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ABSTRACT 

Surface transportation road networks share structural properties similar to other complex networks (e.g., 

social networks, information networks, biological networks, and so on). This research investigates the 

structural properties of road networks for any possible correlation with the traffic characteristics such as 

link flows those determined independently. Additionally, we define a criticality index for the links of the 

road network that identifies the relative importance in the network. We tested our hypotheses with two 

sample road networks. Results show that, correlation exists between the link flows and centrality 

measures of a link of the road (dual graph approach is followed) and the criticality index is found to be 

effective for one test network to identify the vulnerable nodes. 

. 

1. INTRODUCTION AND DEFINITION OF THE PROBLEM 

Transportation road networks are often recognized as complex due to the topology and traffic dynamics 

related to it. The economic influence, behavioral processes of the trip makers and uncertainty in the 

supply-demand characteristics of the network contribute to the complexity of the road transportation 

networks. Road networks possess structural properties analogous to complex networks like social or 

communication networks. Most approaches in the transportation system analysis do not account for the 

structural properties of the road network. Researchers from diverse fields (physical sciences, operation 

research, economics, etc.) have analyzed transportation systems, but very few have attempted to analyze 

the system from perspective of network science and explore the structural properties of surface road 

networks. Among different structural attributes, centrality measures are often of prime interest for the 

researchers. 

 In the context social network systems, centrality measures are applied to assess the relative 

importance of the nodes (i.e., the actors). Further, it is often assumed that correlation exists between 

structural centrality, and influence and/or power in-group processes (Crucitti, 2006). Centrality measures 

are related to the network performance that is defined by network connectivity and flow throughput. In 

case of transportation networks, the traffic flow on each link is most commonly determined by means of 

nonlinear function of generalized cost of travel. In the current literature, no significant efforts are made to 

incorporate centrality measures to the computational process of link flows. The way centrality measures 

of nodes in a network are defined, nodes with higher centrality value are expected to carry higher flow 

due to their location, and connectivity attributes. This research aims to apply statistical techniques using 

empirical data to investigate the possible correlation between traffic flow and centrality measures.  

 Moreover, centrality measures can help to find the most critical road links analogous to social 

network analysis. This idea leads to the assessment of vulnerability in surface road networks. Assessing 

the vulnerability of critical infrastructures is getting more attention in the past few years. Initially, the 

focus was on the information, telecommunication, and the regime of energy networks. However, when the 

infrastructure of the nation is viewed as a system of systems it becomes clear that all the critical systems 

are interconnected with each other and interdependency plays a major role. Failure of a particular system 

will make other components of the global system vulnerable.  

With this perception of vulnerability it is evident that road transportation networks have 

interdependence with communication and energy networks. Therefore, we need to know the possible 

causes and also the patterns of road network vulnerability for a robust infrastructure management system.  

This work defines a system to be vulnerable if the functionality of the system can be challenged (reduced 

or compromised) through intentional or unintentional perturbations in its components. This general 

definition would put almost all systems in the vulnerable group. In the context of road transportation 

networks, by assessing vulnerability we mean to identify the critical components of a network, those if 

failed will cause reduced functionality or no functionality at all for the road network system. A natural 



 

7 

extension is to define the criticality index of the links in a road network. Criticality index is expected to 

identify the most critical links of a network. 

In the following section, a few recent research works will be discussed. Further, we will explain 

the basic framework to assess vulnerability from the perspectives of complexity and transportation 

science. Then, two simple road networks (Sioux Falls and Chicago network) will be examined and the 

definition of criticality index will be applied to assess vulnerability. Finally, we will discuss the results 

and further research directions. 

2. RELATED WORK 

Assessing the vulnerability of road networks is not a new research direction. Ball et al. (1989) and Corley 

and Sha (1982) attempted to identify the most vital arcs in a network using topological properties. 

