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1.0 INTRODUCTION 

This document summarizes the results of a series of computer simulations to attempt to identify 
the statistics of the autocorrelation function, and implications for decay ratio estimation. 

Typically, the presence of noise on a signal is easy to identify based on everybody’s experience.  
One expects a “noisy” signal to be jagged, with fast-moving oscillations that seemed to be 
uncorrelated.  For example, simply by inspection, one can tell that the left side of Figure 1 is not 
noisy, and the right side is noisy. 

 
Figure 1.  Example of a noisy signal 

However, the autocorrelation function presents some counterintuitive features, and it is not easy 
to determine whether it is noisy or fully converged.  The example of Figure 2 shows an 
unconverged autocorrelation where not sufficient data has been collected to provide a 
statistically significant value.   

As opposed to the time traces in Figure 1, it is not obvious that Figure 2 is not converged.  The 
purpose of this document is to present some computer-simulated results and attempt to 
understand how “noisiness” is reflected in the autocorrelation function, and its impact on decay 
ratio evaluations. 

The autocorrelation function, AC(τ), of a time trace, x(t), is defined as  

AC(τ) =  
1
𝑁

 �𝑥(𝑡)𝑥(𝑡 + τ)
𝑁

t=0

 

And it is typically normalized by dividing it by the variance of x, so that AC(0)=1. 
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Figure 2.  Example of an unconverged noisy correlation 

2.0 MODEL DESCRIPTION 

To study the statistics of the autocorrelation function, we have generated time traces for a 
damped harmonic oscillator.  The code is written in Visual Basic for Applications and is 
reproduced here for documentation. 

 
Public oldNoise(0 To 10)    ' for moving average 
Public initialized 
 
' Generate the data 
Sub genData() 
    Dim x(0 To 100000) As Double 
    Dim dx As Double 
    Dim noise As Double 
    Dim dr, tau As Double 
    Dim xi, omega, w2 As Double 
    Dim i, k As Integer 
    Dim AC(0 To 500) As Double 
    Dim AC0 As Double 
    Dim nCycles As Integer 
    Dim iStat, nStat As Integer 
 
    ' Clear results columns and copy time 
    Worksheets("StatAC").Cells.Clear() 
    Worksheets("StatAC").Columns(1) = Worksheets("AC").Columns(4).Value 
    Worksheets("StatAC").Range("a1").Value = "T\DR" 
    Worksheets("StatModel").Cells.Clear() 
    Worksheets("StatModel").Columns(1) = Worksheets("AC").Columns(4).Value 
    Worksheets("StatModel").Range("a1").Value = "T\DR" 
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    ' Parameters 
    dr = Worksheets("AC").Range("b1").Value 
    tau = Worksheets("AC").Range("b2").Value 
    nCycles = Worksheets("AC").Range("b3").Value 
    nStat = Worksheets("AC").Range("b4").Value 
 
    ' init 
    x(0) = 0.0# 
    x(1) = 0.0# 
    dx = 0.0# 
    dx1 = 0.0# 
    xi = Log(dr) / tau 
    omega = 2.0# * Application.WorksheetFunction.Pi() / tau 
    w2 = omega * omega + xi * xi 
 
    ' Generate nStat correlations, fit them and save results to the Stat tab 
    ' Note: the user must press OK (keep solver solution) for each iteration 
    For iStat = 0 To nStat - 1 
 
        ' Generate the time data 
        For i = 2 To 100000 
            x(i) = x(i - 1) + dx + lowPassGWN() 
            dx = dx + 2 * xi * dx - w2 * x(i) 
        Next i 
 
        ' Calculate the autocorrelation and place it in the AC worksheet 
        For k = 0 To 3 * tau 
            AC(k) = 0.0# 
            For i = 0 To nCycles * tau 
                AC(k) = AC(k) + x(i) * x(i + k) 
            Next 
            If (k = 0) Then AC0 = AC(0) 
            AC(k) = AC(k) / AC0 
            Worksheets("AC").Cells(k + 2, 4).Value = k 
            Worksheets("AC").Cells(k + 2, 5).Value = AC(k) 
        Next k 
 
