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PREFACE 
 

by James D. Freels 
 

 
In 2009, the Research Reactors Division (RRD) of the Oak Ridge National Laboratory (ORNL) started a 
new contract relationship with the Mechanical, Aerospace, and Biomedical Engineering (MABE) 
department of the University of Tennessee in Knoxville (UTK) to collaborate in using the COMSOL code 
(FEMLAB v3.5a at that time).  Dr. Kirk T. Lowe was our first student to arrive, along with his major 
professor, Dr. Rao V. Arimilli.  Dr. Arimilli, a COMSOL user since v2.0, came with an established 
expertise in both fluids and heat transfer (i.e., conjugate heat transfer).  We knew from the outset that Kirk 
would not be with us long since his COMSOL-based PhD research was done prior to his arrival.  
Nevertheless, he helped us to get started and helped establish several fundamental areas such as user-
defined LEU material libraries, Solidworks CAD inputs, software quality assurance (SQA) of v3.5a, and 
most notably, the tradeoffs between extrusion coupling and periodic boundary conditions (BC).  Kirk 
started his professional career with Bettis Atomic Laboratory in Pittsburgh early in 2010. 
 
Early in the summer of 2009, Dr. Isaac T. Bodey joined our group as a PhD researcher, specializing in 
conjugate heat transfer, also with Dr. Arimilli as his major professor.  Isaac initially concentrated on 
comparing COMSOL to the legacy FORTRAN code that has traditionally supported the operation of 
HFIR (HFIR steady-state heat transfer code or HSSHTC).  After gaining confidence in his ability to 
perform these comparisons, he moved on to 2D and 3D simulations of the HFIR fuel plate and channel.  
He compared COMSOL results to existing hot-spot models, and experimental flow and heat transfer data 
from the Advanced Neutron Source Reactor (ANSR) design tests.  He investigated many other details 
along the way such as different turbulence models, meshing studies, solver settings, and many other 
aspects of COMSOL.  Isaac completed his dissertation after starting fulltime work with the Savannah 
River project in Aiken, SC in June, 2013, and graduated approximately a year later in the summer of 
2014. 
 
The LEU conversion project, on a national level, has identified (and continues to work on now) the fuel-
plate deflections as an important area of research for some thinner plate designs expected for US research 
reactors using LEU fuel.  Research into fluid-structure interaction (FSI) with COMSOL was the scope of 
work for a new student, Franklin G. Curtis, and his major professor, Dr. Kivanc Ekici, as they joined our 
team in the fall semester of 2010.  Dr.  Ekici came to us with established expertise in the FSI field, and his 
expertise in computational fluid dynamics (CFD) brought the project an additional high level of support 
in many areas.  Franklin quickly developed his expertise in using and understanding COMSOL, and he 
continues to do that today.  He also demonstrated a strong interest and brought real benefits to the group 
on the computational side; both in using COMSOL, and the interfacing operating system.  Franklin has 
clearly shown competence on the platforms of Linux, Apple-OSX, and Microsoft-Windows. Indeed, one 
area of development attributed to Franklin is the direct coupling of the NIST water property FORTRAN 
routines into COMSOL through the MATLAB livelink interface.  In addition, Franklin has developed an 
expertise for many COMSOL details and has demonstrated unique results in all aspects of the code 
operation including geometry, mesh, inputs, solvers, and results.  Through the guidance of Dr. Ekici, 
Franklin has demonstrated the FSI capability of COMSOL on numerous benchmark problems.  Indeed, 
the COMSOL solutions appear to be superior to other approaches taken by other US researchers using 
coupled separate legacy codes (CFD+structural).  Franklin developed unique approaches to the 
demanding HFIR FSI problem, and has produced realistic simulations of the HFIR fuel-plate deflections, 
as validated against ANSR flow tests and other flow tests available.  This past summer of 2015, with 
Franklin’s help, a DOE visiting faculty intern independently confirmed Franklin’s FSI approach.  
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Franklin accepted employment with another division of ORNL in October 2014 and has been able to use 
COMSOL in his new job.  
 
One additional student, Adam R. Travis, joined our LEU research group on March, 2012.  He was 
initially separately funded on the UTK campus for about three months, and then joined us at the ORNL 
campus as a part-time research student starting June, 2012.  Adam’s initial involvement while on the UTK 
campus was in the development of Solidworks CAD models of the HFIR fuel plates and flow channels 
that were eventually imported into COMSOL.  We still use these CAD models and many other COMSOL 
developments from Adam.  Adam focused his MS thesis, and COMSOL research, on the development of 
simplified 2D models of the HFIR fuel-plate and channel(s) and compared against best-estimate 3D 
models of the same conjugate heat transfer physics.  Adam’s work required him to dig deep into involute 
geometry definitions, and his MS-thesis is perhaps the most elegant description of the involute design of 
the fuel plate that exists.  Adam graduated and took full time employment in June, 2014 with Alcoa in 
Pittsburgh. 
 
As we close out this phase of the HFIR LEU fuel-conversion research, this report has been generated as a 
summary of all the work these students have done during their time here.  Primarily a collection of the 
student’s graduate thesis and/or dissertation manuscript, there is still more to come as one PhD student 
has yet to graduate.  We are most grateful for their help and development as we all learned from each 
other and became better at our COMSOL modeling capabilities as a result.  Most importantly, the HFIR 
LEU fuel-conversion project has benefitted by their research. 
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ABSTRACT 
 
The findings presented in this report are results of a five-year effort led by the Research Reactors Division 
(RRD) of the Oak Ridge National Laboratory (ORNL), which is focused on research and development 
toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) 
to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of 
Tennessee—Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical 
Engineering (MABE) that provided expert support in multiphysics modeling of complex problems 
associated with the LEU conversion of the HFIR reactor.  The COMSOL software was used as the main 
computational modeling tool, whereas Solidworks was also used in support of computer-aided-design 
(CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement 
of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. 
student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by 
his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling 
the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, 
which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, which is 
also affected by the FSI changes.  Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici.  
M.Sc. student Adam R. Travis has focused on two major areas of research: (1) accurate CAD modeling of 
the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through 
interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is 
also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly 
the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical 
monitor and mentor) and have benefited greatly from his leadership and expertise in COMSOL modeling 
of complex physical phenomena.  Both UTK and ORNL teams have used COMSOL releases 3.4 through 
5.0 inclusive (with particular emphasis on 3.5a, 4.3a, 4.3b, and 4.4) for most of the work described in this 
report, except where stated otherwise. Just as in the performance of the research, each of the respective 
sections has been originally authored by respective authors. Therefore, the reader will observe a contrast 
in writing style throughout this document. 
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1.0 INTRODUCTION 
 
1.1 MOTIVATION 
 
The HFIR is a light water moderated and cooled research reactor located at the ORNL in Oak Ridge, 
Tennessee.  Rated at 100 MW, HFIR currently operates at a reduced power of 85 MW.  The reduction in 
operational power was a result of a necessary decrease in system pressure due to the embrittlement of the 
pressure vessel that occurred during the initial 20 years of operation of the device.  The HFIR had, and 
continues to have, the highest neutron flux in the western hemisphere[1].  For the rated operational power 
of 100 MW, the thermal-neutron flux in the flux trap region (i.e., the center of the core) is ~ 5.5×1015 
neutrons/cm2/s.  For the reduced power of 85 MW, the thermal-neutron flux in the flux trap is ~ 2.6×1015 
neutrons/cm2/s.  Thermal neutrons are defined as those neutrons that have undergone a sufficient number 
of collisions with other material particles such that their speeds are comparable to the thermal motion of 
the atoms in the moderator material (i.e., thermal equilibrium is achieved between the free neutrons and 
the moderator material with energies of approximately 0.025 eV[2]). 
 
The original purpose of the HFIR system was to produce trans-plutonium isotopes, specifically 
californium-252.  The HFIR has many experimental facilities available for isotope production (e.g., 
locations within and surrounding the core) such as the already mentioned flux trap, the removable 
beryllium locations which surround the core, and control rod access plug facilities[1].  The HFIR also has 
four neutron beam tubes used to direct the neutrons to targets for both elastic and inelastic scattering 
experiments used in the determination of the structural and excited properties of materials, respectively. 
 
In an effort to reduce the proliferation of nuclear materials, the global threat reduction initiative (GTRI) 
was implemented with the mission of reducing and protecting nuclear and radiological materials in 
civilian sites according to the National Nuclear Security Administration (NNSA)[3].  To comply with the 
GTRI, the Department of Energy (DOE) initiated the Reduced Enrichment for Research and Test 
Reactors (RERTR) program in 1978[4].  This program develops the technology that allows research and 
test reactors to convert from a HEU to a LEU fuel (i.e., ≤ 19.75 wt. % U-235) in compliance with the 
GTRI.  The reactor conversion program is designed to reduce the use of HEU fuel by converting domestic 
and international civilian research reactors and isotope production facilities to LEU fuel to protect 
Americans and the rest of the world from nuclear and radiological threats[5].  Presently, over 40 research 
reactors have been converted from HEU to LEU fuel with the support of the NNSA and RERTR. There 
are currently five major High Performance Research Reactors (HPRRs) that still need to be converted in 
the United States: the Massachusetts Institute of Technology Nuclear Reactor Laboratory (MIT-NRL), the 
University of Missouri Research Reactor (MURR), the National Institute of Standards and Technology 
(NIST) Research Reactor, the HFIR at ORNL and the Advanced Test Reactor (ATR) at Idaho National 
Laboratory (INL)[6]. 
 
There are several goals that the GTRI/RERTR program has defined for the replacement of HEU fuels in 
research reactors. Some of the key points of these goals are to maintain the current scientific missions of 
the reactors, ensure similar fuel lifetimes, ensure that conversion can be completed without major changes 
to the structure or equipment, and demonstrate that the reactor can be converted and operated safely after 
conversion. For the HFIR, the conversion must maintain the high neutron flux for the same cycle length 
(approximately 25 days)[7] using existing structures, systems and components while incorporating the 
current fuel geometric envelope. Staff members at ORNL are currently examining the impact upon the 
current HFIR safety basis and also performing preliminary formal calculations to support a draft safety 
analysis report for the eventual conversion of the HFIR to LEU fuel.  
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The design of the current HEU core is based upon early research reactor experience, HFIR-specific 
experiments, and historical safety and design basis calculations.  Today, it is not economically feasible to 
perform extensive experiments to support the redesign of the fuel to LEU and the use of computational 
models is becoming increasingly needed. Currently, the HFIR employs numerous safety calculations and 
codes, based upon empirical data, to assess each cycle of the reactor. Each code and its implementation 
for the HFIR are described in detail in the Safety Analysis Report (SAR) for the HFIR[7].  The two main 
codes used for the thermal-hydraulic analysis of the HFIR core and system are the Steady State Heat 
Transfer Code (SSHTC)[8] and a modified version of RELAP5[9] both of which are one-dimensional 
analysis codes. As the name implies, the SSHTC is a proprietary, steady-state code designed to analyze 
the core of the HFIR. Using experimental data and built-in safety margins, the SSHTC is used to verify 
the conditions of the core based upon inputs from the neutronics code MCNP[10]. RELAP5 is used to 
determine the transient response of the entire reactor system for events considered in the accident analysis 
of the SAR.  Both SSHTC and RELAP5 are well-established and validated codes, which are still being 
used today for the thermal-hydraulics analysis of the HFIR.  
 
With the advancement in computing technology in the past few decades, it is now possible to perform 
higher fidelity simulations with the aim of supplementing these codes with a three-dimensional analysis 
that incorporates a variety of physics including conjugate heat transfer, fluid-structure interactions and 
thermal-structure interactions.  One such code available today is COMSOL Multiphysics (or simply 
COMSOL), which offers modeling of multiphysics phenomena including but not limited to conjugate 
heat transfer, fluid-structure interactions and thermal-structure interactions. Because of its capabilities and 
ease of use, our team [including students/professors from the Mechanical, Aerospace and Biomedical 
Engineering (MABE) Department at the University of Tennessee-Knoxville (UTK) as well as researchers 
from ORNL] has adopted COMSOL for high-fidelity multiphysics modeling of the complicated physical 
phenomena in HFIR.  
 
1.2 HFIR BACKGROUND 
 
The HFIR was commissioned by the U. S. Atomic Energy Commission (AEC) in November 1958 to meet 
the anticipated growing need for transuranic isotopes such as plutonium and curium. In June of 1961, 
construction began on the HFIR site with criticality achieved on August 25, 1965. By September of 1966, 
the HFIR was running at its designed power of 100 MWth.  
 
The HFIR was designed on the “flux trap” principle in which an unfueled moderator region is surrounded 
by an annular region of fuel.  The unfueled region, also known as an island, allows fast neutrons leaking 
from the fuel to be moderated and produces a region of very high thermal neutron flux in the island.  The 
thermalized neutrons can be used for isotope production.  One significant isotope produced in the reactor 
is Californium-252 which is used for a variety of nuclear applications such as reactor start up, neutron 
activation analysis, and as a medical isotope used to treat some forms of cancer.  HFIR is the only 
producer of this isotope in the western world. 
 
In addition to isotope production within the moderator core, it is also possible to tap the high flux of 
neutrons outside of the fuel and inside the reflector by placing empty beam tubes into the reflector. This 
allows the neutrons to be `beamed' into the experiments outside of the reactor shielding. Additionally, 
materials may be placed in holes inside the reflector for irradiation and later retrieval. A top-down view of 
the HFIR core and various experimental locations is provided in Fig. 1.1. 
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Fig. 1.1.  Illustration of the HFIR core and experimental locations. 
 
In November of 1986, tests indicated that the HFIR vessel was being embrittled at a much faster rate than 
expected and the reactor was shut down to investigate; up until this time, the HFIR was able to achieve a 
record of operation unsurpassed by any other nuclear reactor in the United States. After careful inspection 
and reevaluation of the reactor, the HFIR was restarted on May 18, 1990 at a lowered power of 85 MWth. 
In 2007, the reactor was again shut down but this time to provide users with more experimental capacity. 
During its one-year shutdown, a variety of new instruments were installed as well as a cold neutron 
source[11].  The additional instrumentation and upgrading performed during this shutdown has allowed 
the HFIR to continue to attract leading researchers in the nuclear and related fields. 
  



ORNL/TM-2015/656 

4 

The construction of the fuel core has some very interesting characteristics designed to facilitate the high 
performance needed to produce such a high neutron flux. The core consists of two concentric fuel regions 
containing 171 curved fuel plates in the inner element and 369 fuel plates in the outer element[12].  A 
cutaway of the fuel assembly is provided in Fig. 1.2. 
 

 
 

Fig. 1.2.  Cutaway view of the HFIR fuel assembly. 
 
The fuel plates are 24 inches long with a 20-inch active fuel region in the middle of the plate. Each fuel 
plate has a nominal thickness of 50 mils (0.050 inches, 1.27mm) with a coolant gap of 50 mils between 
each plate. Water is pumped through the core at a rate of 16,800 gallons per minute in order to maintain 
proper cooling of the reactor[7].  For clarity, the axial direction of the fuel plate refers to the flow 
direction while the span-wise direction refers to the length along the curved fuel plate, transverse of the 
flow direction. 
 
Each fuel element follows an involute shape in order to maintain a constant coolant channel gap for the 
entirety of the fuel plate span. The involute is created by following the path a taut string travels when 
unwound from a curve. The HFIR fuel plate span is created by using the involute curve of a circle. In 
parametric form, the path is given by: 
 
𝐱 = 𝒓𝒃(𝐜𝐜𝐜𝜽 + 𝜽 𝐜𝐬𝐬𝜽) .........................................................................................................................(1.1) 
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𝐲 = 𝒓𝒃(𝐜𝐬𝐬𝜽 − 𝜽 𝐜𝐜𝐜𝜽) .........................................................................................................................(1.2) 
 
where 𝒓𝒃 is the base radius of the involute circle. The involute has been used extensively in the design 
and creation of gears as a means to reduce the wear and vibration that occurs when they mesh 
together[13].  Using the nomenclature from gear theory, the distance between each involute curve is 
known as the base pitch, 𝒑𝒃 , and for the HFIR, 𝒑𝒃 is the channel thickness of 50 mils. An example of 
two involute curves separated by a base pitch is provided in Fig. 1.3.  Each dashed line in Fig. 1.3 is 
tangent to the base circle and is perpendicular to the involute curve.  
 
 

 
 
 

Fig.1.3.  Two involute curves with a base radius, rb, and a base pitch, pb, 
separating the two curves for the entire span. 
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The current fuel used in the HFIR core consists of 93% by weight Uranium-235 (U235) in a dispersion-
type fuel pressed between the aluminum cladding along with a filler material consisting of aluminum and, 
in the inner fuel element, a burnable poison of Boron[14].  A representation of a single fuel plate with 
HEU fuel is presented in Fig. 1.4. 
 
 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 

Fig. 1.4.  Representative drawing of a single HFIR fuel plate with HEU fuel.  (Note that the figure is not 
drawn to scale). 
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This fuel profile provides a specific power density profile designed to provide the neutron flux desired 
within the core and to maintain a safety margin for the entirety of the fuel cycle. The fuel profile for HEU 
fuel is provided in Fig. 1.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
Fig. 1.5.  The HEU fuel profile for an inner fuel element. 

 
 
 
In order to convert the HFIR to LEU fuel, the internals of the fuel plates must be redesigned and 
evaluated in order to meet the goals laid out by the GTRI/RERTR. Initial designs have determined that 
the fuel will be changed from a powdered, dispersion-type fuel to a solid fuel type; the physical properties 
for the new LEU fuel are described in detail in the INL report by Burkes[15].  A preliminary fuel contour 
for the LEU fuel proposed for study is provided in Fig. 1.6. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
Fig. 1.6.  The proposed LEU fuel profile for an inner fuel element. 



ORNL/TM-2015/656 

8 

1.3 COMSOL MULTIPHYSICS SOLVER 
 
As mentioned earlier, in this work, we use COMSOL Multiphysics, which is a finite-element analysis 
(FEA) commercial software package, to model a number of different coupled physical phenomena 
relevant to the HFIR. In addition to available built-in solvers such as conjugate heat transfer or fluid-
structure interactions, COMSOL [being a generalized partial differential equation (PDE) solver] also 
allows for the implementation of user-defined physics not provided by its developer. Incorporating the 
proper boundary conditions between each set of physics allows for the simulation and analysis of very 
complex systems such as HFIR.  
 
Modern computational fluid dynamic (CFD) simulation, such as that incorporated into COMSOL, in 
conjunction with conduction modeling in the fuel and cladding, allows coupling of the spatial power 
distribution in the fuel volume.  The multiphysics framework also allows detailed simulation of the 
impact of fuel manufacturing flaws, fuel cooling channel dimensional variations, and fuel loading 
uncertainties such that best estimate evaluations of these parameters can be performed.  
 
Past efforts in the analysis of the HFIR core using COMSOL have been mostly limited to thermal-
hydraulics[16-25].  More recently, our team has used the solver to model fluid-structure interaction 
problems[26, 27].  In related work, Jain et al.[28] have simulated coupled thermal-structure interaction 
phenomena in HFIR. In addition, Chandler[29] incorporated reactor kinetics into the COMSOL code to 
model the reactions of the LEU fuel for the core.  
 
1.4 ORGANIZATION OF THE REPORT 
 
This report includes continued development of physics, geometric and material models for the COMSOL 
program. The fuel structure and the coolant are modeled in a computational format allowing coupled 
solution of the governing thermal-fluid multi-physics equations describing the movement of the nuclear 
energy from the fuel into the coolant. Also included are the relevant fluid-structure interaction simulation 
results as well as low-to-high order model coupling studies aimed to improve computing times.  
 
Chapter 2 focuses on two- and three-dimensional conjugate heat transfer modeling of nuclear plates. In 
addition, predictive capabilities of various turbulent models including the Low-Reynolds number k-ε 
model (applicable near the solid boundaries), the traditional k-ε model, and the renewed k-ε model are 
investigated. Three-dimensional single- and multiple-channel models of HFIR fuel plates are developed 
to evaluate the thermal hydraulic performance. 
 
In Chapter 3, the predictive capabilities of COMSOL in modeling nuclear fuel plate defects including 
blister and segregation defects are investigated. The work presented in Chapters 2 and 3 constitutes the 
research carried out Dr. Isaac Bodey (a recent PhD graduate of UTK) for his dissertation[30] under the 
direction of Prof Rao V. Arimilli. 
 
Chapter 4 reports our team’s efforts on modeling fluid-structure interaction phenomena for flat plates as 
well as more fundamental problems such as elastically mounted circular cylinders in cross flow. The 
findings presented in this chapter are readily extendible to HFIR plates and will provide useful 
information for the structural integrity of the future LEU-based fuel plates.  Fluid-structure interaction 
(FSI) model development is still ongoing and will be used to conduct a sensitivity analysis to determine 
uncertainties associated with mechanical properties, as these are not currently available for the proposed 
LEU fuel plate designs. Mr. Franklin Curtis, currently a Ph.D. student at UTK, and his advisor Professor 
Kivanc Ekici are the main contributors to this chapter. 
  



ORNL/TM-2015/656 

9 

Chapter 5 presents the theory and the numerical results in pairing of two dimensionally inconsistent 
domains, solid and coolant, through interdimensional model coupling, which was developed in an effort 
to decrease the computational time of the simulations while ensuring that the accuracy of the simulations 
are at acceptable levels. Mr. Adam R. Travis, who earned an MS in May 2014, and his advisor Professor 
Kivanc Ekici are the main contributors to this chapter. 
 
In Chapter 6, additional supporting model/code developments are summarized. In particular, the 
procedure of importing material properties into COMSOL, parameterization of the HFIR plate involute 
design, and details about CAD modeling of the proposed LEU plates are reported. The main contributors 
of these efforts are Mr. Curtis, Mr. Travis and Dr. Bodey. 
 
Finally, Chapter 7 focuses on conclusions, findings and recommendations. 
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2.0 CONJUGATE HEAT TRANSFER 
 
Early thermal-hydraulic studies of the HFIR HEU core and its components were carried out using 
theoretical, numerical, and experimental analysis.  These studies were performed for the design power of 
100 MW.  Many experiments were conducted in order to determine the thermal, hydraulic, and structural 
safety limits of the HFIR core and core components.  Gambill and Bundy[31] performed experiments 
with diathermic turbulent flows in parallel channels.  These experimental results were used to determine 
friction factors, burnout heat fluxes, and average and local Nusselt number correlations in support of the 
HFIR program.   Cheverton and Sims[32] discuss critical experiments that were used in the design basis 
of the HFIR core.  These experiments were conducted using different material types for the control rods 
and different core fuel loadings.  Cheverton and Kelley[33] performed thermo-structural experiments to 
determine the expansion characteristics of the fuel plates due to thermal stresses.  Data from these and 
other experimental programs were used in the development of nuclear safety simulations especially those 
performed by Hilvety and Chapman[34] and McLain[8].   The Steady State Heat Transfer code (SSHTC), 
developed by Hilvety and Chapman and later modified by McLain was and is still used to determine, 
numerically, safety limits of the reactor based on both experimental data and theoretical considerations 
for the original 100MW core and the more recent 85MW core[35].  However, this code does not model 
the turbulent fluid flow, instead it uses a convection boundary condition with the convection coefficient 
determined by a modified version of the Hausen correlation for the Nusselt number.  Further, the code 
calculates the change in the bulk fluid temperature, used in the convection boundary condition, by using 
“suitable heat balances”[8].  A further restriction imposed in the SSHTC is the constraint of diffusion of 
thermal energy to pass to the fluid in a direction normal to the clad surface only (i.e., thermal energy is 
not allowed to diffuse in axial and radial directions of the fuel plate). 
 
Modern computational tools allow the user to create more physically accurate models of systems and 
system components.  For example, in the case of the HFIR core, the ability to model the turbulent flow 
field provides a unique perspective of the thermal hydraulic characteristics of the fuel plate and the flow 
channels.  This unique perspective is discussed in Chapter 3 where fuel defects and their thermal 
hydraulic consequences are investigated.  The proposed conversion of the HFIR to use an LEU fuel 
provides a unique opportunity to update the computational models used in the analysis of the core and 
indeed the entire system.  As a result, the Research Reactors Division (RRD) of the Oak Ridge National 
Laboratory (ORNL) decided to use COMSOL for this effort.  Version 4.3a of the COMSOL code was 
used for the computational work found herein.  COMSOL provides a suite of finite-element based 
multiphysics tools for use in the determination of physical quantities in a computational setting. 
 
