
ORNL/TM-2016/80

Qualification of Simulation Software for
Safety Assessment of Sodium-Cooled
Fast Reactors: Requirements and
Recommendations

Nicholas R. Brown
W. David Pointer
Matthew T. Sieger
George F. Flanagan
Wayne Moe, INL
Mark Holbrook, INL

April 2016

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

http://www.osti.gov/scitech/
http://www.ntis.gov/help/ordermethods.aspx
http://www.osti.gov/contact.html

ORNL/TM-2016/80

Reactor and Nuclear Systems Division

QUALIFICATION OF SIMULATION SOFTWARE FOR SAFETY ASSESSMENT OF
SODIUM-COOLED FAST REACTORS: REQUIREMENTS AND

RECOMMENDATIONS

Nicholas R. Brown
W. David Pointer
Matthew T. Sieger
George F. Flanagan
Wayne Moe, INL

Mark Holbrook, INL

Date Published: April 2016

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

LIST OF FIGURES .. v
LIST OF TABLES .. v
ACRONYMS .. vii
ACKNOWLEDGEMENTS ... ix
1. INTRODUCTION .. 1

1.1 BACKGROUND .. 1
1.2 GOAL AND OBJECTIVES ... 1
1.3 ASSUMPTIONS AND CONDITIONS .. 1

2. REQUIREMENTS AND GUIDANCE .. 2
2.1 DOE-EH-4.2.1.2-Criteria .. 9
2.2 EPRI Technical Report 3002002289 .. 10
2.3 NUREG/IA-0463 .. 10
2.4 NRC NUREG/BR-0167 .. 11
2.5 NUREG-1737 ... 17
2.6 DOE ORDER 414.D ... 17
2.7 ASME NQA-1-2008/2009 STANDARD ... 18
2.8 IEEE SOFTWARE DEVELOPMENT STANDARDS .. 19

2.8.1 IEEE 1228-1994, Standard for Software Safety Plans [15] ... 19
2.8.2 IEEE 1058-1998, Standard for Software Project Management Plans [16] 19
2.8.3 IEEE 828-2005, Standard for Configuration Management is Systems and

Software Engineering [17] ... 19
2.8.4 IEEE 730-2002, Standard for Software QA Processes [18] .. 19
2.8.5 IEEE 829-1998, Standard for Software and System Test Documentation [19] 20
2.8.6 IEEE 1012-2004, Standard for System and Software V&V [20] 20

3. PRACTICES FROM OTHER CODES AND SOFTWARE PACKAGES .. 20
3.1 SCALE .. 20

3.1.1 Introduction to SCALE .. 20
3.1.2 Summary of the SCALE QA Process .. 20
3.1.3 Components of the SCALE QA Process .. 22
3.1.4 SCALE QA Process Overview .. 23
3.1.5 SCALE Testing, Validation, and Verification ... 23
3.1.6 Lessons learned and Path Forward... 26

3.2 SAPHIRE .. 26
3.2.1 Introduction to SAPHIRE .. 26
3.2.2 Summary of SAPHIRE QA Process .. 26
3.2.3 Components of the SAPHIRE QA Process .. 28
3.2.4 Testing, V&V, and Internal, Automated, and External Testing 28
3.2.5 V&V testing ... 30
3.2.6 Lessons Learned... 31

3.3 RELAP-5-3D .. 32
3.3.1 Introduction to RELAP5-3D .. 32
3.3.2 Licensing Use of RELAP5-3D .. 32
3.3.3 Summary of the RELAP5-3D QA Process .. 33
3.3.4 Components of the RELAP5-3D QA Process ... 33
3.3.5 RELAP-3D Testing, V&V ... 35
3.3.6 Lessons Learned... 36

3.4 TRACE ... 37
3.4.1 Introduction to TRACE .. 37

iv

3.4.2 Summary of the TRACE QA Process .. 38
3.4.3 Components of the TRACE QA Process ... 38
3.4.4 TRACE Testing, Validation, and Verification ... 39
3.4.5 Lessons Learned and Path Forward ... 40

3.5 MPACT (CASL) ... 41
3.5.1 Introduction to MPACT ... 41
3.5.2 Summary of the MPACT QA Process ... 41
3.5.3 MPACT Testing, Validation and Verification ... 42
3.5.4 Lessons Learned and Path Forward ... 44

4. RECOMMENDATIONS FOR SFR SAFETY ANALYSIS CODE QUALIFICATION 44
4.1 Evaluation ... 45
4.2 NQA-1-2008/2009 compliant SQA program .. 46
4.3 SUPPORT for COMMERCIAL-GRADE DEDICATION ... 48

5. REFERENCES ... 49
APPENDIX A. OBJECT-ORIENTED AND PROCEDURAL TEST EXAMPLES A-1
APPENDIX B. CODE SNIPPET FROM MPACT UNIT TEST ... B-1
APPENDIX C. EXAMPLE CHECKLISTS FROM NUREG-1737 A ... C-1

v

LIST OF FIGURES

Fig. 1. Notional diagram of SCALE regression suite development process. .. 22
Fig. 2. CDash SCALE automated testing suite. .. 25
Fig. 3. SAPHIRE QA process. .. 27
Fig. 4. SAPHIRE release management process. ... 29
Fig. 5. Types of testing used during SAPHIRE development process. ... 29
Fig. 6. RELAP5-3D functional use analysis. .. 36
Fig. 7. NRC code development and assessment framework from Reference 40
Fig. 8. Example regression test and solution from Reference 40. ... 44

LIST OF TABLES

Table 1. Cross index of QA activities with relevant requirements and guidance ... 5
Table 2. Summary of typical life cycle activities and documents [Table 1-1 in NUREG/BR-0167,

1993] .. 12
Table 3. Elements of software QA [Table 1 in NUREG-1737] .. 17
Table 4. Mapping of NUREG/BR-0167 guidelines to SCALE QA plan [23] .. 21
Table 5. Contacts and expectations for notification of safety-significant software errors [18] 24
Table 6. RELAP5-3D software QA tasks ... 34
Table 7. Fundamental validation assessment cases for TRACE, from Reference 34 39
Table 8. NRC regression suite for TRACE verification from Reference 34. ... 40
Table 9. Unit and regression test coverage in MPACT from Reference 36 .. 42
Table 10. Building blocks of core MPACT features covered by regression testing, adapted from

Reference 36 .. 42
Table 11. Plan for SQA Evaluation of existing safety analysis software (Reproduced from DOE-

EH-4.3.1.2-Criteria Table 2-2) ... 45

vii

ACRONYMS

ACRS Advisory Committee on Reactor Safeguards
ASME American Society of Mechanical Engineers
CAMP Code Assessment and Maintenance Program
CASL Consortium for Advanced Simulation of Light Water Reactors
CSAU code scaling, applicability, and uncertainty
DOE US Department of Energy
FCT Fuel Cycle Technology
IEEE Institute of Electrical and Electronics Engineers
INL Idaho National Laboratory
IRUG International RELAP5 User Group
LOCA loss of coolant accidents
LWR light water reactor
MPACT Michigan Parallel Characteristics Transport Code
NEAMS Nuclear Energy Advanced Modeling and Simulation
NPP nuclear power plant
NRC US Nuclear Regulatory Commission
PIRT Phenomena Identification and Ranking Table
PRA probabilistic risk assessment
QA quality assurance
RCS revision control system
RSICC Radiation Safety Information Computational Center
SFR sodium-cooled fast reactor
SP3 simplified P3 transport
SPC Siemens Power Corporation3-D three-dimensional
SQA software quality assurance
SQAP software quality assurance program
V&V verification and validation
VERA-CS Virtual Environment for Reactor Applications Core Simulator

ix

ACKNOWLEDGEMENTS

We gratefully acknowledge B. Rearden (ORNL), M. Muhlheim (ORNL), L. Briggs (ANL), A. Brunett
(ANL), and T. Fanning (ANL) for their insightful review comments.

1

1. INTRODUCTION

1.1 BACKGROUND

As simulation software for nuclear system performance and safety assessment continues to evolve, so do
the best practices, processes, and procedures for qualification of that software, especially for safety
applications. Many guidance documents and industry standards offer recommendations, or even
requirements, for successful qualification of code. They often reflect the unique qualities of the specific
application for which they were first developed, and there is little consistency in the structure of one
guidance document or standard versus another. The software qualifier is then left to piece together
standards that satisfy the overarching guidance of the organization completing or reviewing the work.

In preparing this report, the authors reviewed not only relevant guidance documents and standards, but
also the best practices of software packages and codes accepted as qualified by relevant regulatory bodies.
From these reviews some common actions for code qualification can be identified:

1. In order to make an assessment, requirements must be clearly defined for both functional
performance and application readiness.

2. All processes (e.g., project management, design, implementation, configuration management,
validation, verification, noncompliance monitoring) must be documented and utilized.

3. A configuration management strategy must be established and utilized for all source code, test
suites, test results, and documentation.

4. Source code must be verified, either manually or automatically, to confirm that models are
implemented correctly and that source code is written correctly and operates correctly on all
supported platforms.

5. Simulations of supported applications must be validated against experimental data.
6. Noncompliance and resulting actions must be documented.
7. The entire quality assurance (QA) program must be routinely audited to confirm compliance.

The following sections of this report provide additional details on guidance and requirements (Sect. 2),
best practices adopted by qualified software teams as well as teams in the process of initially qualifying
software (Sect. 3), and recommendations based on the authors’ analysis of the experiences in qualification
of software for regulatory use (Sect. 4).

1.2 GOAL AND OBJECTIVES

The goal of this review is to enable application of codes or software packages for safety assessment of
advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the
authors have focused on two objectives. First, the authors have focused on identification of requirements
for software QA that must be satisfied to enable the application of software to future safety analyses.
Second, the authors have collected best practices applied by other code development teams to minimize
cost and time of initial code qualification activities and to recommend a path to the stated goal.

1.3 ASSUMPTIONS AND CONDITIONS

In the development of this document, the authors have assumed that these requirements, guidelines, and
best practices may be applied in support of qualifying one or more engineering software codes for the
assessment of safety performance of advanced SFRs. The authors assume that the software will not be
used as safety software providing real-time control of actuators or sensors in a nuclear facility.
Furthermore, the authors assume that, while the software may be used to support safety-significant
decision making, the software should never be used as the sole basis for decision making. The authors
anticipate that the users of the qualified code are reactor designers, license applicants, evaluators of

2

completed assessments, and regulators. The authors anticipate that the users of this report and
recommendations contained herein are primarily associated with the code development team rather than
end users. The authors further anticipate that this document will used to support baseline code
qualification efforts rather than qualification of a specific safety or performance analysis, and do not
intend for this report or recommendations contained herein to be used as a surrogate for relevant
regulations and guidance.

To provide more focused comments, the authors have assumed that the initial application of these
recommendations will focus on the SFR system safety performance code SAS4A/SASSYS. However, the
report is expected to provide useful guidance for any nuclear code developers interested in using their
code in performing safety analyses that may be used in the regulatory process regardless of reactor
technology option.

2. REQUIREMENTS AND GUIDANCE

For U.S. nuclear power plants and fuel reprocessing plants, the QA requirements are set by 10 CFR Part 50
Appendix B. The U.S. Nuclear Regulatory Commission (NRC) oversees the licensing and operation of such
plants. The licensing process ensures that the requirements of 10 CFR Part 50 Appendix B are met.

The NRC Regulatory Guide 1.28 Quality Assurance Program Criteria (Design and Construction) [1]
describes the methods that the NRC considers acceptable for complying with 10 CFR 50 Appendix B. The
regulatory position stated therein explicitly endorses the requirements included in the American Society of
Mechanical Engineers (ASME) NQA-1-2008 and the NQA-1a-2009 Addenda (collectively referred to as
NQA-1-2008/2009) [2] as providing an acceptable basis for complying with the CFR, subject to a set of
additions and modifications (concerned with recordkeeping and audits) specified in Section C of the Guide.

Specific requirements applicable to software are defined in NQA-1-2008/2009 Part II Subpart 2.7 Quality
Assurance Requirements for Computer Software for Nuclear Facility Applications. Guidance for the
implementation of Part II Subpart 2.7 requirements is given in Part IV Subpart 4.1 Application Appendix:
Guide on Quality Assurance Requirements for Computer Software.

The NQA-1-2008/2009 standard requires that software not produced under a QA program compliant with the
standard be dedicated in accordance with the requirements of Part II, Subpart 2.14, Quality Assurance
Requirements for Commercial Grade Items and Services. The Electric Power Research Institute (EPRI)
Technical Report 3002002289, Plant Engineering: Guidelines for the Acceptance of Commercial-Grade
Design and Analysis Computer Programs Used in Nuclear Safety-Related Applications (2013) [3] provides
detailed guidance for licensees and nuclear suppliers regarding the dedication process. It is this process that
licensees are likely to attempt to apply to SAS4A/SASSYS, and so care should be taken to fully understand
the supplier QA processes and evidence needed to support commercial-grade dedication.

For existing data used in software validation activities, the guidance in NQA-1-2008/2009 Part III Subpart
3.3, Nonmandatory Appendix 3.1: Guidance on Qualification of Existing Data should be used.

NUREG/IA-0463 (2014) presents a report issued by the International Regulator Task Force on Safety
Critical Software [4]. This report identifies common (consensus) positions on the technical basis for
licensing reviews of safety-critical software for nuclear reactors. While the report is not a product of the US
NRC or other US government agency, the NRC published it as a NUREG/IA document because it considers
the content a valuable technical reference that can be used for future improvements in NRC’s regulatory
guidance and to inform current licensing reviews. The report provides excellent guidance on the specific
criteria that new and existing software applications are evaluated against for licensing approval. The focus is
on digital control systems for safety purposes, but guidance is given as well for a graded approach applicable
to existing software used in safety-related applications in Section 1.11 of the document.

NUREG/BR-0167, Software Quality Assurance Program and Guidelines [5] was first published in 1993 to
provide guidance to NRC organizations and contractors in the development and maintenance of software for

3

use by the NRC staff. The report defines the expected quality-assured development process, identifies
required documentation, and, in some cases, provides example documentation outlines. NUREG/BR-0167 is
not explicitly based upon the requirements of NQA-1-2008/2009 Part II Subpart 2.7, and so care should be
taken to ensure that all requirements are fulfilled if the guidance is used. The NRC provides supporting
guidance and checklists specific to thermal hydraulic codes in NUREG-1737, Software Quality Assurance
Procedures for NRC Thermal Hydraulic Codes [6].

For DOE activities with the potential to affect nuclear safety, the source of QA requirements is 10 CFR 830
Subpart A; the NRC does not license DOE facilities. The regulatory regime is therefore different.

QA requirements for activities regulated by the U.S. Department of Energy (DOE) are given in DOE Order
414.1D [7]. DOE encourages contractors to apply appropriate industry standards in the development of QA
plans and documentation that are consistent with the quality rigor level associated with anticipated end use,
and explicitly endorses the use of NQA-1-2008/2009 for activities related to nuclear safety, including
software. The aforementioned requirements stated in NQA-1-2008/2009 Part II Subpart 2.7 are therefore
regarded as an acceptable means of complying with DOE O 414.1D and 10 CFR 830 Subpart A for software
development.

DOE describes suggested approaches to satisfy SQA requirements for nuclear safety-related applications in
DOE Guide 414.1-4, Safety Software Guide for Use with 10 CFR 830 Subpart A, Quality Assurance
Requirements and DOE O 414.1C, Quality Assurance [8], which was published in 2005.

An especially relevant and useful reference is DOE-EH-4.2.1.2-Criteria Software Quality Assurance Plan
and Criteria for the Safety Analysis Toolbox Codes [9]. This report outlined the plan to qualify six computer
codes used primarily for accident analysis; ALOHA, CFAST, EPIcode, GENII, MACCS2, and MELCOR,
many of which had an uncertain SQA pedigree. Although the plan focuses on qualification of the codes for
DOE use and not specifically for NRC licensing, many of the activities defined in this document are directly
relevant to the problem of upgrading SAS4A/SASSYS SQA for licensing use. Of particular interest are the
requirements and procedures described in Tables 3-3.1 through 3-3.8.

