
ORNL/TM-2016/391

Effective Vectorization with OpenMP 4.5

Joseph Huber
Oscar Hernandez
Graham Lopez

March 2017
Approved for public release.

Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any in-
formation, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of au-
thors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

Study was performed as a part of the SULI program sponsored by the Department
of Energy at Oak Ridge National Laboratory, managed by UT-Battelle for DOE. This
research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2016/391

Comuter Science and Mathematics Devision

Effective Vectorization with OpenMP 4.5
Usage of OpenMP 4.5 SIMD Directives

Joseph Huber
Oscar Hernandez
Graham Lopez

March 2017

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

TABLE OF CONTENTS . iv
LIST OF FIGURES . v
LIST OF TABLES . vi
ACKNOWLEDGEMENTS . vii
ABSTRACT . 1
1. Introduction . 1
2. Vectorization . 2

2.1 SIMD Instructions . 5
2.1.1 Data Movement . 6
2.1.2 Vector Conditional Masking . 8
2.1.3 Vector Constants . 9

2.2 Memory Alignment . 10
2.3 AVX512 Additions . 11

2.3.1 Mask Registers . 12
2.3.2 Embedded Broadcasting . 13
2.3.3 Compress and Expand . 13
2.3.4 Conflict Detection . 13
2.3.5 Reciprocals and Exponentials . 14

2.4 x86 Vector Instructions . 14
2.4.1 SAXPY . 14
2.4.2 Gather . 15
2.4.3 Reduction . 16
2.4.4 Linear . 17
2.4.5 Conditional Statement . 18

3. OpenMP SIMD . 19
3.1 SIMD loop directives . 19

3.1.1 SIMD aligned . 19
3.1.2 SIMD reduction . 20
3.1.3 SIMD safelen . 20
3.1.4 SIMD collapse . 20
3.1.5 SIMD linear . 21
3.1.6 SIMD private / lastprivate . 21

3.2 SIMD declare directives . 21
3.2.1 SIMD declare aligned . 22
3.2.2 SIMD declare simdlen . 22
3.2.3 SIMD declare uniform . 22
3.2.4 SIMD declare linear . 22
3.2.5 SIMD declare inbranch / notinbranch . 23

3.3 SIMD Block-Level directives . 23
3.3.1 ordered SIMD . 23

3.4 Vendor Specific OpenMP SIMD directives . 23
3.4.1 SIMD declare processor . 23

3.5 SAXPY example . 24
4. OpenMP SIMD Programming Guidelines . 27

iii

4.1 Ensure SIMD execution legality . 27
4.2 Vector Length and Alignment . 28
4.3 OpenMP SIMD Functions . 28
4.4 Memory Access Collapsing . 31
4.5 Scalar Execution Inside SIMD Regions . 32

5. General SIMD Programming Guidelines . 33
5.1 Data Size and Conversion . 33
5.2 Memory Access . 34
5.3 Integer Multiplication and Division by Constants . 36
5.4 Conditional Statements . 36

6. HACCmk . 37
7. Conclusion . 38

iv

LIST OF FIGURES

1 Layout of x86 vector registers . 2
2 Vertical SIMD addition between four packed elements . 5
3 Moving a single value into a vector register . 6
4 Shuffle operation on four packed elements . 7
5 Blend operation on four packed elements . 7
6 Unpacking the low elements on four packed elements . 7
7 Movement from the low elements to the high elements . 8
8 A conditional statement that returns X if true and 0 if false 9
9 Aligning a memory location by 16 . 11
10 Masked vector addition . 12

v

LIST OF TABLES

1 Available x86 vector instruction sets . 3
2 Vector lengths for different vector registers and data types 3
3 memory alignment for each data type . 10
4 Available AVX512 vector instruction sets . 12
5 Supported target architectures for the processor clause . 24

vi

ACKNOWLEDGEMENTS

• Special thanks to Michael Klemm and Xinmin Tian from Intel for reviewing and providing us
valuable feedback on the report. Their comments and corrections helped us understand the rationale
and possible implementations of several of the SIMD directives and clauses.

• HACCmk Compiler benchmark https://asc.llnl.gov/CORAL-benchmarks/#haccmk

vii

ABSTRACT

This paper describes how the Single Instruction Multiple Data (SIMD) model and its extensions in
OpenMP work, and how these are implemented in different compilers. Modern processors are highly
parallel computational machines which often include multiple processors capable of executing several
instructions in parallel. Understanding SIMD and executing instructions in parallel allows the processor to
achieve higher performance without increasing the power required to run it. SIMD instructions can
significantly reduce the runtime of code by executing a single operation on large groups of data. The SIMD
model is so integral to the processor’s potential performance that, if SIMD is not utilized, less than half of
the processor is ever actually used. Unfortunately, using SIMD instructions is a challenge in higher level
languages because most programming languages do not have a way to describe them. Most compilers are
capable of vectorizing code by using the SIMD instructions, but there are many code features important for
SIMD vectorization that the compiler cannot determine at compile time. OpenMP attempts to solve this by
extending the C++/C and Fortran programming languages with compiler directives that express SIMD
parallelism. OpenMP is used to pass hints to the compiler about the code to be executed in SIMD. This is a
key resource for making optimized code, but it does not change whether or not the code can use SIMD
operations. However, in many cases critical functions are limited by a poor understanding of how SIMD
instructions are actually implemented, as SIMD can be implemented through vector instructions or
simultaneous multi-threading (SMT).∗ We have found that it is often the case that code cannot be
vectorized, or is vectorized poorly, because the programmer does not have sufficient knowledge of how
SIMD instructions work.

1. Introduction

SIMD hardware units in the processor provides the functionality to process multiple data elements
simultaneously. The SIMD model [13, 12, 6] is becoming much more essential to unleash the power of
modern processors and achieve higher performance. When a section of code makes efficient use of SIMD
instructions, it is said to be vectorized. The amount of data that a processor needs to handle is continuously
increasing from a wide range of applications, and in some cases that data can be processed simultaneously
through the SIMD execution units.

Using SIMD instructions is challenging in higher level languages [5], and many languages do not have
built-in mechanisms to allow the programmer to explicitly specify which sections of code should make use
of SIMD instructions. The only alternatives are to either write assembly-level code, use compiler-specific
low-level SIMD intrinsics, or rely on the compiler to vectorize the code automatically.

Auto-vectorization [1, 4, 7] can make use of the SIMD instructions if the compiler can detect loops or
blocks of codes that can be vectorized. However, auto-vectorization is only consistently successful for
limited usage on simple cases. The main challenge is that compiler’s auto-vectorization relies on static
analysis (e.g. with limited inter-procedural analysis, no dynamic information, etc.) to generate efficient
code with no runtime information. This causes problems for the performance consistency of automatic
vectorization across compilers and platforms, since the quality of static analysis on different compilers
varies and additionally when targeting multiple platforms.

∗In this TR we will not cover how OpenMP SIMD is implemented using SMT on GPUs. Implementations using this approach
are a work in progress

1

In order to fully exploit the potential of SIMD hardware units, the OpenMP standard [8] and compiler
vendors provide high-level SIMD programming extensions [10, 11, 3] to help users better utilize hardware
vector units. OpenMP tries to solve these problems by providing a standardized way for programmers to
specify information about the code in order to improve the compiler’s analysis. These hints can include
information about vectorization-safe loop structure, as well as user-defined functions that are suitable for
vectorization. To more effectively use these directives, it is important to understand how the SIMD model
works and what extensions [9] are needed for future OpenMP specifications.

2. Vectorization

The term “vectorization” refers to when multiple pieces of data are packed into a single, larger data type.
This can be thought of as a one-dimensional array of fixed size. The boundaries of the array are determined
by the data type packed in the array. SIMD instructions work on this array of packed data by modifying the
entire array with a single processor instruction.

This can be illustrated with a simple example. Consider the set of eight integer numbers
{34, 19, 23, 8, 43, 23, 4, 30}. If we want the sum of these numbers, it would require seven additions, namely
34 + 19 + 23 + 8 + 43 + 23 + 4 + 30 = 184. Alternatively, consider the case where these numbers are
grouped together to form two vectors: {34, 19, 23, 8} and {43, 23, 4, 30}. Each element is then vertically
added to form a new vector, {77, 42, 27, 38}. Then this vector is reduced by horizontally adding its first two
and last two elements, {77 + 42} and {27 + 38} resulting in the vector {119, 65}. We then horizontally add
the two vector components 119 + 65 to come up with the final sum of 184. If each of these vector
operations are supported by a vector instructions set, this method will only require four SIMD instructions
as opposed to seven individual additions. This example highlights the potential savings in terms of number
of instructions when an operation can be aggregated using vectorization.

In hardware, SIMD instructions use a large register in the processor called a vector register. A register is
simply a small on-chip storage location used by the computer processor to do calculations. There are
currently four sizes of vector registers available on modern x86 processors: the ZMM, YMM, XMM, and
MM registers.∗ Other computer architectures that support SIMD instructions such as PowerPC or ARM
have their own set of vector registers. The vector instruction set supported by the processor determines
which of these registers can be used. Table 1† lists the available x86 vector instruction sets along with their
main functionality. The operating system must also have explicit support for the vector registers, otherwise
their contents could be changed during context switches. On machines that support multiple vector
registers, the smaller vector registers are the lower-order bits of the larger registers, shown in Figure 1.‡

ZMM Y MM XMM

512 256 128

Figure 1. Layout of x86 vector registers

∗The MM registers use the same register space as the x87 floating point unit
†AMD’s 3DNow! instruction set is obsolete and unsupported on modern processors
‡On x86 architectures, These flags can be checked using the cpuid instruction or reading /proc/cpuid on Linux machines

2

Instruction Set Name Functionality Year
MMX Multimedia Extensions 64 bit MMX for packed integers 1997
SSE Streaming SIMD Extensions 128 bit XMM for floating point. 1999
SSE2 Steaming SIMD Extensions 2 XMM supports doubles and integers 2001
SSE3 Streaming SIMD Extensions 3 Horizontal operations added 2004
SSSE3 Supplemental SSE3 Horizontal and data movement 2006
SSE4.1 Streaming SIMD Extensions 4.1 Extra functionality 2007
SSE4.2 Streaming SIMD Extensions 4.2 Vector string instructions 2008
AVX Advanced Vector Extensions 256 bit YMM for floating point. 2011
FMA Fused Multiply Add Fused multiply add instructions 2011
AVX2 Advanced Vector Extensions 2 YMM supports packed integers 2013
AVX512 Advanced Vector Extensions 512 512 bit ZMM registers 2016

Table 1. Available x86 vector instruction sets

The amount of data that can be operated on simultaneously depends on the size of the data as well as the
size of the vector register holding it. The number of elements that can fit into a vector register is called the
vector length, these values are given in Table 2 in terms of C data types. The processor has a different set of
instructions for working with each packed data type. This means the type of data that can be vectorized
depends on the instructions the processor supports. For example, the SSE2 and AVX2 instruction sets
allow the XMM and YMM registers to work on integers respectively. The MM registers cannot perform
floating point instructions. Additionally, long doubles currently cannot be used with any vector register.§

Register long double double float long int short char
64 bit MM − − − 1 2 4 8
128 bit XMM − 2 4 2 4 8 16
256 bit YMM − 4 8 4 8 16 32
512 bit ZMM − 8 16 8 16 32 64

Table 2. Vector lengths for different vector registers and data types

SIMD instructions allow the same operation to be performed simultaneously on multiple pieces of data.
This allows a large set of independent operations to be broken down into a smaller set of packed data that
can be handled in parallel. This parallelism allows large loops to execute in a fraction of the time. The
effect vectorization has on a loop is similar to unrolling the loop by a certain factor. Consider a loop where
each element of two arrays, A and B, are added to each other.

f l o a t A[SIZE] , B[SIZE] ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

A[i] += B[i] ;
}

Each iteration of this loop performs the same independent addition operation between multiple pieces of
data. These qualities allow this loop to be easily vectorized. The benefits of vectorization can be seen if the
loop is unrolled by a certain factor. If the processor’s architecture supports the SSE instruction set, the
processor can make use of 128-bit XMM vector registers. Referring to Table 2, an XMM register is able to
operate on four floats simultaneously. So, the loop can be unrolled by a factor of four. A remainder loop is

§Some compilers alias long doubles as standard doubles

3

required to calculate the final iterations of the loop if the number of iterations is not divisible by the
unrolling factor.

f l o a t A[SIZE] , B[SIZE] ;
i n t i ;
f o r (i = 0 ; i < SIZE − 4 ; i += 4)

A[i] += B[i] ;
A[i +1] += B[i +1] ;
A[i +2] += B[i +2] ;
A[i +3] += B[i +3] ;

}
f o r (i = i ; i < SIZE ; i ++){

A[i] += B[i]
}

By unrolling the loop by a factor of four, the number of iterations of the loop has been cut by one fourth.
However, the number of instructions has not really changed. The loop can be vectorized by packing the set
of values {A[i], A[i + 1], A[i + 2], A[i + 3]} and {B[i], B[i + 1], B[i + 2], B[i + 3]} each into a XMM vector
register. A vertical floating point addition can then be performed between the two XMM vector registers
and stored in another vector register. The destination vector register now contains the values
{A[i] + B[i], A[i + 1] + B[i + 1], A[i + 2] + B[i + 2], A[i + 3] + B[i + 3]}. The entire vector register is then
written back to memory with a single instruction.

f l o a t A[SIZE] , B[SIZE] ;
i n t i ;
f o r (i = 0 ; i < SIZE − 4 ; i += 4){

s imd_add_ps (&A[i] , &B[i]) ;
}
f o r (i = i ; i < SIZE ; i ++){

A[i] += B[i] ;
}

Now, only a single instruction is in each iteration of the unrolled loop. This effectively cut the number of
instruction the original loop executed by one fourth. The vectorized version of this loop will now execute
approximated four times faster than the scalar (non-vector) loop. Unfortunately, many high level languages
do not have built-in support for SIMD instructions. To use these instructions, the programmer must use
intrinsic functions, like the one used in this example, to execute assembly code. Because of this, many
programmers rely on the compiler’s auto-vectorization optimization pass. The goal of the compiler’s
auto-vectorization pass is to transform the original loop into the vectorized loop automatically.

