𝑒−Σ𝑡,3𝑙3)𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5)

+
𝑄4
Σ𝑡,4

(1 − 𝑒−Σ𝑡,4𝑙4)𝑒−Σ𝑡,5𝑙5

)

 
 
+
𝑄5
Σ𝑡,5

(1 − 𝑒−Σ𝑡,5𝑙5) 

where 

𝐴 = 𝑒−Σ𝑡,1𝑙1𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5 

=∏ 𝑒−Σ𝑡,𝑖𝑙𝑖

𝑁𝑠𝑒𝑔

𝑖=1

 

and 

𝐵 =

(

 
 
(((

𝑄1
Σ𝑡,1

(1 − 𝑒−Σ𝑡,1𝑙1))𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5

+
𝑄2
Σ𝑡,2

(1 − 𝑒−Σ𝑡,2𝑙2)𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5)+
𝑄3
Σ𝑡,3

(1 − 𝑒−Σ𝑡,3𝑙3)𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,5𝑙5)

+
𝑄4
Σ𝑡,4

(1 − 𝑒−Σ𝑡,4𝑙4)𝑒−Σ𝑡,5𝑙5

)

 
 
+
𝑄5
Σ𝑡,5

(1 − 𝑒−Σ𝑡,5𝑙5) 

= ∑(
𝑄𝑖
Σ𝑡,𝑖
(1 − 𝑒−Σ𝑡,𝑖𝑙𝑖) ∏ 𝑒−Σ𝑡,𝑗𝑙𝑗

𝑁𝑠𝑒𝑔

𝑗=𝑖+1

)

𝑁𝑠𝑒𝑔

𝑖=1

 

 

A similar procedure can be executed for the backward trace: 
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Backward Evaluation: 

5: 𝜑5 = 𝜑𝑖𝑛,𝑏𝑎𝑐𝑘𝑒−Σ𝑡,5𝑙5 +
𝑄5

Σ𝑡,5
(1 − 𝑒−Σ𝑡,5𝑙5) 

4: 𝜑4 = 𝜑5𝑒−Σ𝑡,4𝑙4 +
𝑄4

Σ𝑡,4
(1 − 𝑒−Σ𝑡,4𝑙4) 

3: 𝜑3 = 𝜑4𝑒−Σ𝑡,3𝑙3 +
𝑄3

Σ𝑡,3
(1 − 𝑒−Σ𝑡,3𝑙3) 

2: 𝜑2 = 𝜑3𝑒−Σ𝑡,2𝑙2 +
𝑄2

Σ𝑡,2
(1 − 𝑒−Σ𝑡,2𝑙2) 

1: 𝜑𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = 𝜑2𝑒−Σ𝑡,1𝑙1 +
𝑄1

Σ𝑡,1
(1 − 𝑒−Σ𝑡,1𝑙1) 

𝜑𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 =

(

 
 
(((𝜑𝑖𝑛,𝑏𝑎𝑐𝑘𝑒−Σ𝑡,5𝑙5 +

𝑄5
Σ𝑡,5

(1 − 𝑒−Σ𝑡,5𝑙5))𝑒−Σ𝑡,4𝑙4 +
𝑄4
Σ𝑡,4

(1 − 𝑒−Σ𝑡,4𝑙4))𝑒−Σ𝑡,3𝑙3

+
𝑄3
Σ𝑡,3

(1 − 𝑒−Σ𝑡,3𝑙3))𝑒−Σ𝑡,2𝑙2 +
𝑄2
Σ𝑡,2

(1 − 𝑒−Σ𝑡,2𝑙2)

)

 
 
𝑒−Σ𝑡,1𝑙1 +

𝑄1
Σ𝑡,1

(1 − 𝑒−Σ𝑡,1𝑙1) 

𝜑𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = ((((𝜑𝑖𝑛,𝑏𝑎𝑐𝑘𝑒−Σ𝑡,5𝑙5𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1

+
𝑄5
Σ𝑡,5

(1 − 𝑒−Σ𝑡,5𝑙5)𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1)

+
𝑄4
Σ𝑡,4

(1 − 𝑒−Σ𝑡,4𝑙4)𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1) +
𝑄3
Σ𝑡,3

(1 − 𝑒−Σ𝑡,3𝑙3)𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1)

+
𝑄2
Σ𝑡,2

(1 − 𝑒−Σ𝑡,2𝑙2)𝑒−Σ𝑡,1𝑙1)+
𝑄1
Σ𝑡,1

(1 − 𝑒−Σ𝑡,1𝑙1) 

 

The first term can be observed to be the same, but the second term will be different, overall 

conforming to 𝜑𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = 𝜑𝑖𝑛,𝑏𝑎𝑐𝑘𝐴 + 𝐶: 

 

𝐴 = 𝑒−Σ𝑡,5𝑙5𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1 

=∏ 𝑒−Σ𝑡,𝑖𝑙𝑖

𝑁𝑠𝑒𝑔

𝑖=1
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𝐶 = ((((
𝑄5
Σ𝑡,5

(1 − 𝑒−Σ𝑡,5𝑙5)𝑒−Σ𝑡,4𝑙4𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1)

+
𝑄4
Σ𝑡,4

(1 − 𝑒−Σ𝑡,4𝑙4)𝑒−Σ𝑡,3𝑙3𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1) +
𝑄3
Σ𝑡,3

(1 − 𝑒−Σ𝑡,3𝑙3)𝑒−Σ𝑡,2𝑙2𝑒−Σ𝑡,1𝑙1)

+
𝑄2
Σ𝑡,2

(1 − 𝑒−Σ𝑡,2𝑙2)𝑒−Σ𝑡,1𝑙1)+
𝑄1
Σ𝑡,1

(1 − 𝑒−Σ𝑡,1𝑙1) 