Researchers from the network science in most cases emphasize on the centrality measures to assess the 

critical components (either arcs or nodes) in a network.  Crucitti et al. (2006) explore different kinds of 

centrality measures for networks of urban streets. They considered primal graphs and determined multiple 

centrality measures related to the efficiency of the network. Although the research is not directly related 

to assessing vulnerability, it explains the relation between network functionality and centrality measures 

that can be used to identify the critical components in road networks. Latora and Marchiori (2007) 

introduced Delta centralities in context of information centrality in a network that can be applied to assess 

the impact of removing an edge from the network. The analogy is to remove a particular street from 

transportation road networks. Ukkusuri and Holguin -Veras (2008) used economic welfare concept and 

centrality measures to identify the critical components in the transportation networks. In their research, an 

optimization model is developed to find how important a component is in a network under outside attack. 

When an adversary is interested to attack a vulnerable network, that individual is expected to maximize 

the disruption to the network which can be achieved by attacking the most critical components. Therefore, 

the optimization model will effectively identify the most critical link of the road network. Issacharoff et 

al. (2009) combined the concepts of transportation science and network statistics to assess the 

vulnerability of highway road networks. They conducted topological analysis of the graphs representing 

road networks along with determination of steady state traffic flow through Wardropian-Nash 

equilibrium search. 

As described above, limited efforts are made to solve the problem incorporating all the interacting 

agents in road transportation networks. The possible correlation between the structural properties 

(centrality measures) and traffic characteristics (flow) of road links in a transportation networks is not 

investigated rigorously. Therefore, the main contribution of this research is the exploration of structural 

properties of road networks for possible correlation with traffic flows on the link. Additionally, the traffic 

flow dynamics and topological attributes will be considered through Delta centrality measures to assess 

the critical edge in a road network. 

3. METHODOLOGY 

This section defines the criticality index and describes the algorithm that determines flow on each link of 

the road network. 

 

Criticality index 

This research puts focus on surface road transportation networks that possess different characteristics 

compared with social networks. Geographical attributes are one of the most distinct properties of road 

network. In road networks, the nodes and edges occupy real and physical positions in two dimensional 

Euclidian spaces and the edges imply physical connections. However due to similarity of topological and 

structural properties of road network with social network, we can still apply the basic formulations to 

obtain different structural centrality measures for any node in a road network. In this research we use 

structural centrality measures of nodes to define the criticality index for any node in the network. 
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Centrality measures are commonly defined and obtained for nodes in a network.  However we have our 

interests on the centrality measures of road links or edges in the graph. To resolve this problem, we follow 

the space syntax (see Hillier and Hanson, 1980) or the dual approach to represent the network. In this 

approach, the streets are the nodes and the intersections are the edges in a network. The dual of a graph is 

often mentioned as the Line Graph of the original or primal graph. For any graph G (N, A) we denote the 

Line Graph as L (G), where N and A represent the sets of nodes and edges respectively of the network. If 

u and v are two edges in the primal graph (and the nodes in the line graph), there will be connectivity 

between these two nodes in the line graph if u and v are adjacent in the primal graph. In our research dual 

graph modeling approach is applied to get a graph in which the nodes are the road links and the edges 

represent intersections and a centrality based criticality index is computed for all the nodes in the line 

graph. 

Centrality measures can be defined in different manners. The standard centrality measures are based on 

two distinctive basic ideas: how a node is near to all other nodes in the network (e.g., degree, closeness 

centrality), and the most central nodes are most likely stand between other nodes (e.g. betweenness, flow 

betweenness centrality) playing the role of intermediary. Latora and Marchiori (2007) introduced delta 

centrality measures for networks which is a combination of the two concepts mentioned above. 

Information centrality is a special instance of the family of delta centrality that accommodates the flow 

efficiency of a network. Since connectivity and commodity flow (human travelers and goods) are two key 

components while assessing the importance of a road network, we attempt to formulate the criticality 

index of nodes based on information centrality. Information centrality of any node can be defined as the 

relative drop in the efficiency of the network when that node is removed or deactivated (see Latora and 

Marchiori, 2007). Information centrality can mathematically be expressed as:  
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Here,
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 measures the change in network performance when the particular node is removed from the 

network. Further, 
)(GΓ
 is a measure of network efficiency and can take different forms based on the 

objective of the study. It can be the number of edges, path length, etc. Geodesics are often used in case of 

information exchange or flow. Next we define )(GΓ  in the context of road networks. 