Vectorization is essential to high-performance applications. The speedup achieved in the previous example
can easily be increased by using wider vector registers. If YMM vector registers are used the vectorized
loop would execute eight times faster than the scalar loop. Furthermore, if ZMM vector registers are used,
the vectorized loop would then be sixteen times faster than the scalar loop. This effect is increased further
when multi-threading is considered. If the example loop was executed using sixteen threads, the loop
would ideally execute sixteen times faster. If each of these threads uses 512-bit ZMM registers, the
vectorized and multi-threaded loop would then execute 256 times faster than the scalar, single-threaded
loop. This is an impressive speedup. However, a comprehensive understanding of how the SIMD model is

4

implemented is crucial to fully utilize the performance capabilities of SIMD instructions. The following
sections will discuss SIMD instructions on x86 processors in detail. Even though the following sections
focus on the x86 architecture most of the concepts are common between multiple architectures.

2.1 SIMD Instructions

SIMD instructions are hardware instructions that modify the vector registers. Integer SIMD instructions
can work on 8 bits, 16 bits, 32 bits, or 64 bit operands. In the C language, this will correspond to the char,
short, int, and long data types respectively. Most of the basic arithmetic operations can be performed on
packed integer data: addition, subtraction, multiplication, and, or, xor, bit-shifting, and negation, among
others. There is no instruction for packed integer division or modulus. SIMD division or modulus by a
constant can, however, be implemented as a series of multiplications and bit-shifting instructions.
Additionally, packed bytes have no shifting instruction or multiplication instruction. The vector instruction
set supported by the processor determines if these instructions are available. Most integer instructions are
available from the SSE2 instruction set for XMM registers and the AVX2 instruction set for YMM
registers.

Vector registers can be operated on vertically or horizontally. A vertical operation works by performing the
instruction between each of the corresponding elements of the vector register; this can be thought of as
X[i] + Y[i]. These operations are called vertical because if both vector registers are placed above each
other, the two elements operated on are covered by a vertical line. This can be seen in Figure 2.
Conversely, horizontal operations are performed between a vector register and itself; this can instead be
thought of as X[i] + X[i + 1]. Vertical operations are most common in vectorized code because they are
similar to unrolling a loop. Horizontal vector operations are typically used for vector reductions where the
vector register is reduced to a single value.

X0 X1 X2 X3

+ + + +

Y0 Y1 Y2 Y3

↓ ↓ ↓ ↓

X0 + Y0 X1 + Y1 X2 + Y2 X3 + Y3

Figure 2. Vertical SIMD addition between four packed elements

SIMD floating point instructions can work on 32 bit or 64 bit floating point values, corresponding to the
float and double C data types. ¶ Floating point instructions are more complicated than integer instructions.
They can be up to 3–4x slower than their integer equivalents. Functionally, they behave similarly to integer
instructions, operations are performed vertically between each element individually, or horizontally within
the vector register itself. Additionally, there are floating point instructions for square roots and division,
among others. Integer SIMD instructions and floating point SIMD instructions should not be mixed
because integers and floating point numbers use different data formats. Packed floating point values can be
converted to packed integers if needed.

Floating point instructions can also work on floating point data by performing so-called fused multiply add
instructions. These allow the processor to calculate the result of a multiplication and an addition in a single

¶There is a single instruction that converts packed 16 bit floats to 32 bit floats

5

instruction. There are several different versions of these instructions to calculate (X ∗ Y + Z), (X ∗ Y − Z),
(−X ∗ Y + Z), and (−X ∗ Y − Z). Additionally, there are other instructions for alternating additions or
subtractions. These instructions are available with the FMA instruction set. Some future instruction sets
may extend this instruction so it may be used on integers as well.

The floating point instructions also support scalar instructions that only modify the first 32 or 64 bits of the
vector register. This is a common way for floating point instructions to be done on x86 machines, and it is
now handled in a much more straightforward way than previously with the old x87 floating point stack.
This way of handling floating point instructions is more similar to other computer architectures like
PowerPC or ARM where floating point values are stored in separate registers but treated like integer
registers. The x87 stack is now only used for handling long doubles. Although these instructions are not
SIMD instructions, they modify only the least significant bits of the vector register and leave the rest
unchanged. Therefore, these instructions can sometimes be used within vectorized code.

2.1.1 Data Movement

The amount of time spent moving data between vector registers is often what determines if using SIMD
instructions results in a performance increase or not; if more time is spent moving data between the vector
registers than spent on calculations, scalar code will usually out-perform vectorized code. Data can be
moved into a vector register from memory, a general purpose register, or another vector register. When
loading from a general purpose register, only the low 32 or 64 bits are used, whereas loads from memory
can load the entire vector, the low 32 bits, or the low 64 bits of the vector. For example, if a packed load
from memory was performed on an array of 32 bit integers into a 128 bit register starting at A[j], the vector
register would contain [A[j], A[j + 1], A[j + 2], A[j + 3]]. Loading a vector register with a single 32 bit
value can be seen in Figure 3.

X − − −

Move Move Move Move
Y0 Y1 Y2 Y3

↓ ↓ ↓ ↓

X Y1 Y2 Y3

Figure 3. Moving a single value into a vector register

Movements between other vector registers or memory can commonly be shuffled, blended, or unpacked
among others. A shuffle instruction uses the source vector, rearranges it, and stores it back. This is
controlled by an immediate operand that selects which element of the source vector register is placed into
which element of the destination vector register. For a 32 bit shuffle on a 128 bit register, this is done with
an 8 bit immediate value. A set of two bits ranging from zero to three chooses which element in the source
vector register to place in the destination vector register. A shuffle with imm = 0 copies the first element in
the source to every location in the destination. This is called broadcasting and is commonly used for
storing constants in vector registers. The AVX instruction set introduced an explicit broadcasting
instruction that behaves identically. A shuffling instruction between four packed elements requires an 8 bit
immediate value to choose between them. This can be seen in Figure 4. The AVX instruction set
introduced a permute instruction that is effectively a shuffling instruction controlled by a vector mask rather
than an immediate value. An issue with data movement instructions is that often when the size of the vector

6

register is increased, the immediate value becomes insufficient to describe each element. The result is
several instructions that do essentially the same operation with slightly different operands.

X0 X1 X2 X3

S hu f f le S hu f f le S hu f f le S hu f f le
imm8(0 : 1) imm8(2 : 3) imm8(4 : 5) imm8(6 : 7)

↓ ↓ ↓ ↓

Ximm8(0:1) Ximm8(2:3) Ximm8(4:5) Ximm8(6:7)

Figure 4. Shuffle operation on four packed elements

Blending instructions are used to choose between the values contained in two different vector registers.
This can either be done with an immediate value or a bit-mask contained in a separate vector register. For a
32 bit blend with a 128 bit vector register, the first four bits of the immediate value determine which values
are changed. An example blending operation can be seen in Figure 5

X0 X1 X2 X3

Blend Blend Blend Blend
Y0 Y1 Y2 Y3

I f (imm8[0]) I f (imm8[1]) I f (imm8[2]) I f (imm8[3])
↓ ↓ ↓ ↓

X0 X1 X2 X3

Else Else Else Else
↓ ↓ ↓ ↓

Y0 Y1 Y2 Y3

Figure 5. Blend operation on four packed elements

Unpacking instructions work by taking the lower or upper halves of a vector register and interleaving them.
This operation does not require an immediate value. Unpacking instructions are typically used to combine
the low bits of two vector registers into a single vector register. This allows data from multiple locations to
be collected into a single vector register. This operation is shown in Figure 6.

X0 X1 X2 X3

Unpacklow Unpacklow Unpacklow Unpacklow
Y0 Y1 Y2 Y3

↓ ↓ ↓ ↓

X0 Y0 X1 Y1

Figure 6. Unpacking the low elements on four packed elements

Data can be moved from the high half of the vector register to the low half or vice-versa. This operation
only applies to floating point values. Because this operation is limited to floating point values it is less
common than the other data movement instructions. However, since it is simply moving data it can
theoretically be used on packed 32 bit or 64 bit integers. An example of this operation is shown in Figure 7.
There is another set of instructions that behaves similarly to this instruction that is mostly used for
exchanging data between the high 128 bits and low 128 bits of a YMM register.

7

Finally, there is some support for an insertion instruction. The insertion instruction places a value or vector
register into an element of another vector register. This is controlled by an immediate operand that
indicated which element of the destination vector register will be replaced. This instruction is commonly
used to insert smaller vector registers into larger vector registers.

X0 X1 X2 X3

MoveLowHigh MoveLowHigh MoveLowHigh MoveLowHigh
Y0 Y1 Y2 Y3

↓ ↓ ↓ ↓

Y0 Y1 X1 X2

Figure 7. Movement from the low elements to the high elements

The performance of SIMD instructions depends on how quickly data can be moved into the vector registers
and stored back to memory. Situations where all of the data is stored in a completely continuous
one-dimensional array are ideal for SIMD instructions, but this is not always feasible in real-world
applications. Data can be loaded or stored with a given stride in memory or completely irregularly. When
data is loaded from disjoint memory locations and collected into continuous memory, it is called gathering.
Likewise, when data is stored into disjoint memory locations from continuous memory it is called
scattering.

These instructions are essential to vectorization because vector registers can be seen as a continuous array
of fixed size. If data is stored in disjoint memory, it must be gathered into a vector register and then
scattered back to memory. The AVX2 instruction set introduced a gathering instruction capable of loading
a vector register with a set of memory locations stored in a vector register.

/ / G a t h e r i n g
f o r i from 0 t o 3

xmm[i] = X[i n d e x [i]] ;
/ / S c a t t e r i n g
f o r i from 0 t o 3

X[i n d e x [i]] = xmm[i] ;

Gathering and scattering is an important part of vectorized code because not all applications access
memory in a linear fashion. However, there is no way to explicitly express these instructions when relying
on the compiler’s auto-vectorization. The compiler will attempt to gather and scatter the memory, but it can
be inefficient in cases where the memory can be reused. The only way around this issue would be to use
vector intrinsics, template classes, or assembly language. Intrinsics are essentially functions that call inline
assembly code. Template classes work in a similar fashion but attempt to make programming simpler by
making a vector object and overloading operators between them to call assembly code.

2.1.2 Vector Conditional Masking

Conditional operations are very common in code. This is an issue for vectorized loops. Scalar code
performs conditional statements by performing a comparison and conditionally jumping to another section
of code depending on the result of the comparison. Vectorized loops execute multiple iterations of the loop

8

simultaneously. In this case, one iteration of the loop may require a conditional jump while another
iteration of the loop will not require a jump. Because both of these iterations are happening at the same
time the processor is unable to execute two different sections of code simultaneously. This problem is
solved by instead unconditionally executing the entire loop using SIMD comparison instructions.