= ∑(
𝑄𝑖
Σ𝑡,𝑖
(1 − 𝑒−Σ𝑡,𝑖𝑙𝑖)∏ 𝑒−Σ𝑡,𝑗𝑙𝑗

𝑖−1

𝑗=1

)

𝑁𝑠𝑒𝑔

𝑖=1

 

 

In summary, we have the lumped parameters 𝐴, 𝐵, and 𝐶, which allow us to consolidate the 

segments into one operator: 

 

𝜑𝑜𝑢𝑡,𝑓𝑜𝑟 = 𝜑𝑖𝑛,𝑓𝑜𝑟𝐴 + 𝐵 

𝜑𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = 𝜑𝑖𝑛,𝑏𝑎𝑐𝑘𝐴 + 𝐶 
 

where the parameters have the following equations: 

𝐴 =∏𝑒−Σ𝑡,𝑖𝑙𝑖

𝑁𝑠𝑒𝑔

𝑖=1

 

𝐵 = ∑ (
𝑄𝑖
Σ𝑡,𝑖
(1 − 𝑒−Σ𝑡,𝑖𝑙𝑖) ∏ 𝑒−Σ𝑡,𝑗𝑙𝑗

𝑁𝑠𝑒𝑔

𝑗=𝑖+1

)

𝑁𝑠𝑒𝑔

𝑖=1

 

 

𝐶 = ∑ (
𝑄𝑖
Σ𝑡,𝑖
(1 − 𝑒−Σ𝑡,𝑖𝑙𝑖)∏𝑒−Σ𝑡,𝑗𝑙𝑗

𝑖−1

𝑗=1

)

𝑁𝑠𝑒𝑔

𝑖=1

 

 

Alternatively, the 𝐵 and 𝐶 parameters can be given more directly once 𝐴 is determined: 

 

𝐵 = 𝜑𝑜𝑢𝑡,𝑓𝑜𝑟 − 𝜑𝑖𝑛,𝑓𝑜𝑟𝐴 

𝐶 = 𝜑𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 − 𝜑𝑖𝑛,𝑏𝑎𝑐𝑘𝐴 
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APPENDIX  B. VERA PROBLEMS 1-3 RESULTS WITH 8 AZI. ANGLES PER OCTANT FOR SHIELDING 

################################################################################################################################# 

  Case ID      State        Exposure        EFPD          dk         dBoron      dP RMS       dP MAX       dT RMS       dT MAX                     

                            (GWD/MT)                     (pcm)        (ppm)        (%)          (%)          (C)          (C)                      

################################################################################################################################# 

1a               1           0.0000          ---        37.74          ---        0.000        0.000         ---          ---  

1a_dep           1           0.0000         0.00        37.74         0.00        0.000        0.000         ---          ---  

                 2           0.3840        10.00        35.98          ---        0.000        0.000         ---          ---  

                 3           0.7680        20.00        35.38          ---        0.000        0.000         ---          ---  

1b               1           0.0000         0.00        41.53         0.00        0.000        0.000         ---          ---  

1c               1           0.0000          ---        43.91          ---        0.000        0.000         ---          ---  

1d               1           0.0000          ---        45.76          ---        0.000        0.000         ---          ---  

1e               1           0.0000         0.00        10.86         0.00        0.000        0.000         ---          ---  

2a               1           0.0000          ---        15.45          ---        0.000        0.000         ---          ---  

2a_dep           1           0.0000         0.00        15.45         0.00        0.000        0.000         ---          ---  

                 2           0.3841        10.00        14.79          ---        0.000        0.000         ---          ---  

                 3           0.7681        20.00        14.52          ---        0.000        0.010         ---          ---  

                 4           1.5362        40.00        14.06          ---        0.000        0.010         ---          ---  

                 5           2.3044        60.00        13.65          ---        0.010        0.020         ---          ---  

2b               1           0.0000          ---        19.70          ---        0.000        0.000         ---          ---  

2c               1           0.0000          ---        20.74          ---        0.000        0.000         ---          ---  

2d               1           0.0000          ---        21.57          ---        0.000        0.000         ---          ---  

2e               1           0.0000          ---        14.72          ---        0.000        0.000         ---          ---  

2f               1           0.0000          ---        13.95          ---        0.000        0.000         ---          ---  

2g               1           0.0000          ---        10.59          ---        0.000        0.010         ---          ---  

2h               1           0.0000          ---        10.28          ---        0.000        0.000         ---          ---  

2i               1           0.0000          ---        15.57          ---        0.000        0.000         ---          ---  

2j               1           0.0000          ---        13.96          ---        0.000        0.000         ---          ---  

2k               1           0.0000          ---        14.28          ---        0.000        0.000         ---          ---  

2l               1           0.0000         0.00        12.77         0.00        0.000        0.010         ---          ---  

2m               1           0.0000         0.00        11.33         0.00        0.000        0.010         ---          ---  

2n               1           0.0000         0.00        11.61         0.00        0.000        0.000         ---          ---  

2o               1           0.0000          ---        13.67          ---        0.000        0.000         ---          ---  

2p               1           0.0000          ---        11.87          ---        0.000        0.000         ---          ---  

2q               1           0.0000         0.00        20.14         0.00        0.000        0.000         ---          ---  

3a               1           0.0000         0.00        16.17         0.00        0.000        0.010         ---          ---  

3b               1           0.0000         0.00        14.75         0.00        0.000        0.010         ---          ---  

p6               1           0.0000         0.00        18.92         0.00        0.050        0.070        0.190        0.30 


