
ORNL/TM-2016/3

Survey of Approaches to Generate
Realistic Synthetic Graphs

Seung-Hwan Lim
Sangkeun Matt Lee
Sarah Powers
Mallikarjun Shankar
Neena Imam

October 2015

Approved for public release. Distribution is unlimited.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Website: http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2016/3

Computational Sciences and Engineering Division?

Computer Science and Mathematics Division‡

Computing and Computational Sciences Directorate†

Survey of Approaches to Generate Realistic Synthetic Graphs

Seung-Hwan Lim?, Sangkeun Matt Lee?, Sarah Powers‡, Mallikarjun Shankar?, Neena Imam†

October 2015

Prepared by
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6285

managed by
UT-Battelle, LLC

for the
US DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

CONTENTS

Page
1. Introduction . 2
2. Application Domains and Functional Uses of synthetic graphs 4

2.1 End-User Domains . 4
2.2 Functional Uses . 4

2.2.1 Graph anonymization . 4
2.2.2 Graph sampling . 5
2.2.3 Graph compression . 5
2.2.4 Graph extrapolation . 5

3. Terminology . 6
3.1 Fundamental graph concepts . 6

3.1.1 Definitions . 6
3.1.2 Related research and challenges . 6

3.2 Statistical modeling . 6
3.2.1 Definitions . 7
3.2.2 Related research and challenges . 7

4. Graph Generative Model Selection . 7
4.1 Graph generative models . 8
4.2 Graph fitting techniques . 10

5. Graph Generation . 11
5.1 Generation techniques . 11
5.2 Generator packages . 12

6. Graph Generative Model Validation . 12
7. Discussion: challenges and opportunities . 14

7.1 Devising fitting mechanisms and criteria . 14
7.2 Defining comprehensive fidelity . 15
7.3 Achieving scalability . 15
7.4 Application-level benchmarks . 15
7.5 Model selection for heterogeneous (attributed) graphs . 16

8. Conclusions . 16

iii

Abstract

A graph is a flexible data structure that can represent relationships between entities. As with other
data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Using the
actual ("real-world") graphs for research and new algorithm development is often difficult due to the
presence of sensitive information in the data or due to the scale of data. This results in practitioners
developing algorithms and systems that employ synthetic graphs instead of real-world graphs.
Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis
and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys
the state of the art in approaches to generate realistic graphs that are derived from fitted graph models
on real-world graphs.

1

1. INTRODUCTION

A graph is a data structure that represents a set of entities as vertices where pairs of vertices are
connected by edges that represent the relationships between vertices. Using graphs we can represent a
variety of real-world information in a natural and efficient way. Structures such as social networks [40],
Internet network topology [17], links between web pages [27], chemical structures [11], and
genomic/proteomic information [10, 47] may be intuitively thought of as graph structures. Analyzing these
graphs unveils useful implied knowledge such as recurring patterns and causal relationships. Performing
the analysis on real-world graphs is critical to obtaining valid results for newly developed algorithms and
system-implementation evaluations. Unfortunately, using the real-world graphs themselves for analysis is
difficult due to the following two main reasons:
• Critical information: the owner of the information in the graphs may not want to share his/her data

with specific groups of people (e.g., a third-party research entity or software developer) because the
data may contain critical proprietary or protected information [24, 26, 46, 53].

• The scale of data: the scale of the empirical graph derived from real-world data can be inappropriate:
it may either be too large or too small for practical use. Large-scale graphs incur large computational
costs to share and use and are thus not ideal for the design and testing of new methods and
techniques [34]. On the other hand, if we can only use a portion of the real-world data such as a
subset of the communication network topology from the entire Internet [37] or a subset of user
information from social network service providers [45], then the graphs these data sets lead to may
be too small to be representative graphs for analysis. In these situations we have to "scale the data" in
one or both directions: either we sub-sample the data rigorously from the large data set, or we
extrapolate and create a large graph. However, in both directions, we would like to preserve similar
statistical (in the aggregate sense) characteristics, and maintain the necessary structural fidelity of the
real-world graph [30].

Hence, many research efforts use realistic synthetic graphs as an alternative to real-world graphs. This
report surveys the state of art research for generating realistic synthetic graphs, along with associated
research challenges and opportunities.

GENERATION MODELS AND APPROACH

A synthetic graph is a graph generated using a “graph generative model.” A realistic synthetic graph is
a synthetic graph that uses fitted model parameters derived from empirical or real-world graphs. (We use
the terms real-world graphs and empirical graphs to denote actual representations of the existing physical
reality.) In order to provide reasonable statistical confidence in experimental results on the synthetic graphs,
it is important to ensure that the generated graphs have properties that effectively mirror those found in the
real-world graphs. Selecting a compact statistical model to match real-world data is a long-standing
research area [35]. As a special case of statistical model construction, determining graph generative model
parameters involves similar challenges in selecting model parameters to match both aggregate statistics
while offering statistically valid realism. This realism is tested in the fidelity to real-world structures and
sub-structures in the graph neighborhoods one or more edges away. Evaluating the quality of the generated
synthetic graphs, and the pattern of access to the working set of data is a post-generation evaluation step.

Figure 1 outlines the approach for generating a realistic synthetic graph. The process of generating
realistic synthetic graphs can be grouped into three tasks: graph generative model selection, synthetic
graph generation, and graph generative model validation. We briefly discuss these steps.

1. Graph generative model selection: a graph generation model denotes a specific instance of a model

2

(a) 0K-graph (b) 1K-graph (c) 2K-graph

(d) 3K-graph

(e) original HOT graph

Figure 3: Picturizations of dK-graphs and the original HOT graph illustrating the convergence of dK-series.

construct graphs with both ends of an edge connected to
the same node (self-loops) and with multiple edges between
the same pair of nodes (loops).

It operates as follows: given the number of nodes, n(k),

of degree k, n =
Pkmax

k=1 n(k), first prepare n(k) nodes with
k stubs attached to each node, k = 1, . . . , kmax, and then
randomly choose pairs of stubs and connect them to form
edges. To obtain a simple connected graph, remove all loops
and extract the largest connected component.

We extended this algorithm to 2K as follows: given the
number m(k1, k2) of edges between k1- and k2-degree nodes,

m =
Pkmax

k1,k2=1 m(k1, k2), we first prepare a list of m(k1, k2)
disconnected edges and label the ends of each edge by their
respective degree values k1 and k2, k1, k2 = 1, . . . , kmax.
Next, corresponding to each degree k, k = 1, . . . , kmax, we
create a list of all edge-ends that were labelled with k; from
this list, we randomly select groups of k edge-ends to create
the nodes in the graph with degree k, k = 1, . . . , kmax.

The pseudograph algorithm produces good results for d =
2. Unfortunately, we could not generalize it easily for d > 2
because starting at d = 3, d-sized subgraphs overlap over
edges. Such overlapping introduces a series of topological
constraints and non-local dependencies among different sub-
graphs, and we could not find a simple technique to pre-
serve these combinatorial constraints during the construc-
tion phase.