        ' Fit Correlation using Solver 
        Call RunSolver() 
 
        ' Copy AC & DR to the Stats sheet 
        Worksheets("AC").Range("R2").Value = iStat + 1 
        Worksheets("StatModel").Columns(iStat + 2) = Worksheets("AC").Columns(7).Value 
        Worksheets("StatModel").Range("B1").Offset(0, iStat).Value = 
Worksheets("AC").Range("O3").Value 
        Worksheets("StatAC").Columns(iStat + 2) = Worksheets("AC").Columns(5).Value 
        Worksheets("StatAC").Range("B1").Offset(0, iStat).Value = 
Worksheets("AC").Range("O3").Value 
 
    Next iStat 
 
End Sub 
 
' cheap Gaussian noise.  Just add 100 uniform rand() 
' mean 0, stDev~=1 
Function gausNoise() As Double 
    Dim i As Integer 
    Dim gn As Double 
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    gausNoise = 0.0# 
 
    For i = 1 To 100 
        gausNoise = gausNoise + 2 * (Rnd() - 0.5) 
    Next i 
    gausNoise = gausNoise / 10 ' regain stdev=1 (haven’t test it,  but should be close) 
End Function 
 
' low pass gaussian - running average of the last 5 noise points 
Function lowPassGWN() As Double 
    Dim i As Integer 
    If (initilized = Null) Then 
        oldNoise(i) = 0.0# 
    End If 
    For i = 0 To 9 
        oldNoise(i + 1) = oldNoise(i) 
    Next 
    oldNoise(0) = gausNoise()   ' new noise 
    lowPassGWN = 0.0# 
    For i = 0 To 5              ' moving average 
        lowPassGWN = lowPassGWN + oldNoise(i) 
    Next 
    lowPassGWN = lowPassGWN / 5.0# 
 
End Function 
 
Sub RunSolver() 
    Worksheets("AC").Activate() 
    SolverOk(SetCell:="$L$3", MaxMinVal:=2, ValueOf:=0, ByChange:="$L$1:$L$2", _ 
        Engine:=1, EngineDesc:="GRG Nonlinear") 
    SolverOk(SetCell:="$L$3", MaxMinVal:=2, ValueOf:=0, ByChange:="$L$1:$L$2", _ 
        Engine:=1, EngineDesc:="GRG Nonlinear") 
    SolverSolve(UserFinish:=True) 
End Sub 
 
 

3.0 SAMPLE AUTOCORRELATION STATISTICS 

A large number of sample cases have been calculated. 

Figure 3 through Figure 6 show a composite of ten different trial calculations (using a different 
random noise seed) where the model corresponds to a decay ratio (DR) of 0.2 with an 
oscillation period of 100 units of Δt.  As seen in Figure 3, the autocorrelation function is clearly 
unconverged when only 12 cycles (i.e., 1200 Δt’s).  And even with as much as 96 cycles, the 
oscillations are more consistent among trials and better defined, but not fully converged. 

Figure 7 through Figure 10 show a similar progression with a DR of 0.5, Figure 11 through 
Figure 14 with a DR of 0.8, and Figure 15 through Figure 18 for a DR of 0.95.  What we observe 
that the larger the DR (i.e., the more coherent oscillations are in the signal) the autocorrelation 
function converges more consistently.  But, nevertheless, even with an almost unstable system 
(DR=0.95) and 96 cycles, attempting to identify the DR by finding the first peak in the oscillation 
requires very good convergence with lots and lots of data.  For this reason, we propose to use a 
different approach to calculate the DR from the autocorrelation function. 