According to spatial interaction principles, flow efficiency of the exchange (movement) of goods and 

people along the road network is inversely proportional to the shortest path distance between the origin 

destination pairs in a road. Latora and Marchiori (2001) introduced a metric to measure how efficiently 

nodes in a graph exchange information based on geodesics in an information network. Analogous to this, 

we can define an efficiency measure for road networks where the shortest path distance between the any 

origin-destination pair can be approximated as the Euclidian distances between them. Using this measure 

of efficiency we can determine the information centralities of the nodes in a road network. 
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When the information centrality is determined, we can define the criticality index of a node (i.e., road 

link) as follows: 

∑
∈

+=

Ni

Q

i

Q

iZ

i

In

i

V

i
C

C
CC βδα  

In this expression,  
V

iC = criticality index for any node i 



 

9 

α , β  = constants representing weights to flow and demand respectively (here both values are 1) 
Z

iδ = 1, when the node is a center of trip attraction zones (e.g. a business center, town center where most 

trips will be made) 

       = 0, otherwise 
Q

iC  = Total demand attracted to zone i (trip rates) 

Unlike information or network science, the trip demand and flows on the link are totally different quantity 

in context of transportation science. Using this criticality index we rank the nodes and higher value of 

criticality index indicates the node is more critical. 

Traffic flow using stochastic user equilibrium 

Stochastic user equilibrium (SUE) formulates the network equilibrium model based on random utility 

theory. In a road network for any origin r and destination s, let 
rs

kT be the perceived travel time for any 

path k and 
rs

kt  is the actual measured travel time. Now the relation can be expressed as,  
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k
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Here, 
rs

kχ  is the random error term specific to the route (captures all the unobserved factors associated 

with the choice making). Again, it is also assumed that, 0][ =rs

kE χ , i.e. the average perceived travel time 

will be the same as measured travel time. Now, the share of drivers choosing the k-th route can be 

expressed as the probability of choosing k-th route over any other l-th route. 

rs

rs

l

rs

k

rs

k KlTTP ∈∀≤= ),Pr( ; Where Krs is the set of all routes connecting r and s origin-destination 

pairs. 

The probability that a given route is chosen is simply the probability that its travel time is perceived to be 

the lowest of all the alternative routes.  

Now, we assume the error terms associated with the routes are independent and identically distributed and 

follows Generalized extreme value type-I distribution. Therefore, the probability expression can be 

written as: 
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Here, θ is a constant that scales the perceived travel time sensitivity. 
When the probabilities are computed we can load the network. The mechanism of assigning 

traffic volumes to the road links of a network is known as network loading process in the context of 

traffic assignment which is the last step of traditional trip based four step transportation planning process. 

One of the network loading models regarding SUE is the STOCH networking model. STOCH is a route 

choice model based on multinomial logit formulation. STOCH is also known as Dial’s algorithm. The 

number of paths between any origin and destination in a realistic network is extremely large and the path 

enumeration takes a lot of time in terms of computation. So it is necessary to use intelligent algorithms to 

avoid the path computations in the process of network loading.  The special characteristic of the STOCH 

algorithm is : we do not need to enumerate all the paths to assign the flows based on generalized travel 

cost. The algorithm identifies a route between any specific origin destination pair to be reasonable only if 

the route includes links that take the traveler further away from the origin and closer to the destination.  

The initial STOCH algorithm contains two basic modules: forward pass (link weights) and 

backward pass (assigning flows). However, it requires two minimum path calculations (shortest path) for 

each origin destination pair in the network. This makes the algorithm computationally almost infeasible in 

the context of large networks. To resolve this problem, we can modify the definition of reasonable paths 

in the network that can effectively exploit the one-to-all shortest path algorithm as described in Dijkstra’s 

shortest path algorithm. The new definition is : 
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A path would be considered reasonable if it includes only links that do not take the traveler back 

toward the origin. 