4.1.3 Matching
The matching approach differs from the pseudograph ap-

proach in avoiding loops during the construction phase. In
the 1K case, the algorithm works exactly as its pseudograph
counterpart but skips pairs of stubs that form loops if con-
nected. We extend the matching approach to 2K in a similar
manner as our 2K pseudograph approach, but using the loop

Figure 4: dK-preserving rewiring for d = 0, 1, 2.

avoidance strategy.
Unfortunately, loop avoidance suffers from various forms

of deadlock for both 1K and 2K. In both cases, the algo-
rithms can end up in incomplete configurations when not all
edges are formed, and the graph cannot be completed be-
cause there are no suitable stub pairs remaining that can be
connected without forming loops. We devised several tech-
niques to deal with these problems. With these additional
techniques, we obtained good results for 2K graphs. Once
again, we could not generalize matching for d > 2 for es-
sentially the same reasons related to subgraphs’ overlapping
and non-locality as in the pseudograph case.

4.1.4 Rewiring
The rewiring approaches are generalizable to any d and

work well in practice. They involve dK-preserving rewiring
as illustrated in Figure 4. The main idea is to rewire ran-
dom (pairs of) edges preserving an existing form of the dK-
distribution. For d = 0, we rewire a random edge to a ran-
dom pair of nodes, thus preserving k̄. For d = 1, we rewire
two random edges that do not alter P (k), as shown in Fig-
ure 4. If, in addition, there are at least two nodes of equal
degrees adjacent to the different edges in the edge pair, then

139

(a) 0K-graph (b) 1K-graph (c) 2K-graph

(d) 3K-graph

(e) original HOT graph

Figure 3: Picturizations of dK-graphs and the original HOT graph illustrating the convergence of dK-series.

construct graphs with both ends of an edge connected to
the same node (self-loops) and with multiple edges between
the same pair of nodes (loops).

It operates as follows: given the number of nodes, n(k),

of degree k, n =
Pkmax

k=1 n(k), first prepare n(k) nodes with
k stubs attached to each node, k = 1, . . . , kmax, and then
randomly choose pairs of stubs and connect them to form
edges. To obtain a simple connected graph, remove all loops
and extract the largest connected component.

We extended this algorithm to 2K as follows: given the
number m(k1, k2) of edges between k1- and k2-degree nodes,

m =
Pkmax

k1,k2=1 m(k1, k2), we first prepare a list of m(k1, k2)
disconnected edges and label the ends of each edge by their
respective degree values k1 and k2, k1, k2 = 1, . . . , kmax.
Next, corresponding to each degree k, k = 1, . . . , kmax, we
create a list of all edge-ends that were labelled with k; from
this list, we randomly select groups of k edge-ends to create
the nodes in the graph with degree k, k = 1, . . . , kmax.

The pseudograph algorithm produces good results for d =
2. Unfortunately, we could not generalize it easily for d > 2
because starting at d = 3, d-sized subgraphs overlap over
edges. Such overlapping introduces a series of topological
constraints and non-local dependencies among different sub-
graphs, and we could not find a simple technique to pre-
serve these combinatorial constraints during the construc-
tion phase.

4.1.3 Matching
The matching approach differs from the pseudograph ap-

proach in avoiding loops during the construction phase. In
the 1K case, the algorithm works exactly as its pseudograph
counterpart but skips pairs of stubs that form loops if con-
nected. We extend the matching approach to 2K in a similar
manner as our 2K pseudograph approach, but using the loop

Figure 4: dK-preserving rewiring for d = 0, 1, 2.

avoidance strategy.
Unfortunately, loop avoidance suffers from various forms

of deadlock for both 1K and 2K. In both cases, the algo-
rithms can end up in incomplete configurations when not all
edges are formed, and the graph cannot be completed be-
cause there are no suitable stub pairs remaining that can be
connected without forming loops. We devised several tech-
niques to deal with these problems. With these additional
techniques, we obtained good results for 2K graphs. Once
again, we could not generalize matching for d > 2 for es-
sentially the same reasons related to subgraphs’ overlapping
and non-locality as in the pseudograph case.

4.1.4 Rewiring
The rewiring approaches are generalizable to any d and

work well in practice. They involve dK-preserving rewiring
as illustrated in Figure 4. The main idea is to rewire ran-
dom (pairs of) edges preserving an existing form of the dK-
distribution. For d = 0, we rewire a random edge to a ran-
dom pair of nodes, thus preserving k̄. For d = 1, we rewire
two random edges that do not alter P (k), as shown in Fig-
ure 4. If, in addition, there are at least two nodes of equal
degrees adjacent to the different edges in the edge pair, then

139

Empirical
Graph

Synthetic Graph

Graph	
 model	
 selec.on	

Graph	
 genera.on	
 Graph	
 model	
 valida.on	

Searching Model
Parameters, or fitting

+ Fitted Model
Parameters

Measure fidelity
(graph
properties)

Model family: Kronecker
Graph, Barabasi-Albert
Graph, etc.

Fig. 1. The overview of three major tasks in generating realistic synthetic graphs: graph
generative model selection, synthetic graph generation, and graph generative model validation.

family with model parameters, where a model family refers to a type of graph generation model.
Well known models include Barabasi-Albert [8], Erdös-Rényi [16], and Kronecker graph generation
models [30]. This step aims to determine a proper graph generation model, which includes a set of
fitted model parameters derived from empirical real-world graphs. For this process, the major
operation is to search the model parameters with a desired goodness of fit in accordance with a
certain criteria. For searching model parameters, we might manually choose a family of models. For
instance, we might choose either the Kronecker graph model or Nearest Neighbors model, and then
search model parameters for the family. Or, we might consider multiple model families at the same
time, while individually searching model parameters for models from each family. We often refer to
this process as graph fitting, which can be an iterative process as with selecting a statistical model in
general [54].

2. Synthetic graph generation: this is the task of producing synthetic graphs for a given graph
generation model and a set of model parameters [12]. The computational challenges in generating
synthetic graphs vary depending on the choice of model family. However, this process is typically a
memory or I/O-bound operation in order to manage the data structure for storing graphs [36].

3. Graph generation model validation: understanding the discrepancy between real-world graphs and
synthetic graphs is critical, as it will dictate the statistical confidence of experimental results on the
synthetic graphs [45]. Once we have generated synthetic graphs, we need to validate if the generated
synthetic graph exhibits statistically similar properties to the empirical real-world graphs [32].

The rest of this report is organized as follows: Section 2 briefly introduces the potential applications of
synthetic graph generation in graph analysis. Important terms needed to understand this report are
described in Section 3. We provide detailed descriptions of three major steps in obtaining realistic synthetic
graphs: Section 4 for graph model selection; Section 5 for graph generation; and Section 6 for graph model
validation. Section 7 discusses challenges and opportunities across tasks, suggesting future directions.
Section 8 concludes the report.

3

2. APPLICATION DOMAINS AND FUNCTIONAL USES OF SYNTHETIC GRAPHS

We first discuss application domains that employ realistic synthetic graph generation, and go on to the
functional (in a more technical sense) uses of the synthetic graph construction steps.

2.1 END-USER DOMAINS

We briefly introduce candidate domains and their rationale for the use of synthetic graphs in order to
highlight the necessities of synthetic graphs.