SIMD comparisons instructions create a bit-mask in the vector register. A vector comparison will vertically
compare each element in the vector register. If the result evaluates to true, then all the bits for that element
in the vector register are set; otherwise, all the bits are cleared. This mask is then used to unconditionally
calculate the result of the conditional statement for each iteration of the loop. To illustrate this, consider a
loop with a simple if, else statement.

f l o a t X[SIZE] , Y[SIZE] , Z [SIZE] ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

i f (X[i] > Y[i]) {
Z [i] = X[i] ;

}
e l s e {

Z [i] = 0 . 0 f ;
}

}

The scalar version of this loop would perform a comparison on the values stored in X[i] and Y[i]. This
comparison would set the flags to the result of the comparison. The processor would then check these flags
and jump to one of the conditional sections of code. To vectorize this loop, the result of the conditional
statement will need to be calculated without the use of conditional jumps. This can be done by generating a
bit-mask from a SIMD comparison instruction. The bit-mask is then used to move the data into the vector
register. This is done with a logical AND instruction because of the identity X&1 = X and X&0 = 0. An
example of operation can be seen in Figure 8.

X0 X1 X2 X3

< < < <

Y0 Y1 Y2 Y3

↓ ↓ ↓ ↓

111 . . . 111 000 . . . 000 111 . . . 111 000 . . . 000
AND AND AND AND

X0 X1 X2 X3

↓ ↓ ↓ ↓

X0 0 X2 0

Figure 8. A conditional statement that returns X if true and 0 if false

2.1.3 Vector Constants

Vector registers cannot load constant values like general purpose registers can. Vector registers can only be
loaded with values from a general purpose register or a memory location. If a constant is known at
compile-time it will be placed in static memory and loaded into the vector register from that memory

9

Data Type Alignment
char 1
short 2
int 4
long 8
float 4
double 8
long double 16
XMM register 16
YMM register 32
ZMM register 64

Table 3. memory alignment for each data type

address. However, if a constant is only known at runtime, it will need to be broadcasted into the vector
register. This is done by loading the low bits of the vector register from a general purpose register and then
performing a shuffle operation with the immediate set to 0 or with a broadcast instruction (cf. Sec. 2.1.1).
This causes every location in the destination register to contain the element loaded from the general
purpose register.

Some SIMD instructions can be used to create constants without using memory and wasting cache space.
Performing a logical XOR between a vector register and itself will cause the entire vector register to be set
to zero. A vector comparison for equality performed between a vector register and itself will produce a
vector register with all bits set. This value can then be shifted to create other constants.

2.2 Memory Alignment

Memory alignment is an important consideration for writing high performance code. Memory alignment
refers to the divisibility of the memory location of a value stored in memory. If a variable’s memory
address is divisible by n, it is said to be aligned by n or on a n byte boundary. So, for example, if a variable
x was stored at the memory address 0x37FD10, it would be aligned on a 1, 2, 4, 8, and 16 byte boundary.
Each data type should ideally be stored at a memory location aligned by the smallest power of two that can
contain the size of the data type. These values are given in Table 3. Reading or writing from unaligned
memory is slower than aligned memory and on many computer architectures will result in a segmentation
fault, so memory should always be aligned, if possible.

Accessing unaligned memory is slower because of how memory is read from the cache. A cache is
organized as a set of cache lines that store a set of continuous memory. The x86 processor can read or write
to unaligned memory addresses without any penalty if it is within the same cache line. However, if the
memory access crosses this cache line boundary, the processor is actually accessing the memory from two
cache lines along with a shifting operation to combine the two accesses. When a cache line is split by a
memory access it is usually about three times slower than a standard memory access. Memory is aligned by
a power of two so it evenly divides a cache line. Additionally, if the memory address is aligned, some
processors are capable forwarding memory writes directly to a subsequent read without using the cache.

Memory alignment is especially important when accessing memory with SIMD instructions. SIMD

10

instructions can read or write a large amount of data in a single instruction. If the base memory address is
unaligned, then a greater number of memory accesses will split a cache line. When the vector register
becomes larger, the ratio of standard reads to cache line splits decreases and the penalty becomes more
severe. For example, if data was read sequentially from a misaligned memory address with a 64 byte cache
line size, there would be a cache line split every four reads for a XMM register, every other read for a
YMM register, and every read for a ZMM register. If a cache line split is three times slower than an access
contained in the cache line, the average speed penalty will be 50% for a XMM register, 100% for a YMM
register, and 200% for a ZMM register.

Memory alignment is also a requirement for several SIMD instructions. Prior to the AVX instruction set,
almost every SIMD instruction that used a memory location required memory alignment. If the memory
location was not aligned it would cause a segmentation fault. If the data is guaranteed to be aligned, these
instructions can be safely used. The AVX instruction set relaxed this requirement for several instructions
but others still require the address to be aligned. However, this does not change the fact that unaligned
memory accesses are slow.

The compiler will automatically align most data known at compile time on a 32 or 16 byte boundary.
Dynamically allocated memory is not guaranteed to return aligned addresses so they should be aligned by
the memory allocator or the programmer. Some compilers offer the ability to specify memory alignment as
well as dynamic memory allocation that returns aligned pointers. Aligning memory to a power of two can
be done by setting the least significant bits to zero. This can be accomplished with a logical AND
instruction with a constant where every bit is set except the last n bytes to align it to 2n. This constant is
most easily generated with a negative number. To ensure that there is enough memory after the alignment,
the programmer should allocate n − 1 extra bytes when aligning by n. An example of aligning a memory
location by 16 bytes is given in Figure 9. A simple function can be made to align dynamically allocated
memory. If this function is used, a copy of the original pointer should be saved so the memory can be
deallocated.

Binary Hexadecimal
10111110011101010010001010011102 5F3A914E16

AND
11111111111111111111111111100002 −1016

↓

10111110011101010010001010000002 5F3A914016

Figure 9. Aligning a memory location by 16

2.3 AVX512 Additions

The AVX512 instruction set is the newest vector instruction set for the x86 architecture. The AVX512
instruction set extends the 256 bit YMM registers into 512 bit ZMM registers, allowing twice as much data
to be handled in parallel when compared with YMM registers and four times as much when compared with
XMM registers. Additionally, much of the functionality of the previous vector instruction sets has been
changed. These changes will further extend the potential performance of vectorized code. The AVX512
instruction set consists of several smaller instruction sets, shown in Table 4. Currently, only the Intel
Knights Landing (KNL) supports any of the AVX512 instruction sets. The Knights Corner uses a different

11

Instruction Set Name Functionality
AVX512F Foundation Fundamental additions with AVX512
AVX512CD Conflict Detection Conflict detection for vector stores
AVX512ER Exponential and Reciprocal Fast reciprocal approximations
AVX512PF Prefetch Instructions Prefetching for gather and scatter
AVX512BW Byte and Word Instructions for packed 8 bit and 16 bit
AVX512DQ Doubleword and Quadword Additional instructions
AVX512VL Vector Length Support for smaller AVX512 instructions
AVX512IFMA Integer Fused Multiply Add Integer FMA instructions
AVX512VBMI Vector Bit Manipulation Additional bitwise instructions

Table 4. Available AVX512 vector instruction sets

instruction set that also uses 512 bit vector registers, but this instruction set is likely going to be replaced by
the AVX512 instruction set.

2.3.1 Mask Registers

Previously, vector instructions were masked by performing bitwise operations between vector registers that
have been loaded with bit-masks (cf. Sec. 2.1.2). The AVX512F instruction set adds a new set of separate
mask registers that now perform this operation. Additionally, these mask registers can be used in many
more ways than a traditional bit-mask. Mask registers allow the result of the SIMD operation to be
controlled on an element by element basis. Mask registers are loaded with a set of bits that correspond to
each element of a vector register. For example, the first bit of the mask will correspond to the first element
of the vector register, and so forth. This mask register can then be applied to most SIMD operations. When
a mask register is applied to a destination register, it determines whether or an element will be updated.
This is shown in Figure 10.

X0 X1 X2 X3 X4 X5 X6 X7

+ + + + + + + +

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1 1 0 0 0 0 1 1
X0 + Y0 X1 + Y1 X2 X3 X4 X5 X6 + Y6 X7 + Y7

Figure 10. Masked vector addition

The use of mask registers allows for several performance improvements in vectorized code. Mask registers
completely block the corresponding element of the vector register from being used. This saves power and
prevents exceptions from being thrown, such as segmentation faults or division by zero. Mask registers
also allow remainder loops to be removed. The remaining number of iterations can now be executed
simultaneously using a mask register. Additionally, the use of mask registers allows more registers to be
used for calculations rather than holding bit-masks.

12

2.3.2 Embedded Broadcasting

Broadcasting instructions are important for vectorized code. Often a constant value must be placed into
each element of a vector register. This is traditionally done with a shuffling instruction or a broadcasting
instruction. The AVX512 instruction set allows broadcasting instructions to be encoded in the instruction
itself. 32 bit, 64 bit, or 128 bit values can be broadcasted from a general purpose register or memory.
Embedded broadcasting removes the need for the additional broadcasting instruction as well as the need for
additional vector registers to hold the broadcasted value.

2.3.3 Compress and Expand

Compression and expansion is important for reducing the memory requirements for a given program.
Compression allows the programmer to select disjoint elements in an array and store them in continuous
memory. Expansion has the opposite effect, a continuous set of memory can be stored in disjoint elements
of another array. Previously, both compression and expansion have been difficult to implement with SIMD
instructions because it requires conditionally gathering or scattering data. The AVX512 instruction set
introduced two instructions for compression and expansion. These instructions use the mask registers to
select the disjoint elements that the data will be placed into or taken from. This allows for compression and
expansion to be easily performed with a few instructions using the AVX512 instruction set

i n t j = 0 ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

i f (A[i] > 0){
B[j] = A[i] ;
j ++;

}
}

2.3.4 Conflict Detection

The AVX512 instruction set includes a conflict detection instruction. This instruction returns a bit-mask
indicating if there are any duplicate elements inside the vector register. The returned bit-mask can then be
used to handle the conflict. Conflict detection is used to check if a scattering instruction is going to perform
a write to a memory location more than once. If a write is performed to the same memory location the
result could be incorrect. Consider a simple histogram that counts the number of times the values stored in
an array A occurs

f o r (i n t i = 0 ; i < SIZE ; i ++)
h i s t [A[i]]++ ;

If this loop was vectorized it would require the values in A to be gathered, incremented, and scattered back
to memory. However, if there are any duplicate values within the vector register the histogram will only be
incremented a single time. Conflict detection allows many previously problematic loops to be efficiently
vectorized.

13

2.3.5 Reciprocals and Exponentials

Some reciprocal calculations can be done faster than other calculations. Previously there were only a few
instructions that used this approximation that only applied to floats. The AVX512 instruction set introduces
several new approximated reciprocal instructions that can be used on both floats and doubles. Additionally,
the level of approximation can be chosen. These instructions allow more instructions to use fast
approximations to complex mathematical operations, increasing overall performance at the cost of
precision.

2.4 x86 Vector Instructions

Vectorization is accomplished by using a set of SIMD processor instructions with vector registers. Source
code can be vectorized, if and only if, the compiler can manage to use these instructions and registers.
Because of this restriction, SIMD parallelism is often more difficult to achieve than other forms of
parallelism. These restrictions must be kept in mind when relying on the compiler’s auto-vectorization.
The compiler is only able to efficiently vectorize code if it is already written with vectorization in mind.
This will require some knowledge of assembly language. This section will describe how some loops to be
vectorized in a high level languages can be vectorized by the compiler in assembly language.

These examples will be given using Intel’s x86 assembly syntax.‖ The instructions are given in the form
opcode dest, src or opcode dest, src1, src2 and memory accesses are enclosed in brackets, similar to using
the ’*’ operator in C. All memory accesses are byte-addressed. The registers used with the name XMM,
YMM, or ZMM are vector registers and registers with the name k0-k7 are mask registers used in AVX512.
The other registers such as ax, bx, or cx, are general purpose registers. The prefix determines the size of the
general purpose register, a ’r’ indicates a 64 bit value and an ’e’ indicates a 32 bit value. All sizes given in
these examples will be assumed to be divisible by the vector length and all pointers will be aligned to
simplify the code. Additionally, some variable names or memory locations in the C code will be preserved
in the assembly code.

2.4.1 SAXPY

The first example will be a simple SAXPY loop. The SAXPY loop performs a single precision
multiplication on X and adds it to Y .

f l o a t X[SIZE] , Y[SIZE] , A;
f o r (i n t i = 0 ; i < SIZE ; i ++){

X[i] = A∗X[i] + Y[i] ;
}

This loop can be easily vectorized using a SIMD floating point multiplication and addition. If the SSE
instruction set is supported on the processor, then referring to Table 2, the loop can process four floating
point values simultaneously. To vectorize this loop, the compiler will likely generate assembly code similar
to this example.