2.1 2D MODELS AND COMPARISON 
 
The model to be discussed couples the 2-D non-isothermal turbulent flow field with the diffusion of 
thermal energy within a solid domain.  This 2-D modeling analysis was performed to demonstrate, in a 
relatively simple and controlled way, the influence of variable fluid properties and the influence of 
distributed thermal energy generation rates on the heat transfer characteristics of the flow field.  This 
portion of the work considers four different situations.  First, a constant thermal generation rate is 
considered with one model employing constant fluid properties and another model using variable fluid 
properties.  Secondly, a distributed thermal generation rate is considered again with two independent 
models employing constant fluid properties and variable fluid properties.   
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The plane of interest is that produced by the axial direction and the thickness of the union of one-half of a 
fuel plate and one-half of a coolant flow channel (i.e., the lateral extent is neglected).  The model 
considers the diffusion of thermal information in the axial direction, however lateral thermal diffusion is 
inherently prohibited by the dimensionality of the model geometry.  Since only two dimensions are 
represented, the physical processes that would occur in the unrepresented dimension cannot be accounted 
for in the computational domain (e.g., thermal diffusion) transversal fluid flow, and vortex stretching in 
this instance.  The model results were developed using COMSOL version 4.3a. 
 
2.1.1 2D TCHT Model Geometry and Computational Grid Structure 
 
The simulation geometry for the 2-D TCHT model includes one-half of an inner element fuel plate and 
one-half of a coolant channel as shown in Fig. 2.1.  The fuel plate geometry includes both an active fuel 
domain and a non-active clad domain.  The leading edge of the clad domain has a radius of curvature of 
0.025in. (0.635×10-4 m), which is consistent with the physical fuel plate of the HFIR.  The fluid domain 
has been extended in both the upstream and downstream directions.  The entrance extension in the 
upstream direction is 0.0267m from the leading edge of the fuel plate.  This extension is necessary to 
allow the flow to adjust to the obstruction presented by the fuel plate.  The exit extension in the 
downstream direction is 0.2539m from the trailing edge of the fuel plate.  This extension is necessary to 
allow the flow to expand and relax the transverse pressure gradient downstream of the fuel plate.  This 
allows one to impose a uniform pressure boundary condition at the global flow outlet of the model. 
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Fig. 2.1.  2-D Turbulent conjugate heat transfer model geometry.  The terminal locations of the active portion 
of the fuel domain are shown for reference.  The flow direction is indicated for reference as well.  In order to 

simplify the analysis, 𝒛 = 𝟎.𝟖𝟖𝟖𝟖𝒎 − 𝒚 will be used as the flow direction variable. 
 
 
 
 
 
 
 
 



ORNL/TM-2015/656 

14 

The inlet boundary condition is set to represent a uniform flow velocity of 7.925 m/s and a uniform 
temperature of 327 K.  Since the model inlet has a larger cross sectional area, the inlet velocity was 
adjusted to ensure that the nominal flow rate through the core was preserved.  The left and right global 
boundaries are symmetric with respect to flow and heat flux (i.e., the flow velocity vector and the heat 
flux vector normal to these boundaries are set equal to zero).  As stated previously, the global exit 
boundary is set to a uniform pressure of 377.7 psi (2.606 MPa) which is consistent with the exit pressure 
of the core system[9].  The global exit boundary is set to a convective outlet for the heat transfer 
condition.  The boundary at the interface between the fuel meat and clad is set with a thermal continuity 
condition.  The boundary at the clad-fluid interface is set with a thermal continuity condition and a no-slip 
velocity condition.  The thermal continuity condition implies that the temperature and heat flux are at 
least piecewise continuous across the boundary. 
 
The details of the computational grid are associated with the numerically labeled regions of Fig. 2.2.  The 
high aspect ratio of the computational domain prohibits direct visualization of the grid structure.  As a 
result, the grid structure of the different regions indicated in Fig. 2.2 will be discussed in detail so that this 
structure can be reproduced.  It is important to note that there exists a buffer region between Region 2 and 
Region 3 that is not indicated in Fig.2.2.  This buffer region was necessary to consistently connect the 
grid structure in Region 2 with the grid structure in Region 3.  This issue will be discussed shortly.  It 
should be mentioned that the grid structure described below is the product of a significant optimization 
effort which entailed much trial and error on the part of the author. 
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Fig. 2.2.  Turbulent conjugate heat transfer model geometry. 
 
The blue domain is the fluid, the grey domain is the clad, and the orange domain is the fuel meat.  The 
boundaries within each individual domain are artificial and used to develop the computational grid.  This 
is not a scale representation of the computational domain.  The dimensions have been greatly distorted for 
visualization purposes since the aspect ratio, axial length/thickness, y/x, is 480. 
 
Region 1 of Fig. 2.2 is discretized using a highly structured quadrilateral mesh (i.e., mapped mesh) with 
10 evenly distributed elements in the x-direction and 8 elements in the y-direction distributed with an 
element ratio of 35.  The element ratio prescribes the ratio in size between the last element in a region and 
the first element in that same region[36].  Therefore, as the element ratio increases the element size 
decreases from one boundary to the other, e.g. in this instance the last element (i.e., the element closest to 
the plate within Region 1 of Fig. 2.2) will be 1/35 the size of the first element at the global inlet.  This 
feature is used in Region 1 in anticipation of upstream deviations in the flow field due to the presence of 
the fuel plate. 
 
The grid in Region 2 of Fig. 2.2 is a composite structure consisting of quadrilateral elements layered 
along the solid boundary in the fluid domain and triangular elements filling in the remainder of the region, 
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(i.e., both clad and fluid domains).  The triangular grid structure was constructed first to establish the 
boundary discretization.  Then the layered quadrilateral elements (i.e. boundary layer elements) were 
introduced onto this base structure to capture the development of the boundary layer along the fuel plate.  
The Region 2 grid structure is shown in Fig. 2.3.   
 
 

 
 

Fig. 2.3.  Grid structure of Region 2 (the scale represented here has not been modified). 
 
The Region 1-Region 2 interface has 10 elements which is consistent with the Region 1 distribution.  The 
right fluid boundary of Region 2 has 40 evenly distributed elements, and the left fluid boundary of Region 
2 has 20 evenly distributed elements.  The higher element density on the left fluid boundary was 
constructed to provide better resolution for the upstream flow disturbances that would be present due to 
the fuel plate.   
 
The curved leading edge of the fuel plate (i.e., solid-fluid interface) is discretized with 100 elements.  
Subsequently, 30 layered quadrilateral elements (i.e., boundary layer elements) are placed along the solid-
fluid interface with a stretching factor of 1.1.  The stretching factor determines the thickness of each 
quadrilateral element relative to the previous adjacent element, the succession being in a direction normal 
to the surface along which the elements are placed[36].  Therefore, a stretching factor of 1.1 adjusts the 
thickness of elements by 10% relative to the previous element in a direction normal to the solid boundary 
extending into the fluid domain.  
 
The thickness of the first layer was set to the default value, which is 1/20 of the local domain element 
height as stated in the COMSOL documentation[36].   
 
There are 80 triangular elements distributed with an element ratio of 15 along the fluid exit boundary of 
Region 2 (i.e., Region 2-buffer region interface in the fluid domain), which decrease in size as one 
approaches the fuel plate.  This characteristic of the Region 2 grid structure was necessary to remain 
consistent with the larger mapped structures that exist downstream.   
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The triangular element structure on the interior of the plate’s leading edge does not need to be as dense as 
the fluid grid structure due to the relatively simple physics to be modeled in that region (i.e., conduction 
heat transfer).  Due to the shared leading edge boundary, the element structure along this boundary is the 
same as that mentioned previously.  The symmetry boundary of the plate in Region 2 has 20 elements.  
The interface region between Region 2 and the buffer region, however, has a more specific structure due 
to the downstream mapped grid restrictions.  This boundary has 100 evenly distributed elements. 
 
The buffer region contains only triangular elements.  The buffer region was constructed due to difficulties 
matching the different mesh structures in Regions 2 and 3. The element distribution in the x direction of 
the buffer region is dictated by the Region 2 and Region 3 boundaries.  The element distribution in the y 
direction is governed by the solid-fluid interfacial boundary in the buffer region.  This boundary has 40 
evenly distributed elements. 
 
Region 3 uses a highly structured quadrilateral grid with high element density at the entrance of the 
region from the buffer region which decreases into a significantly lower element density at the exit 
passing into Region 4.  Region 3 represents 97 % or 1.94 inches (4.93×10-2 m) of the upstream 2 inch 
(5.08×10-2 m) unfueled clad section of the fuel plate and coolant channel.  
 
The solid portion of Region 3 (i.e., the two leftmost artificial domains) has 50 evenly distributed elements 
in the x direction per domain.  The y direction has 50 elements with an element ratio of 355 with element 
size decreasing in the upstream direction.  The distribution in the y direction was chosen to create a 
smooth transition in the mesh structure from the high element density regions to the reduced element 
density region of the fueled portion of the fuel plate.  Due to the necessity of matching edge 
discretizations, the fluid domain in this region shares the same distribution in the y direction. 
 
Due to developing velocity boundary layer and thermal boundary layer in Region 4, the mesh structure in 
the fluid domain of Region 3 is dense at the clad-coolant interface and becomes less dense at the right 
global boundary of the geometry.  The boundary discretization in the x direction in the fluid domain has 
80 elements with an element ratio of 15 with size decreasing toward the clad-coolant interface. 
 
The length of the fueled section of the plate is 20 in. (5.08×10-1 m).  The fueled se 
 ction is represented by Region 4 in Fig. 2.2.  While slight amounts of heat are deposited in the coolant 
upstream of this region, most of the heat transfer from the nuclear fuel to the coolant occurs in Region 4. 
 
Since the dominant portion of the flow field is in the axial direction, the element density of the flow 
domain in the axial direction could potentially be significantly reduced.  However, there exists a lower 
limit on the element density which is dictated by the power density profile.  The power density profile in 
the fuel is described in the SSHTC by 27 evenly distributed axial points.  The minimum axial element 
density to obtain proper power density resolution is 1.35 elements per inch or 27 evenly distributed axial 
elements in Region 4.  Region 5 has a similar element density.  In Region 5, the element density is 
rounded up to the nearest integer density value. 
 
The element densities in Region 4 and 5 were iterated by integer multiples of this base density to achieve 
a grid independent solution.  The details of this element density parametric sweep will be discussed at 
length later. 
 
Region 6 again employs the highly structured mapped mesh.  The element density at the trailing edge of 
the fuel plate is very high due to the need to resolve the strong vortex that resides there.  This vortex 
contributes to the relatively high temperatures that are observed at the trailing edge of the fuel plate 
through the recirculation of the warm fluid. 
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The distribution in the x direction is dictated by the shared boundary between Region 5 and Region 6 and 
thus has the same distribution as Region 4 in that direction.  The axial distribution is set to 270 elements 
with an element ratio of 2000.  As the flow redistributes itself after expansion past the fuel plate, it settles 
and the effects of the plate on the momentum of the fluid are no longer observed.  Thus the element 
density decreases downstream from the plate. 
 
The same grid structure is used in all models (i.e., 563,730 elements).  The iterative convergence is set to 
1×10-6. 
 
2.1.2 Turbulent Conjugate Heat Transfer (TCHT) Analysis: Constant Heat Flux Case with Constant and  
 Variable Fluid Properties 
 
The discussion regarding the constant heat flux model will use the same model geometry shown in 
Fig. 2.1.  The 2-D TCHT analysis uses the Low Reynold’s number k-ε (LRN) turbulence model coupled 
with thermal diffusion in both the solid and fluid domain.  As previously stated, the LRN model allows 
for the evaluation of thermo-fluid variables through the laminar sublayer of the turbulent boundary layer.  
 
Both the constant fluid property (CFP) case and the NIST fluid property (NFP) case will be discussed.  
The CFP were evaluated at the average bulk fluid temperature,  𝑻𝒃���� = 347.58 K (i.e., the sum of the inlet 
and outlet bulk fluid temperature divided by 2) from the NIST Steam Tables[37] and are listed in Table 
2.1.  The thermal conductivity of the clad, 𝒌𝒄𝒄𝒄𝒄, was set to a value of 167 W/m/K.  The thermal 
conductivity of the fuel, 𝒌𝒇𝒇𝒇𝒄, was set to a value of 132.06 W/m/K. 
 

Table 2.1: Constant fluid properties evaluated at the average bulk fluid  
temperature,  𝑻𝒃��� = 347.58 K 

Property Value 
Thermal Conductivity, 𝒌(𝑻𝒃����) 0.6678 W/m/K 
Isobaric Specific Heat, 𝑪𝒑(𝑻𝒃����) 4186.6 J/kg/K 
Dynamic Viscosity, 𝝁(𝑻𝒃����) 3.8133×10-4 Pa-s 
Mass Density, 𝝆(𝑻𝒃����) 976.54 kg/m3 

 
The NFP were determined from the NIST Steam Tables and established as look-up tables in the 
COMSOL environment over the temperature range 320.00 K < T < 394.26 K, and over the pressure range 
2.5 MPa < P < 3.5 MPa. These ranges encompass the standard operational range of the HFIR.  It is 
important to note that the fluid properties (i.e., mass density, isobaric specific heat capacity, viscosity, and 
thermal conductivity) are relatively insensitive to pressure variation over the aforementioned range.  For 
completeness, the variation of the mass density, isobaric specific heat capacity, thermal conductivity, and 
molecular viscosity with respect to the pressure was found to be of order 10-7, 10-6, and 10-10, respectively.  
The property variation with respect to temperature, however, is much more pronounced.  The variation of 
the mass density and the isobaric specific heat capacity with respect to the temperature is of order 1.  The 
variation in the thermal conductivity and the molecular viscosity with respect to temperature is of order 
10-4 and 10-3, respectively.  Therefore, the fluid properties are assumed to be a function of the fluid 
temperature only since a negligible effect is expected from fluid pressure variance.   
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Theoretical developments show that as the flow becomes thermally fully developed[38]; i.e., 
 
𝒄
𝒄𝒛
�𝑻𝒔

(𝒛)−𝑻𝒇(𝒙,𝒛)
𝑻𝒔(𝒛)−𝑻𝒃(𝒛)

� → 𝟎, ...............................................................................................................................(2.1) 
 
the convection coefficient becomes constant for the constant heat flux constant fluid property (CFP) case 
using the bulk fluid temperature as the reference temperature in Newton’s law of cooling.  Here 𝑻𝒇(𝒙, 𝒛) 
is the fluid temperature, 𝑻𝒔(𝒛) is the clad surface temperature, and 𝑻𝒃(𝒛) is the bulk fluid temperature.  
The flow direction variable, 𝒛, is defined as 
 
𝒛 ≡ 𝒚𝑬𝑬𝑬 − 𝒚 ...........................................................................................................................................(2.2) 
 
here 𝒚𝑬𝑬𝑬 is the location of the entrance to the active region (i.e., 𝒚𝑬𝑬𝑬 = 𝟎.𝟖𝟖𝟖𝟖𝒎) as shown in 
Fig. 2.1.  The introduction of this flow direction variable makes it easier on the reader to understand the 
subsequent figures. 
 
It is instructive to discuss the calculation of the bulk fluid temperature, 𝑻𝒃, at this point as it plays a 
fundamental role in what follows.  The bulk fluid temperature is a marginal distribution in the 
mathematical sense (i.e.,, 
 
𝑻𝒃(𝒛) ≡  𝟖

�̇�𝑪𝒑����
∫ 𝝆 �𝑻𝒇(𝒙, 𝒛)�𝑪𝒑
𝒙𝒎𝒑
𝒙𝒔

�𝑻𝒇(𝒙, 𝒛)�𝒇(𝒙, 𝒛)𝑻𝒇(𝒙,𝒛)𝒄𝒙 ........................................................(2.3) 

 
Here the limits of the integration procedure are from the heated surface, 𝒙𝒔, to the flow channel midplane, 
𝒙𝒎𝒑.  To use this definition of the bulk fluid temperature to determine its distribution in the flow direction 
requires one to perform the integration at different locations in the flow direction.  In the COMSOL 
model, this integration was performed at 51 uniformly spaced locations along the flow direction (i.e., 
 
𝒛𝒏+𝟖 = 𝒚𝒇𝒄𝒓 − �𝟎.𝟓𝟎𝟖

𝟓𝟎� �𝒏;   𝒏 = 𝟎⋯𝟓𝟎 .........................................................................................(2.4) 
 
Another way to represent the bulk fluid temperature follows from the relationship for the total power 
supplied to the fluid up to position z. 
 
∫ 𝒒′′(𝒙,𝒛)𝒄𝑬𝑯𝑻
𝑬𝑯𝑻
𝟎 = �̇�𝑪𝒑���� ∫ 𝒄𝑻𝒃

𝑻𝒃(𝒛)
𝑻𝒃(𝟎)  ...................................................................................................(2.5) 

 
Here 𝑬𝑯𝑻is the heat transfer area.  Since only a single surface is heating the fluid in the model, the heat 
transfer area is L*z, however, the 2-D model assumes a lateral length of unity.  Therefore, Equation 2.6 
may be written as 
 
∫ 𝒒′′𝒄𝒛 =𝒛
𝟎 �̇�𝑪𝒑���� ∫ 𝒄𝑻𝒃

𝑻𝒃(𝒛)
𝑻𝒃(𝟎) . ....................................................................................................................(2.6) 

 
Carrying out the integration in Equation 2.6 for the constant heat flux case and rearranging the symbols 
yields the following relationship for the bulk fluid temperature distribution in the flow direction 
 

𝑻𝒃(𝒛) = � 𝒒′′

�̇�𝑪𝒑
� 𝒛 + 𝑻𝒃(𝟎). ......................................................................................................................(2.7) 

 
This relationship is significantly easier to evaluate than that shown in Equation 2.3.  For instance, 
consider the constant heat flux with NIST fluid properties (NFP) case; all quantities in the integrand of 
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Equation 2.3 are variable and therefore must be evaluated at each location, however, in Equation 2.3, only 
the specific heat capacity of the fluid needs to be evaluated.  It will be shown that the two forms of the 
bulk fluid temperature yield identical results as one would expect.  It is important to note that if the heat 
flux is distributed along the flow direction then one must either be able to represent the heat flux 
distribution using common mathematical functions or employ a quadrature rule to evaluate the heat flux 
integral in Equation 2.6.  This case of a distributed heat flux will be discussed in Section 2.1.3.  
 
The constant convection coefficient is due to the parallel nature of the affine functions associated with the 
solid surface temperature and the bulk fluid temperature in the thermally fully developed region for the 
constant heat flux case (i.e. the temperature difference between the clad and the bulk fluid is constant).  
Using Newton’s law of cooling, the definition of the convection coefficient is 
 
𝒉(𝒛) ≔ 𝒒𝒔′′

𝑻𝒔(𝒛)−𝑻𝒃(𝒛). ..................................................................................................................................(2.8) 
 
Here 𝒒𝒔′′ is the constant clad surface heat flux and 𝒉(𝒛) is the convection coefficient as a function of the 
flow direction.  The derivative of the convection coefficient in the flow direction is calculated to be 
 
𝒄𝒉
𝒄𝒛

= 𝟖
[𝑻𝒔(𝒛)−𝑻𝒃(𝒛)]

𝒄𝒒𝒔′′

𝒄𝒛
− 𝒒𝒔′′

[𝑻𝒔(𝒛)−𝑻𝒃(𝒛)]𝟖  𝒄
𝒄𝒛

[𝑻𝒔(𝒛) − 𝑻𝒃(𝒛)]. ......................................................................(2.9) 
 
However, since a constant heat flux is being considered here, the first term evaluates to zero which leaves 
 
𝒄𝒉
𝒄𝒛

= − 𝒒𝒔′′

[𝑻𝒔(𝒛)−𝑻𝒃(𝒛)]𝟖  𝒄
𝒄𝒛

[𝑻𝒔(𝒛)− 𝑻𝒃(𝒛)]. .............................................................................................. (2.10) 
 
Therefore, it is determined that the change in the convection coefficient in the flow direction is inversely 
proportional to the square of the temperature difference between the clad surface and the bulk fluid, and 
directly proportional to the change of this temperature difference in the flow direction.  Further, the 
relationship in Equation 2.10 indicates that the convection coefficient is a decreasing function of the flow 
direction, given that the surface temperature is larger than the bulk fluid temperature (i.e., the slope of the 
derivative of the convection coefficient is negative).  Equation 2.10 further implies that if the temperature 
difference between the clad surface and bulk fluid is constant then the convection coefficient does not 
change in the flow direction and as a result remains constant.  The temperature difference between the 
clad-surface and the bulk-fluid for both the CFP and NFP case is shown in Fig. 2.5 as a function of the 
hydraulic diameter normalized flow direction.  From Fig. 2.4 one notices that the flow for the CFP case 
[i.e., (Ts-Tb)-CFP] becomes fully thermally developed at approximately 20 Dh.  Also from Fig. 2.4, one 
notices that the temperature difference between the clad surface and the bulk fluid for the CFP case is 
indeed constant over most of the heated region with the exception of the entrance to the heated region 
where the flow is thermally developing.  Therefore, one should expect the convection coefficient based on 
the bulk fluid temperature to be constant over most of the heated region with the exception of the thermal 
entry length where the convection coefficient should decrease to its constant value.  These characteristics 
of the convection coefficient for the CFP case, h:(Ts-Tb)-CFP, are shown in Fig. 2.5.  The increase in the 
convection coefficient for the CFP case that occurs at 𝒛 𝑫𝒉⁄ = 𝟖𝟎𝟎 is due to the difference in temperature 
(i.e., 𝑻𝒔 − 𝑻𝒃𝒇𝒄𝒌, decreasing and the fact that the heat flux has not significantly decreased at this location). 
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For the NIST fluid property (NFP) constant clad surface heat flux case, Fig. 2.4 shows that the 
temperature difference between the clad surface and the bulk fluid is a decreasing function of the flow 
direction over most of the heated section.  This is due to the increase in the thermal conductivity of the 
fluid with increasing temperature.  As the thermal conductivity increases, more thermal energy is passed 
from the clad surface to the fluid.  This has two effects: one, it increases the fluid temperature which 
further increases the fluid thermal conductivity, and two, the clad surface temperature increase is not as 
pronounced as it is in the CFP case.  As a result, the clad surface temperature increases at a slower rate 
than the bulk fluid temperature and the representative affine functions are no longer parallel, thus 
resulting in a decreasing temperature difference between the clad surface and the bulk fluid, as observed 
in Fig. 2.5.  Equation 2.10 demonstrates that the convection coefficient should increase due to its 
dependence on the inverse of the square of the temperature difference between the clad surface and the 
bulk fluid.  This characteristic of the convection coefficient based on NFP is shown in Fig. 2.5 as the 
h:(Ts-Tb)-NFP data. 
 

 
Fig.2.4.  Temperature difference between the clad surface and the bulk fluid for constant fluid properties 

(CFP) and NIST fluid properties (NFP).  One notices that the system becomes fully thermally developed at 
approximately 20 Dh for the CFP case. 
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Fig. 2.5.  Convection coefficient for constant fluid properties (CFP) and NIST fluid properties (NFP).  The 

two outliers occurring at z = 200Dh is due to end effects where the end of the active region resides. 
 

 
The distribution difference between the cross-sectional fluid temperature and the inlet bulk fluid 
temperature for the CFP case, 𝚯𝐂𝐂𝐂 = 𝑻𝒇𝑪𝑪𝑪(𝒙,𝒛) − 𝑻𝒊𝒏, is shown in Fig. 2.6 at several axial locations in 
the active section of the model.  This plot shows the penetration of the thermal information from the 
heated surface into the flow field.  From Fig.2.6, one notices that thermal information from the clad 
surface does not reach the channel mid-line before z = 5Dh.  A similar plot is shown in Fig. 2.7 for the 
NFP case, 𝚯𝐍𝐂𝐂 = 𝑻𝒇𝑵𝑪𝑪(𝒙,𝒛) − 𝑻𝒊𝒏.  Again, the thermal information from the clad surface reaches the 
channel mid-line at z = 5Dh.   
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Fig. 2.6.  Variation in the direction normal to flow direction (x) of the difference between the Local Fluid 
Temperature [Tf(x,z)] and the Inlet Bulk Fluid Temperature (Tin) for the Constant Fluid Property Case at 
Various Axial Locations Along the Heated Section of the Simulation Geometry.  The x-coordinate begins on 

the clad surface (i.e.,. x = 6.35×10-4 m) and extends to the fluid mid-channel (i.e., x = 12.7×10-4 m).  The 
heating effect of the clad surface reaches mid-channel for  z ≥ 5Dh. 
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Fig. 2.7.  Variation in the direction normal to flow direction (x) of the difference between the local fluid 
temperature and the inlet bulk fluid temperature for the variable fluid property case (NFP) at various 

locations along the heated section of the simulation geometry.  The x-coordinate begins on the clad surface 
(i.e., x = 6.35×10-4m) and extends to the fluid mid-channel (i.e., x = 12.7×10-4m).  The heating effect of the clad 

surface reaches mid-channel for  z ≥ 5Dh. 
 