Now, the complexity of the problem is much more less than the earlier one. The modified algorithm is 

known as the Single-Pass STOCH algorithm and there is no empirical evidence of more accuracy of the 

original STOCH (double pass) algorithm over the Single Pass STOCH. In the next section we will 

describe the steps in the algorithm and its different modules. 

 

4. DATA AND HYPOTHESES 

We compute and apply criticality measures on two test networks. will be investigated in the current 

research. Both of them represent transportation road network and the traffic flows on the links will be 

computed using the deterministic traffic user equilibrium formulation. 

Sioux-Falls network: 

Sioux Falls is the largest city in the U.S. state of South Dakota. It is considered as the fastest growing 

metro in the Midwest with a total growth of 22% in 2000
1
. We use the road network of the city of Sioux 

Falls as a test bed for the proposed formulation. Note that, Sioux Falls network is often considered as 

artificial
2
 because of its slight contrast with the actual network. The network consists of 24 nodes and 76 

arcs. For traffic flow analysis, 24 zones will be considered. As per the four- step transportation planning 

process trips are originated in and attracted to the zones. Thus, there will 24 origin destination pairs and 

the trip demands (as a trip-table) are provided with the data. In the transportation science literature, 

variations of Sioux Falls network exist, but the variations are mostly in the generalized cost
3
 values. 

Chicago sketch network:  

This data set represents an aggregated sketch of the Chicago region and the data set is provided by the 

Chicago Area Transportation Study. The trip table (i.e., the demand values) mostly represents low-to-

medium congestion scenario in the region. Past studies suggest using higher values of trip demand to 

make the representation more realistic while assessing the effectiveness of any algorithm. The network 

has 933 nodes and 2950 links. There are 387 zones in the network. 

Hypothesis 1: 

The traffic flow values are correlated with the structural properties (centrality values) of the 

links (nodes in the dual graph). The links with higher centrality values are expected to carry 

more flows compared to links with smaller centrality values. 

 

To test this hypothesis, we compute different centrality measures for the nodes in the dual graph. 

The centrality measures include: closeness, betweenness, flow betweenness, and information 

centrality.  We used the tool UCINET for this purpose. Further, using the STOCH algorithm 

(described in the earlier section) the link flow values are computed. We developed a program in 

visual C++ that gives the link flows as output.  To find any correlation that exists between flow 

values and centrality measures, a simple linear relationship is assumed between them. We 

consider the link flow as dependent variable and centrality measures as the explanatory variables. 

Using simple regression the coefficient values and corresponding t-stat values are examined to 

reach any conclusion about the hypothesized correlation. Again, we plot the centrality measures 

and flow values on the same graph to investigate the data fit (R-Squared value). 

                                                      
1
 http://en.wikipedia.org/wiki/Sioux_Falls,_South_Dakota 

 
2
 http://www.bgu.ac.il/~bargera/tntp/ 
3
 Travel cost from node i to j can be expressed as a generalized cost comprising travel time, tolls, perceptions, latent 

choices etc. Here we are assuming the generalized cost function is given and the formulation of the function is 

beyond the scope of this research paper. 
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Hypothesis 2: 

The most critical nodes in the network have higher value of criticality index. 

 

Two key performance measures: total system wide travel time and accessibility will be 

investigated to validate this hypothesis. Using function defined in the algorithm section, we 

compute the criticality indices of the nodes and ranked according to their values. The higher 

values indicate more importance for the node (i.e. the road link in the network). Then a distinct 

approach is adopted to investigate the efficacy of the criticality index values.  First the edges in 

the network are removed in a random fashion and the network performance is computed after 

each edge removal. Then, the edges are removed again but this time according to centrality index 

values and performance measures are computed. We plot them in the same graph to observe the 

deviation pattern. When the edges are removed using criticality index, we would expect a sharper 

drop of performance compared to random edge removal. 

 

5. RESULTS AND DISCUSSIONS 

Results for Hypothesis 1: 

The following table presents the results obtained from linear regression models in which link flow is 

dependent variable and centrality measures are the regressors. Both link flow and centrality measures are 

normalized and are unit less. 