The DOE Office of Nuclear Energy’s Fuel Cycle Technologies (FCT) Program has established a QA
Program Document [10], revised in 2012, which provides further guidance on assessing quality rigor level,
identification of related requirements, and implementation of appropriate QA activities as part of product
development within that program. The DOE Office of Nuclear Energy’s Nuclear Energy Advanced
Modeling and Simulation (NEAMS) Program has developed similar guidance in a Software QA Plan [11],
published in 2013.

In the course of satisfying SQA requirements, the software developer may apply one or several industry
standards to support the specific implementation strategy adopted. Table 1 shows how relevant orders,
standards and guidance relate to software quality assurance activities. The table provides only an index to
support further review by the developer and does not provide a comprehensive mapping of activities.

Relevant industry standards may include

• ASME verification and validation (V&V) 20, Standard for V&V in Computational Fluid Dynamics
and Heat Transfer.

• ASME V&V 30, Standard for V&V of Software for Nuclear Applications
• ANSI/ANS-10.4-1987 (R1998), Guidelines for the V&V of Scientific and Engineering Computer

Programs for the Nuclear Industry, American Nuclear Society, 1987.
• ANSI/ANS-10.7-2013: Non-Real-Time, High-Integrity Software for the Nuclear Industry--

Developer Requirements, American Nuclear Society, 2013.
• IEEE standard series:

- IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of Software Engineering Terminology,
The Institute of Electrical and Electronics Engineers, 1990, E-ISBN 0-7381-0391-8.

4

- IEEE Std 730-2002, IEEE Standard for Software Quality Assurance Plans, The Institute of
Electrical and Electronics Engineers, 2002, ISBN 0-7381-3258-3.

- IEEE Std 828-2005, IEEE Standard for Software Configuration Management Plans, The
Institute of Electrical and Electronics Engineers, 2005, ISBN 0-7381-4764-8.

- IEEE Std 829-1998, IEEE Standard for Software Test Documentation, The Institute of Electrical
and Electronics Engineers, 1998, ISBN 0- 7381-1443-X.

- IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications,
The Institute of Electrical and Electronics Engineers, 1998, ISBN 0-7381-0332-2.

- IEEE Std 1008-1987 (R2002), IEEE Standard for Software Unit Testing, The Institute of
Electrical and Electronics Engineers, 1986, E-ISBN 0-7381-0400-0.

- IEEE Std 1012-2004, IEEE Standard for Software V&V, The Institute of Electrical and
Electronics Engineers, 2005, ISBN 0-7381-4641-2.

- IEEE Std 1016-1998, IEEE Recommended Practice for Software Design Descriptions, The
Institute of Electrical and Electronics Engineers, 1998, ISBN 0-7381-1455-3.

- IEEE Std 1028-1997, IEEE Standard for Software Reviews, The Institute of Electrical and
Electronics Engineers, 1998, ISBN 1- 55937-987-1.

- IEEE Std 1044-1993 (R2002), IEEE Standard Classification for Software Anomalies, The
Institute of Electrical and Electronics Engineers, 1994, ISBN 0-7381-0406-X.

- IEEE Std 1058-1998, IEEE Standards for Software Project Management Plans, The Institute of
Electrical and Electronics Engineers, 1998, ISBN 0-7381-1447-2.

- IEEE Std 1061-1998 (R2004), IEEE Standard for Software Quality Metrics Methodology, The
Institute of Electrical and Electronics Engineers, 1998, ISBN 0-7381-1059-6.

- IEEE Std 1074-2006, IEEE Standard for Developing Software Life Cycle Processes, The
Institute of Electrical and Electronics Engineers, 2006, ISBN 0-7381-4956-X.

- IEEE Std 1228-1994, IEEE Standard for Software Safety Plans, The Institute of Electrical and
Electronics Engineers, 1994, ISBN 0-7381- 0420-5.

- IEEE Std 1233-1998, IEEE Guide for Developing System Requirements Specifications, The
Institute of Electrical and Electronics Engineers, 1998, ISBN 0-7381-0337-3.

The IEEE standards are not explicitly focused on nuclear code qualification, but they provide useful
guidance for code QA in general.

It should be noted that it is the licensee who is ultimately responsible for meeting the requirements listed
above. The goal of the software owners should be to support that licensing process with sufficient evaluation,
verification, validation, configuration control, and problem reporting processes to enable the software’s use
in the licensing arena.

Guides and standards that were identified as particularly helpful are further discussed in sections 2.1-2.x
below.

5

Table 1. Cross index of QA activities with relevant requirements and guidance

Software QA
Activity

NQA-1-2008/2009
Part II Subpart 2.7

NUREG/IA-0463 NUREG/BR-0167 NUREG-1737 DOE-EH-4.2.1.2-
Criteria

DOE G 414.1-4 Other useful
standards

Software Project
Management

Part I, Requirement 1
Organization

Section 1.6
Organizational
Requirements

Section 5 Project
Management,
Section 4.2 Software
Project Plan

Section 3.1.1 Activity 1 – Software
project management and
quality planning

IEEE 1058

Quality Assurance
Program & Plan

Part I, Requirement 2
QA Program

Section 1.7 Software
Quality Assurance
Program and Plan

Section 8 Quality
Assessment and
Improvement

 Table 3-3.1.2 SQA
Procedure/Plans,

 ANSI/ISO/ASQ
Q9001-2015
IEEE 730  
IEEE 1028
IEEE 1061
IEEE 1228

Software Project
Risk Management

 Section 5.8 Risk
Management

 Activity 2 – Software
Risk Management

Configuration
Management

Section 203 Software
Configuration
Management

Section 2.7 Change
Control and
Configuration
Management

Section 6
Configuration
Management

Section 5.0
Configuration Control

Table 3-3.7.12
Configuration
Control

Activity 3 – Software
configuration
management

IEEE 828
IEEE 1008
IEEE 1233

Procurement &
Supplier
Management

Section 300 Software
Acquisition

Section 1.4 Pre-existing
Software (PSW)

 Table 3-3.1.3
Dedication

Activity 4 – Procurement
and Supplier
Management

Requirements Section 401 Software
Design Requirements

Section 2.1 Computer
Based System
Requirements,
Section 2.3 Software
Requirements,
Architecture and Design

Section 2.2
Requirements
Definition

Section 3.2
Requirements
Definition,
Section 4.3 Software
Requirements
Documentation

Table 3-3.1.5
Requirements Phase

Activity 5 – Software
requirements
identification and
management

IEEE 830

Design Section 402 Software
Design

Section 2.2 Computer
System Architecture
and Design,
Section 2.3 Software
Requirements,
Architecture and Design

Section 2.3 Design,
Section 4.4 Design
Documentation

Section 3.3
Software Design,
Section 4.4 Design
Documentation

Table 3-3.3.6
Design Phase

Activity 6 – Software
design and
implementation

IEEE 1016

Implementation Section 403
Implementation

Section 2.4 Software
Implementation

Section 2.4
Implementation,
Section 4.5
Implementation
Documentation

Section 3.4 Coding Table 3-3.4.6
Design Phase,
Table 3-3.4.7
Implementation
Phase

Activity 6 – Software
design and
implementation

6

Software Failure
Analysis

 Section 1.2 System Classes,
Function Categories and
Graded Requirements for
Software,
Section 1.13 Software
Reliability

Support Software Section 600 Support
Software

Section 1.5 Tools

Testing Section 404
Acceptance Testing

Section 2.5 Verification Section 2.5 Qualifications
Testing

Section 3.5
Validation Testing

Table 3-3.5.8
Testing Phase

Activity 8 –
Verification and
Validation (V&V)

ANSI/ANS-
10.4
IEEE 829
IEEE 1012

Reviews Section 202 Review Section 1.11 Graded
Requirements for Safety Related
Systems (New and Pre-existing
Software)

 Table 3-3.1.4
Evaluation

Installation &
Acceptance

Section 404
Acceptance Testing

Section 2.6 Validation and
Commissioning

Section 2.6 Installation
and Acceptance

Section 3.6
Installation and
Acceptance,
Appendix C

Table 3-3.6.10
Acceptance Test

Activity 3 – Software
Configuration
Management

ANSI/ANS-
10.4
IEEE 828  
IEEE 829
IEEE 1233

Operation &
Maintenance

Section 405
Operation,
Section 406
Maintenance

Section 2.8 Operational
Requirements

Section 2.7 Operations
and Sustaining
Engineering

Section 4.0 Error
Corrections and
Code Maintenance

Table 3-3.7.11
Operation and
Maintenance

Activity 3 – Software
Configuration
Management,
Activity 9 – Problem
reporting and
corrective action

IEEE 828  

Verification &
Validation

Section 402.1
Software Design
Verification,
Section 404
Acceptance Testing

Section 2.5 Verification,
Section 2.6 Validation and
Commissioning

Section 3 V&V,
Section 4.6 V&V
Documentation

Sections 3.2.2, 3.3.2,
3.4.2, 3.5, 3.6.4,
3.6.5

 Activity 8 – V&V ANSI/ANS-
10.4
ASME V&V
20
ASME
V&V30
IEEE 1012
NUREG/CR-
5249

Problem
Reporting &
Corrective Action

Section 204 Problem
Reporting and
Corrective Action

 Section 7
Nonconformance
Reporting and Corrective
Action

Section 4.0 Error
Corrections and
Code Maintenance

Table 3-3.8.13
Error Impact

Activity 9 – Problem
reporting and
corrective action

IEEE 730
IEEE 828
IEEE 1044

7

Training Section 5.7 Training Activity 10 – Training of Personnel in
the Design, Development, Use, and
Evaluation of Safety Software

Documentation Section 201
Documentation

 Section 4
Documentation and
Deliverables

Sections 3.1.1, 3.1.2, 3.2.1,
3.5.1, 3.6.3, 3.6.5, 5.1, 6.0,
Appendix A, Appendix B

Table 3-3.6.1 User
Instructions
Table 3-3.1 through 3-3.8
give specific documentation
requirements

Activities 1-10

Audit &
Assessment

Part I,
Requirement 18
Audits

Section 1.10
Independent
Assessment

Section 8 Quality
Assessment and
Improvement

Retirement Section 407 -
Retirement

 Section 2.8 Retirement
and Archiving

9

2.1 DOE-EH-4.2.1.2-CRITERIA

DOE-EH-4.2.1.2-CRITERIA was published by the Defense Nuclear Facilities Safety Board (DNFSB) in
2002 to provide a plan, criteria for the qualification, and implementation procedures to upgrade the SQA for
six safety-related computer codes used primarily for accident analysis [9]. To fulfill the requirements of 10
CFR 830, the Board chose ASME NQA-1-2000 Part II Subpart 2.7 as a baseline standard, and used the
requirements therein to set criteria for evaluating the codes. The evaluation plan (Table 2-2 in the report)
covered the major requirements of NQA-1-2000 with a procedural basis for evaluating software that was
developed mostly outside of NQA-1 requirements, and used in accident analysis applications. The
procedural basis provided instructions for evaluation of existing accident analysis software, referencing
detailed criteria based on NQA-1-2000 compliant requirements (listed in Table 3-3 of the document).

The plan identified the necessary documentation to be produced:

• Software Quality Assurance Plan
• Software Requirements Document
• Software Design Document
• Test Case Description and Report
• Software Configuration and Control Document
• Error Notification and Corrective Action Report
• User’s Manual, and other relevant documentation (model description, weekly or monthly reports to

code sponsor, etc.).

The overall process of SQA evaluation was summarized in eight steps (Section 4.0, Table 4-1):

1. Establish SQA criteria for the codes (Section 3 of the document summarizes the results of this
activity)

2. Provide requested documentation, and estimate resources needed to address deficiencies (Appendix
E summarizes the results of a similar activity for the MACCS2 code)

3. Review the documentation and evaluate the software against the SQA criteria
4. Document code review in “gap” analysis reports
5. Determine minimum required actions to be taken before software will meet SQA criteria
6. SQA documentation upgrade and modification of software to address deficiencies or make

improvements
7. Identify upgraded computer code version to DOE users to central registry (establish baseline

version)
8. Provide configuration management and control of qualified software.

The detailed criteria, plans, and implementation procedures given in DOE-EH-4.2.1.2-CRITERIA were
developed for a situation closely matching that of SAS4A/SASSYS, and provide excellent guidance.
However, some key differences are relevant and should be taken into consideration before adopting their
approach wholesale:

• The process targets DOE requirements and not specifically those of the NRC.
• The version of NQA-1 used is older than the currently endorsed version (NQA-1-2000 vs. NQA-1-

2008/2009), and differences in the standards must be carefully evaluated and applied.
• The commercial-grade dedication process defined in NQA-1-2008/2009 Part II, Subpart 2.14,

Quality Assurance Requirements for Commercial Grade Items and Services was significantly
revised from NQA-1-2000, is likely to be applied by NRC licensees, and should be used as an
additional source of criteria.

10

2.2 EPRI TECHNICAL REPORT 3002002289

In order to be accepted for use in nuclear safety-related applications, software not designed and
manufactured in accordance with a quality assurance program that meets the requirements of 10 CFR Part
50, Appendix B must be dedicated for use in accordance with the requirements of 10 CFR, Part 21, which
sets requirements for the use of “commercial-grade” items in applications important for nuclear safety. EPRI
Technical Report 3002002289 [3] was published in 2013 to provide guidance to the nuclear industry for the
commercial-grade dedication of design & analysis computer programs used in nuclear safety-related
applications. Section 6 of the EPRI report describes a template process by which this dedication may be
accomplished, and provides several examples.

The commercial-grade dedication process in no way absolves the supplier of the need to perform careful
SQA and documentation of the software. A key critical characteristic for dedication is the degree of “built-
in” quality as assured by a structured development process, documentation, conformance to standards,
internal reviews and verifications, thoroughness of testing, training and qualification of developers, and
effective oversight. The critical characteristics described in Tables 6-2 through 6-6 of the report provide a set
of criteria that should be viewed as a potential source of acceptance criteria for the SAS4A/SASSYS SQA
upgrade effort (keeping in mind that the specific set of critical characteristics will vary from licensee to
licensee and from application to application).

2.3 NUREG/IA-0463

NUREG/IA-0463 is a result of a technical exchange between the Regulator Task Force on Safety Critical
Software (TF SCS) for nuclear reactors and the NRC seeking consistency in the technical basis for the
licensing review of software in safety-related digital instrumentation and control systems for nuclear power
plants, and was published by the NRC in December 2015 [4]. The TF SCS is a group of experts from
regulatory and safety authorities in Belgium, Canada, Finland, Germany, Spain, Sweden, and the United
Kingdom as well as their technical-support organizations. The major result of the work is the identification
of consensus and common technical positions (requirements) on a set of important licensing issues raised by
the design and operation of computer based systems used in nuclear power plants for the implementation of
safety functions.

The task force adopted the view that three basic independent types of evidence can and must be produced:
evidence related to the quality of the development process; evidence related to the adequacy of the product;
and evidence of the competence and qualifications of the staff involved in all of the system life cycle phases.
In addition, convincing operating experience may be needed to support the safety demonstration of pre-
existing software.

The issue areas were partitioned into two sets: “generic licensing issues” and “life cycle phase licensing
issues”. Issues in the second set are related to a specific stage of the computer based system design and
development process, while those of the former have more general implications and apply to several stages
or to the whole system lifecycle:

PART 1: GENERIC LICENSING ISSUES

1.1 Safety Demonstration
1.2 System Classes, Function Categories and Graded Requirements for Software
1.3 Reference Standards
1.4 Pre-existing Software (PSW)
1.5 Tools
1.6 Organizational Requirements
1.7 Software Quality Assurance Program and Plan

11

1.8 Security
1.9 Formal Methods
1.10 Independent Assessment
1.11 Graded Requirements for Safety Related Systems (New and Pre-existing Software)
1.12 Software Design Diversity
1.13 Software Reliability
1.14 Use of Operating Experience
1.15 Smart Sensors and Actuators

PART 2: LIFE CYCLE PHASE LICENSING ISSUES
2.1 Computer Based System Requirements
2.2 Computer System Architecture and Design
2.3 Software Requirements, Architecture and Design
2.4 Software Implementation
2.5 Verification
2.6 Validation and Commissioning
2.7 Change Control and Configuration Management
2.8 Operational Requirements

Each section discusses the rationale for the issue, lists specific concerns, and presents consensus
requirements and recommended practices. Many of the requirements and recommendations are applicable to
digital control systems fulfilling safety functions; however, guidance is given on applying a graded
application of requirements to pre-existing software performing a safety-related function, which is a category
more applicable to SAS4A/SASSYS.