 
The difference between 𝚯𝐂𝐂𝐂 and 𝚯𝐍𝐂𝐂 is shown in Fig. 2.8.  This plot translates into a difference 
between the fluid temperature for the CFP case and the fluid temperature for the NFP case [i.e., 𝚯𝑪𝑪𝑪 −
𝚯𝑵𝑪𝑪 =  𝑻𝒇𝑪𝑪𝑪(𝒙,𝒛) − 𝑻𝒇𝑵𝑪𝑪(𝒙,𝒛)].  Figure 2.8 provides visual evidence of the differences between 
Figs. 2.6 and 2.7.  It shows that at the wall (i.e., x = 6.35×10-4 m) the CFP fluid temperature is higher than 
the NFP fluid temperature for all values of z represented.  One notices from Fig. 2.8 that as one proceeds 
in the axial direction, the value of 𝚯𝑪𝑪𝑪 − 𝚯𝑵𝑪𝑪 increases.  This is due to the lower thermal conductivity 
of the fluid in the CFP case relative to the NFP case.  Since the fluid thermal conductivity is lower in the 
CFP case the surface temperature is higher which implies that the fluid adjacent to the wall will also have 
a higher temperature than the NFP case.  However, a short distance away from the wall in the normal 
direction, the NFP fluid temperature becomes higher and thermal energy penetrates further into the flow 
field as indicated by the negative values of 𝚯𝑪𝑪𝑪 − 𝚯𝑵𝑪𝑪 in conjunction with the extent of this negative 
region in the flow direction.  This is a direct consequence of the increase in the fluid thermal conductivity 
with increasing temperature (i.e., more thermal energy is allowed to pass from the heated surface to the 
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fluid thus increasing the fluid temperature relative to the CFP case and as a result increase the thermal 
conductivity).  The curves then again pass to positive values of 𝚯𝑪𝑪𝑪 − 𝚯𝑵𝑪𝑪which indicate that CFP 
fluid temperature is again higher in magnitude than the NFP fluid temperature. 
 
 

 
Fig. 2.8.  The distribution of the Difference between the local fluid temperature for the constant fluid 

property case (CFP) and the variable NIST fluid property (NFP) case at different axial locations. 
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For completeness the flow direction variation of clad surface temperatures and the bulk fluid temperatures 
for both the CFP case and the NFP case are shown in Fig. 2.9.  This figure shows that it is indeed the 
surface temperature that is most affected by the use of variable fluid properties (i.e., a clad surface 
temperature difference of 8K is observed at the exit of the active region between the two cases.  Further, 
one observes that the rate of increase in the bulk fluid temperature for the NFP case is negligibly smaller 
than the CFP case.  Therefore, the affine temperature functions (i.e., clad surface temperature and bulk 
fluid temperature) for the NFP case are indeed not parallel with the difference in the two temperatures 
decreasing in the flow direction.  Further, the average bulk fluid temperature (i.e., 𝑻�𝒃 = 𝟑𝟑𝟖.𝟓𝟖 𝑲) is 
shown to be lower in magnitude than the surface temperature with the exception of the axial location z = 
0 which was used in the explanation of Fig. 2.8.  The temperature characteristics shown in Fig. 2.9 imply 
that the use of constant fluid properties for systems with constant heat flux and moderate bulk fluid 
temperature rises (i.e., 𝚫𝑻𝒃 ≤ 𝟑𝟎 𝑲) produce conservative (i.e., higher) estimates of the clad surface 
temperature.  Another advantage of the use of constant properties relative to the use of variable properties 
is the reduction in computational expense.  Variable properties are introduced into the computational 
environment either as look up tables or as analytical functions.  During the computational process, the 
looks up tables are interpolated between thermodynamic states or the analytical functions are evaluated as 
needed for each computational node at each iteration of the computation.  A typical grid structure is, at 
least, of the order of 105 nodes with iterations of the order 102 for convection problems, therefore, the 
evaluation of variable material properties is highly expensive in the computational sense. From the 
convection coefficient, one can form the Nusselt modulus by using its definition, 
 
𝑵𝒇𝑫 ≡

𝒉𝑫𝒉
𝒌𝒇

. ............................................................................................................................................ (2.11) 
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Fig. 2.9.  Clad surface temperatures and bulk fluid temperatures for both for the constant fluid property 
(CFP) and the variable NIST fluid property (NFP) cases. 

 
 
𝑵𝒇𝑫 ≡

𝒉𝑫𝒉
𝒌𝒇

. 

 
For the CFP case, as shown in Fig. 2.5, the convection coefficient is constant with a numerical value of 
93,748.65 W/m2/K.  This value of the convection coefficient composed with the thermal conductivity 
evaluated at the average bulk fluid temperature (i.e., k = 0.6678 W/m/K) and the hydraulic diameter of the 
flow channel (i.e., 2.54×10-3m) in a manner consistent with Equation 2.11) yields a value of 356.58 for 
the model Nusselt modulus.  This value will now be compared with other well-known Nusselt 
correlations for which the system characteristics are consistent. 
 
The Sieder-Tate correlation for the Nusselt modulus has the following form for use under the indicated 
conditions[38], 
 

𝑵𝒇𝑫 = 𝟎.𝟎𝟖𝟖 𝑬𝒇𝑫
𝟑
𝟓�  𝑪𝒓𝟖 𝟑� � 𝝁

𝝁𝒘
�
𝟎.𝟖𝟑

         �
𝟎.𝟖 ≤ 𝑪𝒓 ≤ 𝟖𝟏,𝟖𝟎𝟎
𝑬𝒇𝑫 ≥ 𝟖𝟎,𝟎𝟎𝟎

𝒛
𝑫𝒉
≥ 𝟖𝟎

 ...................................................... (2.12) 

 

320

330

340

350

360

370

380

390

400

410

0 50 100 150 200

Te
m

pe
ra

tu
re

 [K
] 

z /Dh 

Tb-CFP

Tb-NFP

Ts-CFP

Ts-NFP



ORNL/TM-2015/656 

28 

Here Re is the Reynolds number and Pr is the Prandtl number.  The Prandtl number is calculated using 
the following relationship 
 
𝑪𝒓 =  𝝁𝑪𝒑

𝒌𝒇
 ............................................................................................................................................... (2.13) 

This composite structure yields a value of 2.391 for the Prandtl number.  The Reynolds number can be 
calculated using the mass flow rate.   
 
𝑬𝒇 =  �̇�𝑫𝒉

𝝁𝑬𝒄
. ............................................................................................................................................. (2.14) 

 
Since the model in question uses CFP, the ratio of viscosities in Equation 3.56 is unity.  Substituting 
relationships (2.13) and (2.14) into (2.15) , the Nusselt modulus has the value 369.95.  The Sieder-Tate 
relationship, Equation 2.12), yields a relative difference of 3.75% with the Nusselt modulus calculated 
from the model results.  This relative difference is calculated using the following structure 
 

𝑬𝑫 =  �𝑵𝒇𝑫𝑪𝑪𝑪𝑪𝑪𝑪−𝑵𝒇𝑫𝑪𝑻
𝑵𝒇𝑫𝑪𝑪𝑪𝑪𝑪𝑪

� × 𝟖𝟎𝟎 ......................................................................................................... (2.15) 

 
Another Nusselt modulus correlation that is compatible with the given model was provided by 
Gnielinski[38].  This correlation has the following form 
 

𝑵𝒇𝑫 = (𝒇 𝟖⁄ )(𝑬𝒇𝑫−𝟖𝟎𝟎𝟎)𝑪𝒓
𝟖+𝟖𝟖.𝟖(𝒇 𝟖⁄ )𝟖 𝟖⁄ �𝑪𝒓𝟖 𝟑⁄ −𝟖�

    �
𝟎.𝟓 ≤ 𝑪𝒓 ≤ 𝟖𝟎𝟎𝟎

𝟑𝟎𝟎𝟎 ≤ 𝑬𝒇𝑫 ≤ 𝟓 × 𝟖𝟎𝟏
𝒛
𝑫𝒉
≥ 𝟖𝟎

 ............................................................... (2.16) 

 
where 𝒇 is the Darcy friction factor given by [38] 
 
𝒇 = 𝟎.𝟖𝟖𝟑 𝑬𝒇𝑫

−𝟖 𝟓⁄    {𝑬𝒇𝑫 ≥ 𝟖 × 𝟖𝟎𝟑. ................................................................................................. (2.17) 
 
The Gnielinski correlation for the Nusselt modulus yields a value of 377.62, which results in a relative 
difference of 5.90% with the model Nusselt modulus.  The Hausen equation (i.e., Equation 2.3) yields a 
value of the Nusselt modulus of 372.62.  This results in a relative difference of 4.50% with the model 
Nusselt modulus.   
 
While the Seider-Tate, the Gnielinski, and the Hausen correlations agree well with the model Nusselt 
modulus, the information suggests that the Seider-Tate correlation is more representative of the HFIR 
system.  This conclusion will also be drawn for the NFP case. 
 
The NFP case is less straightforward than the CFP case.  Given the variable nature of the fluid properties, 
the Reynold’s number and the Prandtl number become distributed in the flow direction.  Therefore, a 
local Nusselt modulus, in terms of the aforementioned correlations, will be distributed in terms of the 
previously mentioned dimensionless structures.  The model Nusselt modulus will be distributed due to the 
distribution of the local convection coefficient and the thermal conductivity of the fluid. 
 
A choice has to be made regarding how the fluid properties are to be evaluated for use in calculations 
(i.e., should the fluid property be evaluated at the local bulk fluid temperature or the local wall 
temperature).  More specifically, what effect does this choice have on the local Nusselt modulus 
regarding the temperature dependent thermal conductivities?  Using Equation 2.11, one can establish a 
ratio test to gain some qualitative idea of this effect on the local Nusselt modulus.
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𝑵𝒇𝑫(𝑻𝒔)
𝑵𝒇𝑫(𝑻𝒃)

= 𝒉𝑻𝒃𝑫𝒉
𝒌𝒇(𝑻𝒔)

𝒌𝒇(𝑻𝒃)
𝒉𝑻𝒔𝑫𝒉

 ............................................................................................................................ (2.18) 

 
Using Equation (2.8) (i.e., the definition of the convection coefficient) one finds, as expected, that 
𝒉𝑻𝒃 = 𝒉𝑻𝒔; therefore, Equation 2.18 results in  
 
𝑵𝒇𝑫(𝑻𝒔)
𝑵𝒇𝑫(𝑻𝒃)

= 𝒌𝒇(𝑻𝒃)
𝒌𝒇(𝑻𝒔)

. ..................................................................................................................................... (2.19) 

 
With the knowledge that 𝑻𝒔 > 𝑻𝒃, one observes that the ratio of thermal conductivities is less than unity, 
for the heated wall case, and thus 𝑵𝒇𝑫(𝑻𝒔) < 𝑵𝒇𝑫(𝑻𝒃).  Physically, since the convection mechanism is 
driven by thermal phenomena at the heated surface, it stands to reason that the thermal conductivity of the 
fluid should be evaluated at the heated surface temperature [i.e., 𝒌𝒇 = 𝒌𝒇(𝑻𝒔).]. 
 
The Nusselt modulus – Prandtl number (NP) ratio is plotted as a function of the Reynold’s number in 
Fig. 2.10.  The designation after the colon, in the legend of Fig. 2.10, represents the source of the Nusselt 
modulus (i.e., C ~ COMSOL, G ~ Gnielinski, ST ~ Sieder-Tate, H ~ Hausen).  The model Nusselt 
modulus for the NFP case is larger in magnitude than the other correlations.  This implies that the 
aforementioned Nusselt moduli provide larger surface temperatures, with the Gnielinski correlation 
providing the largest surface temperatures of the group.  One notices, that again, the Sieder-Tate 
correlation provides the most similar results to the (COMSOL) model Nusselt number.  Figure 2.11 
shows the relative difference (i.e., Equation 2.15) between the aforementioned Nusselt correlations and 
the model Nusselt number. 

 
Fig. 2.10.  Comparison of the Nusselt Modulus – Prandtl Number Ratio as a function of the Reynold’s 

Number.  To clarify the legend: C ~ COMSOL, G ~ Gnielinski, ST ~ Sieder-Tate, H ~ Hausen.
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Figure 2.11 shows that for increasing Reynolds numbers the relative difference between the Sieder-Tate 
correlation and the model value decreases, again showing that the Sieder-Tate correlation is more 
representative of the model in question.  The lower bound of the relative difference for the Sieder-Tate 
correlation is 1.2% for a Reynolds number of 1.32×105 and an upper bound of 4.3% for a Reynolds 
number of 8.27×104.  The relative difference between the Hausen correlation and the model Nusselt 
modulus is shown to increase with increasing Reynolds number.  The relative difference for the Hausen 
correlation has a lower bound of 3.8% for a Reynolds number of 8.27×104 and an upper bound of 5.9% 
for a Reynolds number of 1.32×105.  
 

 
 

Fig. 2.11.  Relative differences of the Gnielinski, Sieder-Tate, and Hausen correlations compared with the 
(COMSOL) model Nusselt modulus. 

 
 
To complete the constant heat flux section, the surface temperature distributions derived from the 
Gnielinski, Sieder-Tate, and the Hausen correlations compared with the COMSOL determined surface 
temperature are shown in Figs. 2.12 and 2.13 for the CFP case and the NFP case, respectively.  For the 
CFP case, it is observed that the COMSOL determined surface temperature is higher and thus more 
conservative than those surface temperatures derived from the correlations.  This is to be expected since 
the model Nusselt modulus for the CFP case was lower in magnitude than the correlation values.  On the 
other hand, for the NFP case, the COMSOL determined surface temperature distribution is lower in 
magnitude than the distributions derived from the correlations.  This too was expected since it was shown 
that the correlations produce Nusselt moduli of lower magnitude than that derived from the model.   
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Fig.  2.12.  Difference between the surface temperature and the inlet bulk fluid temperature as derived from 

the correlations used for the CFP case. 
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Fig. 2.13.  Difference Between the surface temperature and the bulk fluid inlet temperature as derived from 
the Nusselt correlations used for the NFP case. 

 
2.1.3 2D Turbulent Conjugate Heat Transfer: HFIR Distributed Power Density Case with 

Constant and Variable Fluid Properties 
 
The model geometry and boundary conditions for the HFIR distributed power density (DPD) is the same 
as that used for the constant heat flux case discussed in the previous section, refer to Fig. 2.1.  The grid 
structure is identical to that used in the previous section.  The DPD imported into the model as an input 
parameter in the fuel domain is that shown in figure .  It is important to mention here that the abrupt 
increase in the DPD shown in Fig. 2.14 at 𝒛 𝑫𝒉� = 𝟖𝟎𝟎 is not a physical phenomenon that occurs in the 
High Flux Isotope Reactor.  Instead it is part of a strategy used by the developers of the Steady State Heat 
Transfer Code to model the thermal consequences of fuel defects, which is further discussed in Chapter 3.  
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Fig. 2.14.  Distributed power density (DPD) input for model. 
 

The surface heat flux resulting from the use of the DPD is shown in Fig. 2.15.  Again, the LRN 
turbulence model is employed due to its ability to resolve thermo-fluid variables within the laminar 
sublayer of the turbulent boundary layer.  The constant fluid properties used for this model are the same 
as those used in the constant heat flux case (i.e., those shown in Table 2.1).  However, the NIST fluid 
properties will not be the same as those in the constant heat flux case especially those evaluated at the 
temperature of the heated surface due to its non-linear distribution. 
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Fig. 2.15.  HFIR DPD resultant surface heat flux distribution. 
 
The difference between the clad surface temperatures and the bulk fluid temperatures, or for brevity, the 
temperature difference, for both the CFP case and the NFP case are shown in Fig. 2.16 as a function of 
the dimensionless flow direction.  Again, the temperature difference of the constant fluid property (CFP) 
case produces a larger magnitude distribution than the temperature difference of the NIST fluid property 
(NFP) case.  This was explained in the previous section, however, the discussion will be recapitulated 
here.  The thermal conductivity of the fluid increases as the fluid temperature increases, refer to Appendix 
A, therefore, with a higher thermal conductivity more thermal energy is passed to the fluid thus 
decreasing the surface temperature. 
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Fig. 2.16.  Resultant profiles of the difference between the surface temperature and the bulk fluid 
temperature. 

 
The convection coefficient for both the CFP and the NFP cases are shown in Fig. 2.17.  Interestingly, the 
convection coefficient profiles are not too dissimilar from those convection coefficient distributions of the 
constant heat flux case comparing Fig. 2.17 with Fig. 2.5.  To discuss the shape of the convection 
coefficient profiles, consider again Equation  2.19. 
 
𝒄𝒉
𝒄𝒛

= 𝟖
[𝑻𝒔(𝒛)−𝑻𝒃(𝒛)]

𝒄𝒒𝒔′′

𝒄𝒛
− 𝒒𝒔′′

[𝑻𝒔(𝒛)−𝑻𝒃(𝒛)]𝟖  𝒄
𝒄𝒛

[𝑻𝒔(𝒛) − 𝑻𝒃(𝒛)] ..................................................................... (2.19) 
 
Since the heat flux is distributed in this model, the first term cannot be neglected.  This expression can be 
written in a more concise manner 
 
𝒄𝒉
𝒄𝒛

= 𝟖
(𝑻𝒔−𝑻𝒃)𝟖 �(𝑻𝒔 − 𝑻𝒃) 𝒄𝒒

′′

𝒄𝒛
 −  𝒒′′ 𝒄

𝒄𝒛
(𝑻𝒔 − 𝑻𝒃)�. .............................................................................. (2.20) 
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Fig. 2.17.  Resultant convection coefficient for the CFP case and the NFP case. 

 
Equation 2.20 is slightly easier to read than Equation  2.9.  The evaluation of the spatial variation of the 
convection coefficient shows that deviations in the heat flux profile will have a direct effect on the results.  
There is a very subtle interplay between the heat flux and the temperature difference established in 
Equation 2.20.  The heat flux has a very similar profile to the temperature difference (i.e., the profiles in 
question increase and decrease over the same intervals with the exception of the NFP case in the range 90 
< z/Dh < 100 where the temperature difference suffers a slight decrease in magnitude).  The magnitudes of 
the changes, however, are significantly different.  By inspection, the maximum changes occur in the 
entrance and exit regions.  Calculation reveals that the maximum change occurs at the entrance 
 
 𝒄𝒒

′′

𝒄𝒛
~ 𝑪�𝟖𝟎𝟓� � 𝒄

𝒄𝒛
(𝑻𝒔 − 𝑻𝒃)� ;       � 𝒛

𝑫𝒉
�𝟖.𝟏 ≤ 𝒛

𝑫𝒉
≤ 𝟑.𝟖� .................................................................... (2.21) 

 
The dominant term in Equation 2.20 is not intuitively obvious, and in fact the dominance switches 
between terms.  This oscillatory dominance will be explained qualitatively.  The argument can be made 
that over the range 10 < z/Dh < 100, the second term is dominant for the CFP case since all quantities in 
Equation 2.20 are positive and the convection coefficient decreases in the flow direction as shown in 
Fig. 2.17.  For the range 108 < z/Dh < 190, both derivatives are negative while all other quantities are 
positive, therefore, the first term is dominant since the convection coefficient continues to decrease over 
this range.  The bump in the convection coefficient (i.e., 100 < z/Dh < 108) is caused by the first term 
being dominant with the heat flux derivative being the major contributor.  The relative magnitudes of the 
derivatives in this range are the same as those shown in Equation 2.21. 
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Figure 2.17 shows that the convection coefficient for the NFP case is an increasing function of the flow 
direction.  In the range 10 < z/Dh < 90, both derivatives are positive as well as all of the other quantities, 
therefore, the first term of Equation  2.20 is dominant over this range.  For the range 90 < z/Dh < 100, the 
heat flux derivative approaches zero while the derivative of the temperature difference decreases slightly 
which implies that the second term in Equation 2.20 is dominant over this range.  The bump occurring in 
the range 100 < z/Dh < 108 is indicative of a first term dominance due to the large acute increase in both 
derivatives.  Finally, in the range 108 < z/Dh < 190, both derivatives are negative which implies that the 
second term in Equation 2.20 dominates the derivative of the convection coefficient.   
 
The value of the model average Nusselt number for the HFIR DPD CFP model is calculated to be 358.05 
using Equation 2.11.  The model Nusselt number is different than that recorded in the constant heat flux 
CFP case due to the decreasing nature of the convection coefficient shown in Fig. 2.17.  Since the 
property values are identical to those used in the constant heat flux CFP case, the values of the different 
correlations (i.e., Seider-Tate, Gnielinski, and Hausen) are also identical to those calculated from those 
results.  To refresh one’s memory the values follow:  𝑵𝒇𝑫 = 𝟑𝟏𝟑.𝟑𝟓 (Sieder-Tate: Equation 2.12)), 
𝑵𝒇𝑫 = 𝟑𝟖𝟖.𝟏𝟖 (Gnielinski: Equation 2.16, and 𝑵𝒇𝑫 = 𝟑𝟖𝟖.𝟏𝟖 (Hausen).  Since the CFP case results 
in single value Nusselt numbers from the above mentioned correlations, the average Nusselt number for 
the model will be compared instead of the instantaneous value.  The Seider-Tate correlation results in a 
difference of 3.32 % with the model value.  This difference is calculated using Equation 2.15.  The 
Gnielinski correlation results in a difference of 5.46 %, and the Hausen correlation results in a difference 
of 4.07 %. 
 
The values of the Nusselt number found from the above correlations divided by the Prandtl number are 
compared with the model Nusselt number-Prandtl number ratio for the NFP case in Fig. 2.18.  First, one 
notices the bump in the model curve [i.e., (Nu/Pr) that occurs over the range 𝟖.𝟎𝟖 × 𝟖𝟎𝟓  ≤  𝒛 𝑫𝒉⁄ ≤
𝟖.𝟎𝟖 × 𝟖𝟎𝟓].  This is a relic of the way in which this information was constructed.  It was explained 
earlier, with the aid of Equation 2.20, that the convection coefficient suffers an acute increase in 
magnitude, over this same range, due to the relative magnitudes of the derivatives in the flow direction of 
both the heat flux and the temperature difference.  It was shown that the derivative of the heat flux over 
this range was five orders of magnitude larger than the derivative of the temperature difference.  
Therefore, one expects to see this effect reflected in the convection coefficient and, by extension, in the 
Nusselt number since neither the hydraulic diameter nor the thermal conductivity have the capacity to 
mitigate this effect.  Further, one notices that the Hausen correlation is more representative of the model 
Nusselt number in the range 𝟖𝟖,𝟎𝟎𝟎 ≤ 𝑬𝒇 ≤ 𝟖𝟖𝟑,𝟎𝟎𝟎.  It is interesting to note that of all the cases 
considered to this point the, Seider-Tate correlation was the better fit.  However, the most physically 
representative model (i.e., the HFIR DPD NFP case) yields a conclusion similar to that of Gambil and 
Bundy [32], at least within the above mentioned range of Reynolds numbers, that the Hausen correlation 
provides the most accurate representation of the Nusselt number.  Toward the upper end of the Reynolds 
number range (i.e., 𝟖𝟖𝟑,𝟎𝟎𝟎 ≤ 𝑬𝒇 ≤ 𝟖𝟑𝟎,𝟎𝟎𝟎) again, it is the Seider-Tate correlation that matches 
best. 
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Fig.  2.18.  Nusselt number correlation results compared with the model Nusselt number for the NFP. 
 