 

Results for Sioux Fall Data: 

 
Table 1 Results from regression (Sioux-Falls Data) 

Models/Independent variables Coefficient t-stat Prob 

Dependent Variable    

Link flow    

Explanatory Variables    

Model-1    

Constant -0.259 -1.032 0.309 

CloseNess Centrality 0.947 3.036 0.004 

    

Model-2    

Constant 0.32 5.208 0 

BetweenNess Centrality 0.492 3.299 0.002 

    

Model-3    

Constant -0.042 -0.203 0.84 

Information Centrality 0.685 2.622 0.13 

    

Model-4    

Constant 0.127 0.586 0.562 
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Models/Independent variables Coefficient t-stat Prob 

BetweenNess Centrality 0.386 2.057 0.047 

Information Centrality 0.294 0.936 0.355 

    

Model-5    

Constant -0.004 -0.012 0.991 

BetweenNess Centrality 0.33 1.536 0.134 

Information Centrality -0.042 -0.061 0.951 

CloseNess Centrality 0.52 0.556 0.582 

 

First, we include individual centrality measures in the regression (Model 1-3).  From Model-1 and Model-

2 we can conclude that, closeness centrality and betweenness centrality are linearly correlated with flows 

on the links. The t-stat values on the coefficients of closeness and betweenness centrality imply that with 

95% 
4
confidence the coefficients are different from zero and thus statistically significant. However, 

model-3 indicates the information centrality is not linearly correlated with flow values if the t-stat value 

of the coefficient on information centrality is considered. 

Further, we included different centrality measures at the same time as explanatory variables (in model-4 

and model-5). But, the coefficients are statistically insignificant in both of the cases as shown in the table 

above. In following figures the plots with respective R
2
 values are shown: 

 

 

 
 

 

Figure 1: Correlation between traffic flow and information centrality (Sioux-Falls data) 

                                                      
4
 95% confidence is only an arbitrary choice to indicate significance, in this research we use 95% for more accuracy 
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Figure 2: Normal P-P plot-flow vs. information centrality (Sioux-Falls data) 

        

 
 

 

Figure 3: Correlation between traffic flow and closeness centrality (Sioux-Falls data) 
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Figure 4:  Normal P-P plot-flow vs. closeness centrality (Sioux-Falls data) 

        

 
 

Figure 5: Correlation between traffic flow and betweenness centrality (Sioux-Falls data) 
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Figure 6: Normal P-P plot-flow vs. betweenness centrality (Sioux-Falls data) 

 

Results for Chicago data: 

 
Table 2: Estimated results from regression (Chicago data) 

 Models/Varaibles Coefficient t-stat Prob 

Dependent Variable    

Link flow    

    

Model-1    

Constant -7.534772664 -7.82097 0.00000 

CloseNess Centrality 8.097182868 8.146282 0.00000 

    

Model-2    

Constant 0.141943101 4.902536 0 

BetweenNess Centrality 0.653010631 6.792568 0 

 

The coefficients have high t-stat values for closeness and betweenness centrality. One should notice that 

the constant in each regression also has a very high value. This implies that, there are other unobserved 

factors that affect link flows. 
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Figure 7 Correlation between Flow and Closeness Centrality (Chicago data) 

 
Figure 8 Normal P-P plot-flow vs. closeness centrality (Chicago data) 
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Figure 9 Correlation between flow and betweenness centrality (Chicago data) 

 
Figure 10 Normal P-P plot--flow vs. betweenness centrality (Chicago data) 
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Results for Hypothesis 2: 

The following graphs are plotted for Sioux-Falls data. Results for Criticality Index effectiveness: 

 

 
 

Figure 11 Accessibility (Number of zones affected along Y-Axis) vs. Edge removal (Along X-axis) 

 

 
 

Figure 12 Total System Travel time (along Y-Axis) vs. Edge removal (along X-Axis) curve. 

 

In the first graph (Fig. 5.3) we can observe the effect of edge removal based on criticality index is more 

compared to the case when the edges are removed randomly. 

For the second graph (Fig. 5.4), initially the increment of total system wide travel time is more (increment 

in travel time indicates reduction in network performance), but later the effect stabilizes. The effect of 

removal of random edges is not uniform rather random in manner. 