• Healthcare: entities in the healthcare delivery environment are effectively modeled as patient nodes,
provider nodes (doctors, hospitals, etc.), and edges for patient-to-provider visits which represent the
financial transaction events [13]. When we develop algorithms to identify malicious entities
associated with financial fraud, waste, and abuse cases, we have to protect critical information that
resides in the data in order to comply with rules like Health Insurance Portability and Accountability
Act [42].

• Social Network: social network service providers are likely to impose stricter restriction on the
access to their user information to protect the privacy of users, and in turn allow researchers access to
only a portion of the actual networks [45]. Still, we would like to develop a valid approach for
identifying the most significant user activity patterns in the entire network, though we only have a
portion of the actual network.

• Internet Network Topology: it is almost impossible to construct the topology of all the machines
connected to the Internet, considering the explosion of the Internet of Things and many virtualized
machines in cloud environments [37]. Still, we would like to measure the effectiveness of specific
routing algorithms for the next five to ten years.

• Bioinformatics: many problems in bioinformatics, such as Gene Regulatory Networks, can be
represented as graphs [15]. These graphs can be very large and intrinsically stochastic. Thus, testing
algorithms over representative sampled graphs can be desirable.

2.2 FUNCTIONAL USES

As mentioned earlier, synthetic graphs have two broad functional uses: (1) hiding critical information
and (2) controlling the size of graphs. Graph anonymization is one way to prevent the leakage of critical
information. As for controlling the size of the graphs, we have three use cases: to generate larger graphs
than available empirical graphs (graph extrapolation); to generate smaller graphs than available empirical
graphs (graph sampling); and to store a graph with smaller storage requirements (graph compression). We
will briefly introduce these applications.

2.2.1 Graph anonymization

Graph anonymization prevents the identity disclosure of individuals in graphs [53]. In graph data,
anonymization is a more challenging problem than single-table data since information on individuals can
be leaked through observing structural similarities of neighborhoods of nodes [24]. This will be critical for
applications like healthcare, national security, and social network anlaysis, where graphs may contain
sensitive and private information. Solutions to this problem typically consider specific privacy information

4

to be protected such as relation identity and individual identity, under the assumption of certain prior
information that the adversary owns [53].

Similar to anonymization, differential privacy based approaches exist [26, 46] that apply to graphs. In
cryptography, differential privacy aims to provide the means to maximize the accuracy of queries from
statistical databases while minimizing the chances of identifying its records. Differential privacy
approaches typically consider adding noise to answers on statistical queries over the graph as with the
differential privacy on relational data. For instance, Karwa et al. [26] outputs approximated answers to
subgraph counting queries to prevent the leakage of privacy from a graph. Differential privacy is a stronger
notion to preserve privacy than anonymization, since differential privacy aims to preserve privacy even
when additional data is available (i.e. any prior statistical information on the data or a supplemental data
related to the target data [41].) Graph anonymization typically modifies the graph data through
generalization and perturbation of a graph, while differential privacy typically modifies the answer to
certain statistical queries. Graph anonymization is more closely related to the goal of generating calibrated
synthetic graphs. More details on graph anonymization can be found in a survey of anonymization
techniques on social network data [53].

2.2.2 Graph sampling

Graph sampling typically generates a smaller graph by sampling edges [2] or nodes in a graph [31].
Graph sampling is analogous to sampling non-zero entries of a matrix A in order to produce a sparse sketch
of it, B to minimize the discrepancy between A and B [1]. In addition, graph sampling considers efficiently
estimating the graph properties with a known degree of accuracy, by consulting a sample of the whole
population [5]. For instance, graph sampling targets at the approximation of other graph properties such as
the count of subgraphs like triangles, clustering coefficient, and average degree [3]. Graph sampling is
useful for running simulation experiments (simulating routing algorithms in computer networks, or
virus/worm propagation algorithms), when these algorithms may be too slow to run on large graphs, [3].
As shown in [32], we can sample a graph, using realistic synthetic graphs with a parameter that controls the
size of the graphs, while preserving properties of larger graphs.

2.2.3 Graph compression

In graph compression, a graph compression algorithm A takes the adjacency matrix of a graph as an
input and stores it in a compressed data structure [19]. Graph compression is heavily discussed in storing
web graphs since storing web graphs involves storing URLs and their hyperlinks. Graph compression often
uses the topological structure of a graph such as the similarity of nodes with respect to the set of neighbors
for each node [9], which can be used to efficiently encode the node labels [6]. Thus, using graph models,
we can compress a graph by capturing the structure of a graph with model parameters and the deviations
between the real and the synthetic graph from the generation model [32].

2.2.4 Graph extrapolation

We can use the model to generate larger graphs than we can empirically obtain. Graph extrapolation is
useful to understand the evolution of the graph in the future and the characteristics of the graph beyond the
obtained empirical graph. For instance, it is prohibitive to construct the communication network topology
of the entire Internet [18], and the whole graph of all the users in a social network service [45]. Thus,
empirical graphs for those analyses are essentially sampled subgraphs, for which extrapolated graphs are

5

essential so as to validate that the hypothesis will hold for the entire graph. In order to generate
extrapolated graphs, we first need to model the empirical graph and generate a larger graph according to the
model, which is exactly the procedure of generating realistic synthetic graphs.

3. TERMINOLOGY

This section highlights some of the key graph theoretic terms pertinent to this survey. Since the
generation of synthetic graphs necessarily involves the use of statistical techniques, terminology from the
domain of statistical model selection is also included. Note that a distinction is made between the raw (or
empirical) data and the synthetic data, which is created or generated via a specific process.

3.1 FUNDAMENTAL GRAPH CONCEPTS

3.1.1 Definitions

At a basic level, a graph G is a mathematical structure that can used to represent relationships in data.
Let G = (V, E), where V = 1, 2, . . . ,N is the set of vertices (or nodes)1 and E ⊆ V × V is the set of edges.
While there are many different types of graphs (e.g., multigraphs, directed graphs or weighted graphs), we
specifically highlight attributed graphs, where attributes are associated with nodes and/or edges. Let α be
the node labeling function α : V → LN then G is denoted by G = (V, E, l). If both nodes and edges in a
graph have attributes, the attributed graph can be denoted by G = (V, E, α, β), where α : V → LN , and
β : E → LE are node and edge labeling functions respectively.

A graph G
′

= V
′

, E
′

is said to be a subgraph of G if and only if V
′

⊆ V and E
′

⊆ E. Conversely, if
these conditions hold, G is said to be a supergraph of G

′

.
Two graphs are said to be isomorphic if they are equivalent differing only in their names of vertices

and edges. Formally stated, two graphs G = {V1, E1} and H = {V2, E2} are isomophic if there is a bijective
function (one-to-one correspondence) f : V1 → V2 such that for each edge {a, b} ∈ E1 then there exists the
edge { f (a), f (b)} ∈ E2.