The relative differences between the model Nusselt number distribution and the Nusselt number 
correlations are shown in Fig. 2.19.  Again, the relative difference was constructed using Equation 2.15. 
The large upturns that occur in each curve (i.e., 𝑬𝒇 ≥ 𝟖𝟑𝟎,𝟎𝟎𝟎) are due to the increase of the Nusselt-
Prandtl ratio found in Fig. 2.19.  This effect is based on the same argument as that presented for the acute 
increase in the convection coefficient (i.e., the magnitude of the derivative in the heat flux is much larger 
than the magnitude of the derivative in the temperature difference).  This effect permeates all subsequent 
calculations.   
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Fig. 2.19.  Relative differences of the Gnielinski, Sieder-Tate, and Hausen correlations compared with the 
model Nusselt modulus. 

 
From Fig. 2.19, the Gnielinski correlation produces the largest consistent difference over the range of 
Reynolds numbers presented.  Therefore, the Gnielinski correlation will produce the larger surface 
temperatures than the other correlations.  It is recommended here that, due to its production of higher 
surface temperatures in these model configurations, the Gnielinski correlation be used for less detailed 
models (i.e., models where the influence of the flow field is not directly modeled), which employ variable 
fluid properties with the LEU fuel as the thermal source.  The Gnielinski correlation has been consistent 
in producing lower values of the Nusselt number for the NFP cases considered in this document. 
 
Figure 2.19 shows that the Hausen correlation produces values within 2% of the model NFP case over 
most of the range of Reynolds number considered with the exception of the acute increase in the 
convection coefficient which, in Fig. 2.18, occurs in the range 𝟖𝟎𝟑,𝟎𝟎𝟎 ≤ 𝑬𝒇𝑫 ≤ 𝟖𝟎𝟖,𝟓𝟎𝟎.  Further, 
the Hausen correlation is more consistent (i.e., maintaining its value) with the model Nusselt-Prandtl ratio 
than the Sieder-Tate correlation.  The Seider-Tate correlation begins (i.e., on the low end of the Reynolds 
number scale) at approximately 4.8% compared with 2.6% for the Hausen correlation.  The relative 
difference of the Sieder-Tate correlation with the model decreases with the Reynolds number overall.  At 
a value of 𝑬𝒇 ≅ 𝟖𝟖𝟖,𝟎𝟎𝟎 the relative differences of the Sieder-Tate correlation and the Hausen 
correlation are equal, and subsequent values of the Seider-Tate correlation produce values more 
representative of the model. 
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The temperature profiles for the CFP case generated from the Seider-Tate, Gnielinski, and Hausen 
correlations are shown in Fig. 2.20 compared with the model CFP temperature distribution.  As with the 
constant heat flux CFP case, the model temperature distribution is larger in magnitude than the 
distributions derived from the correlations.  The Sieder-Tate and Hausen correlation generated 
temperature distributions are almost coincident and lie above the Gnielinski correlation generated 
distribution.  
 

 
 

Fig. 2.20.  Diff temperature distribution for the cfp case generated by the Gnielinski (G-CFP), Sieder-Tate 
(ST-CFP), and the Hausen (H-CFP) correlations compared with the model temperature distribution 

(C-CFP). 
 
The temperature distributions for the NFP case generated from the same Nusselt number correlations are 
shown in Fig. 2.21 compared with the model NFP temperature distribution.  As in the constant heat flux 
NFP case the model temperature distribution is lower in magnitude than the correlation generated 
temperature distributions.  As stated earlier, the Gnielinski correlation generated temperature distribution 
is the most conservative of the correlations considered in this document.  The Hausen correlation 
generated temperature distribution matches the model distribution very well over the entire range.  It is 
observed that the Sieder-Tate correlation generated temperature distribution also matches the model 
distribution, however, there exists more of a deviation in the range 𝟎 ≤ 𝒛 𝑫𝒉⁄ ≤ 𝟖𝟎𝟎 than that produced 
by the Hausen distribution. 
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Fig. 2.21.  Correlation generated temperature distributions compared with the 
model distribution for the NFP case. 

 
It has been shown that the model temperature distribution for the HFIR distributed power density with 
NIST fluid properties is closely matched by the Hausen distribution (i.e., the Hausen generated 
temperature distribution).  One should recall that the Hausen correlation was chosen based on 
experimental data regarding turbulent flow in thin channels performed by Gambil and Bundy[32].  Here it 
is shown that the Hausen correlation is very well matched with the computational model.  Therefore, the 
model produces surface temperature distributions in accordance with the experimentally determined 
correlation.  
 
2.1.4 Discussion of the 2D Conjugate Heat Transfer Results 
 
The 2-D modeling case provides a useful test bed within which to investigate the heat transfer 
characteristics associated with different scenarios (e.g., distributed heat flux with constant fluid properties 
compared with variable fluid properties).  This 2-D investigation suggests that the constant fluid property 
(CFP) case provides higher clad surface temperatures thus decreasing the thermal margin (i.e., 𝑻𝒔𝒄𝒔 − 𝑻𝒔) 
defined here as the difference between the saturation temperature of the fluid and the surface temperature 
of the clad.  It was shown that for the CFP case, for both constant and distributed heat flux profiles, the 
convection coefficient remained relatively constant.  This information provides confidence in the results 
of a thermal diffusion code which employs constant convective boundary conditions provided that the 
appropriate magnitude of the convection coefficient is used.  The convection coefficient can be 
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appropriately determined from the Sieder-Tate relationship shown in Equation 4.12 given that the 
thermal-fluid conditions are consistent with the use of this relationship.   
 
2.2 3D MODELS AND COMPARISON 
 
In this chapter we attempt to demonstrate and validate the 3-D model predictive capabilities of COMSOL 
by comparing the predictions with experimental data. For this purpose, the 3-D Advanced Neutron Source 
Reactor Thermal Hydraulic Test Loop (ANSR THTL) model was developed in COMSOL and used for 
validation with experimental data.  The test conditions from the ANSR THTL have been used as inputs 
into the 3-D model.  The results from the model, developed in COMSOL version 4.3a, were post 
processed and compared with the experimental results.  
 
“The Thermal Hydraulic Test Loop (THTL) was a facility for experiments constructed to support the 
development of the Advanced Neutron Source Reactor (ANSR)”[39,40].  “The facility was built to 
simulate a full length coolant subchannel of the ANSR core, allowing experimental determination of 
thermal limits under expected ANSR thermal hydraulic conditions”[39,40].  
 
Experimental data from the ANSR thermal-hydraulic test loop (THTL) will be used in the code validation 
effort.  The ANSR THTL presents a unique experimental data set that has similar characteristics to that of 
the flow channels in the HFIR core (i.e., high surface heat flux and a long narrow coolant channel).  The 
aspect ratio of the THTL coolant channel, length to thickness, is 399, which is only 16.9% less than that 
of the HFIR.  Flow velocities through the THTL range from 62.34 fps (19.00 m/s) to 88.58 fps (27.00 
m/s) which are also comparable to, albeit larger than, the flow velocity characteristic of the HFIR which, 
as previously stated, is approximately 52.00 fps (15.85 m/s) at steady state operation.  The average and 
peak heat fluxes produced in the THTL are stated to be 6 MW/m2 and 12 MW/m2, respectively[39].  The 
average heat flux through the HFIR core is calculated to be 2.13 MW/m2.  Therefore, with higher flow 
velocities and higher average heat fluxes, the THTL provides extreme cases, relative to HFIR conditions, 
with which to validate the code. 
 
2.2.1 ANSR THTL Model Geometry and Boundary Conditions 
 
The cross section of the geometry of the THTL is shown in Fig. 2.22.  The flow channel gap has the same 
thickness as the HFIR flow channel gap (i.e., 1.27 mm).  Also, the solid material creating the heat transfer 
surface and thermal energy generating medium is made of the same material as the HFIR fuel plate 
cladding (i.e., Al 6061).  The reduced wall thickness at the curved ends of the flow channel was designed 
to reduce heat flux peaking on the ends of the flow channel [39].  This cross section is extended through 
507 mm in the flow direction.  To expedite the computation, the model geometry was reduced to one-
quarter of the entire geometry.  The quarter section used is indicated by the red dashed line in Fig. 2.22.  
The red dashed lines represent heat transfer and flow symmetry planes.  The boundary conditions 
established at these symmetry planes are thermal and flow symmetry conditions.  
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Fig. 2.22.  ANSR THTL test loop cross section.  The label T/C represents thermocouple locations along the 
test section.  The red dashed lines represent the symmetry boundaries used in the creation of a quarter 

geometry to simplify the computational effort. 
 
The full model of the ANSR THT is shown in Fig. 2.23 (i.e., the extruded cross section).  It is important 
to bear in mind that only a quarter of this model was used in the COMSOL environment.  The entrance 
extension is 30.7 mm long in the flow direction. The first 18.0 mm was not part of the THTL, but is an 
artificial extension constructed to ensure that the flow entering the active region of the model is hydro 
dynamically fully developed.  The remaining 12.7 mm outside of the active region provides a location for 
upstream pressure measurement consistent with the experimental setup[39,40].  The exit extension is 12.7 
mm long and was constructed to provide a location for downstream pressure measurement consistent with 
the experimental setup.  Therefore, the global exit of the model represents the location of the downstream 
pressure tap in the experimental loop.  The experimental data used for validation is labeled FE306B03 in 
the set supplied from ORNL. 
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Fig. 2.23.  Isometric view of the ANSR THTL model. 
 
Joule heating was used in the experimental setup by supplying a potential difference across the test 
section in the axial direction.  The power input was recorded and the amount of heat loss through the 
exterior lateral surfaces was measured.  The difference between these quantities is the amount of heat 
passing into the test section and was given the label TS Power.  The computational model uses the value 
of the TS Power as input for the volumetric heat generation rate within the Al 6061 domain.  This power 
density is uniform throughout the solid domain.  As a result, the heat flux too will be uniform in the 
computational domain.  Therefore, one expects the results of the THTL model to be similar to the 
constant heat flux NFP case discussed in the last chapter.  
 
The inlet to the computational domain is isothermal with a temperature of 45.45˚C which is consistent 
with the experimental setup.  Since no thermal sources exist between the global entrance and the active 
section of the model, one expects that the flow will remain isothermal in this region of the model.  The 
inlet velocity is set to a uniform profile with a magnitude of 21 m/s.  The global outlet pressure was set 
with a uniform magnitude of 1.698 MPa which is consistent with the experimental data and a convective 
flow condition for thermal variables.  The lateral boundaries of the model are adiabatic since the power 
supplied to the test section is already adjusted to account for lateral losses.  The iterative convergence 
criterion was set to 1×10-6 and all grid structures to be discussed have converged with respect to this 
criterion. 
 
2.2.2 Computational Grid Structure Development 
 
Three different grid structures were created for the simulation.  The coarsest grid structure has a total of 
82,200 elements.  The cross sectional grid structure (i.e., normal to the axial direction) for both the flow 
channel and solid domain, has an element density of  
 
𝝆𝒇𝒄𝒇 = 𝟖

𝟏.𝟑𝟓×𝟖𝟎−𝟑
. .................................................................................................................................... (2.22) 

 
Each boundary which makes up the cross section in the model geometry has the number of elements 
prescribed by the following relationship 
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𝒏𝒄𝒔 = 𝒔 ∗ 𝝆𝒇𝒄𝒇 ∗ 𝑩𝑪. .............................................................................................................................. (2.23) 
 
Here 𝒏𝒄𝒔 is the number of elements in the cross section, 𝑩𝑪 is the individual cross sectional boundary 
length and 𝒔 is a constant adjustment factor used to construct finer grid structures in as much a consistent 
way as possible.  The axial grid structure is created by sweeping the cross sectional grid structure in the 
axial direction.  This portion of the grid structure is constructed using the relationship 
 
𝒏𝒄𝒙𝒊𝒄𝒄 = 𝒔 ∗ 𝟖𝟎𝟎 ................................................................................................................................... (2.24) 
 
The boundary layer grid structure is constructed by specifying the number of layers as 
 
𝒏𝑪𝒄𝒚𝒇𝒓 = 𝒔 ∗ 𝟖𝟓 ...................................................................................................................................... (2.25 
) 
The total number of elements, 𝒏, is given by 
 
𝒏 = �𝒏𝒄𝒔 + 𝒏𝑪𝒄𝒚𝒇𝒓�𝒏𝒄𝒙𝒊𝒄𝒄 .................................................................................................................... (2.26) 
 
The stretching factor used in the boundary layer grid construction was set to 1.25, which as stated in 
Chapter 3, increases the adjacent quadrilateral element size by 25% in the direction normal to the 
boundary.  The thickness adjustment factor was different for the finest grid structure, being set to 2.5 
instead of 0.05, due to errors occurring during grid generation.  
 
The adjustment constant, 𝒔, was given values of 0.75, 1.1, and 1.77 to produce a total number of 
elements, 𝒏 = 𝟖𝟖,𝟖𝟎𝟎; 𝒏 = 𝟖𝟖𝟖,𝟖𝟖𝟖; and 𝒏 = 𝟑𝟑𝟏,𝟖𝟓𝟑, respectively.  These particular grid structures 
were chosen to comply with the Grid Convergence Index calculation to be performed on the model 
results.  This will be discussed in detail shortly.  It is important to mention that the grid structure 
described above is the result of many months of trial and error.  Many different grid structures were 
conceived and analyzed, however, energy balance issues for the NFP cases prohibited their use (i.e., 
between 13% and 15% error).  The structures described above represent an error in the balance of energy 
between 6.83% and 9.96%. 
 
2.2.3 Comparison of Model Results with Experimental Data 
 
The FE306B03 data and the model results are shown in Table 2.2.  The results for each grid structure are 
given below its column heading and the relative error associated with these results is presented in the 
adjacent column.  The relative error is defined as 
 

𝑬𝒓𝒓𝑬𝒓[%] ≡ �𝝍𝒄𝑬𝒎𝒑−𝝍𝒇𝒙𝒑
𝝍𝒇𝒙𝒑

� ∙ 𝟖𝟎𝟎 ........................................................................................................... (2.27) 

 
Table 2.2: FE306B03 experimental data compared with the COMSOL model results 

Quantity Experiment n = 
82,200 

Error 
[%] 

n = 
222,222 

Error 
[%] 

n = 
496,154 

Error 
[%] 

Tout (˚C) 163.09 165.413 1.424 164.642 0.952 165.021 1.184 
Pin (MPa) 2.693 2.508 6.870 2.492 7.464 2.701 0.297 
TS Power (W) 173459 173835 0.217 173762 0.175 173717 0.149 
Max q'' (MW/m2) 13.514 13.01 3.729 13.061 3.352 13.506 0.059 
Ave q'' (MW/m2) 11.875 11.553 2.712 11.748 1.069 11.688 1.575 
Ave v (m/s) 21.000 20.604 1.885 20.704 1.409 20.678 1.535 
Δp (Mpa) 0.995 0.810 18.593 0.794 20.201 1.003 0.804 
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The outlet bulk temperature was higher than the experimentally measured value for all grid structures.  
The outlet bulk temperature for the 222,222 element grid produced the smallest error with a magnitude of 
0.95% as shown in Table 2.2.  It is assumed that the reason for the intermediate grid structure producing 
the most accurate result for the outlet bulk fluid temperature is due to the boundary layer grid spacing 
being further from the wall in the 496,154 element grid than in the 222,222 element grid.  The literature 
associated with the THTL states that a single thermocouple in the flow field was used to measure this 
quantity.  The uncertainty associated with thermocouple readings, in general, can be as high as±𝟑℃.  The 
uncertainty in the measurement, however, was not recorded in the data set.   
 
The accuracy of the inlet pressure improved as the grid structure became finer.  The relative error 
associated with the 496,154 element structure was calculated to be 0.297%.  This is a marked 
improvement over the coarser structures where the errors are 6.87% and 7.46% for the 82,200 element 
structure and the 222,222 element structure, respectively.  It should also be pointed out that the finer 
structure produces an inlet pressure magnitude higher than the measured value whereas the coarser 
structures produce inlet pressure magnitudes less than the measured value.   
 
The test section power (i.e., TS Power) exhibits a very low error for all three mesh cases, the error 
decreasing as the grid structure becomes finer.  The final value of the relative error of the TS Power is 
calculated to be 0.149%.  The magnitude of the test section power was evaluated by integrating the power 
density over four times the model volume (i.e., total geometric volume). 
 
𝑻𝑪 𝑪𝑬𝒘𝒇𝒓𝒎𝑬𝒄𝒇𝒄 = 𝟑 ∗ ∫𝒒′′′𝒄𝒅 ........................................................................................................... (2.28) 
 
The volume is an extensive property.  Therefore, to obtain a total value of the power generated in the 
system, one must integrate over the entire material volume. 
 
The maximum heat flux magnitude, measured at the interface between the solid and the fluid, also 
approached the measured value as the grid structure was refined.  The relative error associated with the 
finest grid structure was 0.059%.  Interestingly, the relative error in the average heat flux magnitude at the 
interface between the fluid and the solid is minimized, with respect to the other grid structures, using the 
intermediate grid structure.  The minimum error calculated is 1.069%.  The relative error associated with 
the fine grid structure (i.e., 496,154 elements, is 1.575%). 
 
The average velocity at a cross section was calculated by evaluating the mass flow rate through the 
system then dividing out the mass density and the cross sectional area; i.e., 
 
𝑽� = �̇�

𝝆𝑬𝒄
(2.29) 

 
The average velocity at the entrance of the computational domain was calculated using Equation 2.29 
with the mass density evaluated at the entrance temperature.  The average velocity at the exit was 
calculated using Equation 2.29 with the mass density evaluated at the exit temperature.  These values 
were added then divided by 2 to give the average velocity through the system.  The average velocity 
through the system follows the same pattern where the intermediate grid structure provides the minimum 
relative error.  The minimum relative error for the average velocity is 1.409%.   
 
In light of the above mentioned uncertainties associated with the experimental values, although the errors  
shown in Table 2.2 seem small, they should be viewed with some caution.  In general, the numerical 
results generally have much higher resolution than experimental measurements.  For the experimentalist, 
accurate temperature measurement with thermocouples under joule heating conditions is very 
challenging.  
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To improve further upon the confidence of the numerical models, alternate approaches , that are 
independent of experimental results, should be considered. One such approach is the Grid Convergence 
Index as a method for estimating the uncertainties associated with discretization.  This method is applied 
to the 3-D model and the uncertainties are determined. 
 
2.2.4 Computational Grid Convergence Index 
 
The Grid Convergence Method (GCM) is an acceptable and recommended method for the calculation of 
discretization error associated with numerical computations[41].  The representative grid size is 
calculated by 
 

𝑮𝑪 = �𝑽𝒈𝒓𝒊𝒄
𝒏
�
𝟖/𝟑

 ..................................................................................................................................... (2.30) 
 
Here 𝑮𝑪 is the grid size, 𝑽𝒈𝒓𝒊𝒄 is the volume occupied by the grid structure, and 𝒏 is the total number of 
elements within 𝑽𝒈𝒓𝒊𝒄.  Using Equation 2.20, the representative grid sizes of the three grids under 
consideration for the THTL are 1.28×10-10, 4.739×10-11, 2.122×10-11 from coarsest to finest.  The grid 
refinement factor is  
 
𝒓 = 𝑮𝑪𝒄𝑬𝒄𝒓𝒔𝒇

𝑮𝑪𝒇𝒊𝒏𝒇
 ............................................................................................................................................. (2.31) 

 
It is recommended that 𝒓 > 𝟖.𝟑.  The values of 𝒓 for the grid structures considered here are 2.7009 and 
2.2327 for the ratios of coarse grid to intermediate grid and intermediate grid to fine grid, respectively.  In 
what follows, 𝝍, will represent any one of the experimentally determined quantities shown in Table 2.2.  
The apparent order of the method, M, is evaluated using 
 

𝑪 = 𝟖
𝒓𝒊𝒇
�𝒄𝒏 �𝝍𝒄−𝝍𝒊

𝝍𝒊−𝝍𝒇
�+ 𝒄𝒏 �

𝒓𝒊𝒇
𝑪−𝟖∙𝒔𝒈𝒏�𝝍𝒄−𝝍𝒊𝝍𝒊−𝝍𝒇

�

𝒓𝒄𝒊
𝑪−𝟖∙𝒔𝒈𝒏�𝝍𝒄−𝝍𝒊𝝍𝒊−𝝍𝒇

�
�� ;      𝒔𝒈𝒏(𝒙) = �

−𝟖 𝒇𝑬𝒓 𝒙 < 𝟎
𝟎 𝒇𝑬𝒓 𝒙 = 𝟎
𝟖 𝒇𝑬𝒓 𝒙 > 𝟎

....................................... (2.32) 

 
Here the subscript 𝒄 stands for coarse grid, the subscript 𝒊 stands for intermediate grid, and 𝒇 stands for 
fine grid, therefore, 𝒓𝒊𝒇 = 𝑮𝑪𝒊𝒏𝒔𝒇𝒓𝒎𝒇𝒄𝒊𝒄𝒔𝒇

𝑮𝑪𝒇𝒊𝒏𝒇
.  One notices that Equation 2.30 is a transcendental equation for 

𝑪, this calculation is done in an iterative process.  A good initial guess with which to begin the iteration 
process is  
 

𝑪𝟎 = 𝟖
𝒓𝒊𝒇
�𝒄𝒏 �𝝍𝒄−𝝍𝒊

𝝍𝒊−𝝍𝒇
�� ............................................................................................................................. (2.33) 

 
The Grid Convergence Index, GCI, is then determined by  
 
𝑮𝑪𝑮 = 𝟖.𝟖𝟓𝒇𝒓𝒇𝒄

𝒓𝒊𝒇
𝑪−𝟖

. ........................................................................................................................................ (2.34) 

 
Here 𝒇𝒓𝒇𝒄 is the relative error in quantity of interest; (i.e., 

𝒇𝒓𝒇𝒄 = �𝝍𝒊−𝝍𝒇
𝝍𝒇

� ........................................................................................................................................ (2.35) 
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The GCI provides a quantitative measure of the uncertainty associated with discretization error.  The 
results of the fine grid values of the quantities presented in Table 2.2 with the discretization error are 
given in Table2.3. 
 

Table 2.3.  Fine grid structure with discretization error compared with experimental data 

Quantity Experiment n = 496,154 
Value ± Discretization Error 

Tout (°C) 163.09 165.021 ± 0.34% 

Pin (MPa) 2.693 2.701 ± 1.34% 
TS Power (W) 173,459 173,717 ± 0.12% 

Max q'' (MW/m2) 13.514 13.506 ± 0.93% 

Ave q'' (MW/m2) 11.875 11.688 ± 0.37% 
Ave v (m/s) 21 20.678 ± 0.08% 

 
The data for the inlet pressure are within the uncertainty associated with the domain discretization.  The 
remainder of the quantities lies outside the discretization error.  It is unfortunate that the experimental 
error associated with the physical measurements were not reported to better determine the fit of the 
computational results.  However, the relative errors for the fine grid structure reported in Table 2.2 
indicate that the model reproduces the experimentally measured results fairly well.  
 
2.2.5 Conclusions for the 3D Modeling Case 
 
The model errors presented in Table 2.2 are based on the presumption that the experimental values as the 
true values, whose uncertainties are not known. The discretization errors shown Table 2.3, calculated with 
Grid Convergence Index method, are independent of experimental results.  They are calculated utilizing a 
model with three levels of meshes, each finer that the one before.  The solutions for the three meshes are 
used to determine the discretization errors (or uncertainties) of the results. Those uncertainties are 
associated with the results for the finest mesh model as shown in Table 2.3.  So it can be concluded that 
modeling uncertainties from the Grid Convergence Index method added confidence to the validation of 
the 3-D COMSOL model. 
 