2.4 NRC NUREG/BR-0167

NUREG/BR-0167 was first published in 1993 to provide guidance to NRC organizations and contractors in
the development and maintenance of software for use by the NRC staff. NUREG/BR-0167 [5] provides
specific requirements for QA and assessment in all phases of the software development life cycle. The
document defines six steps in the software development life cycle: Requirements Definition, Design,
Implementation, Qualification Testing, Installation and Acceptance, and Operations and Sustaining
Engineering. Expectations are then outlined for planning, execution, testing, and documentation in each of
these areas. This matrixed approach to software QA is summarized in Table 2.

This guidance on software development and qualification in NUREG/BR-0167 [5] should not be confused
with the guidance in NUREG/CR-5249, Quantifying Reactor Safety Margins [12], which is focused on
qualification of analyses of a particular safety-relevant event. The latter document defines the code scaling,
applicability, and uncertainty (CSAU) evaluation methodology. The CSAU methodology is specific to a
single analysis of a particular event or series of events occurring in a particular system design.

13

Table 2. Summary of typical life cycle activities and documents [Table 1-1 in NUREG/BR-0167, 1993]

 Requirements
definition Design Implementation Qualification testing Installation and

acceptance

Operations and
sustaining

engineering
Principal
technical activities
performed

-Analyze
requirements

-Develop
preliminary design
-Develop detailed
design
-Develop
preliminary user
documentation

-Develop unit
designs and unit
code

-Conduct
qualification testing
in accordance with
the qualification test
plan and qualification
test procedures

-Install the software
on the target
computer
-Conduct acceptance
testing in accordance
with the acceptance
test plan and
procedure

-Perform all of the
activities of
development, as
appropriate.
-Perform sustaining
engineering
activities to ensure
that the original
capabilities and
design remain intact.

V&V activities
performed

-Conduct
requirements
inspection
-Conduct software
requirements
review

-Conduct design
inspections
Plan qualification
and acceptance test
-Conduct
preliminary design
review
-Conduct critical
design review

-Develop unit and
integration test
plans and
procedures
-Conduct unit and
integration testing
-Develop
qualification and
acceptance test
procedure

-Witness qualification
tests

-Witness acceptance
tests

-Perform all V&V
activities as
appropriate

Documentation
and deliverables
developed

-Software
requirements
documentation
-Overall V&V plan
-Software project
plan

-Software design
documentation
-Qualification test
plan
-Acceptance test
plan
-Preliminary user’s
documentation

-Qualification test
procedures
-Acceptance test
procedure
-Unit and
integration test
results

-Qualification test
report
-Nonconformance
reports based on test
results
-Final user’s
documentation

-Acceptance test
report
-Nonconformance
reports based on test
results

-Update all
documents, as
required
-Develop new
documentation, as
appropriate

14

Table 2. Summary of typical life cycle activities and documents [Table 1-1 in NUREG/BR-0167, 1993] (continued)

 Requirements
definition Design Implementation Qualification testing Installation and

acceptance

Operations and
sustaining

engineering
Project
management
activities
performed

-Develop software
project plan
-Ensure users
participate in
requirements
definition
-Conduct tracking
and oversight
activities

-Conduct tracking
and oversight
activities
-Re-plan as
required

-Conduct tracking
and oversight
activities
-Re-plan as
required

 -Conduct tracking
and oversight
activities
-Re-plan as required

-Conduct tracking
and oversight
activities
-Re-plan as required

-Conduct tracking
and oversight
activities
-Re-plan as required

Configuration
management
activities
performed

-Develop or update
configuration
management
procedures
-Place software
requirements under
configuration
control (i.e.,
establish the
requirements
baseline)

-Place software
design
documentation
under configuration
control

Place code and
qualification test
documentation
under
configuration
control

-Place software
design documentation
under configuration
control (i.e., establish
the product baseline)

-Place software
design
documentation
under configuration
control (i.e.,
establish the product
baseline)

-Maintain the
baseline and
developmental
configuration
-Establish new
product baseline and
operational baseline

Nonconformance
reporting and
corrective action
activities
performed

-Develop or update
nonconformance
reporting and
corrective action
procedures
-Document
requirements
documentation
nonconformance

-Document design
and requirements
documentation
nonconformance

-Document design
and requirements
documentation
nonconformance

-Document code and
qualification test non-
conformance
-Document design
and requirements
documentation
nonconformance

Document code
acceptance test
documentation
-Document design
and requirements
documentation non-
conformance

-Document all
nonconformances as
applicable

15

Table 2. Summary of typical life cycle activities and documents [Table 1-1 in NUREG/BR-0167, 1993] (continued)

Requirements
definition

Requirements
definition Design Implementation Qualification testing Installation and

acceptance

Operations and
sustaining

engineering
Quality
assessment and
improvement
activities
performed

-Assess software
requirements
documentation and
software project
plan
-Assess
requirement
definition process
-Initiate product
and process
improvement
activities, as
required

-Assess software
design
-Assess the
qualification test
plan and
acceptance test plan
-Initiate product
and process
improvement
activities, as
required

-Assess unit
design, unit code,
unit test plans,
integration test
plans, and
integration test
procedures
-Assess
implementation
process
-Assess
qualification test
procedures and
acceptance test
procedures

-Assess qualification
test results
-Assess qualification
test process
-Initiate product and
process improvement
activities, as required

-Assess qualification
test results
-Assess qualification
test process
-Initiate product and
process
improvement
activities, as
required

-Assess all products
and processes
-Initiate product and
process
improvement
activities, as
required

17

2.5 NUREG-1737

The NRC published NUREG-1737 [6] in 2000 to document procedures used by the NRC and its
contractors in the qualification of thermal hydraulic codes for use by the NRC. NUREG-1737 [6]
references the basic requirements defined in NUREG/BR-0167 [5], but it takes the additional step of
defining best practices in satisfying those requirements for each step in the software product development
life cycle. NUREG-1737 [6] describes characteristics of acceptable procedures, outcomes, and
documentation and includes appendices that provide recommendations for preparing the software QA
plan and checklists to ensure that major components of each step have been completed.

The major activities described in NUREG-1737 [6] and relevant checklists are outlined in Table 3.
Table 3. Elements of software QA [Table 1 in NUREG-1737]

Life cycle Development product Verification & validation
activities Checklist

Initial Planning SOW, Project Plan SQA Plan Management Review QA Forms 03-06
Requirements
Definition

Software Requirements
Specifications

Verification of Requirements 
Review of test plan and
acceptance criteria

QA Form 04

Software Design Software Design and
Implementation Document

Review of Design QA Forms 07-08

Coding Source Code Verification
Testing Report

Review/Inspection of Source
Code
Verification of Program
Integration
Verification of Test Results

QA Form 05

Software Testing Validation Testing Report Validation of Program QA Forms 05-09
Installation and
Acceptance

Installation Package

Upgrading Program
Documentation

Verification of Installation
Package
Verification of Program
Documentation

QA Forms 12,
10, and 11

2.6 DOE ORDER 414.D

The DOE published Order 414.D [7] in 2011 to provide broad QA guidance to ensure that all products
from DOE and from the National Nuclear Security Administration meet customers’ expectations and
requirements. The order primarily focuses on assignment of responsibilities but also clearly requires that
all DOE programs implement a graded QA program and that they define a procedure for QA program
approval and changes and procedures for evaluation of technical capability and qualifications. The order
references several general quality program consensus standards, including

• ASME NQA-1-2008 with the NQA-1a-2009 addenda,  QA Requirements for Nuclear Facility
Applications;  

• ANSI/ISO/ASQ Q9001-2008, Quality Management System-Requirements;
• ANSI/ASQ Z 1.13-1999, Quality Guidelines for Research;  
• DOE-STD-1150-2002, QA Functional Area Qualification Standard; and
• DOE STD-1172-2003, Safety Software QA Functional Area Qualification Standard.

Order 414.1D [7] itself is not specific to software QA. However, DOE Guide 414.1-4 was published in
2005 as a supplementary, nonmandatory guidance document to clarify application of Order 414.1C [8] to

18

software used in DOE safety analyses. Order 414.1C [8] was superseded by Order 414.1D [7] when it was
issued in 2011. DOE Guide 414.1-4 defines 10 activities that met the requirements of Order 414.1C [8]:

• Activity 1: Software Project Management and Quality Planning 
• Activity 2: Software Risk Management  
• Activity 3: Software Configuration Management
• Activity 4: Procurement and Supplier Management
• Activity 5: Software Requirements Identification and Management
• Activity 6: Software Design and Implementation
• Activity 7: Software Safety
• Activity 8: V&V
• Activity 9: Problem Reporting and Corrective Action
• Activity 10: Training Personnel in the Design, Development, Use, and Evaluation of Safety Software

Updated guidance has not been provided to address change resulting from implementation of Order
414.D.

A general QA plan was developed for the FCT Program in 2012. A QA plan, which includes specific
software QA guidance, was published for the Consortium for Advanced Simulation of Light Water
Reactors (CASL) in 2012 as CASL-U-2012-0047, Quality Manual [13], and revised in 2016 as CASL-U-
2016-1070, CASL-QA-001 CASL Quality Assurance Program Plan, Revision 4.0 and CASL-U-2015-
0010 CASL-QA-030 CASL Software Quality Assurance Requirements, both designed to meet the criteria
of NQA-1-2008/2009 Part II Subpart 2.7, under a graded approach defined under the guidance of NQA-1-
2008/2008 Part IV Subpart 4.2, Guidance on Graded Application of the Nuclear Quality Assurance
(NQA) Standard for Research and Development [8]. A software QA plan was published for the NEAMS
Program in 2013 as LLNL-SM-455533 [11]. None of the above examples directly addresses the
requirements and concerns regarding NRC licensing.

2.7 ASME NQA-1-2008/2009 STANDARD

The NRC and DOE explicitly endorse ASME NQA-1-2008 and the NQA-1a-2009 Addenda (collectively
referred to as NQA-1-2008/2009) [14] as providing an acceptable basis for complying with the
requirements of 10 CFR 50 Appendix B and 10 CFR 830 Subpart A, respectively. Specific requirements
applicable to software are defined in NQA-1-2008/2009 Part II Subpart 2.7 Quality Assurance
Requirements for Computer Software for Nuclear Facility Applications. Guidance for the implementation
of Part II Subpart 2.7 requirements is given in Part IV Subpart 4.1 Application Appendix: Guide on
Quality Assurance Requirements for Computer Software.

The NQA-1-2008/2009 standard requires that software not produced under a QA program compliant with
the standard be dedicated in accordance with the requirements of Part II, Subpart 2.14, Quality Assurance
Requirements for Commercial Grade Items and Services.

Existing data used in software validation activities should use the guidance in NQA-1-2008/2009 Part III
Subpart 3.3, Non-mandatory Appendix 3.1: Guidance on Qualification of Existing Data.

In summary, NQA-1-2008/2009 Part II Subpart 2.7 and related Part I requirements, primarily
Requirements 3 (Design Control/Section 800 Software Design Control) and 11 (Test Control/Section 400
Computer Program Test Procedures), are recommended as the primary set of SQA criteria for the
evaluation of safety-related computer software. This selection is based on

• Nuclear industry precedent with ASME NQA standards
• Federal and commercial sectors continued involvement with, and maintenance of the ASME

NQA standards

19

• Quality assurance perspective through connection with 10 CFR 50 Appendix B, 10 CFR 830
Subpart A and 10 CFR 70

• Independence of roles in developing and maintaining software, among management, work
performers, and work reviewers

• Graded application based on safety, risk, and hazard analysis of the function of the software
• Focus on protection of the public and workers
• Long-standing presence and incorporation with many DOE contractors’ quality assurance

programs, with focus on nuclear safety, and
• Completeness and relevance to scientific, applied research, design, analysis and nuclear

engineering software.

2.8 IEEE SOFTWARE DEVELOPMENT STANDARDS

The Institute of Electrical and Electronics Engineers (IEEE) develops and maintains a significant
ecosystem of technical standards to support software development and software QA for a wide variety of
end-use applications. Many of these standards are referenced in the above requirements and guidance
documents. A small selection of IEEE standards is highlighted in this section because they provide
specific recommendations that may provide a basis for the development of documentation that satisfies
the above requirements.

2.8.1 IEEE 1228-1994, Standard for Software Safety Plans [15]

The Software Safety Plans standard provides minimal acceptable requirements for “the Plan used for the
development, procurement, maintenance, and retirement of safety-critical software.” This plan defines the
overall approach to software development and maintenance and is supported by a number of other
documents, including the five additional plans described in this section.

2.8.2 IEEE 1058-1998, Standard for Software Project Management Plans [16]

The Software Project Management Plan is the controlling document for managing a software project,
which defines all of the processes, both technical and managerial that will be applied in the project. The
standard is developed with a broad view of activities constituting a “software project” and may be equally
applicable to projects that develop new source code or that focus on modifications to existing source
code. This document encompasses the scope of the project, the work plan, control plans, risk management
plans, and the project closeout plan.

2.8.3 IEEE 828-2005, Standard for Configuration Management is Systems and Software
Engineering [17]

The Software Configuration Management Plan standard is primarily focused on definition of the
configuration management process in order to directly support implementation of configuration
management controls. However, the standard does include (in Annex D) an outline of the Configuration
Management Plan document and specific requirements for each section.

2.8.4 IEEE 730-2002, Standard for Software QA Processes [18]

The IEEE Standard for Software QA Processes “establishes requirements for initiating, planning,
controlling, and executing the Software QA (SQA) processes of a software development or maintenance
project.” The standard is primarily focused on the development of the SQA process itself. Annex C
outlines the process for developing an SQA plan and provides a mapping between sections of an SQA

20

plan outline and the sections of the standard. These tables provide a reference for expected SQA plan
content.

2.8.5 IEEE 829-1998, Standard for Software and System Test Documentation [19]

The IEEE Standard for Software and System Test Documentation defines the minimum requirements for
test processes and tasks in six areas: Management, Acquisition, Supply, Development, Operation, and
Maintenance Process. Requirements are defined for documentation of processes and reporting of
outcomes of each testing application.

2.8.6 IEEE 1012-2004, Standard for System and Software V&V [20]

The IEEE Standard for System and Software V&V defines those processes that “determine whether the
development products of a given activity conform to the requirements of that activity and whether the
product satisfies its intended use and user needs.” The standard covers the full extent of V&V activities
required within a software project, not just verification of the source code and validation of the models
implemented within the code. Section 12 of the standard provides an outline of the Software V&V Plan
and defines requirements for each major section.

3. PRACTICES FROM OTHER CODES AND SOFTWARE PACKAGES

The following subsections are intended to inform on key questions, including:

1. What are key software packages doing to comply with NRC QA requirements?
2. What are the opportunities to learn from these experiences to develop and implement effective

software QA processes?

Note that this section is intended as a series of examples, and identifies practices used in a variety of code
packages with different approaches to meeting NRC QA requirements.

3.1 SCALE

3.1.1 Introduction to SCALE

This subsection is focused on conveying the highlights of SCALE QA implementations. The SCALE
computer software system, developed at Oak Ridge National Laboratory, has a variety of light water
reactor analysis and fuel cycle applications (e.g., nuclear criticality safety, lattice physics, depletion
analysis, cross section sensitivity). In addition, SCALE integrates generalized capabilities for Monte
Carlo particle transport and radiation shielding. The first distribution of SCALE occurred in 1980 on
behalf of the NRC, who is the original and a sustaining sponsor of SCALE. SCALE now has a global
distribution to approximately 7,000 users in 56 nations.