3.1.2 Related research and challenges

The problem of testing whether two graphs (or subgraphs) are really the same ((sub)graph
isomorphism) is a fundamental graph theory problem known to be NP-hard. When generating synthetic
graphs, it is necessary to compare whether the resultant graph is the same as the empirical graph. In so
doing, one can measure the similarity of two graphs, thereby determining the extent to which they are
analogous. This concept comes into play specifically when attempting to fit a model to a set of data. Graph
similarity has numerous applications in diverse fields such as social networks, image processing, biological
networks, chemical compounds, and computer vision.

In order to perform comparisons between synthetic and raw graphs, some metric is required. A variety
of terms can be found throughout the literature including graph properties, features, metrics or even graph
statistics. Broadly speaking, these refer to a quantifiable property of the data that can be used for
comparison.

3.2 STATISTICAL MODELING

This section clarifies the terminology related to graph modeling as appropriate for this report.
1the terms will be used interchangeably in this report

6

3.2.1 Definitions

A graph generator model is a formalized mathematical approach to creating a graph. While this is
closely related to statistical models, which represent the data generation process via equations related to
random and non-random variables, the graph generation model specifically focuses on forming data which
is composed of nodes and edges.

The graph generator itself is a specific instance (i.e., code implementation) of a model. For example,
the Ërdos-Rényi model has many implementations such as the NetworkX or APGL packages. A graph
generator model may be controlled via a set of parameters.

Statistical model selection is the process by which, given a set of possible statistical models
M = {M1,M2, . . . ,Mk}, one must pick the model that is expected to most closely replicate the test data,
with respect to certain criteria. Graph generator model selection is a specific case of this, where M
consists of graph generator models and the target data is a graph.

For parameter controlled models, model selection includes a scan of the parameter space referred to as
parameter search. With respect to graph models, the term graph fitting is also used when referring to the
steps involved in selecting an instance of a graph model and the optimal parameters which generate the
most similar synthetic graph to the raw data at hand.

In statistics and machine learning, model validation or model evaluation, is the task of quantifying the
quality of prediction from a statistical model with parameters obtained from model selection process.
Similarly, graph generator model validation is the task of quantifying the quality of synthetic graphs
generated.

Finally, the term fidelity describes the similarity of the statistical properties of two graphs. It can be
both used for graph fitting or graph generation model validation. Fidelity can be defined in many different
ways. For instance, let us say that vectors vG1 and vG2 are composed of a set of statistical properties of
graphs G1 and G2 respectively, then we can use the cosine similarity of these two vectors as fidelity of the
graphs.

3.2.2 Related research and challenges

The issues of graph fitting and validation each present their own set of challenges. In order to
determine if a model provides a “good” match, a mechanism to perform the fitting is required, as are
metrics for determining the appropriateness of the selection.

The next section discusses in further detail graph generation models and existing fitting techniques.

4. GRAPH GENERATIVE MODEL SELECTION

Conventionally, model selection in statistics or machine learning is the task of finding a good statistical
model, including corresponding model parameters, which estimates the real-world phenomenon [54]. In
general, a model selection approach takes the following steps. First, it initializes a model by selecting
parameters (e.g., through random selection). Then, it searches other candidate parameters according to the
parameter search strategy and evaluates the model with the new candidates. By repeatedly performing this
parameter search process called model fitting, it selects parameters with the best fitness for the observed
data. (Curve fitting [28] is an example of a model selection approach.) Graph generative model selection
can be understood as a special case of model selection. It is the process to search for a good graph
generative model, along with parameters that can generate synthetic random graphs with similar statistical
properties to the target graph. This section begins with the introduction of popular graph generative

7

models. After the introduction of graph models, we will cover graph fitting techniques, which extract
optimal parameters for a graph generative model in order to produce a randomized synthetic graph that
matches the statistical properties of a target graph.

4.1 GRAPH GENERATIVE MODELS

We categorize graph generative models into three model groups: feature-driven models,
structure-driven models, and intent-driven models.

Early graph generative models fell into the first group which focuses on reproducing one or more
specific statistical graph features (e.g., degree distribution, graph density, etc.). Feature-driven models
define a mechanism or a principle by which a network with desired features is constructed. Although
feature-driven models are simple to use, they are limited in that the selected features and their statistical
properties may not fully represent the characteristics of the entire graphs. For instance, two graphs with the
same average degree can have very different topological shapes. To address this limitation, structure-driven
models were proposed. Unlike the feature-driven models, they focus on capturing the overall structure (or
topology) characteristics of empirical graphs, instead of capturing specific global graph properties. These
models normally require expensive memory and computational resources and we often need to balance the
accuracy of the model with the computational cost associated with running the model. The third category,
intent-driven models, includes graph generative models that focus on emulating the process of graph
evolution. This approach is based on the assumption that emulating the behaviors in the network (e.g. a
user in a social network) will result in realistic graphs resembling observed graphs.

We frame the state of the art in the context of the above three graph generative model categories. (For
further discussion on specific graph generative models, readers may want to refer to [36, 39].)
• Feature-driven Models:

– Erdös-Rényi [16, 21]: there are two variants of the Erdös-Rényi (ER) model. In the first
model [16], a graph is chosen uniformly at random from the set of all possible graphs with
given number of nodes and edges. In the second model [21], a graph is generated by connecting
nodes randomly with probability p. The model becomes more likely to generate a graph with
more edges as the probability p increases. Due to the convenience of simply adding statistically
independent edges, the second model is more commonly used in practice. Thus, we can state
that ER model can reproduce graphs where the node degree distribution in the generated graph
follows Poisson distribution. The ER model has been criticized that it may not be appropriate
for modeling many real-world phenomena, since it does not have heavy tails like many
real-world graphs.

– Watts-Strogatz (small world) [50]: this model is a random graph generative model that
produces graphs with small-world properties – short average path length and high clustering
coefficient. The underlying structure of the model is a lattice structure that produces a locally
clustered network and random links reduce the average path lengths. The major limitation of
this model is that it produces an unrealistic degree distribution in comparison with many real
scale-free networks. In addition, since this model typically employs a fixed number of nodes, it
cannot be used to model network growth.

– Barabasi-Albert [7]: many real-world graphs are scale-free networks. In other words, they
have power-law degree distributions; however, both the Erdös-Rényi model and the
Watts-Strogatz model do not generate graphs with power-law degree distribution. The
Barabasi-Albert model is proposed to address the limitations of both models. It exploits the
incremental growth model for graph construction with the idea that the node attaches

8

preferentially to nodes that are already well connected. In other words, new objects tend to
attach to popular objects. Each new node is connected to existing nodes with a probability that
is proportional to the number of links that the existing nodes have. It is also called the
preferential attachment model. This model’s limitation is that it fails to produce the high levels
of clustering seen in some real networks.

– Krioukov [29]: this model also generates a graph with power-law degree distribution. The
model is based on the idea that there are hidden metric spaces which influence the topology of
the network. A distance measure between two nodes can be defined in the hidden space, and
the distance affects the probability of connecting the two nodes. (The model uses hyperbolic
spaces as the underlying hidden space.)

– Forest Fire [33]: earlier models are bounded by constants; however this model aims to capture
the characteristic evolution of real-world graphs over time, particularly focusing on increasing
density and shrinking average distance between nodes. When a new node is connected to an
existing node, it also randomly connects to some of the node’s neighbors.