2.3 TURBULENCE MODEL CLOSURE EFFECTS 
 
The effects of using a wall-offset model incorrectly (i.e., not having the grid sufficiently far from the wall, 
are shown in Fig. 2.24).  Figure 2.24 is based on a test case which imposes a turbulent flow field over a 
flat plate.  This discussion is necessary due to the default value for y+ within COMSOL being set to a 
minimum value of 11.06.  The variable y+ is a measure of the distance from the wall where the 
logarithmic layer of the turbulent boundary layer begins.  Experimentally, the valid range is 30 < y+ < 300 
[42,43].  Here the k-ε wall-offset model is compared with the low Reynolds number k ε-(LRN) model for 
different minimum values of y+ set for the first element away from the wall.  The first element is located a 
distance of 1.75×10-7m from the wall for all models considered.  It should be noted that the k-ω model 
produces the same results as the k-ε model.  The LRN is used as the basis for this comparison due to the 
models ability to match the experimentally determined turbulent velocity boundary layer (i.e., to resolve 
thermal-fluid variable in the viscous sublayer of the turbulent boundary layer).  Figure 2.24 shows that 
forcing a minimum value of y+ = 30 at a distance of 1.75×10-7m from the wall overestimates the fluid 
velocity by a factor of 52.8!  Similarly, forcing a minimum value of y+ = 1 at the same distance over 
estimates the fluid velocity by a factor of 24.4.  An over estimate of the fluid velocity produces an over 
estimate of the shear stress in the fluid at the wall and, more importantly for this case, an over estimate of 
the convection coefficient.  An over estimate of the convection coefficient leads to artificially low surface 
temperatures.  Given the importance associated with the surface temperature distribution for the HFIR 
(i.e., potential for boiling, it is necessary to predict this distribution as accurately as possible).  Therefore, 
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if one is to use the wall-offset models, it is imperative that the grid be appropriately spaced to avoid 
inaccurate results.    
 
From these results, it can be concluded that the k-ε LRN model should be preferred over the k-ε wall-
offset models, as it more accurately represents the velocity distribution within the viscous wall sublayer 
with negligible slip at the wall.  Consequently, the temperature distribution in the fluid and the heat fluxes 
should be more accurate.  
 

 
 
Fig. 2.24.  The Effect of Wall-Offset Models with Grid Elements Too Close to the Wall.  The cut-line used for 

this plot was created at 𝒚 = 𝟎.𝟑𝟎𝟑𝟖 m (i.e., at the exit of the heated section). The first element is located a 
distance of 1.75×10-7m from the wall for all the three models. 
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3.0 FUEL DEFECTS 
 
3.1 REVIEW OF FUEL DEFECT MODELING 
 
Arguably, the most important aspect of the thermal hydraulic analysis has to do with the limited fuel 
defects that occur during the fuel plate manufacturing process that may not be detected by the resolution 
of the subsequent inspection process.   The defects considered are those associated with the lack of 
metallurgical bond between different interfaces on the interior of the fuel plate and where the local 
quantity of 235U is in excess of nominal values for the U3O8 - Al 1100 cermet but by no greater that 30% 
[10].  The lack of metallurgical bond is known as a blister or non-bond and the interesting locations 
within the fuel plate where this defect occurs are the fuel meat-clad interface, the filler-clad interface, and 
the fuel meat-filler interface.  The local excessive quantity of 235U is known as fuel segregation[44].   
 
Hilvety & Chapman[35], Kirkpatrick[44], and Giles[45] have studied the thermal consequences of these 
defects on the fuel plate materials using axisymmetric simulation geometries.  The simulation geometry 
used in[35] and[44] is shown in Fig. 3.1.  Giles[45] uses a similar geometry, however the dimensions and 
the fuel meat components and locations are different as the analysis was based on the Advanced Neutron 
Source Reactor (ANSR) which was to use U3Si2 as the fuel instead of U3O8.  It was determined by all 
investigators that the combination of the fuel defects in a single axial location at the interface of the fuel 
meat and filler (i.e., between the U3O8-Al 1100 and the B4C-Al 1100 materials) respectively, was 
considered “the most unfavorable situation”[44,35,45] due to the relatively high heat flux peaking factors 
calculated at this interfacial location as opposed to those calculated at the other interfacial locations 
within the fuel plate.  For clarity, the heat flux peaking factor (𝜶) is defined by Hilvety & Chapman[35] 
as the quantity by which the local heat flux produced by a fuel defect would need to be multiplied to 
achieve the incipient boiling heat flux for a specified power level.  In mathematical terms, the heat flux 
peaking factor is written as 
 
𝜶 ≡ |𝒒𝒊𝒃

′′ |
|𝒒𝒄𝒇𝒇𝒇𝒄𝒔
′′ |

. .............................................................................................................................................(3.1) 

 
Here |𝒒𝒊𝒃′′ | is the magnitude of the incipient boiling heat flux and |𝒒𝒄𝒇𝒇𝒇𝒄𝒔′′ | is the magnitude of the local 
heat flux associated with the defect being considered. 
 
The heat flux peaking factor is used in the SSHTC in the calculation of the “hotspot uncertainty factor”, 
shown in Equation 3.2. 
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Blister [97.0],  (168) [1.51×104/t],  (2.70×108/t) 

 
Fig. 3.1.  Axisymmetric Geometry used for fuel defect simulations[35,44]. The t mils measurement indicated 
for the thickness of the clad plus filler domain is used as an adjustment factor to vary the thickness of this 

region (i.e., 𝟖𝟎𝒎𝒊𝒄𝒔 ≤ 𝒔 ≤ 𝟓𝟎𝒎𝒊𝒄𝒔).  This thickness adjustment factor is also used to adjust the heat 
generation rate for the fuel and segregation domains as indicated in the table. 

 
𝒇� = 𝟖.𝟎 + (𝜶𝒔𝒇𝒈 𝜶𝒃𝒄𝒊𝒔𝒔𝒇𝒓 − 𝟖.𝟎) 𝒉𝒉𝒔

𝟖𝟓,𝟎𝟎𝟎� 𝑩𝒔𝒇
𝒉𝒓 𝒇𝒔𝟖℉

�
 ......................................................................................(3.2) 

 
Here 𝜶𝒔𝒇𝒈 is the heat flux peaking factor associated with the fuel segregation defect, 𝜶𝒃𝒄𝒊𝒔𝒔𝒇𝒓 is the heat 
flux peaking factor associated with the blister defect, 𝒉𝒉𝒔 is the film coefficient at the location of the 
defect, and the numerical value of 𝟖𝟓,𝟎𝟎𝟎 � 𝑩𝒔𝒇

𝒉𝒓 𝒇𝒔𝟖℉
� is the average value of the film coefficient used in 

the defect simulations of Hilvety & Chapman[35] and Kirkpatrick[44].  The hotspot uncertainty factor is 
used as a factor of safety in the thermal-hydraulic safety analysis of the HFIR system.  It is important to 
determine a conservative value for this quantity regarding LEU fuel.  It will be discussed later how this is 
to be done. 
 
These defects have the potential to raise the local clad surface temperature in excess of the saturation 
temperature of the fluid thus resulting in a potential boiling event.  The formation of vapor bubbles in the 
coolant flow channels could result in coolant flow starvation (i.e., lack of sufficient flow to cool the fuel 
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plates).  This in turn would result in further increased clad surface temperatures which would eventually 
lead to a burnout event and failure of the fuel plate. 
 
The author was unable to find material in the literature regarding thermal hydraulic studies of fuel defects 
caused by the fuel manufacturing process.  Several articles exist regarding the formation of defects during 
irradiation.  Pastore, et al.[46] ,discuss physics based modeling of fission gas (i.e., Xenon and Krypton) 
swelling and release in UO2 fuel during irradiation using the TRANSURANUS fuel rod analysis code.  
This work is focused on the material grain-face bubble formation and the subsequent swelling and release 
on the local hydrostatic stress. Boulore, Struzik, and Gaudier[47] discuss the uncertainty and sensitivity 
analysis of thermal behavior of nuclear fuel during irradiation.  This analysis is carried out using the fuel 
rod simulation code METEOR V2.  Boulore, et al.[47], identify the thermal conductivity of the UO2 fuel, 
the radial distribution of power in the fuel pellet, local linear heat rate in the fuel rod, and geometry of the 
pellet as the most sensitive sources of uncertainty.  The uncertainty in these parameters is modeled using 
inverse methods.  Boulore, et al., state that measurements on irradiated fuel samples show that “the 
irradiation temperature has an effect on the accumulation of irradiation defects thus impacting the thermal 
conductivity of the fuel material.”  Khvostov, Mikityuk, and Zimmermann[48] develop the model 
GRSW-A to analyze gaseous swelling and fission gas release in UO2 during irradiation.  The model that 
Khvostov, et al. developed is comprehensive and incorporates other models published in the open 
literature.  Locke[49] discusses the behavior of defective fuel, however, the defects that are discussed are 
mechanical breaks in the cladding material which release fission gas. 
 
Defects in nuclear fuel occur both during device operation as a result of irradiation damage and during the 
manufacturing process.  This work does not consider the transient development of the defects due to 
irradiation during device operation, but instead considers the global steady state response of the system to 
the existence of defects, which occurred during fuel manufacturing.   
 
As discussed in Chapter 2, previous investigations were based on 2D analysis and numerical simulations.  
This previous work only concentrated on the local response of the system to a local defect[35,44].  A 
constant convection coefficient boundary condition in conjunction with a variable bulk fluid temperature 
was used in lieu of the turbulent flow field.  This limits the system response in that the ratio of surface 
heat flux in a neighborhood of the defect location to the temperature difference in the same neighborhood 
is always constant.   
 
The defects to be analyzed are a lack of metallurgical bond between the fuel and the clad (i.e., a blister 
defect — regions in the fuel where the local loading of 235U is large relative to nominal values).  The 
upper limit of the fuel segregation for pre-irradiated fuel is 30% in an area of diameter 5/64 inch[10] , 
anything larger will be identified by the inspection process which will result in the rejection of the plate.  
The upper limit for the blister defect is a diameter of 1/16 inch in the pre-irradiated fuel, any larger blister 
defects result in the rejection of the plate[10].  
 
3.2 3D MODEL FOR COMPARISON 
 
3.2.1 Plate Geometry and Grid Structure 
 
The HEU model geometry is that of a flat plate with an internal structure composed of the contoured fuel 
meat (i.e., U3O8-Al 1100 cermet).  The flat fuel plate resides between two one-half flow channels (i.e., the 
fluid domain completely surrounds the fuel plate).  Figure 3.2 shows a cross-sectional view of the model 
geometry looking in the flow direction.  The fuel plate is 24 inches (0.6096 m) long.  The fluid domain 
extends 39.37 inches (1m) in the axial direction.  The fluid domain extends 3.58 inches (0.091m) 
upstream of the fuel plate and 11.81 inches (0.3m) downstream of the fuel plate.  Again, these extended 
regions upstream and downstream of the fuel plate are to allow the simulated flow to adjust to the fuel 
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plate obstruction.  The contour of the fuel meat was constructed from the detailed drawing of the HEU 
inner fuel plate[50].   
 

 
Fig. 3.2.  Cross-sectional view of the fuel defect model geometry.  The vantage is in the flow direction.  The 
dimensions are given for reference.  The model geometry is 1 m long in the flow direction.  The contoured 

side of the fuel meat domain is obvious and will be referenced throughout the chapter. 
 
The global boundary condition of the upstream fluid domain is set with a uniform inlet velocity of 7.925 
m/s and an isothermal value of 327K.  The global boundary condition on the downstream fluid domain is 
set to a uniform pressure of 2.606 MPa.  The fluid boundaries on the lateral measure (i.e., 0.0841m length 
in Fig. 3.2) are set to thermal and fluid dynamic symmetry conditions.  The boundaries on the thickness 
measure (i.e., 2.54×10-3m length in Fig. 3.2) are adiabatic walls.   
 
The power density used in fuel meat domain is shown in Fig. 3.3, which is a graphical representation of 
the power density distribution array. 

 
Fig. 3.3.  The 3-D Power Density Profile used in the Fuel Meat Domain of the Simulation Geometry. 
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The magnitude of this power density distribution array was adjusted to be consistent with the HFIR power 
density.  The adjustment calculation is based on the total power generated in the HFIR divided by the 
total volume of fuel meat in the core; i.e., 
 
𝒒′′′ = 𝑸

𝑽𝒔𝑬𝒔𝒄𝒄
= 𝑸

𝑽𝒊𝒏𝒏𝒇𝒓+𝑽𝑬𝒇𝒔𝒇𝒓
. ......................................................................................................................(3.3) 

 
Here, as before, 𝑸 is the total core power (i.e., 85 MW).  The total volume of the fuel meat in the core, 
𝑽𝒔𝑬𝒔𝒄𝒄, is the sum of the inner core fuel loading and the outer core fuel loading.  These values are 
𝑽𝒊𝒏𝒏𝒇𝒓 = 𝟑.𝟏𝟑 × 𝟖𝟎−𝟑 𝒎𝟑 for the inner core and 𝑽𝑬𝒇𝒔𝒇𝒓 = 𝟏.𝟑𝟑 × 𝟖𝟎−𝟑 𝒎𝟑 for the outer core.  These 
fuel volumes were obtained using cubic spline interpolation of the HFIR plate fuel meat contour 
points[50] in conjunction with Simpson’s quadrature rule.  Equation 3.3 may now be evaluated and it is 
found that the total power density of the HFIR core is 8.47×109 W/m3.  This value is multiplied by the 
power density distribution function which then adjusts the magnitude of the array.  However, the resultant 
power generated by the plate is inconsistent with the amount of energy generated by a single inner fuel 
plate and in fact is 15.3% too large.  The power generated by a single inner fuel plate is  
 
𝒒𝒊𝒏𝒏𝒇𝒓 = 𝒒′′′𝑽𝒊𝒏𝒏𝒇𝒓

𝟖𝟖𝟖
................................................................................................................................... (3.4)) 

 
Equation 6.2 yields a value of 𝒒𝒊𝒏𝒏𝒇𝒓 = 𝟖.𝟖𝟎 × 𝟖𝟎𝟓𝑾.  This 15.3% discrepancy is due to the power 
density distribution array.  The power density distribution array is not a unit normal distribution.  
Therefore, the sum of all the values in the array does not equal unity, but instead results in a value larger 
than unity.  As a result, only 84.6% of the power density magnitude (i.e., 7.17×109 W/m3) is distributed by 
the array and produces energy consistent with the 1.80×105W generated per inner fuel plate.  This value 
was calculated by executing the simulation with the generation rate 8.47×109 W/m3, then evaluating the 
volume integral of the generation rate in the fuel meat from the results.  
 
The turbulence equation set used for the fuel defect analysis was Wilcox’s k-ω closure model as described 
in Section 3.2.1.  The complexity of the geometry made a grid structure suitable for the Low Reynolds 
Number k-ε model prohibitively large regarding memory requirements. 
 
The grid structure is established using a mixture of tetrahedral elements and boundary layer elements (i.e., 
rectangular prisms).  The tetrahedral grid structure in the fluid domain has a maximum element size of 
4.13×10-3m, a minimum element size of 2.51×10-4m, and a maximum growth rate of 1.25.  The 
tetrahedral grid structure in the clad and fuel domains have a maximum element size of 0.19 m, a 
minimum element size of 2.51×10-4m, and a maximum growth rate of 1.7.  The boundary layer grid 
structure (i.e., those elements closest to the solid domain extending into the fluid) has a maximum 
element size of 2.13×10-3m, a minimum element size of    6.35×10-4m, and a maximum element growth 
rate of 1.05.  The boundary layer grid structure has 10 elements with a boundary layer stretching factor of 
1.1.  The above described details are adequate for recreation of the grid structure within the COMSOL 
environment. 
 
The solution method uses a segregated solver with a maximum iteration number of 400.  The tolerance 
factor was set to unity with a relative tolerance of 1×10-6.   
 
The first segregation encompasses the velocity, the pressure, and the temperature.  The Newton iterations 
use a constant damping factor of 0.5 and the Jacobian is updated on every iteration.  The Generalized 
Minimum RESidual (GMRES) method is used to solve the system of equations.  Preconditioning of the 
system matrix is carried out using the Successive Over Relaxation (SOR) iterative method with the 
velocity as the line variable.  The maximum line length is set to 5 with a relaxation factor of 0.5. 
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The second segregation encompasses the turbulence variables (i.e., the specific turbulent kinetic energy 
and the dissipation rate of the turbulent kinetic energy).  The Newton iterations, for the second 
segregation, use a constant damping factor of 0.3 and the Jacobian is updated on every iteration.  Again 
the GMRES algorithm is used to solve the system of equations with the SOR algorithm preconditioning 
the system matrix.  The turbulent kinetic energy is used as the line variable for this segregation with a 
maximum line length set to 5 with a relaxation factor of 0.5. 
 
Three different models will be discussed in this section.  The three models are  the nominal fuel plate 
model, the blister defect model and the fuel segregation model.  The nominal fuel plate case will be used 
to establish a base line with which to compare the blister defect model and the fuel segregation model. 
 
3.2.2 Nominal Plate Case 
 
The nominal plate case is an idealization where the fuel is free of any defects.  To expand on this 
definition of idealism, the fuel, the clad, and the fluid are considered to be in perfect thermal contact and 
the fuel meat is homogenous throughout the fuel meat domain.  
 
The temperature distribution on the surface of the clad material for the nominal plate case is shown in 
Fig. 3.4 with the maximum and minimum surface temperature locations superposed on the figure.  The 
maximum temperature is found to be 211.72˚F (372.99 K), which occurs on the uncontoured (i.e., side of 
the fuel plate where the fuel meat is not contoured) side of the fuel plate at a location just slightly 
upstream of the fuel meat-clad interface (i.e., z = 0.0508 m) on the lower end of the fuel plate [i.e., 0.1004 
in (2.55×103m) in the positive z-direction above the interface].  The spatial location of the maximum 
surface is at x = 0.04593 m, y = 0 m, and z = 0.05335 m.  The saturation temperature range is from 
463.33˚F to 438.88˚F (i.e., from the leading edge of the fuel plate to the trailing edge), respectively.  The 
saturation temperature and pressure at the location of the maximum temperature on the uncontoured side 
of the fuel plate is calculated to be 439.29˚F (499.42 K) and 379.3 psig (2.615×106 Pa), respectively.   
 

 
 
Fig. 3.4.  Nominal case clad surface temperature along the uncontoured side of the fuel plate.  The maximum 

(211.72˚F ) and minimum (119.721˚F) surface temperatures are superposed on the image at the location of 
their occurrence. 
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Therefore, induced two-phase flow is not a concern for the nominal plate case on the uncontoured side.  
Since the maximum temperature for the nominal case occurred on the uncontoured side, it stands to 
reason that the contoured side of the fuel plate does not pose a potential two-phase flow threat.  Indeed, 
the maximum temperature occurring on the contoured side of the nominal fuel plate was calculated to be 
209.89˚F (371.98 K) at an equivalent location for x and z, but at y = 0.00127 m.   
 
The absolute maximum heat flux from the plate to the fluid occurs on the uncontoured side of the fuel 
plate with a magnitude of 3.331×106 W/m2 at the lateral and axial center (i.e., x = 0.04483m, y = 0m, and 
z = 0.31057m).  The surface heat flux is shown in Fig. 3.5.  The heat flux occurring at the maximum 
temperature location was calculated to be 9.586×105 BTU/hr/ft2   (3.024×106 W/m2), which represents a 
9.3% decrease in heat flux from the maximum.  It will be shown that the blister defect has a similar 
characteristic (i.e., that the maximum heat flux does not occur at the defect); however, the segregation 
defect does indeed shift the location of the maximum heat flux to the defect location.   
 

 
 
 

Fig. 3.5.  Nominal case clad surface heat flux along the uncontoured side of the fuel plate.  The maximum 
(3.331×106 W/m2) and minimum (-9.7152×104 W/m2) heat flux values are superposed on the image at the 

location of their occurrence. 
 
The minimum heat flux shown in Fig. 3.5 has a negative magnitude, due to the reversal of the heat flux in 
the unfueled portion of the fuel plate.  This reversal of heat flux is due to the bulk fluid temperature being 
higher than the clad surface temperature in the unfueled region of the fuel plate (i.e., heat is passed from 
the fluid back into the fuel plate in this region).   
 
The convection coefficient will be defined using the inlet bulk fluid temperature, 𝑻𝒃𝒊𝒏, as the reference 
temperature, which is established as a global boundary condition for the model and has a magnitude of 
120.00˚F (322.04 K); i.e., 
 
𝒉 ≡ 𝒒′′

�𝑻𝒔−𝑻𝒃𝒊𝒏�
. ...........................................................................................................................................(3.5) 

 
The choice to use the inlet bulk fluid temperature as the reference temperature is one of convenience.  
This choice removes the cumbersome evaluation of the bulk fluid temperature at various locations along 
the fuel plate.  In many ways, this is a more practical measure of the convection coefficient as the inlet 
bulk temperature is easier to determine experimentally than the downstream bulk fluid temperature at 
various locations where thermal energy is being exchanged.  Using Equation 3.5, the magnitude of the 
convection coefficient at the location of the maximum clad surface temperature is found to be 1.044×104 
BTU/hr/ft2/˚F (5.927×104 W/m2/K).  This result provides a more conservative estimate of the convection 
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coefficient than that used in previous analyses [i.e., 1.5×104 BTU/hr/ft2/˚F (8.5×104 W/m2/K)].  The 
convection coefficient evaluated using Equation 3.5 produces a value lower in magnitude than the value 
used in previous analyses, therefore, allowing less thermal energy to pass from the plate to the fluid thus 
resulting in higher plate surface temperatures. 
 
The pressure drop through the nominal case system is calculated to be 86.7 psig (5.98×105 Pa).  This 
deficiency in pressure drop (i.e., from the measured 103 psi drop through the core) can be partially 
attributed to the idealized surface condition associated with the computational model (i.e., the clad surface 
is mathematically smooth).  Another cause of the pressure drop deficiency could be due to grid resolution.  
The error in the conservation of energy for the computational model of the nominal plate is calculated to 
be only 3.83% (i.e., the net efflux of thermal energy minus the thermal energy passed from the fuel plate 
to the fluid normalized by the integrated plate-to-fluid heat flux). 
 

𝑬𝒇𝒏𝒇𝒓𝒈𝒚 ≡ ���∫𝝆𝑪𝒑𝑩𝑻𝒄𝑬𝑬𝒇𝒔𝒄𝒇𝒔�−�∫𝝆𝑪𝒑𝑩𝑻𝒄𝑬𝒊𝒏𝒄𝒇𝒔��−∮𝒒
′′𝒄𝑬𝒄𝒄𝒄𝒄

∮𝒒′′𝒄𝑬𝒄𝒄𝒄𝒄
� 𝟖𝟎𝟎 ...............................................................(3.6) 

 
The error in the conservation of mass was calculated to be 4.77×10-3%.  This quantity was calculated by 
the ratio of the net areal integrated mass flux into the system normalized by the inlet areal integrated mass 
flux. 
 
Knowledge of the position at which the maximum clad surface temperature occurs allows one to 
determine the most unfavorable location for a defect (i.e., unfavorable in the sense of increasing surface 
temperatures further).  Since the defect acts either as a region of lack of thermal contact (i.e., blister 
defect) or as a region of excessive local thermal energy generation (i.e., segregation defect) one can 
summarize the effect as a region which causes a local increase in the clad surface temperature.  With this 
in mind, it stands to reason that the placement of a fuel defect at the location where the clad surface 
temperature has its maximum value in the nominal case will have the effect of further increasing the clad 
surface temperature at that location.  As a result, the defects to be investigated further in this work will be 
created at the axial location of the maximum clad surface temperature found for the nominal case. 
 
3.2.3 Blister Defect Case 
 
As previously stated, a blister is a region where the metallurgical bond between the clad material and the 
fuel meat has deteriorated (i.e., no thermal contact between the clad and fuel exists at the location of the 
defect).  The geometry of the blister defect and its relative location to the fuel and clad material is shown 
in Fig. 3.6 for visualization purposes only.  The blister defect exists at the interface between the contoured 
side of the fuel and the clad.  The blister defect case is similar to this.  The blister defect was introduced 
into the nominal case model by the creation of an adiabatic disc 1/16 inch in diameter which follows the 
contour of the fuel meat and lies at the interface between the fuel meat and the clad at the location of the 
maximum temperature occurring in the nominal case.  The 1/16 inch diameter disk is consistent with the 
rejection criteria used in the inspection of the fuel plate after fabrication.  A significant effort was required 
to create the blister defect region within the computational environment.  The adiabatic nature of the 
interfacial disk sufficiently represents the lack of thermal contact between the fuel meat and the clad that 
occurs in the physical set-up.  It is important to note that with the exception of the blister defect all 
domains of the model are in perfect thermal contact. 
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Fig. 3.6.  Blister Defect Geometry Relative to the Surrounding Fuel and Clad.  This model does not consider 
segregation defects.  The location of the maximum clad surface temperature, Tmax, from the nominal case is 

indicated. 
 