 

Results for Chicago Data: 

In this network there are 387 by 386 origin destination pairs. Since the network is large, there are many 

alternative routes and removing just a few edges (5-10) do not affect the total system travel time or 

accessibility to a significant level. For example, when we remove 5 edges the total system travel time 
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reduction is expected to be 15~18 minutes. Since the total system travel time and accessibility do not 

show much deviation, we do not include them in our results. 

 

 

 

Correlation between flow and centrality measures: 

- The R
2
 values are very low in plotted graphs for both Sioux Fall and Chicago Data. 

However, R
2
 value only indicates how much variation is explained by the available data. 

This implies, there are other variables those contribute to the link flow values in the road 

network. This makes sense because flows on the link depends on many factors ( e.g. 

travel time, route choice, weather, personal characteristics like income, vehicle 

ownership). Additionally, as mentioned in the algorithm section the link flows are 

computed from a probabilistic logit based model that accounts for unobserved factors. So, 

it is reasonable to get low values when we are using a single explanatory variable. 

- The most important thing to notice is that, the coefficients on the centrality measures 

(specifically for closeness and betweenness centrality) are statistically significant (95% 

level). This indicates the presence of correlation between link flow and structural 

centrality measures. 

- So, the results obtained from our two specific data sets support the first hypothesis. 

 

Effectiveness of criticality index: 

The plotted graphs (see Fig. 5.3 and Fig. 5.4) clearly indicate drop in system performance when 

edges in the road network are removed based on the criticality index values. When we compare 

(Sioux Fall data) this with the case where the edges are removed in a random fashion, it is 

observed that the deviation takes place relatively faster in case where we use centrality index 

values to remove the edges. However the deviation in system performance for large network like 

Chicago sketch is found to be very small and not significant. 387 by 386 or149382 origin 

destination pairs are computationally expensive when we have to consider each origin-

destination pair separately to assign flows and compute the system travel time. Additionally for 

each origin-destination pair, when we remove the edges a new configuration of the network 

occurs and added to the complexity of the problem. For these reasons, the Chicago network is 

examined only for few zones and the results were not significant. 

 

If we consider the results obtained from Sioux Fall network, then we can conclude that the 

criticality index values are effective to identify the critical edges of the network that affect the 

system performance of the network and our second hypothesis is supported for Sioux Fall 

network. However, we need to verify it for other data sets to reach a generalized conclusion.  

 

 

6. CONCLUSIONS 

This research investigates the structural graph properties of surface road transportation networks. Surface 

transportation road networks have the topological properties similar to complex social networks, but very 

few attempts are made to explore the structural properties of road networks. In this research, we 

investigate the correlation between traffic characteristics i.e. link flows and centrality measures. We 

assumed linear relationship between link flow and the structural centrality values and used simple 

regression techniques to find correlation. The centrality measures are used as explanatory variables for 
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link flows and found to be statistically significant (closeness and betweenness centrality measures) with 

95% confidence interval. 

 Further, we have defined criticality index to identify the important road links in a network. The 

graphical plots (Edge removal vs. efficiency drop) clearly show the effectiveness of the index. However 

the effectiveness could not be shown for the larger Chicago network. The most important finding of this 

research is the correlation between traffic characteristics and structural characteristics of surface road 

transportation networks. Since betweenness centrality measures capture the importance of the nodes when 

the network is meant for flow of some entity (information or commodity or human or else) intuitively we 

can say it is feasible to find correlation between flow and centrality measures and it is also observed in the 

results we have shown here. Additionally, the criticality index can serve as useful direction for assessing 

vulnerability. However, we need to validate its effectiveness with larger data sets. 

We followed a very simple statistical method is this research to show correlation. This is specific to the 

road networks we used only. Again, correlation does not mean causality. The correlation may be just the 

artifact of data sets only.  

As a future research direction, both structural properties (centrality measures) and traditional traffic 

characteristics can be jointly formulated in a single function to explain the link flows. Additionally, the 

economic importance can also be included for trip attraction zones and we can modify the criticality index 

to identify critical components of a network comprising different infrastructures instead of roads. 
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