• Structure-driven Models:
– dK-Graph [37]: dK-Graph is based upon dk-Series, which represent reproducible graph

properties. dK-Series are probability distributions that specify all degree correlations within
d-sized subgraphs of a given graph G. A larger d will capture more complex properties of G.
Interpreting dK-series, dK-0 is average node degree, dk-1 captures the node degree distribution,
dK-2 captures the joint degree distribution, dk-3 captures the clustering coefficient, and etc.
Larger number of d require higher costs for computation. dK-series can be used in two ways.
First, it can be exploited to measure the distance between two graphs. Second, it can be used to
generate random graphs that accurately reproduce the given metrics. According to the authors,
d = 2 is sufficient for most practical purposes but this has been debated subsequently. For
example, when modeling certain biological networks, d = 3 was not deemed a useful metric to
capture the realistic characteristics of the graph [49].

– Kronecker Graphs [30]: the objective of the Kronecker graph model is to obey multiple
properties of a given original graph. The Kronecker graphs are generated via recursive creation
of self-similar graph starting from an initiator adjacency matrix. The evolution process is called
Kronecker multiplication and it can be computed in linear time. Each evolution creates
successively larger graphs. Sampling and the maximum likelihood approach are used to fit the
original graph to the appropriate parameters. The Kronecker model has been selected as one of
the models for the Graph 500 benchmark. However, it has several known drawbacks. First, it
can be expensive to perform graph model selection when the target real-world graphs contain
more than billion edges. The size of the initiator graph and the maximum number of gradient
descent iterations in the search are important parameters for this model, but larger parameters
can lead to significantly high computational cost. Second, clustering coefficients of generated
graphs are much smaller than what is produced in real-world graphs.

– Musketeer [23]: this model aims to produce a randomized synthetic graph as similar to the
original graph as possible. The model performs a rewiring process starting from the original
graph, trying to preserve intended features of the original graph. There are several
transformations such as editing, adding nodes or edges. The process is called graph
coarsening, and it is repeatedly performed a given number of times by computing projections
of the Laplacian. After a series of coarsening steps, the graph structure is refined by
randomized edits to finalize the synthetic graph generation.

9

• Intent-driven Models:
– Random Walk [48]: this model emulates the randomized behavior of a user’s behavior of

friend discovery in social networks. Initially, the graph starts with one vertex with no edges,
repeating the following steps. The first step creates a new vertex vi and connects the vertex vi to
a randomly chosen existing vertex v j. Next, with a given probability p, the model repeatedly
creates another edge connecting vi to a v j’s direct neighbors until no edge is created. There are
recursive versions of the Random Walk model too. A new node is added to the network, then
random walk traversals are performed starting from a randomly chosen node in the graph.
During the random traversals, the currently visited node is probabilistically attached to the new
node.

– Nearest Neighbor [48]: this model emulates the observed behavior in social networks. Two
users sharing more common friends are more likely to become friends. When a new node is
added to the graph, the node is linked with a randomly chosen existing node, then additional
random pairs of nodes that are 2-hops away from the new node are also connected.

4.2 GRAPH FITTING TECHNIQUES

Graph fitting is a task to extract a set of model parameters, which we can feed into a graph generative
model to generate randomized synthetic graphs that match the given real-world graph. For this task, we
need two components – a search strategy of model parameters and a criterion to evaluate fitness of models.
There are three technical hurdles encountered in this process. First, as indicated earlier, some graph
generative models are unnatural to fit real-world graphs. For instance, the Erdős-Rényi model is not able to
generate a graph with a power-law distribution; the nearest-neighbor model has been known to always
generate graphs with power-law coefficients greater than 2 [45]. In these cases, we may simply not be able
to find good parameters for a target graph with the generating model being considered. Second, finding
optimal parameters often requires significant computational cost. Graph generative models can have
multiple parameters and evaluating a model with a set of parameters can be time-consuming especially
when the graphs are large. So, in addition to strategies to find good parameters, we need to carefully
consider the balance between accuracy and processing time. Third, often graph fitting techniques are
tightly coupled with specific graph generative models so the approaches are only applicable to them. For
instance, KronFit [30] is a graph fitting procedure which is specifically designed to find parameters for the
Kronecker model. Another example is Musketeer [23] which uses its own fitting algorithm.

We observe that in the context of graphs, model fitting is less established than model selection (for
other forms of empirical data) which means that there is no generally best-known graph fitting technique
for most cases. Nevertheless, if we were to categorize graph fitting approaches at a fairly high level of
abstraction, we would divide them into two groups: (1) Maximum Likelihood Estimation (MLE)-based
approaches and (2) graph similarity-based approaches.

Maximum Likelihood Estimation (MLE)-based approach: MLE is a widely used approach for
fitting a conventional statistical model to observed data. It computes the maximum probability that a model
with different parameters generates data exactly matching the observed data. However, direct application of
maximum likelihood estimation over a graph is computationally intractable. For a graph G, each node in
the vertex set V of G has a unique but randomly assigned index, or node label. Thus, two isomorphic
graphs may have different node labels. Thus, when we estimate the likelihood that a given model generated
the target graph G, we would have to consider all possible, |V |! permutations of node labels, because the
likelihood P(G) is

∑
σ P(G|σ)P(σ) for all permutations σ of |V | nodes. For example, the KronFit

algorithm [30] uses MLDE but considers samples of permutations of σ in order to make the problem

10

computationally tractable. Unfortunately, the computational requirements are still high even when using
the sampling technique during likelihood estimation. KronFit takes 2.5 hours with a relatively small
real-world graph with |V | = 75, 879 and |E| = 508, 960 on a standard desktop [30]. In order to achieve high
fidelity, KronFit can take 48 hours for a graph with 3.6 millions of edges on a stand-alone system with
32GB of RAM [45].

Graph similarity-based approach: this approach finds model parameters to maximize the graph
similarity between generated synthetic graphs and the target graph. The challenge is to define a quantitative
metric to measure graph similarity that can be efficiently computed in a scalable way. Sala et el. [45]
present an approach that uses dK-series as a graph similarity metric. We compute the similarity of two
graphs by computing the distance between dK vectors of the two graphs. More specifically, the authors use
dk-2, which captures the joint degree distribution, to achieve tractable performance. In addition, the authors
use uniform parameter sampling with adaptive precision to efficiently locate near-optimal parameters in the
large parameter space. The authors leave more efficient sampling techniques for future study. The key
advantage of this approach is that it is generally applicable to many graph generative models, including
Nearest Neighbor [48], Random Walk [48], Forest Fire [33], and Barabasi-Albert [7].

5. GRAPH GENERATION

Generation approaches are often tightly coupled with certain graph generative models. This implies
that a graph generative model itself can include the way of generating graphs. For instance, the preferential
attachment method is coupled with Barabasi-Albert’s model [7]. We discussed the generation approaches
for such generative models in Section 4. In this section, we focus on core graph generation techniques that
are applicable across multiple graph generative models. For completeness, we also list here available
oftware packages that can be utilized for graph generation from an earlier survey.