The maximum temperature associated with the blister defect case again occurs on the uncontoured side of 
the fuel plate and has a magnitude of 212.92˚F (373.66 K), which is located at x = 0.0478m, y = 0m, z = 
0.05398m, as shown in Fig. 3.7.  The slight shift in the location of the maximum temperature relative to 
the nominal case is likely due to the slight adjustment in the grid structure necessary to incorporate the 
blister defect.  The pressure of the fluid at the defect location is 379.56 psig (2.617×106 Pa), which yields 
a saturation temperature of 439.34˚F (499.45 K).  Again, the blister defect does not produce sufficient 
surface temperatures to transition to two-phase flow. 
 

 
 

Fig. 3.7.  Blister Case Clad Surface Temperature Along the Uncontoured Side of the Fuel Plate.  Maximum 
(212.92˚F ) and minimum (119.72˚F) temperatures and their locations are shown on the image. 

 
The absolute maximum heat flux for the blister defect case, shown in Fig. 3.8, occurs on the uncontoured 
side of the fuel plate as well and has a magnitude of 1.057×106 BTU/hr/ft2 (3.335×106 W/m2), which 
represents a 0.12% increase from the nominal case.  As previously stated, the maximum heat flux occurs 
near the center of the clad surface and not at the defect location.  The absolute maximum heat flux is 
located at x = 0.0456m, y = 0m, z = 0.3093m.  The heat flux at the defect location was found to be 
9.824×105 BTU/hr/ft2 (3.099×106 W/m2).  The heat flux at the defect location has increased by 2.48% 
over the nominal case at essentially the same location.  Again, the minimum heat flux is represented by a 
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negative quantity over the downstream, unfueled, region of the clad, which implies a reversal of heat flux.  
The defect acts to decrease the available heat transfer area of the plate.  Decreasing the available heat 
transfer area while maintaining the thermal generation rate increases the overall heat flux from the plate.  
The largest increase occurring at the location of the defect with a diminishing influence through the rest 
of the plate.  This is observed in comparing the nominal and blister cases.  As stated, the absolute 
maximum surface heat flux, which occurs 0.26 m upstream of the blister defect, increased slightly by 
0.12%.  However, the surface heat flux at the blister defect location increased by 2.48%.  The convection 
coefficient at the defect location, defined in Equation 3.6, yields a value of 1.06×104 BTU/hr/ft2/˚F 
(6.00×104 W/m2/K), which is only a 1.18% increase over the nominal case at the same location. 
 

 
 

Fig. 3.8.  Blister case clad surface heat flux along the uncontoured side of the fuel plate.  The maximum 
(3.33518×106 W/m2) and minimum (-1.5754×105 W/m2) values of the heat flux are superposed on the image at 

the location of their occurrence. 
 
The pressure drop through the blister defect model was calculated to be 86.9 psig (5.99×105 Pa).  The 
error in the global energy balance was calculated using Equation 3.6 and was found to have a magnitude 
of 4.03%.  The error in the global balance of mass was calculated to be 8.34×10-3 %. 
 
It was shown that the blister defect caused an overall increase in the surface heat flux of the fuel plate.  
This overall increase is maximized at the defect location and dissipates as one moves away from the 
defect location.  The absolute maximum surface heat flux remained at the center of the uncontoured side 
of the fuel plate surface.  The increase in surface heat flux caused an increase in surface temperature with 
the maximum temperature occurring in approximately the same spot as in the nominal case. However, the 
maximum was only 0.18% higher in the blister case.  The convection coefficient increased slightly from 
5.927×104 W/m2/K in the nominal case to 6.00×104 W/m2/K in the blister case. 
 
3.2.4 Segregation Defect Case 
 
The segregation defect was introduced into the nominal case geometry as a cylinder with a diameter of 
5/64 inch (i.e., consistent with the rejection criteria) and extending through the fuel meat domain [i.e., 
approximately 0.030 inch (7.6×10-4m)].  The geometry of the segregation defect and its relative location 
to the fuel and clad material is shown in Fig. 3.9 for visualization purposes only.  The segregation 
cylinder was made to conform to the contour of the fuel meat.  The segregation defect was positioned at 
the location of the maximum temperature encountered in the nominal case.  As previously stated, the 
segregation defect is physically characterized by excess loading of 235U.  To model this defect the thermal 
energy generation rate per unit volume within the defect cylinder was increased by an order of magnitude 
(i.e., 7.17×1010 W/m3).  This order of magnitude increase was taken from previous studies of segregation 
defects[10,44,35].   

Blister Location 
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Fig.  3.9.  Segregation defect geometry relative to the surrounding fuel and clad.  This model does not 
consider blister defects.  The location of the maximum clad surface temperature, Tmax, from the nominal case 

is indicated. 
 
The grid structure used to discretize the segregation defect domain is identical to the grid structure for the 
fuel meat domain described earlier.  Here the defect and all other domains within the model are assumed 
to be in perfect thermal contact.   
 
The maximum temperature associated with the segregation defect was found to be located on the fuel 
contour side of the fuel plate with position coordinates x = 0.04756m, y = 0.00127m, and z = 0.05376m.  
The magnitude of the maximum temperature was found to be 219.24˚F (377.17 K) as shown in Fig. 3.10.  
The pressure of the fluid at the defect location was calculated to be 380.6 psig (2.624×106 Pa) that yields 
a saturation temperature of 439.61˚F (499.60 K).  The segregation defect does not produce clad surface 
temperatures consistent with the saturated state of the fluid therefore the probability of two-phase flow is 
very low.   
 

 
 

Fig. 3.10.  Clad surface temperature on the fuel contour side of the fuel plate.  The maximum and minimum 
temperatures are superposed on the image at the location of their occurrence. 

 
The location of the absolute maximum heat flux for the segregation case shifted to the segregation defect 
location.  This is an intuitive result since the thermal energy generation rate per unit volume was 

Segregation Location 
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increased by an order of magnitude at this location.  This is indeed a most unfavorable condition since the 
bulk fluid temperature is a maximum in the region where the absolute maximum heat flux occurs (i.e., 
lower fueled region of the fuel plate).  However, it has been shown that the probability of two-phase flow 
is very low.  The absolute maximum heat flux magnitude was found to be 1.10×106 BTU/hr/ft2 (3.48×106 
W/m2).  This represents an increase of 4.19% over the absolute maximum heat flux found in the blister 
defect case, and a 4.50% increase over the absolute maximum heat flux found in the nominal case.  Since 
the location of the absolute maximum heat flux has shifted downstream relative to the location found in 
the other cases (i.e., nominal and blister defect cases) the heat flux at the segregation defect location 
should be compared with the heat fluxes for the other cases at this location.  The segregation defect heat 
flux is12.3% higher than the heat flux at the blister defect location, and it is 15.1% higher than the heat 
flux in the nominal case at the same location.  The surface heat flux on the fuel contour side of the fuel 
plate is shown in Fig. 3.11.  Again, the minimum heat flux occurs at the downstream unfueled region of 
the fuel plate that, as previously stated, represents a reversal of heat flux (i.e., from the fluid to the fuel 
plate).   
 
The convection coefficient at the defect location was calculated to be 1.111×104 BTU/hr/ft2/˚F (6.307×104 

W/m2/K).  This value represents a 5.17% increase over the convection coefficient at the blister defect 
location and a 6.46% increase over the nominal case at the same location. 
 

 
 

Fig. 3.11.  Clad surface heat flux on the fuel contour side of the fuel plate.  The maximum and minimum 
surface heat flux values have been superposed on the image at the location of their occurrence. 

 
The pressure drop through the segregation defect system was calculated to be 81.3 psig (5.60×105 Pa).  
The error in energy conservation was calculated to be 3.83%.  The error in mass conservation was 
calculated to be 5.96×10-3%. 
 
It has been shown that of the two defects analyzed (i.e., blister defect and segregation defect), the 
segregation defect caused the largest changes in the system.  This was expected since the thermal 
generation rate per unit volume was increased in the segregation defect thus increasing thermal output 
from the plate.  The absolute maximum heat flux for the segregation case was found to have shifted 
position to the defect location instead of the center of the plate as was found in both the blister defect case 
and the nominal case. 
 
A summary of the results of the fuel defect analysis is presented below in Table 3.1 . 
  

Segregation Location 
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Table 3.1.  Summary of results for the fuel defect analysis 
Quantity Nominal case Blister case Segregation case 
Tmax [K] 372.99 373.66 377.17 
q” [W/m2] at Tmax location 3.024×106 3.099×106 3.48×106 
Tsat [K] at Tmax location 499.42 499.45 499.6 
P [Pa] at Tmax location 2.615×106 2.617×106 2.624×106 
q”max [W/m2] 3.331×106 3.335×106 3.480×106 
h [W/m2/K] at Tmax location 5.927×104 6.00×104 6.307×104 
ΔP [Pa] Through system 5.98×105 5.99×105 5.60×105 
Energy Conservation Error [%] 3.83 4.03 3.83 
Mass Conservation Error [%] 4.77×10-3 8.34×10-3 5.96×10-3 
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4.0 FLUID-STRUCTURE INTERACTIONS 
 
4.1 OVERVIEW OF PAST FUEL PLATE FSI ANALYSIS 
 
The conversion of the HFIR from HEU fuel to LEU fuel presents an opportunity to improve the 
predictive capability of the tools used to verify the performance of the reactor. The HFIR SAR is largely 
based on empirical data on the dynamic and static interaction that occurs between the fuel plates and 
cooling fluid. Empirical data is not yet available for the proposed LEU fuel.  
 
Research reactors, by nature, are designed with specific scientific goals, which oftentimes require novel 
design elements. The HFIR, with its emphasis on a high neutron flux, utilizes involute fuel plates in two 
concentric circles to create its “flux trap.” The Advanced Test Reactor at INL is designed to facilitate 
many different experiments as well as changes to the experiment during the fuel cycle[51] and a “clover-
leaf” fuel design has been implemented as seen in Fig. 4.1. The reactor at the Massachusetts Institute of 
Technology (MIT) utilizes a grid pattern for experiment and fuel placement Fig. 4.1. 
 

 
 

Fig.4.1.  The ATR core with its clover-leaf fuel design[52]. 
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Fig. 4.2.  Top-down view of the MIT core[53]. The coolant flows into the page. 
 
All of the five remaining HPRRs that have yet to convert to LEU utilize an array of fuel plates. This use 
of flat fuel plates is in contrast to power reactors, which typically utilize fuel rods and a significantly 
larger mass of uranium. Because the HPRRs use high aspect ratio flat plates, a significant effort has been 
performed to quantify the deflections caused by the coolant flow. One of the first experiments exploring 
the effects of the fluid-structure interaction of an array of fuel plates was performed at ORNL for 
preliminary research for the HFIR in 1948[54]. Stromquist and Sisman were able to observe plate 
vibration with plates similar in thickness to the current HFIR design. Their experiments found that 
extreme spacing between plates (one channel was 15.9mm while the adjacent was 3mm) could produce 
buckling at the plate leading edges. Under nominal plate spacing, the maximum deflection of the plates 
was found to be approximately 2 mils (0.05mm). 
 
Later, Miller developed a theoretical approach to determine the maximum velocity that a series of plates 
with fixed sides can sustain before collapse[55]. Miller's Critical Velocity, 𝑪𝒄, was based upon the 
assumption of incompressible, potential flow and it utilized an elastic wide-beam theory; Miller also 
assumed that the mass flow between all of the channels remained the same. Miller's approach determined 
the velocity in which the pressure difference between two plates is sufficient to maintain a deflection. The 
Miller Critical Velocity soon became the safety basis used in analyzing the critical flow velocity of 
parallel reactor fuel plates. For a flat plate with fixed edges, the Miller Critical Velocity is defined as 
 

𝑪𝒄 = � 𝟖𝟓𝒈𝑬𝒄
𝟑𝒉

𝝆𝒃𝟑(𝟖−𝝂𝟖)�
𝟖/𝟖

.................................................................................................................................(4.1) 
 
where 𝒈 is the gravitational constant, 𝑬 is the Young's Modulus of the plate, 𝒄 is the plate thickness, 𝒉 is 
the flow channel thickness, 𝝆 is the density of the coolant, 𝒃 is the width or span of the plate, and 𝝊 is the 
Poisson's ratio of the plate.  
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Experimental testing of the Miller Critical Velocity has been performed by many researchers[56-59]. 
These experimenters found that the Miller Critical Velocity was conservative, with flows tested to 
𝟖𝑪𝒄 with no total plate collapse. In fact, Groninger and Smissaert found that vibration occurs at 
approximately twice the Miller Critical Velocity. The only experiment in which total plate collapse 
occurred was performed by Ho et al.[60]. The collapse occurred at a velocity lower than 𝑪𝒄 suggesting 
that this experiment may be an outlier.  
 
In support of the conversion to LEU fuel, two facilities have been constructed to produce plate deflection 
data. A generic test plate experiment is being designed, constructed, and tested at the Oregon State 
University (OSU) that uses a flat plate, multi-channel design to measure both static and dynamic fuel 
plate deflections[61]. The OSU experiments will utilize strain gages to determine the deflections along 
the plate. Single plate experiments are being designed and tested at the University of Missouri that 
incorporate a Perspex flow channel allowing the use of a laser to measure the plate deflections[58]. 
 
Most of the experimental research has been focused on static deflection of perfectly flat fuel plates. A few 
experiments have been performed to investigate the deflections for curved fuel plates. Ha and 
Garland[62] conducted an experiment for a curved plate following a circular arc. Researchers at ORNL, 
in the design of the proposed Advanced Neutron Source Reactor (ANSR), conducted experiments using a 
series of involute shaped fuel plate[63]. A range of inlet velocities was conducted and revealed a much 
smaller deflection for the curved plates than an equivalent flat plate. 
 
The shortcomings and inherent conservative approach of the Miller Critical Velocity led many 
researchers to focus efforts on improving the theory. Johansson[64], a colleague of Miller's, first 
expanded on the Miller Critical Velocity by including friction terms and the flow redistribution caused by 
the movement of plates. Kane[65] explored how deviations from the design thickness can affect the 
deflections. He found that large deviations, as expected, could lead to larger deflections. Further, 
Scavuzzo[66] included the entrance and exit effects at the leading and trailing edge of the plate. 
Wamsganss[67] argued that the derivation first proposed by Miller could be improved upon by including 
second-order effects in the calculation of the critical velocity.  
 
Researchers began to reevaluate the assumptions Miller made in his derivation of the critical flow 
velocity. Other analysis techniques were developed including a wave propagation/water-hammer 
approach[68], solving the series of plates as a system[69], and using Schlichting boundary layer 
theory[70].  Cekirge and Ural[71] used small deflection plate theory to derive the critical flow velocity 
gaining only a four percent margin over the Miller Critical Velocity. In order to better capture the plate 
deflections, Pavone and Scarton[72] employed a fourth order structural model with laminar flow. Kebuoa 
et al.[73] used a potential flow analysis of one plate to analyze a multi-plate channel and found that their 
method matched Miller's Critical Velocity. 
 
All the researchers up to this point had assumed one dimensional, steady state flow. A Galerkin method 
was employed by Guo and Paidoussis[74] to analyze a two-dimensional plate with a three-dimensional 
flow field. By combining turbulent effects with a frequency analysis of thin rectangular plates, Kim and 
Davis[75] were able to obtain natural frequencies of a series of plates. They found that the natural 
frequency of the plates in a fluid was lower than the plates in vacuum; they also found that by decreasing 
the channel gap, the natural frequency of the plate would decrease. On the other hand, Cui et al.[76], used 
a wetting method to determine the natural frequency of the plates and found that the added fluid did not 
greatly affect the natural frequency of the plate. Using a stability criterion, Michelin and Llewellyn 
Smith[77] analyzed an n-series of plates to determine the stability of the system as it relates to flutter. 
 
Until recently, the use of computer codes to simulate fluid-structure interactions between the fuel plates 
and the coolant flow has been too computationally expensive. Roth[78] simulated the fluid flow between 
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the fuel plates but was not able to model plate deflections. Kennedy and Solbrekken[79] have used two 
separate codes, one for solving the fluid domain and the other one for solving the structural domain. Their 
approach utilizes a time-dependent solver for each code to complete the runs. The decoupling of the 
physics resulted in an unstable solution process. A fully coupled approach has been performed that 
eliminates the stability issues found with the decoupled approach[27] and this technique will be used for 
the analysis of the HFIR core. 
 
4.2 CYLINDER IN CROSS-FLOW 
 
The cylinder in cross-flow is a fundamental fluids problem in which the physics allows for a stringent 
testing of the different aspects of a code. The cylinder will naturally begin to shed vortices for 𝑬𝒇 greater 
than approximately 35 and will continue to shed into the turbulent regime. These shedding vortices are 
known as Kármán vortex streets and are related to the Strouhal number defined as  
 
𝑪𝒔 = 𝒇𝑫/𝑩 ..............................................................................................................................................(4.2) 
 
For flows with 𝑬𝒇 between 100 and 𝟖𝟎𝟓, the Strouhal number is approximately 𝟎.𝟖, which means that 
the vortex shedding cycle is approximately the length of time it takes the free stream, flow to move 5 
cylinder diameters[43]. 
 
This phenomenon will occur for almost any bluff body for which 𝑬𝒇 ≥ 𝟑𝟓. The shedding vortices can 
cause significant vibrations in the structure. This vibration, if not carefully accounted for, can cause large 
oscillations and eventual failure of the structure. Such an example is the flutter that caused the Tacoma 
Narrows Bridge[80] to fail in 1940. The shedding and subsequent oscillations have been studied at length 
experimentally[81,82] and numerically[83-90]. The progression for the modeling of the cylinder in cross-
flow for this section will follow the following outline:  
 
1. Stationary Cylinder 
2. Oscillating Cylinder: Prescribed Displacement 
3. Oscillating Cylinder: Free Displacement 
4. Stationary Cylinder with Moving Tail 
 
This progression was chosen as a way to test the code capabilities incrementally. The complexity of both 
the flow solver and the structural solver was increased with each section. First, we employ only the flow 
solver while holding the cylinder stationary and computing only the vortex shedding of the fluid. Later, 
we incorporate different moving cylinders: one type that follows a prescribed displacement and one that 
allows the cylinder to move freely in the transverse direction based upon the lift created by the shedding 
vortices, respectively. Finally, we model a stationary cylinder with a long tail attached to the end. This 
simulation tests the ability of the mesh generator to handle large displacements of the tail caused by the 
shedding vortices. 
 
4.2.1 Stationary Cylinder 
 
The stationary cylinder in cross-flow is used to test and verify the capabilities of the flow solver. The 
solver should be able to capture the shedding of the vortices without any external manipulation from the 
user. The development of the Kármán vortex streets should occur naturally and progressively using a 
transient solver. Here, we consider a range of Reynolds numbers that result in laminar flow about a 
stationary cylinder. 
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(1) Domain and Boundary Conditions 
 
The 2-D domain for the stationary cylinder was chosen to be a large rectangular domain. The cylinder 
diameter is 1mm. The domain is 40 times the cylinder diameter in height and 40 times the cylinder 
diameter in length. In order to ensure enough resolution of the trailing vortices, the cylinder was offset in 
the flow direction with a larger section placed on the trailing edge of the domain. The top and bottom 
boundaries are taken to be periodic boundaries. The periodic boundary conditions are described by the 
following equations  
 
𝒇𝐜𝐜𝐬𝐬𝐜𝐬 = 𝒇𝐝𝐬𝐜𝐝𝐬𝐬𝐝𝐝𝐬𝐜𝐬 ..............................................................................................................................(4.3) 
 
𝒑𝐜𝐜𝐬𝐬𝐜𝐬 = 𝒑𝐝𝐬𝐜𝐝𝐬𝐬𝐝𝐝𝐬𝐜𝐬 ..............................................................................................................................(4.4) 
 
where the source is the top boundary and the destination is the bottom boundary. The left boundary is an 
inlet with specified velocity based upon the 𝑬𝒇 number. The right boundary is a pressure boundary set to 
0. The boundary around the cylinder is a no slip condition. Fig. 4.3 provides the domain dimensions and 
boundary conditions used for the simulations.  
 
The working fluid for the simulation was taken to be incompressible water with the following properties 
at 293K:   
 • Density: 1000 kg/m 𝟑  
 • Viscosity: 0.01 Pa⋅s  
 
Water was chosen because the working fluid for the majority of the simulations performed for analysis of 
the HFIR would be water. 
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Fig. 4.3.  Domain for the 2-D stationary cylinder. 

 
A free triangular mesh was created for the simulation in order to handle the more complex geometry 
created by using a circular cylinder and a rectangular domain. This free triangular mesh posed a problem, 
which is made evident in Section 4.3, in which a non-uniform mesh is created at the trailing edge of the 
cylinder; this non-uniform mesh caused a spurious shift in the lift[26]. This non-uniformity was corrected 
by placing a horizontal line that divides the domain in half; this line is not used in any calculations but 
simply allows the creation of a symmetric mesh. The free mesh is created by first meshing the top half of 
the domain and then mirroring the mesh along the horizontal line giving a perfectly symmetric mesh and 
avoiding any discrepancies in results due to the grid asymmetry.  Figure 4.4 provides the progression 
from the non-uniform mesh to the perfectly symmetric mesh. In order to capture the physics involved 
accurately, a boundary layer mesh was inserted with 8 layers in the boundary. The final mesh consists of 
29,558 mesh elements. 
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Fig.  4.4. Mesh comparison for the 2-D Cylinder. 
 
Simulation and Results 
 
The simulation for the stationary cylinder in cross-flow was run using a fully implicit time domain solver. 
A steady-state solution was used to obtain an initial condition in order to reduce the computational costs 
needed to solve the start-up of the flow solver. The initial condition for the 𝑬𝒇 = 𝟖𝟎𝟎 case is provided in 
Fig. 4.5. 
 
The fully implicit solver is stable and lends itself to large time-step iterations[91]. When a steady-state 
solution with no periodic tendencies is desired, this greatly reduces the computational costs needed to 
obtain a steady-state solution. The cylinder in cross-flow, as stated earlier, should result in a time-accurate 
solution that converges into a periodic state in which a limit cycle is observed. If a solver is implemented 
for the determination of the time-step used in the time-stepping scheme, certain physical phenomena may 
be missed. For the cylinder in cross-flow case with a steady-state initial condition, the time-step may be 
too large to allow the solver to capture the instability that induces the vortex shedding. This phenomenon 
was seen with the present study in which the cylinder failed to produce the predicted vortex shedding. 
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. 
 

Fig. 4.5.  Initial condition using the steady-state solver for 𝑬𝒇 = 𝟖𝟎𝟎. 
The velocity contours are represented in m/s. 

 
For example, with 𝑬𝒇 = 𝟖𝟎𝟎, the cylinder should shed within 10 physical seconds from the initial 
condition (here, physical seconds represents the time in the time domain as opposed to the computational 
time which is the interval it takes to run the code on a given machine and is dependent upon the number 
of cores and solving method used (i.e., direct or iterative method and is typically referred to as the ‘wall-
clock time’). When the time-step was calculated for any interval, the code would compute time-steps 
much too large to capture the vortex shedding. The solution would remain in steady state and no shedding 
would be observed; the solution would be indistinguishable from the initial condition seen in Fig. 4.5. 
 
To correct this problem, a limit on the maximum time-step was imposed. This limit was taken to be 1/20 
of the approximate period of shedding for a particular Reynolds number. Again using 𝑬𝒇 = 𝟖𝟎𝟎 as an 
example and the other physical properties described above, the shedding frequency can be estimated from 
Equation 1 with 𝑪𝒔 ≈ 𝟎.𝟖𝟏𝟓 to be approximately 16.5 𝑯𝒛. Using the estimated frequency, a maximum 
time-step of approximately 0.00151s produces the desired vortex shedding. This method was employed 
for all of the simulations, allowing the code to properly capture the flow physics. 
 