3.1.2 Summary of the SCALE QA Process

The first QA program for SCALE was initiated in 1989. A key component of the QA program is the
corresponding SCALE QA plan. The QA plan originated with the initiation of the overall QA program,
and has been updated several times. The most recent revision occurred in 2013 [21] and constituted a
major enhancement of the SCALE QA process. Previous SCALE QA programs focused on configuration
management, but the latest QA program features an expanded scope [22]. The scope of the present QA
program includes continuous integration, as well development planning and coordination. The objective
of the present SCALE QA program is to [22]:

21

1. ensure new features are designed to meet needs of users,
2. ensure new features perform as designed,
3. establish quality control to ensure existing features continue to perform as designed,
4. establish configuration control for traceability,
5. coordinate efforts for consistency and efficiency, and
6. identify defects and provide corrective actions.

The QA policies of the SCALE project stipulate that [22]

1. all procedures are to be understood and followed,
2. users are promptly informed of issues,
3. safety-significant issues are reported to users and sponsors on a timely basis,
4. all staff members strive to deliver defect-free software with validated performance, and
5. all staff members subscribe to the Continuous Integration model of software development, where

the production code base is maintained in a shippable, defect-free state at all times.

The present iteration of the SCALE QA plan was developed independently of the software-specific QA
requirements of the NRC, as documented in NUREG/BR-0167 [5]. However, the general (not software-
specific) QA requirements documented in 10 CFR 830 Subpart A [8] were considered [8]. Although
NUREG/BR-0167 [5] was written in 1993, the SCALE QA plan was not mapped to the requirements in
NUREG/BR-0167 [5] until after it was revised in 2013. However, the SCALE QA plan meets or exceeds
all of the requirements outlined by the NRC in NUREG/BR-0167 [5]. The relationship between the
sections of the SCALE QA plan and the corresponding NRC QA requirements is shown in Table 4. The
SCALE QA plan is also compliant with ISO Q9001 (2008 edition) [22] and DOE Order 414.1D.

Table 4. Mapping of NUREG/BR-0167 guidelines to SCALE QA plan [23]

NUREG BR-0167 requirement/guidance Section in the SCALE QA plan
or SCALE procedure

2.2 Requirements Definition 6.2, 6.4, SCALE-CMP-001, SCALE-CMP-013
2.3 Design 6.2, 6.4, SCALE-CMP-001, SCALE-CMP-013
2.4 Implementation 6.4.6, SCALE-CMP-001, SCALE-CMP-013
2.5 Qualification Testing 6.4.5, 6.6.2, SCALE-CMP-013
2.6 Installation and Acceptance N/A
2.7 Operations and Sustaining Engineering All sections of the SCALE QA plan, SCALE-

CMP-001, SCALE-CMP-013, SCALE-CMP-004,
SCALE-CMP-012

2.8 Retirement and Archiving N/A
3.2 V&V Activities 6.2, 6.4, 6.6, 4.6, 7.2, SCALE-CMP-001, SCALE-

CMP-012, SCALE-CMP-013
4 Documentation and Deliverables 3.4
5 Project Management All sections of SCALE QA Plan, SCALE-CMP-

001, SCALE-CMP-013, SCALE-CMP-004,
SCALE-CMP-012

6 Configuration Management 3.4, 5.2, 6.4.6, 6.6, 6.6.3, 7.3, SCALE-CMP-001,
SCALE-CMP-013

7 Nonconformance Reporting and Corrective Action 7.4, 7.6.2, SCALE-CMP-004
8 Quality Assessment and Improvement 7,7.3.2, 3.4.4, ORNL SBMS Procedure “Audits and

Assessments”

The specific quality objectives of the SCALE project QA plan include [21]

1. registration to the ANSI/ISO/ASQ Q9001-2008 standard,
2. responses to user inquiries are provided within 5 days of receipt,

22

3. responses to user discrepancy reports are provided within 48 hours of receipt, and
4. safety-significant issues are reported to users and sponsors within 48 h of that determination.

These objectives enable a rapid, systematic, and effective response from the perspective of an end user.

3.1.3 Components of the SCALE QA Process

Early SCALE QA plans focused primarily on configuration management, where changes to the source
code were documented to clearly quantify when a feature was introduced or retired. Insufficient focus on
comprehensive testing often led to the discovery of discrepancies after a release. These discrepancies
often required a patch to be issued for the software or data in question, causing end users to repeat code
qualification certifications, and reducing confidence in the tools.

The foundation of the modern SCALE QA process was improved with the release of SCALE 6.1. During
the summer of 2010, a team of students mentored by ORNL staff completed a comprehensive
acceptability testing of SCALE tools [22]. The fundamental approach was to examine the functional
needs of each tool. Then each tool, treated as a “black box,” was applied in a series of rigorous and
realistic end-use cases. Over 200 previously unknown defects were identified spanning modules,
functionalities, and end-use applications. This test matrix was captured as a “regression suite.” The
fundamental approach developed during this effort has progressed to include data testing, with one
example being the thousands of unique tests for neutron and gamma transmissions through all materials at
many energies.

Additional improvements in SCALE QA included the unification of all source code (eliminating
differences in module source code for various platforms) and an automated testing system to enable
application of the regression suite [22].

Several important lessons were learned from the improved SCALE QA process. One approach that was
demonstrated was to identify the present state of quality in a particular tool. The approach in 2010 was to
“seal off” the tool, consider its functional needs, and create a regression suite based on those needs. The
regression suite, developed using engineering judgment, informs on the progression of the output of the
tool for a given perturbation. A simplified notional flow diagram of the approach is shown in Fig. 1.
Another key lesson is that a graded approach is recommended, bearing in mind the relative “importance”
of a particular tool or particular results.

Fig. 1. Notional diagram of SCALE regression suite development process.

23

Once existing SCALE features were well quantified and sufficient tests were available, a continuous-
integration system was created to automatically run the test suite with each update to the code repository.
Any changes in previously accepted results are captured and the developers are notified to begin
corrective action. The availability of a more comprehensive test suite and continuous-integration system
are directly related to a substantial reduction in the defect rate of SCALE for version 6.1 in 2011 relative
to version 6.0 in 2009. Through two years of deployment, SCALE 6.0 required 10 patches to be issued,
with the first patches appearing just weeks after initial release. With more robust QA, SCALE 6.1 has
only required two patches, one of which was driven by an error in the nuclear data provided to all codes
from the National Nuclear Data Center and the other was driven by a code error for a realistic, but rarely
used, calculation performed by an external user.

With the increase quality, the user base of SCALE has greatly expanded from approximately 2,500 users
in 2009 to approximately 7,000 users in 2016. This decrease in need to continually review and correct
previously deployed features has provided new opportunities for the development team to focus on
modernizing the legacy code base and develop many innovative advanced capabilities.

3.1.4 SCALE QA Process Overview

The foundation of the SCALE QA process is the SCALE Procedure for Feature Changes [24]. As stated
in the procedure:

A SCALE Quality Assurance Feature Case in the electronic tracking system must be completed
any time a change is made to SCALE, whether it is a correction or an enhancement. The Kanban
process is used to track the progress of each Feature through design, implementation,
documentation, testing, and deployment. The Kanban steps are: Proposed, Approved, In Progress,
In Testing, Ready to Ship, and Deployed.

The electronic tracking system provides a record of compliance with QA practices throughout the entire
software life cycle. Changes to the software repository to implement a feature, test cases, and test results
are integrated within the tracking system for seamless traceability.

A vital component of the SCALE QA plan is the procedure for discrepancy reports [22]. A discrepancy
report is used to “(1) identify a situation where the SCALE code system fails to perform according to the
documentation, (2) indicate the impact to current and past users, and (3) recommend action to resolve
and/or temporarily circumvent the discrepancy” [22]. The SCALE procedure for discrepancy reporting is
outlined in detail in Reference 21. In particular, discrepancies that are identified to be significant software
errors are those that “occur with no warning or error messages, appear to allow proper execution of the
software yet provide results that are: (1) Inconsistent with the evaluated nuclear data or the theory models
applied in the codes, and (2) Judged to be of potential significance to operational safety (e.g., potential keff
error greater than 1%).”

One of the core drivers for the most recent SCALE QA plan was a quality incident that occurred in 2005,
known as the KENO “hole” error [22]. This error was significant enough that it resulted in “stop work”
orders at both the High Flux Isotope Reactor at ORNL and the Spent Fuel Storage Facility at Idaho
National Laboratory [22]. The error, which was due to numerical round off in particularly sensitive
geometries, resulted in the issuance of an NRC information notice [25]. This particular error was
considered to be a safety-significant software error [22]. These errors trigger specific responses as
documented in Reference 22 (see Table 5).

3.1.5 SCALE Testing, Validation, and Verification

A foundation of any modern software project is the ability to routinely compile and test the software and
data and provide continual support for the latest hardware and compilers using a continuous-integration

24

system. After each incremental update to the SCALE source code repository the continuous-integration
system automatically builds the code on dozens of systems, including Linux, Mac, and Windows with
different compilers and compiler options. On each system, a suite of over 2000 test cases is run to quantify
the performance of the update and its impact on any other features. This rigorous testing is performed
dozens of times each day, resulting in the quantification of performance with approximately 150,000 tests
per day. The results of the tests and the associated changes are reported to an internal website, known as
the SCALE Dashboard. All developers can review the Dashboard to monitor the performance of
numerous SCALE features on different platforms with different compilers using a pass/fail metric without
the need to configure and run all of these tests themselves.

Table 5. Contacts and expectations for notification of safety-significant software errors [22]

Organization/group Points of contact/expectations
DOE • Nuclear Criticality Safety Program Manager

• Packaging Certification Program Manager
• Nuclear Fuels Storage and Transportation Planning Project

National Technical Director
Interacts with SCALE Project Leader to understand error, judge impact
on operational safety, review checklist, and make decision on issuing as
Significant Software Error. Coordinates notification issuance for any
errors deemed significant and interacts with DOE offices, DOE
facilities, and other government organizations.

NRC • Office of Nuclear Material Safety and Safeguards SCALE
Project Manager

• Office of Nuclear Regulatory Research SCALE Project
Manager

Interacts with SCALE Project Leader to understand error, judge impact
on operational safety, review checklist, and make decision on issuing as
Significant Software Error. Coordinates notification issuance for any
errors deemed significant and interacts with NRC offices, licensees, and
other government organizations.

Radiation Safety Information
Computational Center
(RSICC)

Provides notice in RSICC Newsletter and via e-mail alert to recipients
of the code version(s) affected.

Code Developers SCALE Project Leader – Prepares and reviews checklist. Interacts with
DOE, NRC, and RSICC. Issues the notification to any user groups
pertinent to the software. Notification of errors (or discrepancies where
code does not perform as described by documentation) that are not
deemed to be significant may use this checklist format as deemed
appropriate. Notifies those on the SCALE News email list
(scalenews@home.ornl.gov) and assures the information is posted in the
SCALE website.

SCALE testing is an automated procedure using three types of tests [26]. Unit tests are targeted tests aimed
at isolating specific functionalities, regression tests are integral tests designed to run quickly, and sample
problems are intended to demonstrate a key feature of the code to end users. SCALE consists primarily of
object-oriented code (e.g., C++ or Java) or procedural code (e.g., Fortran 90, Fortran 2003). For the object-
oriented code, approximately 61% of classes in SCALE are covered by unit tests (as a specific example,
ORIGEN as a module is above average, with roughly 70% coverage). Ideally, for a code written with an
object-oriented programming paradigm, every class will have a unit test. Some tests will be very simple,

25

others more complex. An example of the Dashboard interface is shown in Fig. 2, summarizing the passed
and failed tests on various builds of pre-release development features.

For a code written in a language that is not object oriented, the objective of one unit test per class is not
relevant. However, subroutines and specific functionalities are relevant, so a unit test per subroutine or
specific functionality is one potential objective. Included in this report are examples of SCALE unit tests
for C++ (object-oriented) code and Fortran 90 (procedural) code. Because these example tests are not
within the SCALE code, they are not export controlled.

Fig. 2. CDash SCALE automated testing suite.

Two example unit tests for SCALE are included in this report, one for an object-oriented programming
paradigm, the other for a procedural programming paradigm (see Appendix A).

The automated unit test included for the object-oriented programming paradigm is for ORIGEN and tests
concentration unit conversion in SCALE. This example unit test is intended to verify that concentration
units are accurately converted by the ORIGEN code.

The automated unit test included for the procedural programming paradigm is for ORIGEN and tests
concentration unit conversion in SCALE. This example unit test is intended to verify that nuclide
identifiers are interpreted correctly. This example is presented to show a typical procedural unit test in
SCALE.

Validation of SCALE calculations is based on many series of established experiments, including:

• approximately 400 criticality and shielding benchmarks,
• over 100 isotopic assays measurements for spent nuclear fuel,
• over 100 decay heat measurements from spent fuel assemblies,
• gamma spectra measurements from fission burst experiments, and
• neutron spectra measurements from spent fuel and (α,n) sources.

Although these test suites are not part of the continuous-integration system due to their long runtimes, the
test suites are run by analysts after each major enhancement to code capabilities of nuclear data libraries.

In depth verification is performed primarily using code-to-code comparison with other production-level
tools that provide similar, yet independent features. Thousands of test cases are applied ranging from very
simple systems to confirm physics and nuclear data, even for a single nuclide interaction at a single

26

energy, to extremely complex scenarios such as the depletion of a reactor core and characterization of
isotopic inventories. Through this robust verification, issues in SCALE can be identified and corrected,
and issues in the other tools are often identified and communicated to those teams as well.

3.1.6 Lessons learned and Path Forward

The first step in designing a regression suite is a functional needs assessment to determine what the code
should do and what its range of applicability is. One good rule of thumb is that if any functionality is
discussed in the manual, there should be unit tests associated with the key subroutines for that
functionality.

A key source for integral/regression tests in SCALE is user feedback from training/sample problems as
well as beta testing. This is where the extensive SCALE training and user base helps enable enhanced
QA. A key recommendation based on the SCALE experience is that efforts are needed to expand the user
base for SAS4A/SASSYS, where possible, and most importantly to build and open community among
existing users for information exchange. In SCALE, many regression tests are accumulated over time
based on user bug reports. Additionally, if there is a new feature or change, a regression test is
automatically added for SCALE.

3.2 SAPHIRE

3.2.1 Introduction to SAPHIRE

The NRC has sponsored development of a personal computer software application for use in performing
probabilistic risk assessments (PRAs). The tool is called Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE). In nuclear power plant applications, SAPHIRE is used to
model plant responses (and associated uncertainties) to initiating events, quantify associated core damage
frequencies, and identify important contributors to core damage (Level 1 PRA). It can also evaluate
elements such as containment failure and release models for severe accident conditions given the
occurrence of core damage (Level 2 PRA). SAPHIRE can be employed for limited risk quantifications
associated with radiological release consequences (Level 3 PRA).

3.2.2 Summary of SAPHIRE QA Process

The SAPHIRE QA manual identifies key methodologies used to systematically plan and maintain
software quality [21]. These activities are identified in Fig. 3 and work together to ensure high levels of
quality throughout the code development cycle.

Currently, SAPHIRE (Version 8) follows guidance established in NUREG/BR-0167 [5], “Software
Quality Assurance Program and Guidelines” [22]. These requirements are supplemented by comparison
against best software engineering methods as provided in IEEE Std. 1012-2004 [20], “IEEE Standard for
Software V&V” (which is a secondary requirements resource). A detailed checklist was created to map
key requirements derived from these documents against appropriate software-related development
parameters and provide a “Pass/Fail” grading system during subsequent evaluations [27].

Specific types of documentation that supports the released version of SAPHIRE include:

• design documents
• Software Project Plan
• System Test Plan
• Acceptance Test Plan
• Quality Assurance Plan

27

• Configuration Management Plan
• Software V&V Plan (including a requirements traceability matrix)

Fig. 3. SAPHIRE QA process.