‖Compilers on UNIX machines typically use AT&T syntax by default

14

movss xmm0, [A] ; Move s i n g l e f l o a t A i n t o XMM0
s h u f p s xmm0, xmm0, 0 ; B r o a d c a s t A i n t o XMM0
xor rcx , r c x ; i = 0

s a x p y _ l o o p :
movaps xmm1, [X + r c x ∗4] ; XMM1 = X[i] ,X[i +1] ,X[i +2] ,X[i +3]
mulps xmm1, xmm0 ; XMM1 = A∗X[i] ,A∗X[i +1] ,A∗X[i +2] ,A∗X[i +3]
addps xmm1, [Y + r c x ∗4] ; XMM1 = A∗X[i]+Y[i] ,A∗X[i +1]+Y[i + 1] , . . .
movaps [X + r c x ∗4] , xmm1 ; S t o r e XMM1
add rcx , 4 ; i += 4
cmp rcx , SIZE ; Compare i and SIZE
j l s a x p y _ l o o p ; Jump i f i < SIZE

Today, most all Intel processors support the SSE instruction set. However, newer processors can also use
the AVX instruction set. If the AVX instruction set is used then eight floating point values can be calculated
simultaneously. The AVX instruction set also supports an explicit broadcasting instruction, so the load and
shuffle used in the SSE version of the loop can be replaced with a single instruction. Additionally, if the
processor also supports the FMA instructions set the processor can use fused multiply add instructions to
further reduce the instruction count.

v b r o a d c a s t s s ymm0, [A] ; B r o a d c a s t A i n t o YMM0
xor rcx , r c x ; i = 0

s a x p y _ l o o p :
vmovaps ymm1, [X + r c x ∗4] ; Load 8 packed f l o a t s i n t o YMM1
vfmadd213ps ymm1, ymm0, [Y + r c x ∗4] ; FMA by s o u r c e numbers : 2∗1 + 3
vmovaps [X + r c x ∗4] , ymm1 ; S t o r e 8 packed f l o a t s from YMM1
add rcx , 8 ; i += 8
cmp rcx , SIZE ; Compare i and SIZE
j l s a x p y _ l o o p ; Jump i f i < SIZE

2.4.2 Gather

When data is gathered it is taken from disjoint locations in memory and stored in continuous memory. This
operation is common when working with look-up tables or histograms.

i n t A[SIZE] , t a b [TABLE_SIZE] ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

A[i] = t a b [A[i]] ;
}

This operation is troublesome for vectorization because it requires a large amount of data movement. If the
SSE instruction set is used then the data must be loaded individually and then combined into a vector
register. This is almost certainly slower than a scalar implementation of this loop.

xor rcx , r c x ; i = 0
g a t h e r _ l o o p :

movsx rax , [A + r c x ∗4] ; S ign e x t e n d 32 b i t A[i] t o 64 b i t
movsx rbx , [A + r c x ∗4 + 4] ; rbx = A[i + 1]
movsx rdx , [A + r c x ∗4 + 8] ; rdx = A[i + 2]
movsx r s i , [A + r c x ∗4 + 12] ; r s i = A[i + 3]

15

movd xmm0, [t a b + r a x ∗4] ; xmm0 = [1 , 0 , 0 , 0]
movd xmm1, [t a b + rbx ∗4] ; xmm1 = [2 , 0 , 0 , 0]
movd xmm2, [t a b + rdx ∗4] ; xmm2 = [3 , 0 , 0 , 0]
movd xmm3, [t a b + r s i ∗4] ; xmm3 = [4 , 0 , 0 , 0]
punpck ldq xmm0, xmm2 ; xmm0 = [1 , 3 , 0 , 0]
punpck ldq xmm1, xmm3 ; xmm1 = [2 , 4 , 0 , 0]
punpck ldq xmm0, xmm1 ; xmm0 = [1 , 2 , 3 , 4]
movdqa [A + r c x ∗4] , xmm0 ; S t o r e 4 packed i n t s from xmm0
add rcx , 4 ; i += 4
cmp rcx , SIZE ; Compare i and SIZE
j l g a t h e r _ l o o p ; Jump i f i < SIZE

Because this operation is so slow, loops involving took-up tables were typically not vectorized. The AVX2
instruction set introduced a gather instruction to solve this problem. The gather instruction uses a pointer
offset in a general purpose register and a vector register containing packed indices. These memory
locations are then gathered into the destination vector register. Additionally, a mask register is used to
conditionally gather indices, if needed.

xor rcx , r c x ; i = 0
l e a r s i , [Tab] ; r s i = &Tab [0]

g a t h e r _ l o o p :
vmovdqa ymm0, [A + r c x ∗4] ; Get 8 packed i n d i c e s from A
vpcmpeqd ymm1, ymm1, ymm1 ; Get mask of a l l ’ 1 ’
vpxor ymm2, ymm2, ymm2 ; Zero ymm2
v p g a t h e r d d ymm2, [r s i + ymm0∗4] , ymm1 ; Ga th e r from Tab i n t o ymm2
vmodqa [A + r c x ∗4] , ymm0 ; S t o r e 8 i n t s from ymm0
add rcx , 8 ; i += 8
cmp rcx , SIZE ; Compare i and SIZE
j l g a t h e r _ l o o p ; Jump i f i < SIZE

2.4.3 Reduction

A reduction loop is common in many parallel applications. Reduction is performed by collecting several
values into a single value. This is commonly done with addition or subtraction.

i n t A[SIZE] , sum ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

sum += A[i] ;
}

Vector reduction is performed by using the vector register to perform several partial sums concurrently.
Then after the loop is completed the partial sums are aggregated into a final sum. This is done either using
horizontal additions or shifting and addition.

pxor xmm0, xmm0 ; Zero v e c t o r r e g i s t e r
xor rcx , r c x ; i = 0

r e d u c t i o n _ l o o p :
paddd xmm0, [A + r c x ∗4] ; C o l l e c t p a r t i a l sums
add rcx , 4 ; i += 4
cmp rcx , SIZE ; Compare i and SIZE

16

j l r e d u c t i o n _ l o o p ; Jump i f i < SIZE

phaddd xmm0, xmm0 ; xmm0 = [1+2 ,3+4 ,1+2 ,3+4]
phaddd xmm0, xmm0 ; xmm0 = [1+2+3+4 , . . .]
movd eax , xmm0 ; eax = 1+2+3+4

If the loop is implemented using wider vector registers some additional instructions will be required to
aggregate the larger value. However, this is unsubstantial compared to the benefits of performing more
iterations of the loop in parallel.

vpxor ymm0, ymm0, ymm0 ; Zero v e c t o r r e g i s t e r
xor rcx , r c x ; i = 0

r e d u c t i o n _ l o o p :
vpaddd ymm0, [A + r c x ∗4] ; C o l l e c t p a r t i a l sums
add rcx , 4 ; i += 4
cmp rcx , SIZE ; Compare i and SIZE
j l r e d u c t i o n _ l o o p ; Jump i f i < SIZE

vphaddd ymm0, ymm0, ymm0 ; Reduce 128 b i t v e c t o r s
vphaddd ymm0, ymm0, ymm0 ; [1 + 2 + 3 + 4 , . , . , . , 5 + 6 + 7 + 8 , . , . , .]
vpermi128 ymm1, ymm0, 1 ; Move h igh 128 b i t s t o ymm1
vpaddd ymm0, ymm1 ; (1+2+3+4) + (5+6+7+8)
vmovd eax , ymm0 ; eax = 1+2+3+4+5+6+7+8

2.4.4 Linear

A variable with a linear relation is simply a variable that is increased by a certain value each iteration of the
loop.

i n t A[SIZE] ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

A[i] = i ;
}

This can be vectorized by storing two values in a vector register, the linear step of the variable, and set of
initial values. If this loop was vectorized using the SSE2 instruction set, according to Table 2, four
iterations of the loop can be performed in parallel. In this case, the set of initial values stored in the vector
register will be {0, 1, 2, 3} and the linear step will be {4, 4, 4, 4}. The linear step can either be stored in
memory or broadcasted.

movdqa xmm0, [INITIAL] ; xmm0 = {0 , 1 , 2 , 3}
movdqa xmm1, [STEP] ; xmm1 = {4 , 4 , 4 , 4}
xor rcx , r c x ; i = 0

r e d u c t i o n _ l o o p :
movdqa [A + r c x ∗4] , xmm0 ; S t o r e 4 packed i n t s from xmm0
paddd xmm0, xmm1 ; I n c r e m e n t each v a l u e by t h e s t e p
add rcx , 4 ; i += 4
cmp rcx , SIZE ; Compare i and SIZE
j l r e d u c t i o n _ l o o p ; Jump i f i < SIZE

17

2.4.5 Conditional Statement

Conditional statements are common inside loops and can be difficult to vectorize. This loop will simply
conditionally assign some values.

f l o a t A[SIZE] , B[SIZE] , X[SIZE] , Y[SIZE] , Z [SIZE] ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

i f (A[i] < B[i]) {
Z [i] = X[i] ;

}
e l s e {

Z [i] = Y[i] ;
}

}

This conditional statement can be vectorized with the use of masking operations. A vector comparison will
vertically compare each value and create a bit-mask. This mask will be used to unconditionally calculate
the entire loop. If the comparison is true, then the value will be saved in the vector register, otherwise it is
discarded. The result of both conditional statements are then combined at the end.

xor rcx , r c x ; i = 0
c o n d i t i o n a l _ l o o p :

movaps xmm0, [A + r c x ∗4] ; Move A[i] i n t o xmm0
c m p l t p s xmm0, [B + r c x ∗4] ; g e t mask f o r (A[i] < B[i])
movaps xmm1, [X + r c x ∗4] ; Move X[i] i n t o xmm1
andps xmm1, xmm0 ; X[i] i f t r u e 0 i f f a l s e
andnps xmm0, [Y + r c x ∗4] ; Y[i] i f f a l s e 0 i f t r u e
o r p s xmm1, xmm0 ; Combine bo th r e s u l t s
movaps [Z + r c x ∗4] , xmm1 ; S t o r e 4 f l o a t s from ymm1
add rcx , 4 ; i += 4
cmp rcx , SIZE ; Compare i w i th SIZE
j l c o n d i t i o n a l _ l o o p ; Jump i f i < SIZE

This same conditional statement can be used with the AVX512 instruction set’s masking registers. The
result of the vector comparison will instead be placed inside a mask register. The mask register will then
dictate which elements of the destination register get updated. This method massively simplifies the
process.

xor rcx , r c x
c o n d i t i o n a l _ l o o p :

vmovaps zmm0 , [A + r c x ∗4] ; Move A[i] i n t o zmm0
v c m p l tp s k1 , zmm0 , [B + r c x ∗4] ; Get mask i n t o mask r e g i s t e r
vmovaps zmm0{ k1 } , [X + rdx ∗4] ; Move t r u e v a l u e s i n t o zmm0
kno td k1 ; I n v e r t mask
vmovaps zmm0{ k1 } , [Y + rdx ∗4] ; Move f a l s e v a l u e s i n t o zmm0
vmovaps [Z + r c x ∗4] , zmm0 ; s t o r e 16 f l o a t s from zmm0
add rcx , 16 ; i += 16
cmp rcx , SIZE ; Compare i w i th SIZE
j l c o n d i t i o n a l _ l o o p ; Jump i f i < SIZE

18

3. OpenMP SIMD

Expressing SIMD parallelism is difficult outside of assembly code. Most compilers have auto-vectorization
optimization passes that attempt to make use of the SIMD instructions but will often fail to vectorize code
or cannot safely vectorize the code without additional information from the programmer. OpenMP is a
directive-based programming application programming interface for shared memory and accelerator based
systems. In OpenMP 4.0, SIMD directives were added to help compilers generate efficient vector code.
The SIMD directives explicitly enable vectorization in the compiler and act as hints or instructions sent to
the compiler’s vectorization pass to improve its analysis and the quality of the vector code being generated.
These directives also help to scope which SIMD statements in the code the compiler should attempt to
vectorize. OpenMP’s SIMD directives can be placed before a for loop or a function declaration.