In order to verify the vortex shedding capabilities of the flow solver, a variety of Reynolds numbers were 
computed. Because the phenomena are not observed for all Reynolds numbers, a simulation with 
𝑬𝒇 = 𝟖𝟎 was performed to ensure that the code could capture shedding as well as non-shedding cases. To 
establish a good basis, the following Reynolds numbers were considered: 50, 75, 100, 150 and 200. This 
range ensures laminar flow while allowing the analysis to remain two-dimensional. A sample of the 
solution obtained once the cylinder begins to shed vortices is provided in Fig. 4.6 for 𝑬𝒇 = 𝟖𝟎𝟎.  
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Fig. 4.6.  Set of time-domain solutions for 𝑬𝒇 = 𝟖𝟎𝟎. Shown are velocity magnitudes. 
 
 
The fundamental way to measure the shedding frequency is to observe the coefficient of lift, 𝑪𝒄, defined 
by:  
 
𝑪𝒄 = 𝒄

𝟖/𝟖𝝆𝒇𝑩∞𝟖 𝒄
 ..........................................................................................................................................(4.5) 

 
where 𝒄 represents the lift on the cylinder per unit length, 𝝆𝒇 represents the free-stream fluid density, 𝑩∞ 
represents the free-stream fluid velocity and 𝒄 is the cylinder diameter. Observation of the lift in the time 
domain shows that the vortex shedding has gone into a limit cycle but it is difficult to determine the exact 
frequency of the shedding (Fig. 4.7). A Fast-Fourier Transform (FFT)[92] is employed to determine the 
dominant frequencies of the solution Fig. 4.8.  
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𝑬𝒇 = 𝟖𝟓 

 
𝑬𝒇 = 𝟖𝟎𝟎 

Fig. 4.7.  Time accurate 𝑪𝒄 for the stationary cylinder (part 1 of 2).   
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𝑬𝒇 = 𝟖𝟓𝟎 

 
𝑬𝒇 = 𝟖𝟎𝟎 

  
Fig. 4.7.  Time accurate 𝑪𝒄 for the stationary cylinder (part 2 of 2).    
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𝑬𝒇 = 𝟖𝟓 

 
𝑬𝒇 = 𝟖𝟎𝟎 

 
Fig. 4.8.  FFT of the 𝑪𝒄 for the stationary cylinder (part 1 of 2). 
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𝑬𝒇 = 𝟖𝟓𝟎 

 
𝑬𝒇 = 𝟖𝟎𝟎 

 
Fig. 4.8.  FFT of the 𝑪𝒄 for the stationary cylinder (part 2 of 2). 
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The subfigures of Fig. 4.8 are used to obtain the shedding frequency for each case. Williamson[93] 
performed experiments for the cylinder in cross-flow and presented his results in graphical form. For a 
direct comparison of our solution with the experimental data, the open source program called Engauge 
Digitizer was used to extract the data from the published paper. The extracted experimental data is 
compared to the simulations in Table 4.1. 
  

Table 4.1.  Shedding frequencies of the stationary cylinder in cross-flow 
compared  to experimental results of Williamson [Williamson(1988)]. 

 Experimental Numerical 
𝑬𝒇 𝑪𝒔 Freq, Hz 𝑪𝒔 Freq, Hz 

20       
0.0000  

 0.00  0.0000   0.00  

75  0.1424   10.70  0.1398   10.50  
100  0.1600   16.03  0.1517   15.20  
150  0.1800   27.05  0.1642   24.68  
200  0.1825   36.57   0.1723   34.52  

 
Discussion 
 
The stationary cylinder in cross-flow provides a context to test real-world instabilities with a numerical 
code. The simulations show that the code is capable of reproducing these naturally occurring phenomena 
when careful consideration of the numerical tools is employed. By limiting the transient solver time-step 
to 1/20 the time it takes to shed one vortex, the code is able to capture the expected Kármán vortex streets 
close to the experimentally obtained Strouhal number. 
 
Because the small time-step could result in large data files, it was originally proposed to record the data at 
intervals larger than the 1/20 time-step but smaller than the shedding interval. This resulted in very 
manageable file sizes but it was quickly discovered that the interval, as with all digital recording, could 
induce unwanted aliasing[94].  This aliasing is evident as a smaller frequency on top of the main 
frequency as seen in Fig. 4.9.  In order to alleviate the aliasing, the sampling rate was configured to be the 
same as the maximum time step allowed for each simulation. This change eliminated the aliasing problem 
from the solution and aliasing effects were considered for any other time-dependent solutions. 
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Fig.  4.9.  𝑪𝒄 for the 𝑬𝒇 = 𝟖𝟓𝟎 case with aliasing present due to large recording intervals. 
 
The code has proven to effectively capture the shedding vortices for a 2-D cylinder in cross-flow. Table 
4.1 shows that the numerical simulation provides reasonable results compared to the experiment. Using 
the stationary cylinder as proving grounds and stepping stone for analysis, it is now appropriate to move 
on to more complicated cases. 
 
4.2.2 Oscillating Cylinder: Prescribed Displacement 
 
The next logical step in testing the FSI capabilities of the code is to allow the cylinder to move. In this 
section, the cylinder movement will follow a prescribed periodic displacement that is not affected by the 
flow of the fluid and its subsequent shedding vortices. This will allow the testing of both the mesh 
deformation capability and the fluid solver for a moving cylinder. The cylinder will be allowed to 
oscillate in the transverse direction of the free-stream flow velocity. This case was also considered 
experimentally by Koopman[82]for Reynolds numbers of 100 and 200. 
 
The vortex streets that are shed from the oscillating cylinder can fall into two categories: lock-on and non 
lock-on. In the lock-on region, the vortices are shed at the same frequency of the oscillating cylinder. 
When one investigates the coefficient of lift, there is only one principle frequency present. For the non 
lock-on case, the cylinder sheds vortices at its ‘natural’ frequency based upon the Strouhal number for the 
flow conditions. This will result in two principal frequencies being present in the coefficient of lift 
calculations (the cylinder oscillation and the ‘natural’ vortex shedding). A representation of the cylinder 
lock-on and non lock-on regions is presented in Fig. 4.10.  
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Fig.  4.10.  Graphical Representation of the lock-on region. 
 
Domain and Boundary Conditions 
 
The domain for the oscillating cylinder with prescribed displacement is the same as that used for the 
stationary cylinder. The only boundary condition that is different from the one used for the stationary 
cylinder is the solid moving boundary around the cylinder. The boundary will now follow the general 
wall boundary condition such that the fluid velocity is equal to the velocity of the wall such that 𝒇𝐟𝐟𝐬𝐬𝐝 =
𝒇𝐜𝐜𝐟𝐬𝐝. 
 
The cylinder will follow a periodic sinusoidal motion normal to the free-stream velocity. The maximum 
amplitude and frequency will vary depending on the particular case being examined during the 
simulation. The equation of motion for the cylinder is given by:  
 
𝒋̂ ⋅ 𝒇𝐜𝐜𝐟𝐬𝐝 = 𝒉𝐜𝐬𝐬(𝝎𝒔) ..............................................................................................................................(4.6) 
 
where 𝒋̂ is the unit vector in the direction transverse to the inlet flow, 𝒉 is the cylinder amplitude and 𝝎 is 
the oscillation frequency. The baseline mesh for this case is the same as that used for the stationary 
cylinder. 
 
Now that movement is to take place during the simulation of the flow around the cylinder, it is necessary 
to allow the mesh to deform and move with the cylinder. In COMSOL, there are 3 different types of mesh 
smoothing techniques:   
 
  Laplace  
  Winslow  
  Hyperelastic  
 
The Laplace technique, first described by Buel and Bush[95] for a structured mesh and refined by 
Field[96] for a free triangular mesh, applies the Laplace operator on the computational coordinates (𝝃,𝜼) 
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in the physical space (𝑿,𝒀). When the Laplace Equation 4.7 is satisfied, a smooth distribution of the 
computational coordinates is present. 
  
𝛁𝟖𝝃 = 𝛛𝟖𝝃

𝛛𝒙𝟖
+ 𝛛𝟖𝝃

𝛛𝒚𝟖
= 𝟎

𝛁𝟖𝜼 = 𝛛𝟖𝜼
𝛛𝒙𝟖

+ 𝛛𝟖𝜼
𝛛𝒚𝟖

= 𝟎
 ............................................................................................................................(4.7) 

 
The Laplace equations should satisfy the max-min conditions such that parameters inside the domain will 
not exceed the boundary of the domain which ensures that the grid lines will not cross resulting in 
inverted meshes. In Equation 4.7, the known variables are (𝝃,𝜼) and the unknown variables are (𝒙,𝒚). 
Applying the Laplacian of Equation 4.7 to the computational space results in the Laplace smoothing 
equation:  
 
𝛁𝟖𝒙 = 𝛛𝟖𝒙

𝛛𝝃𝟖
+ 𝛛𝟖𝒙

𝛛𝜼𝟖
= 𝟎

𝛁𝟖𝒚 = 𝛛𝟖𝒚
𝛛𝝃𝟖

+ 𝛛𝟖𝒚
𝛛𝜼𝟖

= 𝟎
 ............................................................................................................................(4.8) 

 
Although Equation 4.8 satisfies the max-min condition for a structured mesh, this is not always the case 
for an unstructured mesh where some of the elements may be inverted, resulting in negative cell volumes. 
 
To overcome the limitations of the Laplace smoothing technique, Winslow[97] proposed a transformation 
resulting in the following set of equations:  
 

𝜶 𝛛𝟖𝒙
𝛛𝝃𝟖

− 𝟖𝜷 𝛛𝟖𝒙
𝛛𝝃𝛛𝜼

+ 𝜸 𝛛𝟖𝒙
𝛛𝜼𝟖

= 𝟎

𝜶 𝛛𝟖𝒚
𝛛𝝃𝟖

− 𝟖𝜷 𝛛𝟖𝒚
𝛛𝝃𝛛𝜼

+ 𝜸 𝛛𝟖𝒚
𝛛𝜼𝟖

= 𝟎

𝜶 = �𝛛𝒙
𝛛𝜼
�
𝟖

+ �𝛛𝒚
𝛛𝜼
�
𝟖

𝜷 = 𝛛𝒙
𝛛𝝃

𝛛𝒙
𝛛𝜼

+ 𝛛𝒚
𝛛𝝃

𝛛𝒚
𝛛𝜼

𝜸 = �𝛛𝒙
𝛛𝝃
�
𝟖

+ �𝛛𝒚
𝛛𝝃
�
𝟖

 ............................................................................................................(4.9) 

 
This set of equations can greatly improve the accuracy and may alleviate the problems of inverted meshes 
found using the Laplace smoothing equations[98]. 
 
The last mesh smoothing technique available in the code is a hyperelastic technique inspired by neo-
Hookean materials[99]. The technique searches for the minimum of the mesh deformation energy in 
which the energy is given by:  
 
𝑾 = ∫  𝛀

𝝁
𝟖

(𝑮𝟖 − 𝟑) + 𝜿
𝟖

(𝑱 − 𝟖)𝟖𝒄𝑽 ...................................................................................................... (4.10) 
 
where 𝝁 is the artificial shear modulus and 𝜿 is the artificial bulk modulus. The invariants 𝑱 and 𝑮𝟖 are 
given by:  
 

𝑱 = 𝐝𝐬𝐝(𝛁𝒙𝒙)
𝑮𝟖 = 𝑱−𝟖/𝟑𝐝𝐬�(𝛁𝒙𝒙)𝑻𝛁𝒙𝒙� 
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Each of the three mesh smoothing techniques has their benefits and trade-offs. The fastest and least 
computationally expensive technique would be the Laplace smoothing. The most robust of the three 
techniques is the hyperelastic smoothing technique. Because of the large mesh displacements possible in 
the upcoming simulations, the Laplace smoothing technique will not be used. In order to retain some 
accuracy, to prevent inverted meshes, and to obtain solutions in a reasonable amount of time, the 
Winslow smoothing technique will be used for all of the moving mesh simulations of this report.  
 
Simulation and Results 
 
The issues seen with the stationary solver and the use of the implicit solvers are not observed with the 
moving cylinder because the simulation does not have to rely on a natural instability to begin to shed. 
Although any time-stepping scheme may be used, the issue of aliasing could still be present such that the 
restriction on the time-step of 1/20 of the predicted frequency will still be used. There will be 35 cases run 
for the prescribed cylinder motion with a Reynolds number of 100. The cases were chosen in order to 
span across the lock-on and non lock-on regions. The frequency ratio, 𝒇/𝒇𝒏, spans from 0.8 to 1.2 and the 
amplitude ratio, 𝒉/𝑫, spans from 0.05 to 0.35. The results are presented in Fig. 4.11 where the plus (+) 
symbols represent the case in which lock-on occurs and the cross (×) symbols represent the case in which 
no lock-on occurs.  
 

 
  

Fig. 4.11.  The cylinder lock-on simulations compared to the experiment by Koopman. The plus symbols (+) 
represent cases in which lock-on was achieved and the cross symbols (×) represent the cases in which no lock-

on were present. 
 
Discussion 
 
The oscillating cylinder with prescribed displacement follows the experimental setup quite well. There is 
one simulation that does not follow the experimental results presented by Koopman at a plunge amplitude 
of 0.2 and a frequency ratio of 1.2. This ‘extreme’ case is an outlier in all of the other lock-on cases, and 
based upon the success of the other simulations does not negate the solver. For instance, the simulations 
around the ‘fork’ of the experimental results follow the lock-on/non lock-on progression as expected. The 
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most reasonable explanation for this outlier is the fact that experiments, by their nature, have error 
involved and thus the ‘fork’ may be in a different place. The next step in establishing the validity of the 
FSI code is to allow the cylinder to move freely based upon the lift created by the shedding vortices. 
 
4.2.3 Hydroelastic Analysis: Free Displacement 
 
Following the progression described previously, the cylinder will now be allowed to move freely based 
upon the lift created by the shedding vortices. This oscillation will be restricted to movement only in the 
transverse direction to the free-stream inlet velocity. The movement for the 2-D cylinder will be described 
as a spring-mass-damper system. The cylinder with free displacement lends itself to a full FSI study in 3-
D utilizing the coupling of the Navier-Stokes equations with the structural dynamic equations. This 
progression was previously followed in other simulations[85].  
 
Domain and Boundary Conditions 
 
As with the previous two sections, the domain for the free oscillating cylinder is a rectangle with the same 
dimensions as presented  earlier. The inlet, outlet and periodic boundary conditions remain unchanged 
from the previous two sections. In this section however, the cylinder is displaced not based upon a 
prescribed motion known a priori, but based upon the periodic lift created by the oscillating vortices. For 
the 2-D simulation, the cylinder displacement is determined from the equation of motion for a spring-
mass-damper system:  
 
𝒎�̈� + 𝒄�̇� + 𝒌𝒙 = 𝒇(𝒔) .......................................................................................................................... (4.11) 
 
where the forcing function, 𝒇(𝒔), is determined by the lift on the cylinder. Figure 4.12 provides a visual 
representation of the mass-spring-damper assumption used for the 2-D simulation.  
 

 
 

Fig. 4.12. Spring-mass-damper model used for the hydroelastic simulations. 
 
The spring constant, 𝒌, is determined using beam theory for a cantilevered beam:  
 
𝜹𝒄 = 𝑪𝑪𝟑

𝟑𝑬𝑮
 .................................................................................................................................................. (4.12) 

 
where 𝜹𝒄 is the deflection at the end of the beam, 𝑪 is the force at the end of the beam, 𝑪 is the length of 
the beam, 𝑬 is the Modulus of Elasticity of the beam and 𝑮 is the area moment of inertia of the 
beam[100]. Rearranging Equation 4.12 such that 𝑪/𝜹𝒄 = 𝒌 yields the effective stiffness of the beam:  



ORNL/TM-2015/656 

84 

𝒌𝐬𝐟𝐟𝐬𝐜𝐝𝐬𝐞𝐬 = 𝑪/𝜹𝒄 = 𝟑𝑬𝑮
𝑪𝟑

 ......................................................................................................................... (4.13) 
 
Assuming that there is no internal damping yields 𝒄 = 𝟎 and the mass is assumed to be the total mass of 
the cylinder such that 𝒎 = 𝝆𝐜𝐲𝐟 ⋅ 𝑽𝐜𝐲𝐟.  Equation 4.11 is a single degree of freedom (SOF) ordinary 
differential equation (ODE), which will be solved using an ODE solver. 
 
The 3-D case is the first test of the coupling of the structural mechanics and fluid mechanics to form a 
Fluid-Structure Interaction problem. The 3-D domain has an identical setup to the 2-D domain except that 
the domain is ‘swept’ so that a cylinder is created. The boundary conditions are the same for the fluid 
domain except that the new walls created by the ‘sweeping’ of the domain are held as slip boundaries 
such that  
 
𝒇𝒇 ⋅ 𝒏 = 𝟎 .............................................................................................................................................. (4.14) 
 
𝑲− (𝑲 ⋅ 𝒏)𝒏 = 𝟎 .................................................................................................................................. (4.15) 
 
where 𝑲 = �𝝁 �𝛁𝒇𝒇 + �𝛁𝒇𝒇�

𝑻��𝒏. During the sweep, 4 cuts are made to create a 3-D simulation. This 
limited number of cuts is utilized in an effort to speed up computational times; this is also made possible 
because of the low Reynolds number of the flow and the slip boundary conditions along the two specified 
walls of the domain. This results in a mesh consisting of 118,232 points. 
 
Simulation and Results 
 
The displacement of the cylinder should match the frequency of the shedding vortices. For completeness, 
two simulations will be performed to ensure that both are excited at the natural shedding frequency. The 
simulations will use inlet conditions such that the Reynolds number is 100 and 200. The working fluid is 
again chosen to be water with the properties previously described in Section 1. The cylinder properties are 
as follows: 𝝆 = 𝟖𝟖𝟎𝟎𝟕𝟕/𝐦𝟑, 𝑬 = 𝟖𝟎𝟕𝐂𝐝, 𝝂 = 𝟎.𝟑𝟓, and 𝑪 = 𝟎.𝟎𝟖m. These parameters result in a 
cylinder with an area moment of inertia of 𝑮 = 𝟑.𝟑𝟎𝟑𝟗 − 𝟖𝟑𝐦𝟑 and an effective spring stiffness of 
𝒌𝐬𝐟𝐟𝐬𝐜𝐝𝐬𝐞𝐬 = 𝟖𝟎,𝟑𝟎𝟖N/m. As with the previous two sections, a steady-state solution is used as the initial 
condition for the transient simulation. 
 
The FSI problem (in both 2D and 3D) can be solved numerically in three different ways: fully coupled, 
segregated, and one-way coupled. The fully coupled method, as the name implies, solves for all of the 
physics (fluid and structure) in the same matrix. This method is the most expensive yet most robust 
solution technique. The solver iterates on the fully coupled matrix until the convergence criteria is met. 
Figure 4.13 provides a flow chart for the visualization of the fully coupled solver.  
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Fig. 4.13.  Flow chart for the fully coupled solver. 
 
The segregated solver allows the dependent variables to be solved independently of each other. For the 
FSI problem, the most logical segregation is the separation of the fluid mechanics and the solid 
mechanics. First, the fluid variables are iterated upon until a stopping criterion is met (typically a set 
number of iterations), and then the fluid solution is used to establish the boundary conditions for the 
structural model. The solver then computes the structural variables. The overall convergence is checked; 
if the convergence criterion is not met, the boundaries for the fluid domain are updated and the process 
continues.  Figure 4.14 shows the progression of the segregated solver. One of the strongest benefits of 
the segregated solver is the smaller memory requirement needed. Because the structural mechanics is 
solved second, the structure lags by one outer iteration, and depending on the coupling approach this 
could cause stability issues.  
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Fig. 4.14.  Flow chart for the segregated solver. 
 
The one-way coupled solution technique fully decouples the fluid and structural variables. First, the fluid 
domain is fully solved for using the initial conditions of the structural domain for its boundary conditions. 
Once the fluid variables are fully converged, they are used to establish the boundary conditions for the 
structural mechanics solver. The structural variables are computed without updating the fluid solution and 
the process is completed. The flow chart for the one-way coupled solver is provided in Fig. 4.15.  This 
solution technique is the fastest of the three solvers discussed. If the fluid and structure are not strongly 
coupled, then this technique works very well. For example, a very stiff structure in which the flow-
induced displacement is very small and does not greatly affect the characteristics of the flow is a very 
good candidate for the one-way coupled solver.  
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Fig. 4.15.  Flow chart for the one-way coupled solver. 
 



ORNL/TM-2015/656 

88 

2D CASE 
 
For the 2-D case, all three solvers will be explored. For the transient cases, the fully coupled and 
segregated solvers work similarly in that for each time-step, the solver is run until convergence before the 
next time-step is computed. For the one-way coupled solver, the transient fluid solution is computed and 
then the transient structural solution is computed using the previously computed fluid solution as the 
boundary condition at each time step. The one-way coupled solver solves the fluid solution to completion 
and then uses the fluid solution to obtain the transient structural solution. The results for the first case, the 
fully coupled solver, are provided in Fig. 4.16.  
 

 
𝑬𝒇 = 𝟖𝟎𝟎 𝑪𝒄 

 
Fig. 4.16.  Solution of the fully coupled 2-D free displacement cylinder (part 1 of 3). 
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𝑬𝒇 = 𝟖𝟎𝟎 Displacement 

 

 
𝑬𝒇 = 𝟖𝟎𝟎 𝑪𝒄 

 
Fig. 4.16.  Solution of the fully coupled 2-D free displacement cylinder (part 2 of 3). 
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𝑬𝒇 = 𝟖𝟎𝟎 Displacement 

 
Fig. 4.16.  Solution of the fully coupled 2-D free displacement cylinder (part 3 of 3). 

 
The frequencies of the coefficient of lift and displacement as well as the solution time are provided in 
Table 4.2.  A solution was not obtained for the segregated solver because of instabilities created with the 
segregation process.  
 

Table 4.2.  Results for the 2-D simulation for the free displacement cylinder. The frequencies were obtained 
using the FFT. The simulations were performed on a 12 core machine with 192GB RAM 

𝑬𝒇    𝑪𝒄, Hz  Displacement, Hz  Max. Disp., mm   Time, s  
100  Fully-Coupled   15.67   15.67   𝟏𝟑.𝟓 × 𝟖𝟎−𝟓   10107  
  Segregated   ——   ——   ——   ——  
  One-Way   15.2   15.2   𝟎.𝟎𝟎𝟓𝟖   890  
200  Fully-Coupled   37.5   37.5   𝟖𝟑.𝟑 × 𝟖𝟎−𝟓   6888  
  Segregated   ——   ——   ——   ——  
  One-Way   34.2   34.5   𝟎.𝟎𝟎𝟖   746  
 
3D CASE 
 
The 3-D simulation, as previously described, is a simple extrusion of the 2-D setup. The extrusion, along 
with the mesh cuts, is provided in Fig. 4.17.  This simulation is run using the fully coupled solver in order 
to retain the interaction between both the cylinder and the fluid. The cylinder is modeled as a cantilevered 
beam with a fixed boundary on one side and a free boundary on the other. The results for the coefficient 
of lift and cylinder displacement are provided in Fig. 4.18. 
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The fully coupled, 3-D simulation, as expected, took a much longer time to complete than the 2-D cases. 
The cases took 68,743 and 46,303 seconds for the 𝑬𝒇 100 and 200 cases, respectively. The oscillating 
frequency and displacement frequency matched for both cases at 15 Hz for 𝑬𝒇 = 𝟖𝟎𝟎 and 34 Hz for 
𝑬𝒇 = 𝟖𝟎𝟎. 
 
 

 
  

Fig. 4.17.  Mesh for the 3-D cylinder in cross-flow simulation. 
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𝑬𝒇 = 𝟖𝟎𝟎 𝑪𝒄 

 

 
𝑬𝒇 = 𝟖𝟎𝟎 Displacement 

 
Fig.4.18.  Solution of the fully coupled 3-D free displacement cylinder. The results are taken at the free end of 

the cylinder (part 1 of 2). 
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𝑬𝒇 = 𝟖𝟎𝟎 𝑪𝒄 

 

 
𝑬𝒇 = 𝟖𝟎𝟎 Displacement 

 
Fig.4.18.  Solution of the fully coupled 3-D free displacement cylinder. The results are taken at the free end of 

the cylinder (part 2 of 2).
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Discussion  
 
The oscillating cylinder with free displacement provides insight into the capabilities of the FSI solver to 
capture the physics of the phenomena. The exploration of the 3 solving techniques available in the code 
for the 2-D case allows for an assessment of the applicability of the methods for the FSI cases. Looking at 
the results in the previous table, it can be seen that the fastest solution can be obtained using the one-way 
coupling. While the one-way coupled solver produced oscillating frequencies similar to the fully coupled 
solver, the maximum deflections were smaller than the fully coupled case. The segregated solver was not 
able to capture the physics correctly resulting in an unstable solution in which the residual would diverge. 
The 2-D, free displacement case revealed the need for the perfectly symmetric mesh described in section 
1. Observing the displacement of the cylinder once it reached its limit cycle revealed the need for this new 
meshing technique. Assuming a perfectly round cylinder, the displacement should oscillate around the 
original position of the cylinder but when the mesh was not symmetric, the cylinder would initially drift 
up and begin to oscillate about another position, which can be seen in Fig. 4.19. 
 