5.1 GENERATION TECHNIQUES

We categorize generation approaches into four groups: stochastic, pseudograph, matching, and
rewiring, described as follows:

• Stochastic: this approach is the simplest and most convenient for theoretical analysis. In essence, it
selects a pair of nodes and connects them with a certain probability, which repeats until all the nodes
are considered. Depending on the family of models, the difference centers around the way of
calculating the probability of connecting a pair of nodes. For instance, we might generate a graph by
connecting every pair of n nodes with probability p = d̄/n, where d̄ is the average degree and n is the
number of nodes in the graph [16]. If we want to utilize degree distribution, we can label all nodes
with their expected degrees drawn from the distribution [14]. After labeling all the nodes, we
connect a pair of nodes, vi and v j, with the probability p(vi, v j) = q(vi)q(v j)/d̄, where q(vi) and q(v j)
are the expected degrees of node vi and v j, respectively. (There exist studies to calculate the
probability of connecting nodes according to the joint degree distribution [37].)

A disadvantage of this approach is that it is not easy to obtain a synthetic graph that matches the
target empirical graph with respect to arbitrary graph features. For instance, when we use the degree
distribution to calculate the probability of connecting a pair of nodes, a large portion of nodes with
expected degree 1 can be connected to nodes with degree 0, resulting in many tiny connected
components.

11

• Pseudograph (configuration) and matching: this approach attempts to exactly reproduce given
degree distributions, allowing multiple edges between the same pair of nodes and self-looping edges
for a node [4]. The approach operates by (1) selecting nk nodes according to the degree distribution,
where k is the degree of a node, (2) attaching k stubs to each of nodes, and (3) randomly choosing
pairs of stubs and connect them to form edges. If we desire a graph that does not contain multiple
edges between a pair of nodes and self-loops, the method removes offending loops and edges.

The matching approach differs from the pseudograph approach in avoiding loops during the
construction phase. The algorithm works exactly as with the pseudograph approach, but skips pairs
of stubs that form loops if they are connected. Mahadevan et al. [37] showed that both approaches
can be extended to generate the valid joint degree distribution.

• Rewiring: introduced in [50], the main idea of the rewiring approach is to rewire random pairs of
edges preserving an existing form of distribution such as degree distribution and joint degree
distribution, also with cluster coefficient. The rewiring process converges after O(|E|) rewiring steps,
producing a graph having desired degree distribution [22]. With rewiring approaches, randomized
approximation approach exists to inclusively consider multiple graph properties to generate synthetic
graphs [37].

5.2 GENERATOR PACKAGES

Table 1 [36] summarizes the list of available software packages that can be utilized to generate
synthetic graphs. From the table, we notice that only a few packages can handle multiple models2. Recall
that we would like to select a model among numerous candidate graph generative models. Therefore, we
will need to employ numerous individual packages to select a single model, which will cause
inconvenience over the procedure as each package might favor different dependent libraries and system
architectures. Additionally, most of these packages are not designed for large scale parallel or distributed
systems, with a few exceptions like the generators in Graph500. For mode details on generators (both
packages and generation algorithms), we refer readers to [12, 36].

6. GRAPH GENERATIVE MODEL VALIDATION

Validating a graph model is the step that checks if a generated synthetic graph matches the target
empirical graph with respect to graph features of interest. We might have already employed the graph
properties of interest as a fitting criterion during the graph model selection step. However, we typically
consider more graph features in the validation task than in the model selection step. It is primarily because
of the different natures of these two processes – model selection involves iterative computation, graph
fitting, and searching the parameter space, while graph generative model validation can be a process
without iterations. For an iterative process like fitting, considering multiple graph properties is
computationally intensive [34]. Therefore, systems consider fewer graph properties during the fitting
process but validate the fitted graph against more graph features during the graph model validation step.
We list a few popular and desired features which could be used to evaluate the fidelity or similarity between
the generated synthetic graphs and the target graph.

• Spectrum: the set of eigenvalues of the adjacency matrix. (In physics, the eigenvalues of the
Laplacian matrix of a graph are sometimes called the graph’s spectrum.)

2Tests were run on a 48-core HP DL585 G7 with 384GB of RAM.

12

Table 1. List of generator packages and supported graph models [36].

Package Supported models Limit Limiting factor

APGL

Configuration model 37 million vertices
Erdos-Renyi 218 vertices time
Prefential Attachment 216 memory/time
Watts-Strogatz 216 time

Boost PLRG 230 vertices memory
BTER Erdos-Renyi (block 2-level) 228 vertices memory

ergm ERGM
√

232−1
2 vertices max integer (232−1

2)
GGEN Erdos-Renyi (gnp method/layer

method)
218 vertices memory

Graph500 Kronecker (R-Mat+noise) 230 vertices memory
gt-item Tiers 226 vertices memory
INDDGO Partial k-tree 237 vertices memory
inet-3.0 Inet 3037 < n ≤ 217 time/model limitation
Krioukov Hyperbolic 220 vertices time
MFR RDPG < 46000 vertices memory
Musketeer Musketeer 218 vertices with 7% and 8% edit

rates
time

NetworkX

Erdos-Renyi (original/fast vari-
ant)

222 vertices time

Preferential Attachment 223 vertices time
Watts-Strogatz 224 vertices time
Waxman 8000 vertices with default a =

0.4, b = 0.1
time

pywebgraph Kronecker (R-Mat) 220 vertices time
stocksim Waxman < 180000 vertices memory
tier Tiers 226 vertices memory

13

• Distance Distribution d(x): the number of pairs of nodes at a distance x, divided by the total number
of pairs. It is used for evaluating the performance of routing algorithms or measuring speed of
worms spread in a network.

• Betweenness Centrality: a weighted sum of the number of shortest paths passing through a given
node or link. It is used to estimate traffic on a node or link.

• Likelihood S : the sum of products of degrees of adjacent nodes. It is linearly related to the
assortativity coefficient which is a measure of how similar or dissimilar nodes tend to interconnect.

• Degree Distribution: the probability of nodes having degree k in a graph. Many real-world graphs
have power law degree distributions.

• Clustering C(k): a measure of how close neighbors of the average k-degree node are to forming a
clique.

In order to measure fidelity or to validate a synthetic graph, we need to compute a set of graph
properties and a metric to measure the deviation of two graphs according to the set of graph properties. To
measure the fidelity, authors in [45] proposed the Euclidean distance of two feature vectors, where each
element corresponds to node degree distribution, joint degree distribution, clustering coefficient, average
path length, network radius, and network diameter. They also propose using graph properties as an element
of the feature vector of the graph and calculate the L2 norm as a fidelity metric between the synthetic graph
and the target graph.

7. DISCUSSION: CHALLENGES AND OPPORTUNITIES

In the context of the surveyed material, this section summarizes the outstanding challenges and
opportunities in creating realistic synthetic graphs from empirical graphs.