3.1 SIMD loop directives

OpenMP SIMD directives can be placed above for loops with the syntax #pragma omp simd [clause[[,]
clause] ...], which marks the loop as a SIMD enabled loop or SIMD region. The additional clauses then
pass hints to the compiler to improve the quality of the code or otherwise indicate its eligibility to be
vectorized. This allows the programmer to specify certain SIMD instructions and provide information to
the compiler that it cannot determine through static-analysis alone, such as specifying that a loop has no
dependences across iterations or a specific dependence distance. OpenMP loop directives only apply to for
or do loops that are in a canonical form, where the number of iterations is known when entering the loop. If
these conditions are met, then the loop is in a form that can be vectorized. Loops that contain flow control
such as return, break, or continue statements cannot be vectorized. OpenMP SIMD loop directives
guarantee that the loop will execute multiple iterations of the loop using vector registers when possible.
However, this vectorization can be hindered when the loop requires scalar instructions. In this case, the
compiler will perform the scalar instruction multiple times and pack the results into a vector register.

3.1.1 SIMD aligned

#pragma omp simd aligned([ptr] : [alignment], . . .)

Data alignment is important for SIMD instructions. Unaligned memory accesses are always slower than
aligned memory accesses if they cross a cache-line boundary. Additionally, some SIMD instructions can
only be used with aligned memory addresses. However, the compiler often cannot determine the alignment
properties of data that is linked from other files or when they are dynamically allocated. The aligned clause
asserts to the compiler that a variable is aligned. Each pointer in the aligned clause can have a positive
integer alignment applied to it. If no alignment value is given to the compiler, an implementation defined
default value is assumed. Using this clause allows the compiler to safely use SIMD instructions that have
strict alignment requirements. If this clause is used, the programmer is responsible for ensuring that the
data is in fact aligned. Otherwise, the attempted use of aligned memory accesses on unaligned memory
may result in segmentation faults.∗

∗We noticed that GCC implements this clause differently. The pointers are given in a comma separated list and have the
alignment applied to all of them

19

3.1.2 SIMD reduction

#pragma omp simd reduction([operation] : [variable],. . .)

The reduction clause instructs the compiler to perform a vector reduction on a variable. A reduction
operation is performed by computing a partial value inside the parallel region. When the parallel region
ends, the partial values are then aggregated into the final value. The reduction clause does this by creating a
private vector copy of the variable inside the SIMD loop which is used to store the partial values. When the
SIMD region ends, the vector copy of the original variable is horizontally aggregated. The final value is
then moved from the vector copy to the original variable. The reduction clause takes a character
representing the type of reduction performed in the loop and a variable to be reduced inside the loop. The
variable specified in the reduction clause is made private to the loop. Some compilers have difficulties
detecting reductions automatically, so specifying them with the OpenMP reduction clause can give the
compiler the information it needs to vectorize a loop.

3.1.3 SIMD safelen

#pragma omp simd safelen([value])

Loop carried data dependencies hinder parallel programming. If an iteration of the loop requires data that
is only calculated in a previous iteration of the loop, it has a data dependency. Because vectorized loops
perform multiple iterations of the loop concurrently, the value will change if a data dependency is present
in the vectorized loop. The safelen clause guarantees that no iterations of the loop will execute
simultaneously inside the SIMD loop if the distance between the iterations is smaller than the value
specified in the safelen clause. The actual number of loop iterations that will be performed in a single
iteration of the SIMD loop is implementation defined, but it will not exceed the value specified in the
safelen clause. In some cases, this clause is required for correctness. The compiler may sometimes choose
to use a vector length that violates the data dependency. If this value is specified, the compiler may be more
aggressive when unrolling loops because it is guaranteed to not change the result.

3.1.4 SIMD collapse

#pragma omp simd collapse([value])

OpenMP SIMD directives can normally only be applied to the innermost loop in a chain of nested loops.
The collapse clause causes the compiler to attempt to collapse the number of loops specified by the collapse
clause into a single loop with a universal address space. This collapsed loop then has the SIMD directives
applied to it. The compiler will often collapse loops by creating a single loop that iterates over the total
number of iterations of the originally nested loops. If the loop indices were used to address memory, the
indices used in the collapsed loop will need to be transformed using division and remainder operations
which may not be efficient for vectorization because it does not guarantees contiguous data access.
However, compiler optimizations are possible to collapse the iteration space and the data accesses to make
vectorization profitable. In this case, the memory does not need to be scattered or gathered into the vector
registers and the memory can simply be accessed in a single memory access operation (see Section 5.4).

20

3.1.5 SIMD linear

#pragma omp simd linear([variable] : [step], . . .)

When used in a SIMD loop context, the linear clause will perform a linear incrementation on a variable
using SIMD instructions. The linear clause takes an integer variable and adds the linear step to the variable
each iteration of the loop. This is performed by creating two private vectors inside the SIMD loop. The first
vector holds the linear sequence created by adding the step value to the initial value of the variable. The
second vector contains the linear step that increments the previous vector. For example, if the linear clause
has a linear variable N = 1 with a linear step of 2 and a vector width of four is used, then the first private
vector would contain 1, 3, 5, 7. After another iteration in the SIMD loop the vector would then be
9, 11, 13, 15. This is done by adding a vector containing 8, 8, 8, 8 after each SIMD lane.

3.1.6 SIMD private / lastprivate

#pragma omp simd private([variable], . . .)

The private and lastprivate clauses control data privatization and sharing of variables for a SIMD Loop.
The private clause creates an uninitialized vector inside the SIMD loop for the given variables. SIMD
function arguments are private by default because they must correspond to a vector register in the
hardware. The lastprivate clause provides the same semantics but also copies out the values produced from
the last iteration to outside the loop. This clause allows the programmer to guarantee that no iterations of
the SIMD loop overlap by making them private to each SIMD lane.

3.2 SIMD declare directives

SIMD enabled functions can be declared by placing #pragma omp declare simd [clause[[,] clause] ...]
above the function declaration. When a function is declared as a SIMD function, the compiler will generate
multiple versions of the function that can be used depending on the context of the function call. If the
function was called from a scalar loop, it will use a scalar version of that function; likewise, if the function
was called from within an SIMD region it will use a vectorized version of the function. Additionally, there
are versions of the function that will be called if the function call is inside of a conditional statement.
Finally, when the vectorized versions of a function are created, they have their own set of vectorized
arguments. The types are uniform, vector, and linear. These types describe the vector arguments passed to
the function. This distinction is important when calling a SIMD declare function within another SIMD
declare function. If the arguments are incompatible, the function cannot be vectorized.

When a function is called in a SIMD enabled loop, the compiler will unroll the concurrent calls to that
function. The compiler will then check if there are any valid SIMD enabled functions; a SIMD function is
valid if it has a matching number of concurrent arguments and the uniform, vector, and linear argument
types of the function are identical. The function itself is vectorized according to the uniform, linear, and
vector arguments, and the compiler will unroll the SIMD function by the number of concurrent arguments
it is expected to handle. If the argument is uniform or linear it will be able to know these values at compile
time and use them in the function. Functions called within conditional statements will take an additional
argument of the bit-mask generated from the conditional statement.

21

3.2.1 SIMD declare aligned

#pragma omp declare simd aligned([argument] : [alignment],. . .)

When used in a SIMD declare context, the aligned clause instructs the compiler that the pointers passed as
function arguments are always going to aligned by the given alignment value. The compiler will use this
information when it creates the vectorized versions of the function by instead using the aligned versions of
the SIMD instructions. The alignment value is a positive integer. When the aligned clause is absent, the
default alignment is implementation defined. This clause should only be used if the pointers are known to
be aligned, otherwise segmentation faults may occur.

3.2.2 SIMD declare simdlen

#pragma omp declare simd simdlen([value])

The simdlen clause specifies the number of packed arguments the vectorized function will execute
concurrently. If this value is not specified, the compiler will use a default value. The value given to the
simdlen clause should correspond to the vector length of a hardware vector register. For x86 processors,
these values are given in Table 2. If the simdlen is given as a multiple of a hardware vector register size, the
compiler may fuse multiple vector registers into a single logical vector. The importance of the simdlen
clause can be seen in the case where nested function calls return different data sizes. For example, if a
function that returns a double calls a function that returns an integer it cannot be vectorized because the
double function cannot provide enough data to the integer function to satisfy the simdlen requirements.

3.2.3 SIMD declare uniform

#pragma omp declare simd uniform([argument],. . .)

The uniform clause indicates that the given function argument will not change between any of the
concurrent function calls in a SIMD loop. This indicates that the value is shared between the SIMD lanes
of the loop. When a function argument is specified as uniform, the compiler can use this information to
create more efficient code for the vectorized function. If the uniform clause is used for a pointer in
conjunction with the linear clause, the compiler is able to use faster unit-stride memory instructions rather
than gathering or scattering the data. This is because the combination of the linear and uniform clauses
allows the compiler to know how the memory will be accessed when the function is executed concurrently.

3.2.4 SIMD declare linear

#pragma omp declare simd linear([argument] : [linearstep],. . .)

When used in a SIMD declare context, the linear clause indicates what the value of the function argument
will be if the function is called multiple times concurrently. The argument placed in the linear clause will
be increased by the linear step value between each successive function call. If a pointer is declared uniform
and is accessed with a linear function argument, then the compiler can generate efficient vector memory
accesses using the linear stride rather than gathering or scattering the data.

22

3.2.5 SIMD declare inbranch / notinbranch

#pragma omp declare simd inbranch / notinbranch

When a function is declared as a SIMD function, the compiler will create multiple versions of that function
to be called under certain circumstances. If the function is called outside of a SIMD region, it will use a
scalar version of that function. Likewise, if the function is called within an SIMD region, it will use a
vectorized version of that function. Additionally, there are versions of the function that are used when the
function is called within a conditional loop. Specifying that the SIMD declared function is notinbranch or
inbranch simply instructs the compiler whether or not to create the versions of the function that handle
calls from within a conditional branch. This allows for an improvement in the size of the code rather than
performance.

3.3 SIMD Block-Level directives

Block-level SIMD directives can be placed inside of a SIMD loop and affect a specified section of code.
Currently, the OpenMP 4.5 standard only supports a single block-level directive for SIMD regions. All
other OpenMP directives cannot be used inside of a SIMD region. Block level directives are used by
enclosing a structured block of code following the OpenMP directive.

3.3.1 ordered SIMD

#pragma omp ordered simd
structured block

When used inside of a SIMD region, the ordered clause causes the structured block of code to be executed
using scalar instructions while maintaining the the parallel execution order. This allows for the use of
instructions that cannot be vectorized or operations that provide incorrect results under certain conditions
to be used inside of a SIMD region. However, even with the use of the ordered clause, flow control
instructions such as break, continue, or return cannot be placed inside of a SIMD region. The ordered
clause can drastically reduce the speed of a SIMD loop by preventing it from executing in parallel. This
clause should only be used when scalar execution is required to produce a correct result and if the loop still
benefits from being vectorized.

3.4 Vendor Specific OpenMP SIMD directives

Some vendors have provided extensions to the OpenMP SIMD construct that are not in the OpenMP 4.5
standard. These directives are not portable between compilers but can be important for architecture or
compiler specific optimizations. Currently, the Intel compiler supports a single clause for OpenMP SIMD
declare directives.

3.4.1 SIMD declare processor

#pragma omp declare simd processor(string)

23

By default, the compiler will often create binaries that are compatible with much older computer
architectures. Compiler options such as -x for Intel and -m for GCC instruct the compiler to target a
specific computer architecture, allowing the compiler to generate code that is optimal for that processor.
However, this does not affect the code generated inside of SIMD-enabled functions that have not been
inlined by the compiler. The processor clause controls the instructions and vector registers used inside
SIMD-enabled functions. Without this clause, the compiler will often default to 128-bit wide XMM
registers rather than 256-bit wide YMM registers or 512-bit wide ZMM registers. The processor clause
takes its input as a string that corresponds to a computer architecture; these strings are given in Table 5.
This extensions is only provided by the Intel compilers for x86 processors†.

Processor ID ISA Registers
pentium_4 SSE2 XMM

pentium_4_sse3 SSE3 XMM
core_2_duo_ssse3 SSSE3 XMM

core_2_duo_sse4_1 SSE4.1 XMM
core_i7_sse4_2 SSE4.2 XMM

core_2nd_gen_avx AVX YMM
core_3rd_gen_avx AVX YMM
core_4th_gen_avx AVX2 YMM

mic KNC ZMM
mic_avx512 AVX512 ZMM

Table 5. Supported target architectures for the processor clause

3.5 SAXPY example

Consider an example of a simple SAXPY loop. We will start with a scalar version of this program with no
OpenMP directives. The SAXPY operation is placed in a separate function and called with each iteration
of the loop. For this example, the saxpy function is not allowed to be inlined by the compiler.

void saxpy (f l o a t ∗X, f l o a t ∗Y, i n t i , f l o a t SA) {
Y[i] = SA∗X[i] + Y[i] ;

}

i n t main () {
f l o a t X[SIZE] , Y[SIZE] , SA ;
f o r (i n t i = 0 ; i < SIZE ; i ++){

saxpy (X, Y, i , SA) ;
}

}

Now let’s try to vectorize this code. The constant SA can be broadcasted to each line in the vector register.
Then the packed floats are loaded, multiplied, added, and finally stored back into Y. The problem is that the
compiler cannot vectorize the SAXPY operation because it is in a function call. So we can declare the

†Support for different strings depends on the version of the compiler

24

SAXPY function as a SIMD function and place the main loop inside a SIMD region to tell the compiler to
use the vectorized version of the SAXPY function. These examples were compiled using the Intel C
Compiler version 16.0.3 and targeted the AVX2 instruction set. The code was run and timed on a Knights
Landing processor.