Per NUREG/BR-0167 guidance, SAPHIRE is classified as “Level 1,” which corresponds to technical
application software used in safety decisions. SAPHIRE is also assigned an integrity level of “1” under
IEEE Standard 1012-2004 software integrity level requirements, which is the lowest level on a scale
corresponding to the likelihood of occurrence of an operating state that contributes an error and an error
consequence.

The current version of IEEE Std. 1012-2004 defines integrity level as “a value representing project-
unique characteristics (e.g., complexity, criticality, risk, safety level, security level, desired performance,
and reliability) that define the importance of the system, software, or hardware to the user.” Integrity
levels are used to determine the V&V tasks, activities, rigor, and the level of intensity of the V&V to be
performed. As noted in the standard: “The degree of rigor and intensity in performing and documenting
the task shall be commensurate with the integrity level. As the integrity level decreases, so does the
required scope, intensity, and degree of rigor associated with the V&V task. For example, a hazard
analysis performed for integrity level 4 software might be formally documented and consider failures at
the module level; a hazard analysis for integrity level 3 software may consider only significant software
failures and be documented informally as part of the design review process.”

Additionally, the IEEE standard provides a table that establishes “error consequence.” The standard notes
that: “Each cell in the table assigns an integrity level based on the combination of an error consequence
and the likelihood of occurrence of an operating state that contributes to the error. Some table cells reflect
more than one integrity level, indicating that the final assignment of the integrity level can be selected to
address the system application and risk mitigation recommendations. For some industry applications, the

28

definition of likelihood of occurrence categories may be expressed as probability figures derived by
analysis or from system requirements.”

3.2.3 Components of the SAPHIRE QA Process

SAPHIRE software QA (SQA) requirements are contract driven and interpreted from DOE Order 414.1C,
“Quality Assurance,” 10 CFR 830 Subpart A, “Nuclear Safety Management,” and ASME NQA-1-2000,
“Quality Assurance Requirements for Nuclear Facility Applications” [8]. SAPHIRE must also conform to
all internal Idaho National Laboratory (INL) program documents that address software development and
configuration management.

A number of specific controls consistent with the QA program elements identified in Fig. 3 are imposed
by contract to ensure that only authorized changes are made in response to user-reported bugs,
suggestions, and enhancements. In addition, the configuration management approach includes software
release verification checklists and requirements for developers to perform and pass a suite of tests prior to
new version release [28].

Because SAPHIRE is sponsored directly by the NRC and is routinely used by regulators and licensees in
high-consequence nuclear safety decisions, a sophisticated version release management process was
established between code developers and the NRC. This process focuses on up-front inputs and approvals
directly from NRC staff, includes software quality assurance elements, and is illustrated in Fig. 4.

The four boxes on the top-right corner and down the right side of Fig. 4 (i.e., starting with the box
“Documentation for Changed Modules are Reviewed by…”) represent the software QA elements of the
SAPHIRE release management process.

3.2.4 Testing, V&V, and Internal, Automated, and External Testing

SAPHIRE development utilizes a multifaceted testing approach. The acceptance testing program is
described in NUREG/CR-7039, “Systems Analysis Programs for Hands-on Integration Reliability
Evaluations (SAPHIRE) Version 8–Volume 6 Quality Assurance,” [29] and the software configuration
management plan (INL/EXT-09-16696) [28]. The testing approach (Fig. 5) is composed of three items:
internal testing, automated testing, and external testing.

29

Fig. 4. SAPHIRE release management process.

Fig. 5. Types of testing used during SAPHIRE development process.

SAPHIRE Version x
Software Changes

Are Complete

Changed Modules
Are Checked Back

Into RCS

Documentation for
Changed Modules
Are Reviewed by

PM or Technical Lead

Compiled and
Checked for

Compilation
 (install package)

Compiled
 Version x Tested

 Acceptance Test
 (and Witness

Ok Ok

Not

Ok

“Read Me”
 Log

 Modifications
Complete

Install Package
Submitted to
SAGAN and

SAPHIRE Website

Check install
and uninstall

Ok

Release of
SAPHIRE Version x
Complete for NRC
Use (e.g., SPAR

Model Development
and Use)

Completed By:

Date: Version #:

Baseline Build
With RCS
Milestone
Indicator Ok

Not

NRC
PM Release

Approval Ok

NRC PM/TM Authorizes New Version*

Not

Not

*Release decision predicated on:
(1) Milestones in NRC requirements documents , or
(2) INL/NRC evaluate and NRC approves when a new

 should be released based on severity (critical) or quantity of
 fixes and improvements.

30

Internal testing (or developmental testing) includes checks performed by the development team itself to
ensure quality during the development process. The test suite is evaluated against significant changes and
new features. New tests are developed to check a new feature when the developer and customer agree that
it is appropriate. To develop a new test, a suitable test scenario with a database and validated correct
answers must be determined.

Prior to official release, the software is run through a series of automated regression acceptance tests.
These automated regression tests exercise the code to identify inconsistencies in results. The focus is on
scripts that simulate user input rather than actual interface testing. One hundred and five tests simulate user
input to the SAPHIRE through a test script and results are captured and compared to expected results.
This approach ensures that given a static input PRA file, the risk or reliability results from SAPHIRE are
consistent from one release to the next. The test scripts mimic actions taken by an analyst and might
include starting SAPHIRE and navigating the user interface by selecting menu options, clicking buttons,
and typing information. A summary and a detailed report of the results of the tests are produced so that an
overview of the results can quickly be determined and any failures (or successes) can be traced in more
detail.

External testing are evaluations performed by risk and reliability end users using, in many cases, “real
world” models. This would typically include NRC review and beta testing before the software version is
released using the approval path shown in Fig. 4. Beta testing helps ensure results produced by the new
version are correct and that the software is user-friendly and functional. Beta testers are analysts
experienced with PRA methods and terminology and typically are familiar with earlier versions of
SAPHIRE.

All code source files are maintained in a controlled library server with processes in place to uniquely
identify all components, modules, documentation, error reports, test suites, and test results.

3.2.5 V&V testing

Independent software V&V testing is a formal process for ensuring that the software development process
results in a high-quality software product. For SAPHIRE, independent V&V testing is performed in
accordance with INL/EXT-09-15649, SAPHIRE 8 Software Independent Verification and Validation Plan
[30].

Independent V&V of a software product should be done by an organization that is both technically and
managerially separate from the organization responsible for developing the product. The reasons for
performing software V&V includes:

• Verification that determines whether the product meets its requirements.

• Validation that determines if the product performs its intended activities

Recent independent V&V evaluation results concerning SAPHIRE were documented in the Version 8
Final Report [31]. The independent V&V team reviewed code documentation and examined patterns of
action needed to provide confidence that the software product conformed to technical requirements
established in NUREG/BR-0167 [5], and IEEE Std. 1012-2004 [20]. The findings from this report cited
the following best practices:

1. The software development process is improved by conducting independent V&V activities.
2. SAPHIRE development implemented and followed requirements for Level 1 software as defined

in Section 1.2 of NUREG/BR-0167 [5].
3. The NRC (primary code user) is expected to perform an audit of software QA implementation

once a year against the requirements of NUREG/BR-0167.
4. SAPHIRE configuration management for version control, source code, and documentation uses a

Revision Control System (RCS).

31

5. The organization, tasks, roles, and responsibilities of the SAPHIRE team are defined.
6. The peer reviews and code walkthroughs are being implemented.
7. The INL SAPHIRE team has a defined quality assessment and improvement approach.

3.2.6 Lessons Learned

Additionally, the independent V&V team noted a number of lessons learned [31]. These include:

1. Ensure all software requirements are documented. These requirements form the basis of software
plans, products, and activities. Ensure that documented requirements define the needed software
response to anticipated classes of input data (including erroneous data) and provide information
and details necessary to design the software (e.g., mathematical models, equations, and data
requirements). Because requirements inevitably change as a project evolves, manage
requirements throughout the development and maintenance effort in accordance with well-
defined change control procedures.

2. Ensure all software requirements are uniquely defined as functional, performance, design
constraints, attributes, and external interface requirements. With respect to the application of
these terms, IEEE Std. 830-1993, “Recommended Practice for Software Requirements
Specifications”, states that: 1) Functionality addresses what the software is supposed to do, 2)
External Interfaces address software interaction with people, the system’s hardware, other
hardware and other software, 3) Performance addresses the speed, availability, response time,
recovery time of various software functions, 4) Attributes are concerned with the portability,
correctness, maintainability, security, and similar considerations, 5) Design constraints are
imposed on implementation and are concerned with required standards in effect, implementation
language, policies for database integrity, resource limits, operating environments, etc.

3. Ensure all software requirements are testable. If a software requirement is not testable then it
should not be considered a functioning software requirement.

4. Conduct a software requirements review at the end of requirements definition to ensure the intent,
completeness, verifiability, consistency, and technical feasibility of the requirements.

5. Ensure that all software design components are documented and meet the requirements defined in
software requirements documentation.

6. Ensure all software design components are uniquely defined and specify the overall software
structure so that they can be translated into code.

7. Conduct a preliminary design review when the preliminary design (software architecture) has
been established to ensure that the preliminary design is complete (meets all the requirements),
verifiable (through testing or other means), consistent, and technically feasible.

8. Conduct a critical design review when design is complete to ensure that the design is indeed
complete (meets all the requirements and meets design completion criteria), verifiable (through
testing or other means), consistent, and technically feasible.

9. Ensure the requirements traceability matrix shows all software requirements as mapped to design
components and test cases.

10. Conduct formal peer inspections to find errors.
11. Ensure that documentation is maintained.

It is important to remember that a software component is an identifiable part of a larger program or
construction. Usually a component provides a particular function or group of related functions. In
programming design, a system is divided into components that in turn are made up of modules.
“Component test” means testing all related modules that form a component as a group to make sure
they work together. In object-oriented programming, a component is a reusable program building
block that can be combined with other components in the same. Examples of a component include a
single button in a graphical user interface, a small calculator, and an interface to a database manager.

32

Design components in the SAPHIRE context formulate the basic building blocks of SAPHIRE. There
is a cut set generation component, a basic event editor component, a fault tree editor component, an
event tree editor component as well as others. Each component is documented and meets requirements
outlined in the applicable requirements document. Since the completion of the independent V&V
assessment, the practice has been to document significant changes in external (i.e., not part of the
code) design documents.

3.3 RELAP-5-3D

3.3.1 Introduction to RELAP5-3D

The RELAP5-3D code is an outgrowth of the one-dimensional RELAP5/MOD3 code developed at INL
for the NRC. The DOE sponsored additional RELAP5 development in the early 1980s to meet its own
reactor safety assessment needs. Following the accident at Chernobyl, DOE undertook reassessment of
the safety of all of its test and production reactors throughout the United States and the RELAP5 code was
chosen as the thermal-hydraulic analysis support tool of choice because of its widespread acceptance
[32].

Specific code applications include simulations of transients in light water reactor (LWR) systems such as
loss of coolant accidents (LOCAs), anticipated transients without scram, and operational transients such
as loss of feedwater, loss of off-site power, station blackout, and turbine trip. RELAP5-3D, the latest in
the RELAP5 code series, is highly generic. In addition to calculating the behavior of a reactor coolant
system during a transient, the code can be used for simulation of a wide variety of hydraulic and thermal
transients in both nuclear and nonnuclear systems involving mixtures of vapor, liquid, noncondensable
gases, and nonvolatile solute.

3.3.2 Licensing Use of RELAP5-3D

RELAP5 software was developed as a confirmatory tool rather than a principle enabler for conducting a
nuclear plant safety analysis. Consequently, the code is neither enhanced nor controlled to explicitly
support the conduct of an independent safety review done in a regulated environment. Licensed code
users are required to sign a disclaimer releasing code developers from all legal responsibility for its use in
a critical application like an NRC licensing decision. The responsibility to perform the V&Vs and/or
specific applications testing necessary to satisfy a regulatory and/or key project objective resides
exclusively with the licensed user; the primarily code developers play no formal role in these
supplemental qualification efforts undertaken by authorized code users.

Recognizing that RELAP5 codes are not qualified for regulatory use, licensed users have successfully
adapted, validated, and used earlier versions of the code to meet NRC licensing requirements related to
their specific needs. For example, Siemens Power Corporation (SPC) undertook proprietary V&V
development of S-RELAP5 (derived from earlier RELAP5/MOD2 and /MOD3 codes) to satisfy NRC
analysis requirements established under 10 CFR 50, Appendix K concerning small-break LOCAs. SPC
performed challenging comparison tests and implemented adaptations that increased confidence in code
suitability. Meetings were subsequently held between SPC and NRC staff to confirm the adequacy and
quality of the SPC code enhancements and application approach. In February 2001, S-RELAP was
confirmed as conditionally acceptable for use by the NRC’s Advisory Committee on Reactor Safeguards
(ACRS) [33]. Similar proprietary RELAP5 adaptations and V&V efforts were undertaken by other
licensed RELAP users (e.g., RELAP5/MOD2-B&W, Framatome Technologies [see NRC ADAMS
Accession No. ML030220134]; M-RELAP5, Mitsubishi Heavy Industries [ML093650010]; and N-
RELAP5, NuScale Power [ML15299A251]).

33

To restate this important point, RELAP5 codes were never developed nor are they maintained for use in
NRC licensing applications. However, authorized code users have successfully implemented code
adaptations on a case-by-case basis and completed the necessary QA activities that allow its use to
address regulatory requirements. This represents an alternative approach which may be considered by
safety analysis code developers regarding code qualification and use.

3.3.3 Summary of the RELAP5-3D QA Process

RELAP5-3D is maintained under a configuration system that maintains a historical record of all changes.
Modification and improvements to coding are reviewed and checked as part of a formal software quality
assurance program (SQAP) [34]. The RELAP-3D SQAP summarizes QA activities employed during
development and enhancement of the basic RELAP5-3D program. This guidance also establishes the code
as meeting “Quality Level 3” software requirements. Quality levels are broadly applied under existing
INL procedures to identify unmitigated or potential consequence levels associated with the failure of an
item. These levels are assigned to facilitate a common understanding of the rigor to be applied to an item
through implementation of appropriate procedures. An INL “Quality Level 3” equates to a “low” level of
unmitigated risk associated with the RELAP5-3D Code.

NRC-endorsed standards like NUREG/BR-0167 [5] were not utilized as underlying requirements
resource documents for RELAP5-3D. However, all RELAP5-3D software maintenance and modification
activities must comply with the scope and requirements set for RELAP5-3D by the SQAP and other
applicable INL procedures governing software development.

Assessments, documentation reviews, peer reviews, requirement analysis, and other techniques and
methodologies are used for SQA. Most of those activities are based on product reviews, previous
experimental results, hand calculations, and associated records. Available automated tools and methods
for SQA activities include:

• automated system engineering tools (e.g., requirement management)
• automated test tools (e.g., FORTRAN debugging software
• configuration management tools (e.g., version control, task tracking)
• development tool sets
• build tools (e.g., make utilities, compilers)
• controlled document and records management tools

It is noteworthy that an International RELAP5 Users Group (IRUG) was established and meets once a
year to share experiences in RELAP5 development and use. Meeting participants rely on this forum to see
and hear about new and proposed features and applications concerning the code and are provided
opportunity for input and feedback to developers. Relatedly, a public web page was established to convey
IRUG information to other interested stakeholders (http://www4vip.inl.gov/relap5). The web page also
provides a convenient venue for public discussions of code licensing, distribution of manuals and
newsletters, and offers a standing form by which user problems can be reported directly to developers and
subsequently documented.