7.1 DEVISING FITTING MECHANISMS AND CRITERIA

In graph generative model selection, the biggest challenge remains devising a promising graph fitting
mechanism. Existing graph generative models have overwhelmingly aimed to capture either specific graph
features or the way of evolving general real-world graphs such as the Internet, the web, or social network.
There has been little to no focus on creating synthetic graphs based on real empirical graphs. The search
for model parameters is either rudimentary to be applicable to a specific graph generation approach, or not
applicable at all for most existing generative models. We believe the two important gaps to fill are: (1)
developing graph fitting mechanisms for each existing graph generative model, and (2) developing new
graph generative modeling approaches suitable for fitting synthetic graphs to given empirical graphs.

A key area of future work is to establish computationally-feasible fitting criteria specialized for graph
model selection. Establishing fitting criteria remains a promising avenue for future developments. A few
potential approaches toward establishing fitting criteria for the graph models are: (1) exploiting dK-series
further, and (2) implementing scalable fitting algorithms by taking advantages of recent parallel computing
software or hardware platforms. For instance, generating a Kronecker graph involves the Kronecker
product (also known as a tensor product) whose scalable algorithm has been well studied. We intend to
take advantage of parallel state-of-the-art systems such as Cray’s Urika systems deployed at ORNL to run
such implementations in a scalable manner.

14

7.2 DEFINING COMPREHENSIVE FIDELITY

The lack of comprehensive fidelity measures is another major gap in the graph model validation
process. In validating graph models, we compare two graphs with respect to multiple graph metrics.
Considering each graph metric as an element of a feature vector for a graph, we can consider similarity
metrics between two vectors. However, some open questions remain: which graph properties should be
selected for the feature vector, and how to measure the similarity between vectors? This topic has not been
explored in depth and will benefit from exploiting existing graph similarity measures or developing new
measures and developing a similarity comparison technique in the context of graph model validation.

A few possible ways to devise criteria to measure fidelity include:

• Similarity Measures: this will be the method to compare two feature vectors from two graphs as with
the use of L2 norm in [45]. As another candidate for measuring similarity, we may consider cosine
similarity and dot product measures.

• Precision/Recall: similar to information retrieval or pattern recognition, we might use the probability
of retrieving the relevant items (precision) and the probability of retrieving the items that exists in the
target data (recall). We can extend this concept for the context of graph model validation, using the
node correspondence or node labeling problem. (The node correspondence problem is to find the
best mapping between nodes of two graphs.)

• Cross Validation: we might compare graph properties of realistic synthetic graphs with other samples
of empirical graphs in the same domain (or same population) than the target empirical graphs used in
the graph model selection step.

7.3 ACHIEVING SCALABILITY

Scalability is a common challenge in the three main steps taken to obtain realistic synthetic graphs.
Recall that scalability has been one of the key concerns in computing graph properties from a
graph [25, 38, 44, 51] for years. In graph model selection, we employ graph properties for fitting criteria
(degree distribution, counts of subgraphs, etc.) and, in graph model validation, we employ graph properties
for elements of fidelity measures. Therefore, it is natural that scalability becomes a major concern in both
steps.

For graph model selection, existing work employs a limited number of graph features - typically less
than four. The demand of scalability stems from the fact that fitting is an iterative process. For some graph
models, the fitting process may involve sampling subgraphs as with KronFit [32], which can be performed
as many times as the number of edges in the graph, where sampling subgraphs is another computational
challenge. A gab is the absence of parallel algorithms for either the fitting process or the sampling process.

Furthermore, we have observed that the upper bound on the number of vertices of a graph is typically a
billion nodes for many graph generation packages to generate graphs. This is mainly because those
packages are designed for a stand-alone single-node system. Considering that a driving demand of realistic
synthetic graphs is the need for extrapolating a larger graph than the available empirical graphs, the field
would benefit from a scalable parallelized graph generator.

7.4 APPLICATION-LEVEL BENCHMARKS

Many techniques target general graphs or graphs that are not related to any specific application
domains. For example, we may not be sure that an e-mail exchange network can be synthetically generated

15

when we used a graph model selection procedure that worked for the Internet topology. The best fitted
model can be different depending on the characteristics of the data and application algorithms. When we
measure application-level fidelity, we perform the same benchmark over both the target graph and the
synthetically generated graphs. Then, we compare the results to quantify each graph’s fidelity. Compared
with known graph metrics, these application-level benchmarks can effectively capture the set of “important
features” in each domain problem of social networks, which might not be correlated with a single graph
property. Some examples of such application-level benchmarks are RE [20], Sybilguard [52], and Social
Shield Anonymous System [43].

7.5 MODEL SELECTION FOR HETEROGENEOUS (ATTRIBUTED) GRAPHS

Most existing graph models and graph generators assume homogeneous graphs which are composed of
single types of nodes or edges. However, as heterogeneous graphs composed of multiple node and edge
types grow, and applications that use these graphs proliferate, the application-aware approach to generating
synthetic heterogeneous graphs will have to mature. This topic is a fertile area for new method
development.

8. CONCLUSIONS

This report surveyed methods to generate realistic synthetic graphs. The goal of generating realistic
synthetic graphs is to create graphs that allow discovering the same knowledge as in the empirical graphs
with reasonable statistical confidence with respect to algorithmic operations and infrastructure operations.
This report organized the overall approach to generate realistic synthetic graphs into three steps: graph
model selection, graph generation, and graph model validation. We found that scalability is a common
issue across all three steps, while each step has additional unique challenges. The graph model selection
step needs efficient parameter search strategies and fitting criteria to evaluate the fitness of models; and the
graph validation step requires accurate fidelity measurement methods, which are currently open research
problems.

ACKNOWLEDGMENTS

This work was supported by the United States Department of Defense (DoD) and used resources of the
DoD-HPC Program at Oak Ridge National Laboratory.

References

[1] Dimitris Achlioptas, Zohar S. Karnin, and Edo Liberty. Near-optimal entrywise sampling for data
matrices. In C.j.c. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 1565–1573. 2013.

[2] Nesreen K. Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. Graph sample and hold:
A framework for big-graph analytics. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 1446–1455, New York, NY,
USA, 2014. ACM.

[3] Nesreen K. Ahmed, Jennifer Neville, and Ramana Kompella. Network sampling: From static to
streaming graphs. ACM Trans. Knowl. Discov. Data, 8(2):7:1–7:56, June 2013.

16

[4] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs. In
Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00,
pages 171–180, New York, NY, USA, 2000. ACM.

[5] Edoardo M. Airoldi, Xue Bai, and Kathleen M. Carley. Network sampling and classification: An
investigation of network model representations. Decis. Support Syst., 51(3):506–518, June 2011.

[6] Alberto Apostolico and Guido Drovandi. Graph compression by bfs. Algorithms, 2(3):1031–1044,
2009.

[7] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[8] Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 5(2):101–113, 2004.

[9] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, pages 587–596, New York, NY, USA,
2011. ACM.

[10] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro. A
subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinformatics,
14(S7), 2013.

[11] Nathan Brown. Chemoinformatics: an introduction for computer scientists. ACM Comput. Surv.,
41(2):8:1–8:38, February 2009.

[12] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM Computing Surveys, 38(1):2, 2006.

[13] Varun Chandola, Sreenivas R. Sukumar, and Jack C. Schryver. Knowledge discovery from massive
healthcare claims data. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, pages 1312–1320, New York, NY, USA, 2013.
ACM.