#pragma omp d e c l a r e simd
void saxpy (f l o a t ∗X, f l o a t ∗Y, i n t i , f l o a t SA) {

Y[i] = SA∗X[i] + Y[i] ;
}

i n t main () {
f l o a t X[SIZE] , Y[SIZE] , SA ;
pragma omp simd
f o r (i n t i = i < SIZE ; i ++){

saxpy (X, Y, i , SA) ;
}

}

The speed has not increased, and it has actually gotten significantly slower with a i.64x slowdown. To
make matters worse, the Intel compiler gave a vectorization report indicating that both the SIMD loop and
function were vectorized. So what is making this function slower? The declare clause does not actually
give enough information to the compiler for it to to be effectively vectorized. Without enough information,
the compiler can either not vectorize the loop or resorts to gathering and scattering to access the memory.
This problem can be fixed by using SIMD declare to pass more hints about the function to the compiler.
The compiler must have an idea of what the function is going to look like if it were called multiple times in
series. Currently, the compiler does not know that the pointers given will not change between the function
calls or that they are accessed sequentially. The uniform and linear clauses can pass this necessary
information to the compiler.

#pragma omp d e c l a r e simd un i fo rm (X, Y) l i n e a r (i : 1)
void saxpy (f l o a t ∗X, f l o a t ∗Y, i n t i , f l o a t SA) {

Y[i] = SA∗X[i] + Y[i] ;
}

i n t main () {
f l o a t X[SIZE] , Y[SIZE] , SA ;
pragma omp simd
f o r (i n t i = i < SIZE ; i ++){

saxpy (X, Y, i , SA) ;
}

}

Now the desired speed-up is achieved with the vectorized loop performing roughly 3.36x faster using the
AVX2 instruction set. But for these examples, the addresses of X and Y have always been misaligned. The
memory addresses are aligned and this information is passed to the compiler through the aligned clause.
Alignment should make the memory accesses quicker and allow the code to use the aligned versions of the
vector instructions.

25

#pragma omp d e c l a r e simd un i fo rm (X, Y) l i n e a r (i : 1) \

a l i g n e d (X, Y : 32) n o t i n b r a n c h
void saxpy (f l o a t ∗X, f l o a t ∗Y, i n t i , f l o a t SA) {

Y[i] = SA∗X[i] + Y[i] ;
}

i n t main () {
f l o a t X[SIZE] , Y[SIZE] , SA ;
pragma omp simd a l i g n e d (X, Y : 32)
f o r (i n t i = i < SIZE ; i ++){

saxpy (X, Y, i , SA) ;
}

}

Now the aligned version of this function performs 7.47x faster than the original scalar loop. This code has
successfully been vectorized with the use of OpenMP’s SIMD directives. But this code could have been
easily vectorized by most compilers’ auto-vectorizer if the compiler inlined the saxpy function. However, if
the saxpy function was declared in some other file that was linked in by the compiler, it would be
impossible for the function to be inlined. This function can still be vectorized if OpenMP is used; declaring
the function as extern will cause the loop to call the vectorized version of the function once the files are
linked.

#pragma omp d e c l a r e simd un i fo rm (X, Y) l i n e a r (i : 1) \

a l i g n e d (X, Y : 32) n o t i n b r a n c h
e x t er n void saxpy (f l o a t ∗X, f l o a t ∗Y, i n t i , f l o a t SA) ;

i n t main () {
f l o a t X[SIZE] , Y[SIZE] , SA ;
pragma omp simd a l i g n e d (X, Y : 32)
f o r (i n t i = i < SIZE ; i ++){

saxpy (X, Y, i , SA) ;
}

}

Becuase we are using the Intel C Compiler, we can also make use of the processor clause to better target
the AVX2 and FMA vector instruction sets. This allows for the vectorized function to fully utilize the 256
bit YMM registers. After this change is made, the resulting code finally runs 24.12x faster than the original
misaligned scalar loop without OpenMP directives. If the original code is also aligned it results in a 9.34x
speedup. This is faster than the expected 8.00x speedup because of the use of the FMA instruction set.

#pragma omp d e c l a r e simd un i fo rm (X, Y) l i n e a r (i : 1) \

a l i g n e d (X, Y : 32) p r o c e s s o r (c o r e _ 4 t h _ g e n _ a v x)
e x t er n void saxpy (f l o a t ∗X, f l o a t ∗Y, i n t i , f l o a t SA) ;

i n t main () {
f l o a t X[SIZE] , Y[SIZE] , SA ;
pragma omp simd a l i g n e d (X, Y : 32)
f o r (i n t i = i < SIZE ; i ++){

saxpy (X, Y, i , SA) ;

26

}
}

4. OpenMP SIMD Programming Guidelines

This section provides several programming guidelines for OpenMP programmers to develop correct and
high performance SIMD programs using SIMD extensions in the OpenMP 4.5 specifications.

4.1 Ensure SIMD execution legality

When the OpenMP SIMD construct is applied to a for loop or do loop, the programmer guarantees that the
loop can be partitioned into smaller chunks of SIMD execution. This chunk is created by executing several
logical iterations of the loop in parallel using SIMD instructions. The size of this chunk is determined by
the computer architecture that the compiler is targeting and the data types used inside the loop. To provide
this guarantee, the programmer must preserve the original data dependencies in the loop using the safelen
clause and remove potential data dependencies that may hinder SIMD execution using the private,
lastprivate, reduction, or linear clauses. This is important when backward-carried loop dependencies are
present.

#pragma omp simd s a f e l e n (4)
f l o a t A[SIZE] , B[SIZE] ;
f o r (i n t i = 4 ; i < SIZE ; i ++){

A[i] = A[i − 4] + B[i] ;
}

Normally, the compiler should be able to detect this backward-carried loop dependency. However, the
OpenMP SIMD construct guarantees that the loop can be executed using partitioned chunks of SIMD
execution. If the compiler is targeting a computer architecture that supports the AVX instruction set, then
according to Table 2, this loop will execute using chunks of eight logical loop iterations. This is an issue
because the loop cannot execute more than four logical loop iterations concurrently without violating the
backward-carried loop dependency. To preserve this dependency, the safelen clause is required to limit the
number of concurrent loop iterations. The safelen clause indicates that more than four iterations of the loop
cannot be executed without violating a data dependency.

Data sharing clauses can be used to break false data dependencies that may hinder SIMD execution. The
private clause guarantees that x is private to each SIMD chunk of the loop. This indicates that the values in
x will not cross between the partitioned chunks of the loop. Otherwise, the compiler may think that the
variable x contains a write-write or write-read conflict. The private clause is used to remove this false
dependency. The linear and reduction clauses both provide privatization as well.

f l o a t A[SIZE] , B[SIZE] , x ;
#pragma omp simd p r i v a t e (x)
f o r (i n t i = 0 ; i < SIZE − 1 ; i ++){

x = A[i] ;
B[i] = foo (x∗A[i + 1]) ;

27

}

4.2 Vector Length and Alignment

The vector length indicates how many logical iterations of the loop will be handled in parallel. This
depends on the size of the vector register selected by the compiler and the size of the type of data stored
inside it. For x86 processors, the vector lengths supported by the hardware for each data type and vector
register are given in Table 2. When using OpenMP, the vector length is determined by the compiler’s target
architecture for SIMD loops and the simdlen clause for SIMD-enabled functions. The compiler can
simulate larger vector lengths than the computer architecture supports by combining several vector
registers into a single logical vector register. In some cases, using a larger vector length can be beneficial
due to improved instruction-level parallelism and amortization of various loop overheads. For some other
cases, using a larger vector length can be detrimental if the limited number of available vector registers is
exhausted.

Memory alignment is important for SIMD applications; this is discussed in Section 2.2. The compiler is
unable to determine the alignment properties of data that is linked from other files or is dynamically
allocated. Additionally, the compiler by itself cannot assume that function arguments will be aligned.
OpenMP provides the aligned clause so the programmer can assert memory alignment properties. The
ideal alignment value for the aligned clause is determined by the size of the vector register used. These
values listed in Table 3 provide the ideal alignment for the x86 vector registers.

f l o a t X[SIZE] , Y[SIZE] , A;
#pragma omp simd a l i g n e d (X : 32 , Y : 32)
f o r (i n t i = 0 ; i < SIZE ; i ++){

X[i] = A∗X[i] + Y[i] ;
}

4.3 OpenMP SIMD Functions

OpenMP allows users to create SIMD-enabled functions that can be called from SIMD regions. These
functions allow for simdlen partitioned chunks of the logical loop iteration space to be executed in parallel.
This is a large benefit for functions that could not be inlined by the compiler. SIMD-enabled functions
allow the programmer to create SIMD functions that can be linked from independent vector libraries.
However, effectively vectorizing functions with OpenMP can be difficult. These examples will show how
to correctly create SIMD-enabled functions with OpenMP SIMD.

f l o a t r s q r t f (f l o a t A) {
re turn 1 . 0 f / s q r t f (A) ;

}

double r s q r t _ m u l (f l o a t ∗A, f l o a t ∗B , i n t i) {
re turn B[i]∗ r s q r t f (A[i]) ;

}

28

i n t main () {
f l o a t A[SIZE] , B[SIZE] ;
double C[SIZE] ;

pragma omp simd
f o r (i n t i = 0 ; i < SIZE ; i ++){

C[i] = r s q r t _ m u l (A, B , i) ;
}

}

For this loop, the use of the OpenMP SIMD construct causes the loop to be partitioned into chunks of
SIMD execution. However, if the function calls to rsqrt_mul and rsqrtf cannot be inlined by the compiler,
such as if they were stored in a separate library or linked from another file, the loop cannot execute the
function calls in parallel. The compiler provides the SIMD execution by calling the scalar function multiple
times according to the size of the partitioned chunk. Then, each of these returned values are packed into a
vector register to preserve the SIMD execution. This method will typically perform slower than a scalar
version of the loop without the OpenMP SIMD construct. To solve this problem, the OpenMP declare
construct can be used to create SIMD-enabled versions of these functions to call inside of a SIMD region.

#pragma omp d e c l a r e simd
f l o a t r s q r t f (f l o a t A) {

re turn 1 . 0 f / s q r t f (A) ;
}

#pragma omp d e c l a r e simd un i fo rm (A, B) l i n e a r (i : 1)
double r s q r t _ m u l (f l o a t ∗A, f l o a t ∗B , i n t i) {

re turn B[i]∗ r s q r t f (A[i]) ;
}

i n t main () {
f l o a t A[SIZE] , B[SIZE] ;
double C[SIZE] ;

pragma omp simd
f o r (i n t i = 0 ; i < SIZE ; i ++){

C[i] = r s q r t _ m u l (A, B , i) ;
}

}

The OpenMP declare construct allows for SIMD-enabled functions to be created for both functions. The
use of the uniform clause indicates that the values of A and B will not change between each SIMD
execution of the function. This is implemented by replacing the function argument to the vectorized
function with a parameter passed in a general purpose register rather than a vector register that is shared
between each SIMD lane of the function. The linear clause indicates that the value i is increasing by 1
between each concurrent iteration of the loop. This also allows the compiler to replace its function
argument with a general purpose register. The combination of these two clauses allows the compiler to
unroll the rsqrt_mul and perform loads from memory with linear strides. If these clauses were not present,
the function would instead perform a gathering operation from a set of indices and pointers passed as
arguments to the function using a vector register.