3.3.4 Components of the RELAP5-3D QA Process

The RELAP5-3D QA process is derived exclusively from existing INL procedures as they relate to the
INL “Quality Level 3” standard. The attributes of this standard are identified in the SQAP and encompass
multiple activities focused on ensuring a quality level throughout the development cycle appropriate to
“low risk” software. These activities are summarized in Table 6.

http://www4vip.inl.gov/relap5

34

Table 6. RELAP5-3D software QA tasks

Task Schedule Entry criteria Exit criteria

Risk analysis As needed Business requirements. Approved safety software
determination and quality
level determination

Management Plan review
and approval

As needed Draft management plan. Approved by RELAP5-3D
asset owner.

Requirements review and
approval

Per external release Draft requirements
specification.

Approved by RELAP5-3D
asset owner.

Design review and
approval

Per external release Draft design description. Approved by RELAP5-3D
asset owner.

Implementation review Per release Baseline software prior to
system test.

Documented code
walk-through to ensure
consistency of software
and supporting
documentation including
traceability of requirements
through the life cycle.

System Test As required by CMP Completed implementation
review.

Approved system test by
test case personnel.

Acceptance Test Per internal release Completed system test. Asset approved by
RELAP5-3D asset owner.

Problem resolution As needed Problem report submitted. Closed problem report.
In-process QA inspection Biennially Initiated by Assurance

Portfolio and Integrated
Assessment System
scheduled start date.

Approved assessment
report.

RELAP5-3D was developed to calculate fluid behavioral characteristics during operational and LOCA
transients. Even though the code was developed to be confirmatory in nature, some licensed users have
successfully “upgraded” the code for (proprietary) regulatory use. Recognizing this, a seven-step process
was created to help ensure the code is being appropriately applied and used in the performance of
assessment calculations. Although not part of the code qualification process, these seven steps are
important to conducting a functional need assessment for RELAP. A summary of this functional use
model construction process consists of:

1. Transient scenarios should first be evaluated from a perspective of whether the code has the
capability to analyze the expected phenomena.

2. The information required to build the model must be collected. This information consists of
system geometry specifications and system initial and boundary conditions.

3. Information that describes the hardware as well as the hardware initial and boundary conditions
must be “translated” to the form required by RELAP5-3D.

4. Nodalization resulting from the above process should be reviewed by a model review committee
before an analysis is performed. The committee reviews the important phenomena that will occur
during the transient and determines whether the model and planned analysis approach will be
adequate to evaluate transient behavior and meet analysis objectives.

5. The steady-state calculation is performed and analyzed. The analyst must ensure that the model’s
initial condition is representative of the real system’s condition.

6. The transient calculation is performed and analyzed. During this phase of the analysis process, the
analyst must ensure that code results are representative of the subject transient. Unphysical results

35

caused by improper nodalization, code deficiencies, or user errors must be identified and
eliminated. Thereafter, the analyst can use results to meet desired analysis objectives.

7. Throughout the process, the analysis must be rigorously documented. The model should be
documented in a workbook and independently checked, when feasible, by another analyst. The
calculation should be outlined, the steps taken to ensure that the calculation is representative of
the subject transient should be listed, and analysis results should be recorded.

The results of a RELAP5-3D analysis can be used to provide a basis for calculating structural loads and
conducting water or steam hammer analysis. However, subsequent analyses of such systems were not
included in RELAP5 development plans and the numerical techniques have not been optimized for such
applications. A rigorous assessment of code results has not been conducted on these specific topics. In
response to this situation, users are further alerted to this constraint through another functional needs
analysis aid that is provided in user documentation [35]. This functional aid is illustrated in Fig. 6.

3.3.5 RELAP-3D Testing, V&V

Theory and implementation of code improvements are validated through assessment calculations that
compare code-predicted results to idealized test cases or experimental results. In 2012, it was identified
that recent code development tasks expanded the requirements for testing proposed code modifications
[36]. The testing needed to be more extensive, systematic, and rigorous than what was done in the past.
As noted during the 2014 IRUG meeting, the new RELAP5-3D verification testing that was developed
evaluated 194 code features. This testing included 43 test problems with 125 input cases [37]. Comparing
verification files for the same input reveals changes between code versions or application of code
capability. The new verification capability was used to locate code problems with:

• unexpected calculation changes going from version to version,

• restart issues,

• backup issues,

• multi-case issues, or

• parallel virtual machine (PVM) coupling issues

Backup issues” are revealed when a base run is compared to a run that repeats every time-step. “Multi-
case issues” arise when the code fails when fed a multi-case input but runs properly when each input case
is run separately. “PVM issues” refers to verification testing failures that were caused by code timing
errors that caused PVM synchronously-coupled installation problems to fail. All issues uncovered with
the original verification test suite were solved. Additional verification capabilities are also being
developed.

36

a. If a user intends to conduct a structural, water or steam hammer analysis using RELAP5-3D, consult section 2.1.2.

Fig. 6. RELAP5-3D functional use analysis.

3.3.6 Lessons Learned

It is essential to note that RELAP codes never explicitly incorporated the software requirements
established and/or formally endorsed by the NRC. However, RELAP codes are used to address NRC
regulatory requirements through the quality assurance efforts done by individual code users. As such,
this process illustrates an alternative pathway for potentially qualifying a code for regulatory use,
(i.e., the basic code is developed, maintained, and shared with licensed code users who then bear full

37

and complete responsibility for performing appropriate V&V of the code for their specific regulatory
purposes). However, given the V&V actions performed by an individual licensed code user typically
remains proprietary for that individual user, a paradigm is established that may not be as efficient nor
cost effective as it could be with respect to code use by the entire regulated community.

Despite this approach, however, user-modified RELAP5 codes have been used extensively in NRC
safety decisions. It is up to the individual code developer to decide if their end use objectives can and
should be functionalized in a way similar to what is used in RELAP5 codes. In any event, NRC
reviews of user-adapted RELAP codes have yielded important insights worth noting by all code
developers. Some of these lessons were communicated by the ACRS with respect to RELAP5 codes
[38]:

• “Good documentation is sound quality control practice. It provides insurance against costly
delays, uncertainties, confusion, and mistakes. It simplifies and enhances staff and ACRS reviews
and aids users. It also builds confidence in the soundness of regulatory judgments in the broader
technical community.”

• “In the future, the staff should insist on complete documentation before issuing a final SER.”

• “The staff needs to consider how broad-based the assessment of realistic codes should be, not
only to ensure adequacy but also to measure uncertainty. Clear criteria are also needed on what
constitutes an adequate database for assessing this uncertainty and on how this should be done
quantitatively.”

• “SPC provided the staff with a working version of their code and input decks to enable test
conditions to be simulated. However, the staff informed us that it had not run the code as an
independent check, nor used this capability to investigate some key features. We understand that
the staff's rationale in this particular case is that it is familiar with previous relevant applications
of RELAP5. The use of the codes by the staff should be an important part of its review process.
We look forward to staff reports on its independent evaluation of code runs when S-RELAP5 is
submitted as a realistic code.”

• “Because we cannot check many features of a complex code, some of our assessment must be
based on establishing confidence in the applicant's technical judgment. In the present case, we
have been helped in our evaluation by the cooperation of SPC in responding to our technical
questions and supplying additional information. Another important factor in establishing
confidence is the provision of accurate, complete, and unequivocal documentation.”

3.4 TRACE

This subsection is focuses on conveying the highlights of the TRACE best-estimate reactor systems code
QA program. The TRACE software is a collection of legacy codes that were developed as confirmatory
analysis tools. Therefore, the discussion of RELAP5-3D in Section 3.2.2 is also applicable partially
applicable to the TRACE code.

3.4.1 Introduction to TRACE

TRACE is a best-estimate system code designed to predict steady-state and transient thermal hydraulic
behavior in LWRs. TRACE is particularly relevant to SAS4A/SASSYS because it is a safety-related
systems code. Additionally, TRACE is relevant because it is the integration of the capabilities of four
legacy NRC codes: TRAC-P, TRAC-B, RELAP5, and RAMONA). The integration of these four legacy
codes into one modern product was a significant challenge in the development, validation, and assessment
of the TRACE code [38].

38

TRACE is composed of modernized versions of legacy tools with similar capabilities. The development
of TRACE required integration of the capabilities unique to specific legacy tools, for example the CHAN
(channel) component in TRAC-B and side junction components in RELAP5 [38].

3.4.2 Summary of the TRACE QA Process

The integration of legacy tools into the TRACE platform also included significant enhancements in code
QA. The QA process is complex given that TRAC-P, TRAC-B, RAMONA, and RELAP-5 were
application-specific tools, and that TRACE is a platform integrating the different application space and
functional needs of all of these tools. Additionally, the multidimensional nodal diffusion, transport, and
reactor kinetics tool PARCS is coupled to TRACE. TRACE also contains enhanced models for gap
conductance from the NRC fuel performance tool, FRAPCON. In this sense, TRACE is similar to
SAS4A/SASSYS, which combines many modules with completely different functional needs and
associated physics.

The development of TRACE also introduced new physics to several of the tools necessary to analyze
advanced LWR concepts and passive safety features. These capabilities were initiated to support design
certification reviews for new reactors.

The NRC approach to code QA is a multiple-step process [38]:

1. Verification is an important step, and includes unit and regression testing to ensure that the
functionalities of TRACE perform as expected. This includes a rigorous configuration
management process. Changes to the code are not permitted until they pass the regression suite of
test cases and are documented and approved by the custodian of the code. More than 2500
regression tests are used for TRACE.

2. Validation is another major step in the TRACE QA process. Validation in TRACE focuses on a
three-level hierarchy: fundamental problems, separate effects tests, and integral effects tests.
Fundamental problems are very basic phenomena and are closely related to tests in the regression
test suite. The CSAU methodology is applied in the more detailed assessment cases that make up
the separate effects tests and integral effects tests.

3.4.3 Components of the TRACE QA Process

Adherence to the TRACE QA guidelines, which are congruent with NUREG/BR-0167 requirements for
configuration management, is the first step in the TRACE verification process. The second step, the
TRACE regression test suite, includes tests that range from valve-closing logic to verification of
individual models or correlations [38]. Example fundamental assessment cases are shown Table 7.

The TRACE Code Assessment and Maintenance Program (CAMP) draws from a large set of NUREG
reports [38]. The CAMP approach spans the entire parameter space of accident and transient analyses for
the TRACE code [38]. The TRACE Developmental Assessment Manual identifies a number of separate
and integral effects tests. In addition, the TRACE CAMP uses separate effects tests that assess [38]:
reflood heat transfer, break flow, steam generator hydraulics, loop seal clearance, and flooding at the
upper core plate. Integral behavior tests are also a vital component of the TRACE QA process.

39

Table 7. Fundamental validation assessment cases for TRACE, from Reference 38

Fundamental assessment case Cases Purpose

Radial and Axial Heat Conduction 2 Compare heat conduction calculation to exact
solutions.

Drain - Fill 4 Examine ability to track water level across node
boundaries.

Oscillating Manometer 1 Compare calculation of two-phase interface to exact
solution.

ANL Vertical Two-Phase Flow 71 Prediction of void fraction in vertical two-phase
upflow.

Two-phase flow test/horizontal
flow tests 110 Prediction of two-phase flow in a large diameter

horizontal pipe.
Single and Two-Phase Wall Friction 27 Prediction of wall friction component of pressure drop.

Single Tube Flooding 3 Examine calculation of flooding and counter current
flow limitation correlations.

Adiabatic Tube 1 Assess interfacial shear under adiabatic conditions.

3.4.4 TRACE Testing, Validation, and Verification

Central to the NRC validation approach is the CSAU methodology. According to Reference 38:

CSAU provides a systematic approach to the application of a systems code to a large
scale facility subjected to a complex transient scenario. This is where separate effects
tests and integral tests are vital. The methodology is structured and is sufficiently general
so that it can be applied to a wide variety of plant designs. The overall framework of
CSAU is designed to address three important questions regarding a code to be used for
nuclear power plant safety calculations:

1. Has the code the capability to scale up phenomena observed in small-scale test
facilities to full- size nuclear power plants (NPPs)?

2. Can the code be applied to safety studies of a particular scenario or a set of
scenarios for a given plant design?

3. What is the uncertainty with which the code calculates important parameters, say
the peak cladding temperature, in a full scale NPP?

TRACE V&V makes particular use of the first two Elements of CSAU; Requirements
and Capabilities, and Assessment and Ranging of Parameters. Code requirements depend
on the scenario, and the models necessary to simulate the scenario. Assessment requires
the comparison of code performance against experimental data to determine potential
code limitations. Central to these two steps is development of a Phenomena Identification
and Ranking Table (PIRT) to identify those physical processes most important to
successful simulation of the scenario. For TRACE assessment, three PIRTs were used to
identify processes of “generic” interest to large and small break LOCAs.

An example of the NRC code development and assessment process flow chart is shown in Fig. 7.

40

Fig. 7. NRC code development and assessment framework from Reference 39.

An overview of the NRC regression suite for TRACE verification is shown in Table 8.

Table 8. NRC regression suite for TRACE verification from Reference 38.

Regression test category Number of cases
Numeric and solution
procedures 1296

Input and output 301
Control systems 144
Power and kinetics 225
Flow process models 232
Closure models 301
Heat structures 982
Integral behavior 318
Component models 1336

3.4.5 Lessons Learned and Path Forward

The TRACE QA process relies heavily on a rigorous configuration management process, a library of over
2500 regression cases, and the underlying framework of the CSAU methodology. TRACE is highly

41

applicable to SAS4A/SASSYS, primarily because it is an integration of a large number of reactor-safety-
related modules with different functionalities and representing different physics.

The TRACE QA process is a highly relevant example of an application of the CSAU methodology. The
emphasis on a number of PIRTs (analogous to functional needs assessments) also serves as an ideal
example of how to identify the physical processes and associated code functionalities relevant to test in
important scenarios, such as small- and large-break LOCA.

Another specific example is the recent extension of TRACE to support design certification of advanced
light water reactor designs. The systematic approach serves as a model for the application of the CSAU
methodology to SAS4A/SASSYS QA [38]:

An independent PIRT is first developed, and then the TRACE models and correlations are reviewed
for applicability. The PIRT is developed as early as possible in the licensing review, in order to allow
as much time as possible in the schedule for model development and independent testing (if
necessary). Specific assessment is performed and included in an applicability report, which serves to
document the PIRT and evaluation of TRACE models for the particular design.

3.5 MPACT (CASL)

This subsection is focused on conveying the highlights of the Michigan Parallel Characteristics Transport
(MPACT) Code reactor neutronics code QA plan.

3.5.1 Introduction to MPACT

The MPACT code provides the capability to perform high fidelity deterministic simulations of the
neutron distribution for pressurized water reactors including coupling to depletion capability and analysis
of multiple fuel cycles [40]. This subsection is intended to provide an explicit example of an
implementation of the CASL SQAP [41]. MPACT has a rigorous library of unit testing and regression
tests and is an example of a modern tool that has been developed in an era of enhanced software QA, as
opposed to a legacy tool where elements of the QA process were retroactively developed after the tool.

3.5.2 Summary of the MPACT QA Process

The MPACT QA process is built on the foundation of a rigorous library of unit tests and regression tests.
Approximately 80% of MPACT code is covered by unit and regression tests [40]. Because the MPACT
V&V process was developed concurrently with the development of the tool, the unit testing process was
instrumental in finding and resolving problems early [40]. Additionally, the complexity of the physics
problems solved in MPACT yields challenges [40]: “One of the challenges in writing the unit tests within
MPACT has been the difficulty of setting up realistic tests with relevant initial conditions so the part of
the application being tested behaves like part of the complete system. If these initial conditions are not set
correctly, the test will not be exercising the code in a realistic context, which diminishes the value and
accuracy of unit test results.” Regression testing also plays a key role in the MPACT QA process.