[14] Fan Chung and Linyuan Lu. Connected components in random graphs with given expected degree
sequences. Annals of combinatorics, 6(2):125–145, 2002.

[15] Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature review. Journal
of computational biology, 9(1):67–103, 2002.

[16] Paul Erdös and Alfréd Rényl. On random graphs I. Publ. Math. Debrecen, 6:290–297, 1959.

[17] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the
internet topology. In Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’99, pages 251–262, New York, NY, USA,
1999. ACM.

[18] Sally Floyd and Eddie Kohler. Internet research needs better models. ACM SIGCOMM Computer
Communication Review, 33(1):29–34, 2003.

17

[19] Hana Galperin and Avi Wigderson. Succinct representations of graphs. Information and Control,
56(3):183–198, 1983.

[20] Scott Garriss, Michael Kaminsky, Michael J. Freedman, Brad Karp, David Mazières, and Haifeng Yu.
Re: Reliable email. In Proceedings of the 3rd Conference on Networked Systems Design &
Implementation - Volume 3, NSDI’06, pages 22–22, Berkeley, CA, USA, 2006. USENIX Association.

[21] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, pages 1141–1144, 1959.

[22] Christos Gkantsidist, Milena Mihail, and Ellen Zegura. The markov chain simulation method for
generating connected power law random graphs. In Proceedings of the Fifth Workshop on Algorithm
Engineering and Experiments, volume 111, page 16. SIAM, 2003.

[23] Alexander Gutfraind, Lauren Ancel Meyers, and Ilya Safro. Multiscale network generation. arXiv
preprint arXiv:1207.4266, 2012.

[24] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth Srivastava. Anonymizing
social networks. Computer Science Department Faculty Publication Series, page 180, 2007.

[25] U Kang, Charalampos E Tsourakakis, and Christos Faloutsos. Pegasus: A peta-scale graph mining
system implementation and observations. In Data Mining, 2009. ICDM’09. Ninth IEEE International
Conference on, pages 229–238. IEEE, 2009.

[26] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Private analysis of
graph structure. ACM Trans. Database Syst., 39(3):22:1–22:33, October 2014.

[27] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S. Tomkins.
The web as a graph: Measurements, models, and methods. In Proceedings of the 5th Annual
International Conference on Computing and Combinatorics, COCOON’99, pages 1–17, Berlin,
Heidelberg, 1999. Springer-Verlag.

[28] William M Kolb. Curve fitting for programmable calculators. Imtec, 1984.

[29] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

[30] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res., 11:985–1042, March
2010.

[31] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, pages
631–636, New York, NY, USA, 2006. ACM.

[32] Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker
multiplication. In Proceedings of the 24th International Conference on Machine Learning, ICML
’07, pages 497–504, New York, NY, USA, 2007. ACM.

[33] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification laws,
shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD ’05, pages 177–187, New
York, NY, USA, 2005. ACM.

18

[34] Seung-Hwan Lim, Sangkeun Lee, G. Ganesh, Tyler C. Brown, and Sreenivas R. Sukumar. Graph
processing platforms at scale: Practices and experiences. In Proceedings of the 2015 IEEE
International Symposium on Performance Analysis of Systems and Software, 2015.

[35] H Linhart and W Zucchini. Model Selection. John Wiley & Sons, Inc., New York, NY, USA, 1986.

[36] Joshua Lothian, Sarah Powers, Blair D. Sullivan, Matthew Baker, Jonathan Schrock, and Stephen W.
Poole. Synthetic graph generation for data-intensive hpc benchmarking: Background and framework.
Technical Report ORNL/TM-2013/339, Oak Ridge National Laboratory, 2013.

[37] Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. Systematic topology analysis and
generation using degree correlations. In ACM SIGCOMM Computer Communication Review,
volume 36, pages 135–146. ACM, 2006.

[38] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 135–146. ACM, 2010.

[39] Michael Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Internet mathematics, 1(2):226–251, 2004.

[40] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random graph models of social
networks. Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572, 2002.

[41] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 75–84. ACM, 2007.

[42] U.S. Department of Health and Human Services. http://www.hhs.gov/ocr/privacy/.

[43] Krishina Puttaswama, Alessandra Sala, and Ben Zhao. Improving anonymity using social links. In
IEEE International Workshop on Secure Network Protocols, 2008.

[44] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin Lin. Scalable big
graph processing in mapreduce. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, 2014.

[45] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and Ben Y. Zhao.
Measurement-calibrated graph models for social network experiments. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, pages 861–870, New York, NY, USA,
2010. ACM.

[46] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao. Sharing graphs
using differentially private graph models. In Proceedings of the 2011 ACM SIGCOMM conference on
Internet measurement conference, pages 81–98. ACM, 2011.

[47] Peter Uetz, Loic Giot, Gerard Cagney, Traci A Mansfield, Richard S Judson, James R Knight, Daniel
Lockshon, Vaibhav Narayan, Maithreyan Srinivasan, Pascale Pochart, et al. A comprehensive analysis
of protein–protein interactions in saccharomyces cerevisiae. Nature, 403(6770):623–627, 2000.

19

http://www.hhs.gov/ocr/privacy/

[48] Alexei Vázquez. Growing network with local rules: Preferential attachment, clustering hierarchy, and
degree correlations. Physical Review E, 67(5):056104, 2003.

[49] Wenhui Wang, Juan Nunez-Iglesias, Yihui Luan, and Fengzhu Sun. Usefulness and limitations of dk
random graph models to predict interactions and functional homogeneity in biological networks
under a pseudo-likelihood parameter estimation approach. BMC bioinformatics, 10(1):277, 2009.

[50] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world networks. nature,
393(6684):440–442, 1998.

[51] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. Graphx: a resilient
distributed graph system on spark. In First International Workshop on Graph Data Management
Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013, New York, NY, USA,
June 24, 2013, page 2, 2013.

[52] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. Sybilguard: Defending
against sybil attacks via social networks. In Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’06, pages
267–278, New York, NY, USA, 2006. ACM.

[53] Bin Zhou, Jian Pei, and WoShun Luk. A brief survey on anonymization techniques for privacy
preserving publishing of social network data. ACM SIGKDD Explorations Newsletter, 10(2):12–22,
2008.

[54] Walter Zucchini. An introduction to model selection. Journal of mathematical psychology,
44(1):41–61, 2000.

20

	Introduction
	Application Domains and Functional Uses of synthetic graphs
	End-User Domains
	Functional Uses
	Graph anonymization
	Graph sampling
	Graph compression
	Graph extrapolation

	Terminology
	Fundamental graph concepts
	Definitions
	Related research and challenges

	Statistical modeling
	Definitions
	Related research and challenges

	Graph Generative Model Selection
	Graph generative models
	Graph fitting techniques

	Graph Generation
	Generation techniques
	Generator packages

	Graph Generative Model Validation
	Discussion: challenges and opportunities
	Devising fitting mechanisms and criteria
	Defining comprehensive fidelity
	Achieving scalability
	Application-level benchmarks
	Model selection for heterogeneous (attributed) graphs

	Conclusions