29

The SIMD-enabled functions created with the OpenMP declare construct each have their own arguments
and qualities. The rsqrt_mul function has arguments (uniform, uniform, linear:1) and the rsqrtf function
has arguments (vector). Additionally, each function has its own simdlen. For x86 processors, the default
target architecture is SSE2. So, according to Table 2, the rsqrt_mul function has a default simdlen of two
while the rsqrtf function has a default simdlen of four because these functions return doubles and floats
respectively. This conflicting simdlen is a problem that prevents these functions from being vectorized.
When the rsqrt_mul function is called, it operates on two arguments concurrently. However, the vectorized
rsqrtf function requires four arguments to be called. This conflict means that the rsqrt_mul function cannot
provide enough input to the rsqrtf function for it to be vectorized. In order for a SIMD-enabled function to
call another SIMD-enabled function the calling function must have a simdlen that is a multiple of the called
function’s simdlen. This incompatibility can be solved by the simdlen clause. Declaring the rsqrt_mul
function with a simdlen of four causes the compiler to apply double-pumping and treat two vector registers
as a single logical vector register.

#pragma omp d e c l a r e simd s i m d l e n (4)
f l o a t r s q r t f (f l o a t A) {

re turn 1 . 0 f / s q r t f (A) ;
}

#pragma omp d e c l a r e simd un i fo rm (A, B) l i n e a r (i : 1) s i m d l e n (4)
double r s q r t _ m u l (f l o a t ∗A, f l o a t ∗B , i n t i) {

re turn B[i]∗ r s q r t f (A[i]) ;
}

i n t main () {
f l o a t A[SIZE] , B[SIZE] ;
double C[SIZE] ;

pragma omp simd
f o r (i n t i = 0 ; i < SIZE ; i ++){

C[i] = r s q r t _ m u l (A, B , i) ;
}

}

This code allows the loop to be successfully vectorized. However, improvements can still be made to this
function. Currently, the default architecture of SIMD-enabled functions on x86 processors is SSE2. This
default currently cannot be changed by compiler flags if the function is not inlined. If the Intel compiler is
used on an x86 processor, the processor clause can be used to specify a target architecture for the code
generated inside the SIMD-enabled functions. If this loop is to target the AVX2 instruction set, then
according to Table 5, the string used with the processor clause will be core_4th_gen_avx. If the AVX2
instruction set is used, then the simdlen should be changed to eight to fully utilize the width of the YMM
registers. Additionally, if the rsqrt_mul function is never called within a conditional branch the
notinbranch clause can safely be used. This will reduce the size of the generated code. These functions can
again be further be improved if the pointers A and B are guaranteed to be aligned. In this case the aligned
clause can be used to provide the compiler with the alignment information.

#pragma omp d e c l a r e simd s i m d l e n (8) n o t i n b r a n c h \

p r o c e s s o r (c o r e _ 4 t h _ g e n _ a v x)

30

f l o a t r s q r t f (f l o a t A) {
re turn 1 . 0 f / s q r t f (A) ;

}

#pragma omp d e c l a r e simd un i fo rm (A, B) l i n e a r (i : 1) s i m d l e n (8) \

a l i g n e d (A: 3 2 ,B : 3 2) n o t i n b r a n c h p r o c e s s o r (c o r e _ 4 t h _ g e n _ a v x)
double r s q r t _ m u l (f l o a t ∗A, f l o a t ∗B , i n t i) {

re turn B[i]∗ r s q r t f (A[i]) ;
}

i n t main () {
f l o a t A[SIZE] , B[SIZE] ;
double C[SIZE] ;

pragma omp simd
f o r (i n t i = 0 ; i < SIZE ; i ++){

C[i] = r s q r t _ m u l (A, B , i) ;
}

}

4.4 Memory Access Collapsing

The OpenMP SIMD construct works by partitioning the logical iterations of the loop into SIMD chunks.
This partitioning requires a single logical iteration space to be valid. Because of this, the OpenMP SIMD
construct can normally only be correctly applied to the innermost loop in a set of nested loops. The
collapse clause allows for the OpenMP SIMD construct to be applied to multiple loops by collapsing the
set of nested loops into a single logical iteration space.

It is important to understand how the collapse clause works to use it correctly. When used incorrectly, the
collapse clause can cause some nested loops to execute several times slower than if the OpenMP SIMD
construct was applied to the innermost loop alone. This can be seen by observing the process the compiler
uses to collapse a loop. For example, consider a simple set of two nested loops.

f l o a t A [4] [4] ;
#pragma omp simd c o l l a p s e (2)
f o r (i n t i = 0 ; i < 4 ; i ++){

f o r (i n t j = 0 ; j < 4 ; j ++){
A[i] [j] = A[i] [j] + 1 ;

}
}

This loop will be collapsed by creating a global iteration space from the total number of logical iterations
made by the nested loops. Then the values of i and j will need to be calculated using the new global
iteration space. This set of nested loops will be transformed into the following single loop by the compiler.

f l o a t A [4] [4] ;
#pragma omp simd
f o r (i n t k = 0 ; k < 1 6 ; k++){

31

i n t i = k / 4 ;
i n t j = k % 4 ;
A[i] [j] = A[i] [j] + 1 ;

}

This collapsed loop will perform poorly if it is vectorized. This is because the division or modulus
operations must be simulated with software and are fundamentally slow. Additionally, the memory access
to A is not linear with respect to the collapsed loop so the memory must be gathered and then scattered.
However, this transformation may be profitable for SIMD directives that target SMT multithreading (e.g.
for accelerators like GPUs). In order to make loop collapsing profitable for vectorization, the data accesses
must be collapsed as well as the iteration space.

Memory access collapsing can be done by observing the layout of the original loop. In the original loop,
the inner loop performs four iterations. If the loop is vectorized with a vector length that is a multiple of
four, then the inner loop can be performed in a single iteration of the loop. This removes the need for the
modulus operation on j because the remainder will always be zero after performing four iterations of the
loop simultaneously. Now, the memory access is linear so the division can be removed. After performing
memory access collapsing, the original set of nested loops will be transformed into the following single
loop by the compiler.

f l o a t A [4] [4] ;
#pragma omp simd
f o r (i n t k = 0 ; k < 1 6 ; k++){
/ / C o n c e p t u a l l y e q u i v a l e n t t o A [0] [k] = A [0] [k] + 1;

A[k] = A[k] + 1 ;
}

After collapsing the data accesses, there is no need to re-calculate the i and j iterators with expensive
division and modulus operations. The resulting code also generates contiguous memory accesses for A. In
this situation, the collapsed loop will perform well if it is vectorized. The compiler must support both
memory access collapsing and loop iteration collapsing for the collapse clause to be profitable.

4.5 Scalar Execution Inside SIMD Regions

SIMD parallelism requires that multiple pieces be modifiesd with a single instruction. However, this is not
possible in some cases. The compiler provides effective SIMD execution by individually performing each
operation using scalar instructions. This situation can occur when a certain operation has no SIMD
equivalent or when the result would be incorrect under SIMD execution. While the former can be handled
by the compiler, the latter under certain conditions must be specified by the user. The ordered clause can be
used to specify scalar execution for a block of code.

The ordered clause is beneficial if a certain condition prevents the code from correctly executing using
SIMD instructions. The histogram problem is a good example of this. A gather instruction can be used to
compute the result of a histogram operation if the indices are distinct. If the indices are not distinct, another
method must be used. The ordered clause can be used to describe this.

32

#pragma omp simd
f o r (i n t i = 0 ; i < SIZE ; i ++){

i f (h a s _ c o n f l i c t)
#pragma omp o r d e r e d simd

{
h i s t [A[i]]++ ;
}

e l s e
h i s t [A[i]]++ ;

}

5. General SIMD Programming Guidelines

Efficiently exploiting SIMD parallelism in code can be more difficult than other forms of parallelism. This
is because SIMD parallelism must use a restricted set of hardware registers and SIMD instructions.
Because of these restrictions, understanding how the SIMD model works is essential to maximize the
potential performance of the SIMD model. Additionally, it is common for a vectorized program to run
slower than a scalar program. This drop in performance is usually caused by attempting to vectorize
operations that have no SIMD instruction equivalent, or performing operations that are relatively
inexpensive when done with scalar instructions but quite slow when SIMD instructions are used. This
section provides several general programming guidelines for programmers to obtain high performance
SIMD programs while relying on auto-vectorization.

5.1 Data Size and Conversion

The choice of data size has a large impact on the performance of SIMD applications. Vector registers can
only hold a fixed amount of data, so the size of the data packed inside the vector register determines how
much can be processed in parallel. Additionally, the processor must be able to handle each different data
type. Because of this, some loops may not be vectorized or may be vectorized poorly because of the data
they operate on. For example, the x86 architecture currently does not support multiplication operations
between packed bytes.

For high performance SIMD applications, the smaller data types should be used whenever possible.
Referring to Table 2, If 16-bit values are used instead of 32-bit values, then twice as much data can be
handled in parallel. So, a vectorized loop that processes shorts will perform roughly twice as fast as a loop
that processes ints. The same speedup is achieved when floats are used over doubles. So, for integers, the
programmer should use the smallest data type that can hold the largest expected value. For floating point
values, the programmer should decide how much floating point precision is necessary to produce a correct
result.∗

Data size is important when operations are performed between two vector registers. Although smaller data
types allow more data to be handled in parallel, different vector lengths should not be mixed if at all
possible. If two different vector lengths are used then the amount of data that can be handled in parallel is

∗Long doubles cannot be vectorized.

33

limited by the smallest vector length. Additionally, there will be considerable overhead involved with
converting from one vector length to another. This can be shown with the following loop.

f l o a t X[SIZE] ; double Y[SIZE] ;
#pragma omp simd a l i g n e d (X : 32 , Y : 32)
f o r (i n t i = 0 ; i < SIZE ; i ++){

X[i] = Y[i]∗X[i] + 1 . 0 f ;
}

This loop mixes two different vector lengths. The vector length when using doubles is half the vector
length when using floats. The vector lengths must match before this loop can be executed using SIMD
instructions. Two vector registers must be combined into a single logical vector register so that the vector
length of the doubles is compatible with the vector length required by loop. Then the packed floats must be
converted to doubles by placing each half of the vector register into a separate vector register. Finally, the
multiplication is performed and then the packed doubles are converted back into floats and stored. This is
dramatically slower than if only doubles or floats were used inside this loop.

The programmer should be careful to not call library functions with conflicting vector lengths. If the
programmer calls a library function that returns conflicting data types, there will be a severe performance
penalty.

f l o a t X[SIZE] ;
#pragma omp simd a l i g n e d (X : 16)
f o r (i n t i = 0 ; i < SIZE ; i ++){

X[i] = pow (X[i] , −1 . 5) ;
}

Some compilers can vectorize this loop by using a vectorized math library. However, the pow function
takes doubles as its arguments and returns a double. This requires a costly conversion operation like the
one detailed in the previous loop. This can be avoided if the call to the pow function is replaced with the
powf function. The powf function uses floats as its arguments and returns floats. This removes the need for
a slow conversion operation.

Finally, the programmer should be careful to specify whether or not a floating point constant is a double or
a float. Constants given in the form “x.xx” are usually assumed the be doubles. If this constant is
multiplied by a float it may also require a costly conversion operation. Floating point constants should
always be specified by using the form “x.xxf” to avoid this.

5.2 Memory Access

The layout of the data is often what determines whether or not vectorization is profitable. Data movement
is detailed in Section 2.1.1. Memory should ideally be completely continuous for SIMD applications. This
is not always possible, but, in some cases, the programmer can alter the memory layout to be more
continuous. This can be seem with the following example that uses a struct to represent a
three-dimensional vector.

34

s t r u c t { f l o a t x , y , z ; } v [SIZE] ;
#pragma omp simd a l i g n e d (v : 16)
f o r (i n t i = 0 ; i < SIZE ; i ++){

i n t n= s q r t f (v [i] . x∗v [i] . x+v [i] . y∗v [i] . y+v [i] . z ∗v [i] . z) ;
v [i] . x /= n ;
v [i] . y /= n ;
v [i] . z /= n ;

}

This loop represents the vector as an array of structs. But in this example, the memory in the array V is not
contiguous. When the struct is placed in memory, the data will be arranged in this pattern,
{x0, y0, z0, x1, y1, z1, . . .}. The computation can easily be vectorized, but moving the data into the vector
register will require several data movement instructions that will slow down this loop. It would be much
faster if the data was continuously in this pattern, {{x0, x1, . . .}, {y0, y1, . . .}, {z0, z1, . . .}}. Arranging data in
this way is called a struct of arrays and will greatly reduce the amount of time spent moving data into the
vector registers.

s t r u c t { f l o a t x [SIZE] , y [SIZE] , z [SIZE] ; } v ;
#pragma omp simd a l i g n e d (v . x : 16 , v . y : 16 , v . z : 16)
f o r (i n t i = 0 ; i < s i z e ; i ++){

i n t n= s q r t f (v . x [i]∗ v . x [i]+v . y [u]∗ v . y [i]+v . z [i]∗ v . z [i]) ;
v . x [i] /= n ;
v . y [i] /= n ;
v . z [i] /= n ;

}

A struct of arrays has the downside that it may fragment the cache. To keep the data more local, a
combination of a struct of arrays and an array of structs can be used where the struct of arrays only contains
enough elements to completely fill a vector register. Then this struct is used as an array of structs.