The role of testing in the MPACT QA process is fully integrated into the development of the code. For
example, the key components of the MPACT automated testing process are as follows [40]:

1. Test Server checks for changes every 10 minutes and tests two configurations;
2. Tests many more regression tests, performed by CASL and UM test machines;
3. Test GNU C Compiler 4.6.1, 4.7.2, 4.8.1, Intel 12.1.5 with and without message passing interface

and other task parallel libraries;
4. Unit tests for solver kernels test against analytic solutions. Some regression tests compare against

analytic solutions;
5. Depletion solver is compared to experimental results;

42

6. This means analyzing program with Valgrind; and
7. This means running ‘gcov’ on all tests.

3.5.3 MPACT Testing, Validation and Verification

Because MPACT is both a standalone code and also a module in the larger CASL Virtual Environment
for Reactor Applications Core Simulator (VERA-CS) suite, the testing suite is very focused on single
physics (reactor physics) testing. The MPACT code emphasizes unit tests strongly during the
development process. For example [40],

The overall goal of unit testing is to isolate each part of the program and show that the
individual parts are correct. The testing in MPACT was designed to verify the smallest
testable part of an application and each test case was designed to be independent from the
others. The practice in MPACT has been for developers to create unit tests for all
functions and methods while the code itself is being written. When the tests pass, that
phase of the code development is considered complete. However, if a unit test fails, there
is considered to be a bug either in the changed code or the tests themselves, and that
phase of the code development process is continued.”

A summary of the unit and regression test coverage in the MPACT code is shown in Table 9. The
emphasis and tight coverage of the MPACT unit testing in particular has led to identification of many
bugs very early in the development cycle [40]. In Table 9 the coverage of unit tests refers to the
percentage of the lines of code that are subjected to unit testing.

Table 9. Unit and regression test coverage in MPACT from Reference 40

Metric Libraries/subroutines Code
drivers Executable Total

Unit tests 126 4 0 130
Regression tests 0 0 66 66
Coverage (%) 79.60 60.15 62.90 78.90
Lines of code 108,101 3,784 385 112,270

Regression or integral testing also plays a key role in the MPACT V&V process. Regression testing is
primarily used to verify key features in integrated simulations, such as geometry, transport solvers in 2D,
transport solvers in 3D, other solvers, and parallel processing. The building blocks of the MPACT
features that are tested in each of these areas are shown in Table 10.
Table 10. Building blocks of core MPACT features covered by regression testing, adapted from Reference 40

Geometry Transport
solvers Other coupled solvers Parallel processing

Cylindrical, quarter, rectangular
and generalize cylinder pin
geometries

2D method of
characteristics

Depletion (native and
Origen)

Message passing
interface (space, angle,
space+angle), explicit
file

Inserts 2D-1D with
simplified
transport

Search (boron, rod) OpenMP (threading)

Control rod (+ rod movement) P0 and Pn 2D-1D
with nodal
expansion method

Multistate

43

Table 10. Building blocks of core MPACT features covered by regression testing, adapted from Reference 36

(continued)

Geometry Transport
solvers Other coupled solvers Parallel processing

Baffle/reflector Coarse mesh finite
difference

Upper/lower nozzle, core plate,
reflector

Thermal hydraulic
Feedback (internal and
external)

Multiple assemblies/modules Equilibrium fission
product poisons

Symmetry Cross section shielding
(subgroup vs
embedded self-
shielding method)

Grids Control rod cusping
Detectors

An example MPACT unit test is focused on a mono-energetic problem with an angular surface flux
boundary condition fixed in a purely absorbing media. Because the problem has an analytical solution
(Ψ𝑜𝑜𝑜 = Ψ𝑖𝑖𝑒−Σ𝑡𝑠), it represents an ideal unit test. Reference 40 describes the test in further detail:

The focus of this unit test is the Product Quadrature sweeper module of the MOC
[method of characteristics] solver in the code which loops through angles in the
azimuthal quadrature set which is the ‘Chebyshev’ quadrature for this problem. For each
angle in the azimuthal quadrature set the long rays are swept and modular rays are looped
through for each long ray. For each modular ray the angles are swept in the polar
quadrature set which is the Gauss quadrature for this problem..

The code snippet shown in Appendix B, which represents important aspects of this test, includes the
specification of boundary conditions and the fixed value of the angular surface flux (2.0_SRK).

An example MPACT regression test yields insight into integral testing of the code features (see Fig. 8).
This example focuses on solving a 3-D problem with reflective boundary conditions on each surface.

44

Fig. 8. Example regression test and solution from Reference 40.

3.5.4 Lessons Learned and Path Forward

MPACT is an idealized example of a modern tool developed synergistically with a sophisticated V&V
approach. MPACT is a single-purpose, single physics tool (although it uses multiple methods and solves
different problems). In many ways, MPACT is representative of a single physics “module” within
SAS4A/SASSYS.

The key lesson learned is that integrating a rigorous regression suite into the development process
significantly enhances the ability to identify and eliminate code bugs or other problems. Another key
lesson is that the unit test suite, and the expert elicitation that is used to develop the test suite, must be
focused on developing realistic tests that are representative of the way the code is actually used.
Additionally, the tests must replicate how the code behaves as part of the complete system (both MPACT
and within the larger CASL VERA-CS suite).

4. RECOMMENDATIONS FOR SFR SAFETY ANALYSIS CODE QUALIFICATION

The objective of this section is to provide recommendations for implementing a SAS4A/SASSYS QA
plan and building a documented pedigree to support its use in NRC licensed applications.

The NQA-1-2008/2009 standard requires that software not produced under a QA program compliant with
the standard be dedicated in accordance with the requirements of Part II, Subpart 2.14, Quality Assurance
Requirements for Commercial Grade Items and Services, and licensees are likely to attempt to use the
commercial-grade dedication process to qualify SAS4A/SASSYS for safety-related analyses; a major
goal should be to develop the documentation needed to support this process.

45

The recommendations can be summarized in three objectives:

1) Evaluate the QA applied to the code during its development, the suitability of existing
documentation, and identify limitations, vulnerabilities, and areas for improvement and the
resources needed to address them.

2) Establish a NQA-1-2008/2009 compliant SQA program for future maintenance and
development.

3) Develop the documentation base needed to support commercial-grade dedication.

These objectives are further elaborated upon in the following sections.

4.1 EVALUATION

This process is a prerequisite step for software improvement. It will provide documented evidence to
potential licensees of the current limitations and vulnerabilities of the code as well as help define and
prioritize the steps required for improvement. The software should be placed under configuration control
prior to the evaluation.

In brief, the evaluation should [9]:

a) determine the adequacy of the software documentation to support testing, operation, and
maintenance.

b) identify activities to be performed throughout the applicable lifecycle of the software including
preparation of required documentation and performance of required reviews and/or tests,

c) determine the software’s capabilities and limitations for intended use,
d) specify test plans and test cases required to validate the capabilities within the stated limitations,
e) identify instructions for software use within the limits of its capabilities,
f) identify any exceptions to the lifecycle documentation and its justification.

We recommend adapting the plan and methods discussed in DOE-EH-4.2.1.2-Criteria [9], Section 2, to
perform the evaluation. Table 11 below reproduces the evaluation plan from this reference.

Table 11. Plan for SQA Evaluation of existing safety analysis software (Reproduced from DOE-EH-4.2.1.2-
Criteria Table 2-2)

Prerequisites a. Determine that sufficient information is provided by the software developer to
allow it be properly classified for its intended end-use.

b. Review SQAP per applicable requirements in Table 3-3.
Software Engineering
Process Requirements

a. Review SQAP for:
a. Required activities, documents, and deliverables
b. Level and extent of reviews and approvals, including internal and

independent review. Confirm that actions and deliverables (as
specified in the SQAP) have been completed and are adequate.

b. Review engineering documentation identified in the SQAP, e.g.,
a. Software Requirements Document
b. Software Design Document
c. Test Case Description and Report
d. Software Configuration and Control Document
e. Error Notification and Corrective Action Report, and
f. User’s Instructions (alternatively, a User’s Manual), Model

Description (if this information has not already been covered).
c. Identify documents that are acceptable from SQA perspective. Note inadequate

documents as appropriate.

46

Table 11. Plan for SQA Evaluation of existing safety analysis software (Reproduced from DOE-EH-4.2.1.2-
Criteria Table 2-2) (continued)

Software Product
Technical/Functional
Requirements

a. Review requirements documentation to determine if requirements support
intended use in Safety Analysis. Document this determination in gap analysis
document.

b. Review previously conducted software testing to verify that it sufficiently
demonstrated software performance required by Software Requirements
Document. Document this determination in the gap analysis document.

Testing a. Determine whether past software testing for the software being evaluated
provides adequate assurance that software product/technical requirements have
been met. Obtain documentation of this determination. Document this
determination in the gap analysis report.

b. (Optional) Recommend test plans/cases/acceptance criteria as needed per the
SQAP if testing not performed or incomplete.

New Software Baseline a. Recommend remedial actions for upgrading software documents that constitute
baseline for software. Recommendations can include complete revision or
providing new documentation. A complete list of baseline documents includes:

a. Software Quality Assurance Plan
b. Software Requirements Document
c. Software Design Document
d. Test Case Description and Report
e. Software Configuration and Control
f. Error Notification and Corrective Action Report, and
g. User’s Instructions (alternatively, a User’s Manual)

b. Provide recommendation for central registry as to minimum set of SQA
documents to constitute new baseline per the SQAP.

Training a. Identify current training programs provided by developer.
b. Determine applicability of training for DOE facility safety analysis.

Software Engineering
Planning

a. Identify planned improvements of software to comply with SQA requirements.
b. Determine software modifications planned by developer.
c. Provide recommendations from user community.
d. Estimate resources required to upgrade software.

4.2 NQA-1-2008/2009 COMPLIANT SQA PROGRAM

One of the key steps necessary to implement NRC-acceptable QA requirements is to develop a
comprehensive QA plan including a configuration management plan and an error reporting process. The
SAS4A/SASSYS QA plan should be mapped to NQA-1-2008/2008 Part II Subpart 2.7 QA requirements
and other relevant standards, if deemed applicable. A standardized configuration management plan is also
a necessary step to enhance the overall QA approach of the SAS4A/SASSYS code system and to fully
implement the QA plan. A modern configuration management and change tracking system is a key
enhancement. A standardized system for tracking and managing bug reports from users and associated
documentation of discrepancies is recommended to meet NRC nonconformance and corrective action
requirements. Although not explicitly NQA-1-2008/2009 compliant, the SCALE QA [21] and
configuration management [20] plans are excellent examples and could be refined for use with
SAS4A/SASSYS. The guidance provided by NUREG/BR-0167 [5] is also relevant and provides a good
roadmap to practical implementation of SQA requirements.

The following IEEE software development standards may also be used to help meet the requirements of
NQA-1-2008/2009 Part II Subpart 2.7:

• IEEE 730 Software Quality Assurance Plans
• IEEE 828 Software Configuration Management Plans

47

• IEEE 829 Software and System Test Plans
• IEEE 830 Software Requirements Specification
• IEEE 1012 Software V&V Plans
• IEEE 1058 Software Project Management Plans
• IEEE 1228 Software Safety Plans

A very useful document is NUREG-1737 [6], which outlines the NRC QA procedures for thermal
hydraulic codes. NUREG-1737 includes a set of checklists that are very useful as a procedural map to
establishing software QA that is complaint with NUREG/BR-0167 [5]. These example checklists are
reproduced in Appendix C. It is important to note that these checklists are helpful as general guidance but
are not sufficient for commercial-grade dedication of a particular tool.

The plans and procedures defined in DOE-EH-4.2.1.2-Criteria Section 3 and Table 3-3 for demonstrating
NQA-1 compliance are very useful, and can be adapted for use by SAS4A/SASSYS.

A particular challenge will be the development of a software requirements specification, if one does not
already exist. The requirements specification consists of functional needs, performance, design
constraints, attributes, and external interfaces. To meet the requirements of NQA-1, a software
requirements specification document must be generated.

The first emphasis of the requirements definition is a functional needs assessment. A functional needs
assessment determines what the code should do and the range of its applicability. Functional needs
encompass range of applicability, scalability of the models to reactor plant applications, assessment base,
and accuracy. The functional needs assessment will identify the specific features of each module that will
be subject to testing. This will inform a further investigation into the specific subroutines within the
modules that directly feed features.

The performance requirements definition includes time-related issues, numerical accuracy issues and
acceptance criteria, and scalability [6]. Performance requirements include definition of a qualification test
plan encompassing [6]:

a. The number and types of qualification problems to be completed,
b. The rationale for their choice, why was this problem chosen, which functional

requirement does it test?
c. The specific range of parameters and boundary conditions for which successful

execution of the problem set will qualify the code to meet specific functional
requirements,

d. Significant features not to be tested and the reasons (for example, for complex codes,
absolute qualification of every combination of options over every usable range of
parameters is not practical)

e. Acceptance criteria for each item to be tested. Number and types of sensitivity
calculations to be performed in order to develop user guidelines.

f. Discussion of scalableness [sic], if applicable.

Development of a rigorous V&V test suite is also a part of meeting NRC QA requirements. This includes
a suite of unit tests. One potential approach is to develop comprehensive tests for each class and method
in an object-oriented programming paradigm. In a procedural programming paradigm, at least one unit
test per subroutine or functionality is appropriate. The experience of MPACT is relevant, where setting up
realistic tests with relevant initial conditions was identified as a key challenge. It is vital that the unit test
suite provides realistic tests, and that those tests be mapped to documented requirements. If any
functionality is discussed in the user manual, it should have at least one unit test associated with it. A Test
Report or Verification & Validation manual should present a cross-index of requirements to
corresponding tests.

48

Unit test development could be “bootstrapped” via a similar method as the modern SCALE regression test
suite. This would include assembling a group of “expert users” with knowledge in their relevant
specializations, and focusing this team of experts on assessing each module within SAS4A/SASSYS. One
challenge here could be the possible base of experts, as there are relatively few groups within the United
States working on fast reactor safety analysis. Potential opportunities include students from universities
that have used or are using the SAS4A/SASSYS codes. Additionally, use of SAS4A/SASSYS
internationally could be leveraged to develop input to potential unit testing. A graded approach is
recommended, bearing in mind the relative importance of a particular module or result.

Integrating a rigorous regression suite into the development process significantly enhances the ability to
identify and eliminate code bugs or other problems. The unit test suite must be focused on developing
realistic tests that are representative of the way the code is used. Ultimately, the unit test development will
require a rigorous functional needs assessment for each of the modules in SAS4A/SASSYS. The goal of
the regression suite should be to have a library of realistic tests that cover the most important
functionalities of the tool. Examples of well-covered regression suites include MPACT (approximately
80% coverage of classes and functionalities) and the SCALE module ORIGEN (approximately 70%
coverage of classes and functionalities).

Integral testing is another need, including tests of the coupling between the different modules of
SAS4A/SASSYS. Tests would include both physics-based integral tests developed from expert elicitation
and benchmark tests that are based on actual plant data (for example, from the Experimental Breeder
Reactor II).

Another broader issue is the available data for model validation and code verification. Data used to
develop the applicable physics models cannot be used to independently validate the models or to verify
the tools. The TRACE QA process is a highly relevant example of the application of the CSAU
methodology. In general, TRACE is an excellent example of the approach that could be followed for
SAS4A/SASSYS, given that it represents an integration and modernization of four legacy tools.

4.3 SUPPORT FOR COMMERCIAL-GRADE DEDICATION

It is vital to begin to build a base of documentation that can be used to support the commercial-grade
dedication process. For this activity the guidance provided in EPRI Technical Report 3002002289 [3]
should be followed. A good start would be to begin to generate documented evidence appropriate to
address the critical characteristics identified in Section 6, Tables 6-2 through 6-6, of this report.

Only those software requirements relevant to critical characteristics are important for the dedication
process, and this can greatly reduce the scope of testing, verification, and validation necessary to perform.
The critical characteristics must be determined from the detailed needs of the simulation(s) to be
performed for licensing purposes. It is important to establish relationships with potential licensees to
develop lists of critical characteristics for meaningful use cases, including output figures of merit that are
used to make or inform safety decisions. From the figures of merit, the relevant models and associated
software requirements can be identified using a PIRT analysis.