5 

 
Figure 3.  DR=0.2, 12 cycles 

 
Figure 4.  DR=0.2, 24 cycles 
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Figure 5.  DR=0.2, 48 cycles 

 
Figure 6.  DR=0.2, 96 cycles 
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Figure 7.  DR=0.5, 12 cycles 

 
Figure 8.  DR=0.5, 24 cycles 
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Figure 9.  DR=0.5, 48 cycles 

 
Figure 10.  DR=0.5, 96 cycles 
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Figure 11.  DR=0.8, 12 cycles 

 
Figure 12.  DR=0.8, 24 cycles 
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Figure 13.  DR=0.8, 48 cycles 

 
Figure 14.  DR=0.8, 96 cycles 
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Figure 15.  DR=0.95, 12 cycles 

 
Figure 16.  DR=0.95, 24 cycles 
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Figure 17.  DR=0.95, 48 cycles 

 
Figure 18.  DR=0.95, 96 cycles 
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4.0 DECAY RATIO ESTIMATION 

By observing the pattern in Figure 3 through Figure 18, we conclude that longer lags (anything 
past one full cycle) takes long to converge and are unreliable estimators of the stability of the 
system.  For this reason, we propose to use a non-linear regression algorithm to fit the 
theoretical shape of the autocorrelation function of a damped harmonic oscillator to the early 
(low lag, τ) part of the autocorrelation, which is the part that is better-defined when the amount 
of data is limited.  The form we used for the fit is 

𝐴𝐴(τ) =  𝑒−𝜎τ cos (2𝜋
τ
𝑇

) 

Where 

 T is the oscillation period 

 And DR = 𝑒−𝜎T 

Using a non-linear regression algorithm (Excel SOLVER addin), we have obtained DR 
estimates for the datasets generated in Section 3.0.  The results are shown in Table 1.  For this 
example, the regression fit is performed for the first half of the AC oscillation, which is 
approximately twice the time after the first zero crossing of the AC.  The result of the fitting 
process is illustrated in Figure 19 as the red line. 

 
Figure 19.  Illustration of non-linear regression (DR=0.2, 12 cycles) 

We observe that reasonable estimates for the DR are obtained even for the poorly converged 
cases.  For example, with DR=0.2 and 12 cycles, we obtain an error of approximately ±30%, 
which is acceptable for most applications (basically our estimate tells us that the DR is between 
0.1 and 0.3).  If higher accuracy is required, more data needs to be collected. 
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Table 1.  DR estimated for trial runs 

Real DR # 
Cycles 

Estimated DR 
(average of 10 trials) 

DR error 

0.2 12 0.264 ±31% 

0.2 24 0.200 ±28% 

0.2 48 0.214 ±22% 

0.2 96 0.202 ±21% 

0.5 12 0.429 ±32% 

0.5 24 0.511 ±13% 

0.5 48 0.496 ±12% 

0.5 96 0.508 ±7% 

0.8 12 0.712 ±14% 

0.8 24 0.766 ±10% 

0.8 48 0.786 ±5%% 

0.8 96 0.776 ±3%% 

0.95 12 0.921 ±8% 

0.95 24 0.892 ±9% 

0.95 48 0.920 ±4% 

0.95 96 0.944 ±2% 
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5.0 CONCLUSIONS 

This paper has investigated the convergence rate and statistics of the autocorrelation function.  
The main conclusion from this study is that, if a limited dataset is available, the autocorrelation 
is likely not to be fully converged.  And only the first cycle in the oscillation has any relevant 
information.  Longer lags are randomly distributed, and unconverged.  They are not a reliable 
indicator of the stability of the system. 

We have proposed a method to estimate the decay ratio to within ±30%: 

1. Identify the period of oscillation from the first zero-crossing of the autocorrelation.  The 
period is four times the first zero-crossing. 

2. Perform a linear regression to the measured AC(τ) data for time lags from 0 to 
approximately half the first period (the exact length of time is not crucial, and anything 
between 25% to 100% of the period is acceptable) using the following formula 

AC(τ) =  
1
𝑁

 �𝑥(𝑡)𝑥(𝑡 + τ)
𝑁

t=0

 

3. The decay ratio can be estimated as 
DR = 𝑒−𝜎T, where T is the oscillation period 

Note that care has to be exercised that the system can be represented by a simple damped 
harmonic oscillator.  For more complex dynamic systems, this method may produce what is 
called the “apparent” decay ratio instead of the true “asymptotic” decay ratio, which determines 
the system stability.  But if a ±30% accuracy is sufficient, this method is likely to produce useful 
results. 
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