Multidimensional arrays can be accessed with a linear stride. An example of this would be a loop that
iterates over the columns of a two dimensional array. In this case, the memory accesses can be effectively
disjoint if the linear stride is greater than the vector length. However, data that has already been loaded can
sometimes be used later. For example, if memory from a column is read into a vector register, data from the
next column is also in the vector register. Unfortunately, this is difficult to take advantage of when relying
on auto-vectorization.

Memory can also sometimes be accessed at completely disjoint locations. This is common in applications
involving look-up tables or histograms. When the accesses are disjoint, the memory must be gathered or
scattered. These operations are extremely costly on computer architectures that do not support a gathering
or scattering instruction. If gathering and scattering instructions are supported, then loops involving
look-up tables can sometimes be vectorized. However, these instructions are still several times slower than
a continuous memory access. Because of this, look-up tables should not be used unless the time saved on
computation is greater than the time wasted on gathering the memory.

35

5.3 Integer Multiplication and Division by Constants

Packed integer multiplication can be slow. For constants, the speed can be improved by performing a
shift-and-add multiplication. This is done by factoring the constant multiplicand into a sum of powers of
two. Thus, the multiplication 10x is equivalent to (8 + 2)x. This can be accomplished by shifting x to the
left three times and adding that to x shifted left once. This approach is typically faster for constants that
generate fewer than five factors. Some compilers, such as the GCC compiler, will automatically perform
shift-and-add multiplication. Others can see an improvement if this is done explicitly by the programmer.
The table shows the improvement between multiplying by 10 and doing shift-and-add. This method
provided a 1.66x speedup on the Intel compiler, while the GCC compiler used this method automatically.

s h o r t X[SIZE] ;
#pragma omp simd a l i g n e d (X : 16)
f o r (i n t i = 0 ; i < SIZE ; i ++){

X[i] = (X[i] << 3) + (X[i] << 1) ;
}

The x86 architecture does not support SIMD instructions for packed integer division or modulus. However,
this operation can be simulated with multiplication and bit-shifting operations. This follows from the idea
that for floating point values, division is equivalent to multiplication by the reciprocal. To do this with
integers, the reciprocal will be scaled by 2n and then the product will be shifted to the right n times. There
are several algorithms to find a suitable n value covered by other authors[2].

Some compilers may convert integer division by a constant with a multiplication and shift in this way if it
is known at compile time. The Intel compiler has a set of functions that can calculate the value of n at
runtime if the divisor is only known at runtime. However, this is still an expensive process, so integer
division and modulus should be completely avoided whenever possible.

5.4 Conditional Statements

Conditional statements can be vectorized by calculating the values unconditionally and then using a
bit-mask or separate mask register to choose between them. The downside to this is that the entire loop
must be calculated unconditionally. If a loop contains a relatively costly calculation that is rarely required,
the result of this calculation will be calculated each iteration of the SIMD loop only to be discarded at the
end. This can sometimes cause a vectorized loop to perform slower than a scalar loop. In some cases this
can be avoided by jumping past a code segment if its associated mask is completely empty. Some
compilers are capable of doing this.

Generally, branch-free algorithms should be favored for SIMD applications. This removes the need for
SIMD comparisons to create bit-masks. Branch-free algorithms will also typically remove the problem of
conditional statements with disproportionate costs that can slow down vectorized loops. Additionally,
branch-free algorithms typically use operations that are easily performed using SIMD instructions, such as
bit-shifting or other bit-logic instructions.

36

6. HACCmk

HACCmk is a compiler benchmark whose performance relies on how well the compiler can vectorize the
critical loop. The loop contains a function call, reduction, and a conditional assignment.

void S t e p 1 0 _ o r i g (i n t count1 , f l o a t xxi , f l o a t yyi , f l o a t z z i ,
f l o a t f s r rmax2 , f l o a t mp_rsm2 , f l o a t ∗xx1 , f l o a t ∗yy1 ,
f l o a t ∗ zz1 , f l o a t ∗mass1 , f l o a t ∗ dxi , f l o a t ∗ dyi , f l o a t ∗ d z i) {

c o n s t f l o a t ma1 , ma2 , ma3 , ma4 , ma5 ;
f l o a t dxc , dyc , dzc , m, r2 , f , x i , y i , z i ;

f o r (i n t j = 0 ; j < co un t1 ; j ++){
dxc = xx1 [j] − x x i ;
dyc = yy1 [j] − y y i ;
dzc = zz1 [j] − z z i ;

r2 = dxc ∗ dxc + dyc ∗ dyc + dzc ∗ dzc ;

m = (r2 < f s r r m a x 2) ? mass1 [j] : 0 . 0 f ;

f = pow (r2 + mp_rsm2 , −1.5) − (ma0 + r2 ∗
(ma1 + r2 ∗ (ma2 + r2 ∗ (ma3 + r2 ∗ (ma4 + r2 ∗ma5))))) ;

f = (r2 > 0 . 0 f) ? m∗ f : 0 . 0 f ;

x i = x i + f ∗ dxc ;
y i = y i + f ∗ dyc ;
z i = z i + f ∗ dzc ;

}
}

A critical mistake was that the ”pow“ function was used instead of ”powf“ This results in the code running
about three times slower using the Intel compiler. There are several reason for this dramatic slowdown. The
Intel compiler recognized that the exponent could easily be calculated as

√
x3−1 so it replaced the function

call with this calculation. Because the pow function was used, there was a costly conversion performed to
convert the floats to doubles and then back to floats. Additionally, there is a packed inverse square root
function that only applies to floats. This square root is faster than a regular square root and division
because it is an approximation of the square root using the Newton-Raphson method. Finally, the use of
doubles confused the compiler and caused it to turn the conditional assignment into scalar code that then
packed the results back into the vector register at the end.

While the Intel compiler had no problems vectorizing this loop once the function call was corrected, the
GCC and Clang 3.8 compilers could not vectorize it. It seems that both Clang and GCC lack a set of
vectorized math functions. There are hardware instructions that calculate square roots. So the “powf”
function should be replaced with the ’sqrtf’ instruction. However, the GCC and Clang compilers still did
not replace the ’pow’ function call with these instructions like the Intel compiler did. We would like
OpenMP 4.5 compilers to provide vectorized versions of “math.h” functions.

37

When the function calls were removed, the two compilers still struggled with the conditional assignments
in the code. Although the GCC compiler is capable of vectorizing some conditional loops, it could not
vectorize them in this loop; either the loop is too complex, or the compiler is confused because the
variables being compared are not arrays. It would be very useful if OpenMP supported conditional
assignments to provide this functionality between all compilers that support OpenMP.

Even after the function calls and the conditional statements were removed, this loop was still not
vectorized. Most likely, the presence of multiple reductions confused the compilers. This, however, could
be solved with OpenMP 4.5. Using the reduction clause and specifying the variables causes the loop to
finally be vectorized by GCC. Clang still had issues and only vectorized once the loop was nothing but the
first three and last three instructions.

Potentially, the function could be vectorized by writing a vectorized square root function using SIMD
declare, but the SIMD declare functionality seems to be troublesome when it is not applied to arrays. A
vectorized version could easily be written with a single line of assembly, but the compiler cannot vectorize
around assembly code.

7. Conclusion

The performance gained from SIMD execution capabilities is becoming more integral to the overall
performance of modern processors. SIMD instructions allow for certain sections of code to be executed
many times faster than a typical scalar implementation. This can be used to considerably increase the
performance yield from traditional multi-threaded parallel applications without increasing the number of
processors.

Effectively making use of SIMD instructions is difficult because of limited static compiler analysis,
architecture-specific limitations, and the restrictions of the SIMD execution model itself. Many computer
architectures implement SIMD instructions in fundamentally different ways. Because of this, any program
explicitly vectorized through the use of intrinsic functions or assembly code could not run on other
computer architectures or SIMD models, such as an SMT implementation targeting a GPU. Because of
this, many programs rely upon the compiler’s auto-vectorization to vectorize the code on many different
architectures.

Auto-vectorization allows much of the burden of vectorizing a program to be left to the compiler. However,
the SIMD architecture requires several constraints that the compiler cannot rectify through static-analysis
alone such as data alignment, data dependencies, aliasing, irregular memory accesses, and generally the
fixed-length nature of vector registers. Also, the quality of auto-vectorization varies across compilers.
Because of these restrictions, the OpenMP standard API for exploiting parallelism from shared memory
processors was expanded to provide powerful and portable directives to assist with auto-vectorization.

OpenMP provides directives to improve the capabilities of the compiler’s auto-vectorization pass by
providing it with information that cannot be determined through compile-time static-analysis. This allows
the programmer to effectively vectorize previously problematic sections of code and have it run efficiently
on several computer architectures and accelerators. However, because of the nature of SIMD instructions,
an understanding of the SIMD model of execution is essential in order to create code that can be easily and
efficiently be vectorized by the compiler. The OpenMP SIMD parallelism is not limited to architectures

38

with vectorization units as it can be simulated using threads (e.g. GPU SMT threads) on different
architectures as long as the SIMD parallel semantics are kept.

References

[1] Randy Allen and Ken Kennedy. Automatic translation of fortran programs to vector form. ACM
Trans. Program. Lang. Syst., 9(4):491–542, October 1987.

[2] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers using multiplication. In
In Proceedings of the SIGPLAN ’94 Conference on Programming Language Design and
Implementation, pages 61–72, 1994.

[3] Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego Caballero, and Xavier
Martorell. Extending OpenMP* with Vector Constructs for Modern Multicore SIMD Architectures,
pages 59–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[4] D. J. Kuck, Y. Muraoka, and Shyh-Ching Chen. On the number of operations simultaneously
executable in fortran-like programs and their resulting speedup. IEEE Trans. Comput.,
21(12):1293–1310, December 1972.

[5] Leslie Lamport. The parallel execution of do loops. Commun. ACM, 17(2):83–93, February 1974.

[6] Leslie Lamport. The coordinate method for the parallel execution of iterative loops. SRI
International, 1981.

[7] Yoichi Muraoka. Parallelism Exposure and Exploitation in Programs. PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA, 1971. AAI7121189.

[8] OpenMP Website. http://www.openmp.org.

[9] Hideki Saito, Serge Preis, Nikolay Panchenko, and Xinmin Tian. Reducing the Functionality Gap
Between Auto-Vectorization and Explicit Vectorization, pages 173–186. Springer International
Publishing, Cham, 2016.

[10] X. Tian, H. Saito, S. V. Preis, E. N. Garcia, S. S. Kozhukhov, M. Masten, A. G. Cherkasov, and
N. Panchenko. Practical simd vectorization techniques for intel xeon phi coprocessors. In Parallel
and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1149–1158, May 2013.

[11] Xinmin Tian and Bronis R de Supinski. Explicit vector programming with openmp 4.0 simd
extensions. HPCTODAY, 2014.

[12] Michael Joseph Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA, 1982. AAI8303027.

[13] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers. ACM, New
York, NY, USA, 1991.

39

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	Vectorization
	SIMD Instructions
	Data Movement
	Vector Conditional Masking
	Vector Constants

	Memory Alignment
	AVX512 Additions
	Mask Registers
	Embedded Broadcasting
	Compress and Expand
	Conflict Detection
	Reciprocals and Exponentials

	x86 Vector Instructions
	SAXPY
	Gather
	Reduction
	Linear
	Conditional Statement

	OpenMP SIMD
	SIMD loop directives
	SIMD aligned
	SIMD reduction
	SIMD safelen
	SIMD collapse
	SIMD linear
	SIMD private / lastprivate

	SIMD declare directives
	SIMD declare aligned
	SIMD declare simdlen
	SIMD declare uniform
	SIMD declare linear
	SIMD declare inbranch / notinbranch

	SIMD Block-Level directives
	ordered SIMD

	Vendor Specific OpenMP SIMD directives
	SIMD declare processor

	SAXPY example

	OpenMP SIMD Programming Guidelines
	Ensure SIMD execution legality
	Vector Length and Alignment
	OpenMP SIMD Functions
	Memory Access Collapsing
	Scalar Execution Inside SIMD Regions

	General SIMD Programming Guidelines
	Data Size and Conversion
	Memory Access
	Integer Multiplication and Division by Constants
	Conditional Statements

	HACCmk
	Conclusion