Development of a framework and platform for an international SAS4A/SASSYS user community is a key
recommended action. The more users are exercising a tool, the better the quality of the tool will become,
because the users will report bugs. For example, a key source of bug reports in SCALE is bug reports
from the user community. SCALE also has mailing lists and an on-line user community where users can
discuss various problems in a collaborative way. Replicating this end-user community and experience
with SAS4A/SASSYS would enhance QA. The user base for SAS4A/SASSYS is much smaller than it is
for SCALE, but an active user community would also act to grow the user base. Many regression tests in
SCALE are based on user feedback from training/sample problems and bug reports. It is vital to build an
open community among existing SAS4A/SASSYS users for information exchange.

49

It is important to note that the commercial-grade dedication approach is most relevant if a license
applicant will use SAS4A/SASSYS. If the intended application of SAS4A/SASSYS is as a confirmatory
tool utilized by the NRC, the approach outlined in NUREG/BR-0167 [5] is most relevant.

5. REFERENCES

1. U.S. Nuclear Regulatory Commission, Quality Assurance Program Criteria (Design and

Construction), Regulatory Guide 1.28, Revision 4, Office of Nuclear Regulatory Research,
Washington, DC, June 2010.

2. American Society of Mechanical Engineers (ASME), Quality Assurance Requirements for Nuclear
Facility Applications, NQA-1-2008, ASME International, New York, NY, March 2008.

3. M. Tannenbaum and M. Tulay, Plant Engineering: Guideline for the Acceptance of Commercial-
Grade Design and Analysis Computer Programs Used in Nuclear Safety-Related Applications,
Electric Power Research Institute, 2013 Technical Report 3002002289 (Rev 1 of 1025243), 2013.

4. S. Birla, R. Sydnor, and N. Carte, (Availability of) An International Report on Safety Critical
Software for Nuclear Reactors by the Regulator Task Force on Safety Critical Software (TF-SCS),
NUREG/IA-0463, Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear
Regulatory Commission, Washington, DC, December 2015.

5. U.S. Nuclear Regulatory Commission, Software Quality Assurance Program and Guidelines,
NUREG/BR-0167, Division of Information Support Services, Office of Information Resources
Management, Washington, D.C., February 1993.

6. U.S. Nuclear Regulatory Commission, Software Quality Assurance Procedures for NRC Thermal
Hydraulic Codes, NUREG-1737, Division of Systems Analysis and Regulatory Effectiveness, Office
of Nuclear Regulatory Research, Washington, DC, November 2000.

7. U.S. Department of Energy, DOE Order 414.1D, Quality Assurance, Washington, DC, April 25,
2011.

8. U.S. Department of Energy, DOE Guide 414.1-4, Safety Software Guide for Use with 10 CFR 830
Subpart A, Quality Assurance Requirements and DOE O 414.1D, Quality Assurance, Washington,
DC, June 17, 2005.

9. U.S. Department of Energy, Software Quality Assurance Plan and Criteria for the Safety Analysis
Toolbox Codes, DOE-EH-4.2.1.2-Criteria, Office of Environment, Safety and Health, Washington,
DC, November 2003.

10. U.S. Department of Energy, Fuel Cycle Technologies Quality Assurance Program Document,
Revision 2, Office of Nuclear Energy, December 20, 2012.

11. U.S. Department of Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program
Software Quality Assurance Plan (NSQAP) Revision 1.6, Lawrence Livermore National Laboratory
Technical Report, LLNL-SM-455533, April 11, 2013.

12. NUREG/CR-5249, Quantifying Reactor Safety Margins, Applications of Code Scaling, Applicability,
and Uncertainty Evaluation Methodology to a Large-Break, Loss-of-Coolant Accident, EGG-2552
R4, Idaho National Laboratory, U.S. Department of Energy, October 1989.

13. Consortium for Advanced Simulation of LWRs, Quality Manual, CASL-U-2012-0047-000, U. S.
Department of Energy, Office of Nuclear Energy, Washington, DC, March 30, 2012.

14. American Society of Mechanical Engineers (ASME), Addenda to ASME NQA-1-2008: Quality
Assurance Requirements for Nuclear Facility Applications, NQA-1a-2009, ASME International, New
York, NY, August 2009.

50

15. Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Software Safety Plans,

IEEE Std. 1228-1994, Software Engineering Standards Committee of the IEEE Computer Society,
New York, NY, March 17, 1994.

16. Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Software Project
Management Plans, IEEE Std. 1058-1998, Software Engineering Standards Committee of the IEEE
Computer Society, New York, NY, December 1998.

17. Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Configuration
Management is Systems and Software Engineering, IEEE Std. 828-2005, Software Engineering
Standards Committee of the IEEE Computer Society, New York, NY, 2005.

18. Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Software QA Processes,
IEEE Std. 730-2002, Software Engineering Standards Committee of the IEEE Computer Society,
New York, NY, 2002.

19. Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Software and System Test
Documentation, IEEE Std. 829- 1998, Software Engineering Standards Committee of the IEEE
Computer Society, New York, NY, 1998.

20. Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for System and Software
V&V, IEEE Std. 1012- 2004 , Software Engineering Standards Committee of the IEEE Computer
Society, New York, NY, 2004 .

21. B. T. Rearden, M. T. Sieger, S. M. Bowman, J. P. Lefebvre, “Quality Assurance Plan for the SCALE
Code System,” SCALE-QAP-005, Rev. 4, May 22, 2013.

22. B. T. Rearden, SCALE Quality Assurance Program Training, July 26, 2013.
23. B. T. Rearden, private communication, November 13, 2015.
24. B. T. Rearden, S. M. Bowman, J. P. Lefebvre, “Configuration Management Plan for the SCALE

Code System,” SCALE-CMP-001, Rev. 8, May 22, 2013.
25. U.S. Nuclear Regulatory Commission, “Potential Non-conservative Error in Modeling Geometric

Regions in the Keno-V.A Criticality Code,” NRC Information Notice 2005-13, May 17, 2005.
26. W. Wieselquist, private communication, January 5, 2016.
27. Idaho National Laboratory, Independent Verification and Validation of SAPHIRE 8 Software Design

and Interface Design, INL/EXT-09-17069 (R1), Idaho Falls, ID, March 2010.
28. Idaho National Laboratory, SAPHIRE 8 Software Configuration Management Plan, INL/EXT -09-

16696 (R1), January 2010.
29. U.S. Nuclear Regulatory Commission and Idaho National Laboratory, Systems Analysis Programs for

Hands-on Integration Reliability Evaluations (SAPHIRE) Version 8 – Volume 6 Quality Assurance,
NUREG/CR-7039, March 2011.

30. Idaho National Laboratory, SAPHIRE 8, Software Independent Verification and Validation Plan,”
INL/EXT-09-15649 (R1), Idaho Falls, ID, February 2010.

31. Idaho National Laboratory, Independent Verification and Validation of SAPHIRE Version 8 Final
Report, INL/EXT-10-18466, Idaho Falls, ID, April 2010.

32. RELAP 3D Users Group Website (http://www4vip.inl.gov/relap5/relap5doc/relap5doept1.htm)
(accessed on March 16, 2016).

33. Letter by G. Apostolakis to W. Travers, Subject: Review of the Siemens Power Corporation S-
RELAP5 Code to Appendix K Small-Break Loss-of-Coolant Accident Analyses, dated February 13,
2001 (link to letter).

34. Idaho National Laboratory, RELAP5-3D Development Software Management: Software Quality
Assurance Plan, PLN-3411, Rev. 3, August 4, 2014.

http://www4vip.inl.gov/relap5/relap5doc/relap5doept1.htm
http://www.nrc.gov/reading-rm/doc-collections/acrs/letters/2001/4791929.html

51

35. R. R. Schultz, RELAP5-3D Code Manual Volume V: User’s Guidelines, INL, INEEL-EXT-98-00834,

Rev. 4.2, June 2014.
36. C. Davis, Verification Testing with Installation and Developmental Assessment Problems, RELAP5

International Users Seminar, October 23-24, 2012 (http://www4vip.inl.gov/relap5/rius/
sunvalley2012/presentations/verification-testing-davis-inl.pdf).

37. G. Mesina, RELAP5-3D Verification 2014, RELAP5 International Users Seminar, September 11-12,
2014 (http://www4vip.inl.gov/relap5/rius/idahofalls2014/presentations/inl-mesina-relap5-3d-
verification-2014.pdf).

38. S. Bajorek, et al., “Development, Validation, and Assessment of the TRACE Thermal-Hydraulics
Systems Code,” Proc. 16th Intl. Topical Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-16),
August 30-September 4, 2015.

39. N. Siu, “Software Verification and Validation: Examples from the Safety Arena,” U.S. Nuclear
Regulatory Commission, Office of Nuclear Regulatory Research, INMM Workshop on VA Tools,
Boston, MA, September 14-16, 2015.

40. T. Downar, B. Kochunas, B. Collins, MPACT Verification and Validation: Status and Plans (Rev.
1),” consortium for Advanced Simulation of LWRs Report, CASL-X-2015-0134-000, 2015.

41. M. Sieger, CASL-QA-030, CASL Software Quality Assurance Requirements, January, 2015, CASL-U-
2015-0010-000.

http://www4vip.inl.gov/relap5/rius/%20sunvalley2012/presentations/verification-testing-davis-inl.pdf
http://www4vip.inl.gov/relap5/rius/%20sunvalley2012/presentations/verification-testing-davis-inl.pdf
http://www4vip.inl.gov/relap5/rius/idahofalls2014/presentations/inl-mesina-relap5-3d-verification-2014.pdf
http://www4vip.inl.gov/relap5/rius/idahofalls2014/presentations/inl-mesina-relap5-3d-verification-2014.pdf

A-1

APPENDIX A. OBJECT-ORIENTED AND PROCEDURAL TEST
EXAMPLES

A.1. OBJECT-ORIENTED TEST

Object oriented unit test example, tstConcentrationConverter.cpp:

TEST(ConcentrationConverter,DecayUnits)
{
…
 EXPECT_TRUE(cv.convertible_to(CURIES,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(BECQUERELS,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(WATTS,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(GAMWATTS,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(MEVS,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(GAMMEVS,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(AIRM_3,id,MOLES));
 EXPECT_TRUE(cv.convertible_to(H2OM_3,id,MOLES));

 //reference values
 double c = 0.16674607;
 double b = 6.1696046e+09;
 double w = 0.0048892936;
 double g = 3.1766231e-05;
 double m = 3.0516558e+10;
 double v = 1.9826914e+08;
 double a = 5.0073898e+12;
 double h = 992536.12;

 //check the values from the forward
 EXPECT_FLOAT_EQ(c , cv.convert_to(CURIES,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(b , cv.convert_to(BECQUERELS,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(w , cv.convert_to(WATTS,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(g , cv.convert_to(GAMWATTS,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(m , cv.convert_to(MEVS,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(v , cv.convert_to(GAMMEVS,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(a , cv.convert_to(AIRM_3,id,MOLES,1.0));
 EXPECT_FLOAT_EQ(h , cv.convert_to(H2OM_3,id,MOLES,1.0));
 //now reverse
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,CURIES,c));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,BECQUERELS,b));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,WATTS,w));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,GAMWATTS,g));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,MEVS,m));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,GAMMEVS,v));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,AIRM_3,a));
 EXPECT_FLOAT_EQ(1.0, cv.convert_to(MOLES,id,H2OM_3,h));
}

A-2

A.2. PROCEDURAL TEST

Procedural programming unit test example, tstNuclideSet.f90:

!!
! Test symbol_to_izzzaaa
!!
call vec_ids % initialize()
call vec_str % initialize()
call vec_str % push_back("u235")
call vec_str % push_back("u235m")
call vec_str % push_back("pu239")
call vec_str % push_back("h1")
call vec_str % push_back("zr")
call nucset % convert_symbol_to_izzzaaa(vec_str,vec_ids)
EXPECT_EQ(92235,vec_ids%at(1_L))
EXPECT_EQ(1092235,vec_ids%at(2_L))
EXPECT_EQ(94239,vec_ids%at(3_L))
EXPECT_EQ(1001,vec_ids%at(4_L))
EXPECT_EQ(40000,vec_ids%at(5_L))

call nucset % convert_sizzzaaa_to_zzzaaai(vec_ids)
EXPECT_EQ(922350,vec_ids%at(1_L))
EXPECT_EQ(922351,vec_ids%at(2_L))
EXPECT_EQ(942390,vec_ids%at(3_L))
EXPECT_EQ(10010,vec_ids%at(4_L))
EXPECT_EQ(400000,vec_ids%at(5_L))

B-1

APPENDIX B. CODE SNIPPET FROM MPACT UNIT TEST

C-1

APPENDIX C. EXAMPLE CHECKLISTS FROM NUREG-1737 A

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

C-10

C-11

C-12

C-13

C-14

C-15

C-16

C-17

C-18

	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	ACKNOWLEDGEMENTS
	1. INTRODUCTION
	1.1 BACKGROUND
	1.2 GOAL AND OBJECTIVES
	1.3 ASSUMPTIONS AND CONDITIONS

	2. REQUIREMENTS AND GUIDANCE
	2.1 DOE-EH-4.2.1.2-Criteria
	2.2 EPRI Technical Report 3002002289
	2.3 NUREG/IA-0463
	2.4 NRC NUREG/BR-0167
	2.5 NUREG-1737
	2.6 DOE ORDER 414.D
	2.7 ASME NQA-1-2008/2009 STANDARD
	2.8 IEEE SOFTWARE DEVELOPMENT STANDARDS
	2.8.1 IEEE 1228-1994, Standard for Software Safety Plans [14F]
	2.8.2 IEEE 1058-1998, Standard for Software Project Management Plans [15F]
	2.8.3 IEEE 828-2005, Standard for Configuration Management is Systems and Software Engineering [16F]
	2.8.4 IEEE 730-2002, Standard for Software QA Processes [17F]
	2.8.5 IEEE 829-1998, Standard for Software and System Test Documentation [18F]
	2.8.6 IEEE 1012-2004, Standard for System and Software V&V [19F]

	3. PRACTICES FROM OTHER CODES AND SOFTWARE PACKAGES
	3.1 SCALE
	3.1.1 Introduction to SCALE
	3.1.2 Summary of the SCALE QA Process
	3.1.3 Components of the SCALE QA Process
	3.1.4 SCALE QA Process Overview
	3.1.5 SCALE Testing, Validation, and Verification
	3.1.6 Lessons learned and Path Forward

	3.2 SAPHIRE
	3.2.1 Introduction to SAPHIRE
	3.2.2 Summary of SAPHIRE QA Process
	3.2.3 Components of the SAPHIRE QA Process
	3.2.4 Testing, V&V, and Internal, Automated, and External Testing
	3.2.5 V&V testing
	3.2.6 Lessons Learned

	3.3 RELAP-5-3D
	3.3.1 Introduction to RELAP5-3D
	3.3.2 Licensing Use of RELAP5-3D
	3.3.3 Summary of the RELAP5-3D QA Process
	3.3.4 Components of the RELAP5-3D QA Process
	3.3.5 RELAP-3D Testing, V&V
	3.3.6 Lessons Learned

	3.4 TRACE
	3.4.1 Introduction to TRACE
	3.4.2 Summary of the TRACE QA Process
	3.4.3 Components of the TRACE QA Process
	3.4.4 TRACE Testing, Validation, and Verification
	3.4.5 Lessons Learned and Path Forward

	3.5 MPACT (CASL)
	3.5.1 Introduction to MPACT
	3.5.2 Summary of the MPACT QA Process
	3.5.3 MPACT Testing, Validation and Verification
	3.5.4 Lessons Learned and Path Forward

	4. RECOMMENDATIONS FOR SFR SAFETY ANALYSIS CODE QUALIFICATION
	4.1 Evaluation
	4.2 NQA-1-2008/2009 compliant SQA program
	4.3 SUPPORT for COMMERCIAL-GRADE DEDICATION

	5. REFERENCES
	APPENDIX A. OBJECT-ORIENTED AND PROCEDURAL TEST EXAMPLES
	APPENDIX B. CODE SNIPPET FROM MPACT UNIT TEST
	APPENDIX C. EXAMPLE CHECKLISTS FROM NUREG-1737 A