 

   
  

Fig. 4.19.  Incorrect displacement of the 2-D cylinder for the condition of 𝑬𝒇 = 𝟖𝟎𝟎. The dashed line 
represents the initial position and the displacement should oscillate about it. 

 
The 3-D case, which included the linear-elastic structural model, was able to capture the physics as well. 
For each case, the maximum displacement was smaller than the 2-D cases. This can be attributed to the 
assumptions made for the spring-mass-damper system: all of the mass of the cylinder is at the end, 
increasing its momentum and there is no internal damping to decrease the displacement for a given input 
force. Taking these assumptions into account, the displacements obtained from the simulations are within 
reason. 
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4.2.4 Stationary Cylinder with Moving Tail 
 
The last section for the cylinder in cross-flow will incorporate a stationary cylinder with a moving tail. 
This numerical test, proposed by [88], allows the testing of large displacement FSI models using a 2-D 
setup. The published paper for the numerical test case includes a multitude of results for three different 
laminar cases that demonstrate the effectiveness of both the fluid and structural solver. The cylinder, as 
seen in the previous sections, will begin to shed vortices under the ideal conditions; these vortices will 
then create changes in pressure that will cause the cylinder tail to deform. This deformation, in 
conjunction with the vortex shedding, is the main focus of this section. 
 
Domain and Boundary Conditions 
 
The stationary cylinder with moving tail is placed in a rectangular domain as proposed by Turek and the 
domain is presented in Fig. 4.20.  
 

 
 

Fig. 4.20.  Domain for the 2-D stationary cylinder with moving tail. 
 
The domain has the following dimensions: The length of the channel, 𝑪, is 2.5m and the height, 𝑯, is 
0.41m. The cylinder has a radius, 𝒓, of 0.05m and its center is positioned at (0.2, 0.2)m measured from 
the bottom left corner of the domain. The bar has a length, 𝒄, of 0.35m and height, 𝒉, of 0.02m with the 
bottom right corner placed at (0.6, 0.19) m and it is rigidly attached to the cylinder. The boundary 
conditions are as follows:   
 
  Inlet: 𝒇(𝟎,𝒚) = 𝟖.𝟓𝑩� 𝒚(𝑯−𝒚)

�𝑯𝟖�
𝟖   

  Outlet: Pressure, 𝑪 = 𝟎  
  Wall: No-slip, including the fluid-structure interfaces between the fluid and the stationary 

cylinder and tail  
 
where 𝑩�  is the average velocity across the inlet. 
 
The cylinder is held fixed and no structural computations are performed for the cylinder. As the cylinder 
begins to shed vortices, the tail will begin to experience a pressure differential that will result in 
deformation of the tail. This deformation is calculated using the structural mechanics equations in a 
similar manner to the 3-D cylinder in cross-flow.  
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Simulation and Results 
 
The simulation of the cylinder with moving tail includes four cases, three of which were performed and 
presented by Turek and Hron (FSI1, FSI2, and FSI3). The first three simulations have the following fluid 
and structural properties based upon the cases presented in Turek and Hron’s paper and repeated in Table 
4.3 below.   
 

Table 4.3.  Properties of the fluid and structure used for the FSI test cases 
Parameter FSI1 FSI2 FSI3 Steel 
𝝆𝒔, density of solid [10 𝟑 kg/m 𝟑]  1.00  10.00  1.00  7.80 
𝝂𝒔, Poisson’s Ratio of solid  0.40  0.40  0.40  0.29 
𝝁𝒔, shear modulus of solid [10 𝟏 kg/(ms 𝟖)]  0.50  0.50  2.00  81400.00 
𝝆𝒇, density of fluid [10 𝟑 kg/m 𝟑]  1.00  1.00  1.00  1.00 
𝝂𝒇, dynamic viscosity of fluid [10 −𝟑 m 𝟖/s]  1.00  1.00  1.00  1.00 
𝑩� , average inlet velocity [m/s]  0.20  1.00  2.00  2.00 
𝑬𝒇, Reynolds number  20.00  100.00  200.00  200.00 

 
The Reynolds number of 20 is run to ensure that the code will not begin to artificially shed vortices for 
conditions below 𝑬𝒇 ≈ 𝟑𝟓[43]. The final simulation, labeled ‘Steel,’ was performed to observe the 
characteristics of a material similar to that in the HIFR; this material was not used in the simulations of 
the paper. 
 
Each run was performed using the implicit transient solver with a maximum time step of 5e −𝟑s for a total 
of 10s. The physics were modeled as fully coupled. Unlike all previous cylinder simulations in cross-
flow, the initial condition for the transient solver was not the steady-state solution for the corresponding 
Reynolds number; instead the initial conditions were all set to zero. In order to overcome any instability, 
the inlet velocity was increased from zero using a smoothing function with the following parameters:  
 

𝒇(𝒔,𝟎,𝒚) = �
𝒇(𝟎,𝒚)

𝟖−𝒄𝑬𝒔(𝝅𝟖𝒔)

𝟖
 𝒊𝒇  𝒔 < 𝟖.𝟎 

𝒇(𝟎,𝒚)  𝑬𝒔𝒉𝒇𝒓𝒘𝒊𝒔𝒇  ..................................................................................... (4.16) 

 
The use of the smoothing function also demonstrates the ability of the code to capture the transients that 
can happen during start-up of the HFIR. 
 
Turek and Hron present four parameters for comparison of their data: x and y displacement at the end of 
the tail and the lift and drag around the entire cylinder and tail. As expected, FSI1 did not create any 
vortex shedding or subsequent tail oscillations. FSI2 and FSI3 produced very comparable results to Turek 
and Hron and the results for FSI2 are presented in Fig. 4.21.  The data is presented well after the cylinder 
has gone into a limit cycle. The results for FSI3 and the Steel case show similar trends. 
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(a) X displacement (m) 

 
(b)Y displacement (m) 

 
Fig.4.21.  Results for the FSI2 test case. The results (red line with circles) are compared to the data provided 

by Turek and Hron (black line) [part 1 of 2]. 



ORNL/TM-2015/656 

98 

 
(c) Lift around cylinder and tail (N/m) 

 
(d) Drag around cylinder and tail (N/m) 

Fig.4.21.  Results for the FSI2 test case. The results (red line with circles) are compared to the data provided 
by Turek and Hron (black line) [part 2 of 2].
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Observation of Fig. 4.21 will reveal that the results presented exceed the computational time domain 
performed for the simulation. This discrepancy results from the fact that Turek and Hron presented their 
results for this time. Because the current simulation had reached a limit cycle, it was not necessary to run 
the simulation for the extended period.  
 
Discussion  
 
The cylinder with tail provides a context to explore large deflections produced by the fluid. In particular, 
the FSI2 case produces results in which the deflection at the tail is approximately 8 times larger than the 
thickness of the plate. This large deflection tests the code’s ability to resolve the large stresses in the 
linear-structural model, to adapt the mesh as the structure deforms, and to capture the change in fluid 
characteristics, especially around the end of the tail. The final solution of FSI2 demonstrating these 
attributes is provided in Fig. 4.22.  The simulation matched the test cases provided by Turek and Hron 
very well and also produces deflections for a much stiffer plate as seen in the Steel case. Using unsteady 
cylinder cases as benchmark simulations for the FSI capabilities of the code, it is now appropriate to 
explore experiments and cases related to the stacked plate configuration of the HFIR. 
 
  

 
 

Fig. 4.22.  2-D solution for the FSI2 case at 10s. 
 
4.3 FLOW OVER FLAT PLATE FUELS 
 
Smissaert performed a series of flat plate experiments at the Pennsylvania State University in 1968 in 
order to better quantify the Miller Critical Velocity[57].  Smissaert constructed a hydraulic loop with a 
test section consisting of a series of parallel flat plates made out of PVC plastic; his experiment utilized 
pressure taps and strain gauges to measure the pressure drop and plate deflections, respectively. All of the 
plates were 0.0625 inches thick, 4.5 inches wide, and 45.0 inches long. The test section was designed to 
allow multiple plate configurations of 5, 9, and 15 plates. The 5 plate/6 channel case with a channel 
thickness of 0.250 inches was chosen for the validation case for the FSI code. The physical properties of 
the PVC plate are provided in Table 4.4. Smissaert chose to use plastic plates in order to observe larger 
deflections and to induce vibrations at a lower mass flow rate. There are discrepancies between the stated 
plate thickness in Smissaert's written description and what is provided in a table in the paper. The plate 
thickness in the table shows a value of 0.058 ± 0.002 in suggesting that this is the as built thickness of the 
plates. A thickness of 0.058 in will be used in the simulations. 
 

Table 4.4.  Properties of the PVC plate used by Smissaert in his experiment 
Property English values Metric Values 
Width 4.500 in 0.1143 m 
Thickness 0.058 ± 0.002 in 1.473 ± 0.0513 mm 
Length 45.000 in 1.143 m 
Modulus of Elasticity 4.8x105 lbf/in2 3.310x109 Pa 
Poisson’s Ratio 0.25 0.25 
Density 90.4 lbm/ft3 1448.1 kg/m3 
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4.3.1 Single Plate Smissaert Simulations 
 
Domain and Boundary Conditions 
 
There are several configurations to consider for simulation for a series of parallel flat plates. The most 
simplified simulation, while maintaining a 3-dimensional setup, would be a single plate. As with all 
numerical simulations, the boundary conditions play a vital role in the convergence and accuracy of a 
solution. Because the plates are parallel and in series, a logical one-plate simulation would utilize periodic 
boundary conditions incorporating flow channels half the size of the full channel on both sides of the 
plate.  
 
The half-channel with periodic boundary conditions makes the assumption that all of the plates deflect in 
the same direction seen in Fig. 4.23 for an infinite number of plates. This assumption is not physical 
because experiments have shown that the parallel plates deflect in opposite directions[56,57] as seen in 
Fig. 4.24.  Due to this configuration being nonphysical, the simulations will not converge and the 
convergence rate stagnates. Two other boundary conditions have proven to work much better in 
reproducing accurate deflections for a single plate case: symmetry and wall. 
 

 
  

Fig. 4.23.  Deflection of a series of plates using periodic boundary conditions. The periodic boundary 
condition, applied to a single plate, assumes that all of the fuel plates deflect in the same direction. 
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Fig. 4.24.  Bending of a series of plates with deflections of adjacent plates going in the opposite direction, 
which is a more physical assumption. 

 
The alternating small and large channels predicted by experiments due to the deflections can be replicated 
by utilizing a half channel setup similar to Fig. 4.23 except the boundaries are now symmetric. The 
symmetric boundary imposes no velocity penetration and vanishing shear stress and is described by the 
following equations: 
 
𝒇𝒇 ⋅ 𝒏 = 𝟎 .............................................................................................................................................. (4.17) 
 

�−𝒑 + 𝝁�𝜵𝒇𝒇 + �𝜵𝒇𝒇�
𝑻��𝒏 = 𝟎 ....................................................................................................... (4.18) 

 
where 𝒏 is the normal vector to the boundary. Where the periodic boundary condition assumes the plates 
all deflect in the same direction, the symmetry boundary condition assumes that each plate deflects in the 
opposite direct of the adjacent plate in a similar fashion to Fig. 4.24. 
 
The wall boundary conditions take a different approach to solving the series of parallel plates. For this 
configuration, a full channel is simulated on each side of the plate with wall boundary conditions at the 
outside of the channels demonstrated in Fig. 4.25.  This simulation makes the assumption that the 
adjacent plates do not move and instead imposes a wall boundary condition along the entire length of the 
channel. This configuration has proven to be the most stable for the one-plate models because of the wall 
function (no-slip) boundary conditions. 
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Fig. 4.25.  Single plate setup with full channels and wall boundary conditions. 
 
The special deviation from ideal geometries of the channels of parallel flat plates plays a major role in the 
amount of deflection observed for the plates. As Kane[65] showed in his theoretical work, the larger the 
deviations, the larger the leading edge deflections. The experiments performed by Stromquist and Sisman 
[54] showed that large deviations produced instabilities in the plates and the extreme cases resulted in 
plate buckling. The experiment by Kennedy, et al.[58], was designed with a single plate and two different 
sized flow channels 80 and 100 mils to ensure a predictable deflection utilizing the knowledge that the 
deviations create a pressure differential that produces a deflection. The most stringent manufacturing 
techniques can never guarantee a perfect geometry thus providing a context to include some deviations 
when simulating flat plates. 
 
Numerical simulations, particularly ones with uniform meshes on each side of a plate, will fail to produce 
deflections if the channel sizes are the same. In fact, a fully coupled solution begins to show instabilities 
and issues with convergence if the channels are the same size. In order to circumvent this problem, a 
small deviation from the ideal geometry is introduced which provides an initial pressure difference 
between the plates to induce the deflection. These deviations do not have to be large in order to produce 
deflections. For the Smissaert case, full channels with no slip boundary conditions were used for the 
simulations presented in the following section. 
 
Simulation and Results 
 
The large aspect ratio of the Smissaert experimental setup (180 length to channel thickness ratio) presents 
a difficult computational problem when it comes to balancing computational time, size and stability. The 
long, thin flow channel requires a large number of elements in order to properly capture the flow field. 
For the flow field, a free tetrahedral mesh is utilized with a mapped quadrilateral mesh along the no-slip 
boundaries of the side wall and plate. The final mesh consists of approximately 750,000 elements.  
 
As seen in Section 4.2.3, FSI simulations with strong fluid and structure coupling must be run using a 
fully coupled solver. In order to obtain a reasonable initial condition, one-way coupling is used to 
establish the initial condition for the fully coupled solver. Without this step, the solution process is not 
stable and no solution can be obtained. A segregated approach has been tried using COMSOL as well as 
with other codes to very poor success[79].  In order to obtain an FSI solution for high-aspect ratio fuel 
plates, the following solution process should be followed: 
 
Use the one-way coupled FSI solver to obtain a fluid solution and solid mechanics solution with a coarse 
mesh. 
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Use the one-way coupled solution as an initial condition for the fully coupled solver using the same mesh 
that was used for the one-way coupling. 
 
Refine the mesh using the previous solution as an initial condition for the fully coupled solver until the 
solution is mesh converged. 
 
The above description was followed to obtain a solution for the Smissaert case of 1.23 Mc which 
corresponds to an inlet velocity of 3.087 m/s. The deflection obtained from COMSOL is compared to the 
Smissaert case in Fig. 4.26. 
 

 
  

Fig. 4.26.  Single plate deflection of the Smissaert case for an inlet velocity of 3.087 m/s (1.23 Mc). 
 
The leading edge deflection of the COMSOL simulation somewhat matches the experimental data. 
Although the steady-state solution is unable to capture the deflection, the unsteady code is able to capture 
such a large leading edge deflection. However, additional runs using finer mesh resolutions are needed to 
ensure the validity of these predictions. In any case, further investigation of this rest case can shed light 
into future flow reduction and blockage calculations. 
 
4.4 FLOW OVER CURVED PLATE FUELS 
 
The Advanced Neutron Source Reactor (ANSR) was a proposed high-performance, heavy-water research 
reactor at ORNL.  The reactor was to consist of involute fuel plates in a similar shape to the HFIR with 
cooling flow rates at approximately 25 m/s. The reactor design was to meet or exceed the neutron flux 
characteristics of the HFIR making it the highest neutron flux reactor in the world. Due to the extremely 
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high flow rates, extensive analysis was done to ensure the stability and integrity of the fuel plate structure 
in the reactor[101,63,102,103,59]. 
 
The ANSR was designed to have two fuel cores similar to the HFIR except the cores in the ANSR were 
to be stacked one after the other instead of the concentric configuration of the HFIR. The conceptual core 
design is provided in 4.27. 
 
The flow through the core is from the bottom to top of Fig. 4.27 and the nomenclature of upper element 
and lower element will be used to describe the larger and smaller cores, respectively. The upper element 
consists of 432 plates with an inner diameter of 175 mm and an outer diameter of 235 mm; the lower 
element consists of 252 plates with an inner diameter of 102 mm and an outer diameter of 168 mm.  Each 
fuel element is 527 mm long with 507 mm being fueled. 
 
During the design process for the ANSR, many experiments were performed in order to establish a safety 
basis for the reactor operations and to better quantify the design requirements. Flow tests measuring 
thermal characteristics of the fuel plates were performed that were designed to measure the heat transfer 
capabilities of the design[104-107]. Another set of experiments were performed to test the deflection 
caused by the pressure differentials from the coolant flow[101,63,102,59,103, 108,109,110]. 
 
The emphasis of this chapter will be on the experiments performed to establish the deflection 
characteristics of the plates. The experimental setup consisted of five “fuel” plates made out of PVC 
plastic. The experiment was run on plates with the involute shape of the upper element with six full flow 
channels around the plates. A dimensional analysis was performed in order to predict the leading edge 
deflection for a series of aluminum plates. The analysis, which is described by Swinson, et al.[63], 
assumes that the Poisson's ratio of each material is approximately the same and thus the measured 
deflection of the PVC plate (referred to as the model) equals the deflection of the aluminum plate 
(referred to as the prototype), leading to the following equations: 
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Fig. 4.27.  Proposed configuration of the ANSR core[109]. 
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𝛅𝒑(𝐩𝐬𝐜𝐝𝐜𝐝𝐲𝐩𝐬 𝐝𝐬𝐟𝐟𝐬𝐜𝐝𝐬𝐜𝐬) = 𝛅𝒎(𝐦𝐜𝐝𝐬𝐟 𝐝𝐬𝐟𝐟𝐬𝐜𝐝𝐬𝐜𝐬) ................................................................... (4.19) 
 
𝑽𝒑 = 𝑽𝒎�𝑬𝒑/𝑬𝒎 ................................................................................................................................. (4.20) 
 
Using Equation 4.20, Table 4.5 presents the inlet velocities for both the prototype and models along with 
the 𝑬𝒇 of each inlet velocity. The Reynolds number in Table 4.5 is calculated using the assumption that 
the hydraulic diameter, 𝒄𝒉, can be set to the channel thickness for a channel whose width is much greater 
than its thickness. For the upper element, the channel width, also the arclength of the involute curve, is 
approximately 71.2 mm long while the channel thickness is 1.27 mm; thus, 𝑬𝒇 is determined from the 
channel thickness of 1.27 mm. 
 

Table 4.5.  Inlet velocities for the ANS prototype and model simulations and experiments. 
𝑽𝒎, m/s 𝑬𝒇𝒎 𝑽𝒑, m/s 𝑬𝒇𝒑 
3.58 4537 17.35 21991 
5.18 6561 25.09 31801 
6.65 8431 32.34 40863 
8.32 10543 40.32 51104 
10.03 12717 48.63 61637 

 
The deflection of the plates was measured using strain gauges located at 5 evenly spaced locations along 
the length of the plates. The deflection was measured at the leading and trailing edges and also at the 1/4, 
1/2, and 3/4 locations along the plate. An inlet section of 527 mm was used. The outlet section length was 
not specified. Table 4.6 provides the physical properties for both the PVC and aluminum plates used for 
the analysis. The density of the PVC plate was not specified such that an average of the density range 
found in Titow[111] was used for the simulations. 
 
In order to model the plates as closely to the specified design criteria, SolidWorks, a CAD software, was 
used to create the involute geometry used for the ANSR plates. The equations and background of the 
involute shape are discussed in Section 6.3.  The geometry was then imported into COMSOL to begin the 
analysis. 
 

Table 4.6.  Properties used for the ANSR experiments. 
Material 𝑬, GPa 𝝆, kg/m3 𝝂 
PVC 2.937 1350 0.35 
6061 Aluminum 69 2700 0.33 

 
4.4.1 Single Plate ANSR Analysis 
 
As was done in the previous section for the flat plate analysis, a single plate with multiple channels was 
simulated using COMSOL. The simulation included analysis of both the plastic plate used in the 
experiment and the aluminum plate used in the dimensional analysis. The steady-state solutions were 
obtained by using the one-way coupled solver to get an initial condition and then using the fully coupled 
solver to obtain a final solution.  
 
Domain and Boundary Conditions 
 
The computational domain consisted of the involute shaped plate, the inlet and outlet plenums and full 
flow channels (50 mils) on each side of the plate. The inlet section was specified as 527 mm while the 
outlet was not specified. The outlet plenum was chosen to be 100mm long. As seen with the flat plate 
case, perfectly symmetrical flow channels do not produce stable deflections such that the plate was offset 
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for its entire length by 5 mils. The offset of 5 mils was chosen as that is the largest deviation allowed in 
the HFIR SAR[7]. The flow domain is provided in Fig. 4.28. 
 
The top and bottom of the flow domain are held as wall boundary conditions following the solution 
strategy for the flat plates. The inlet is specified as one of the velocities in Table 4.5 and the outlet is set to 
0 pressure. The plates, depending on the inlet velocity, are either specified as aluminum or PVC and have 
the properties described in Table 4.6. The final mesh for this case consists of a combination of free mesh 
and boundary layer meshing. The mesh consists of 4 boundary layer elements and 24 cuts in the span-
wise direction for a total of 270,264 mesh elements. The mesh at the leading edge of the plate is provided 
in Fig. 4.29. 
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Fig. 4.28.  One plate ANSR simulation geometry. 
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Fig.4.29. Mesh at the leading edge of the one-plate ANSR case. 

 
Simulation and Results 
 
Again, starting with the one-way coupled solver to obtain an initial flow and deflection solution and 
feeding that into the fully coupled solver, has proven to be the most stable for these strongly coupled FSI 
simulations. For this simulation, a coarse mesh solution was obtained and then fed into finer mesh 
solutions in order to maintain stability and convergence.  
 
The HFIR SAR predicts, using an Eigen frequency analysis, that the first mode of the involute plates will 
have an ‘S’ shape at the leading edge[7]. This has also been confirming using the Eigen Frequency 
analysis techniques in COMSOL. The fully coupled FSI solution also exhibits this ‘S’ shaped leading 
edge deflection and the deflection of the plate is provided in Fig. 4.30. 
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Fig. 4.30.  Exaggerated deflection for the ANSR single aluminum plate at an inlet speed of 17.35 m/s. The 
deflection is measured in mm and the deformation is scaled to accurately show the mode shape of the 

deflection. The red depicts a positive deflection and the blue depicts a negative deflection while the grey is 
zero deflection. 

 
Simulations were successfully completed for both the PVC and aluminum plate. The simulation was 
unable to be completed for an inlet velocity of 48.63 m/s due to stability issues. The COMSOL solutions 
are compared to the aluminum ANSR experimental deflections in Fig 4.31.  The COMSOL simulation 
matches the experimental deflections quite well except for the inlet velocity of 40.32 m/s where the 
deflection at 400mm is quite smaller than the experiment.  
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Fig. 4.31.  ANSR experimental deflections compared to the COMSOL results for the aluminum plate. 
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5.0 3D MODEL SIMPLIFICATIONS AND COMPARISONS 
 
5.1 OVERVIEW 
 
This chapter presents three models.  The first of these is a fully explicit, fully three-dimensional one-plate 
one-channel LEU IFE model, referred to herein as the 3D model.  The intent of the 3D model is to model 
the thermal-hydraulic characteristics of the HFIR core with as much detail and accuracy as is reasonably 
possible given available computational resources.  The 3D model will then be used as a basis for 
comparison for two simplified models, providing a metric for the degree of inaccuracy and loss of fidelity 
associated with the respective simplifications in each. 
 
The first of the simplified models is the t-z1 plane coolant simplification known as the coupled model.  
The coupled model seeks to simplify the 3D model by reducing the coolant channel to a 2D slice oriented 
every perpendicular to the fuel plate surface.  The fuel plate and fuel meat are unaltered from the 3D 
model.  Pairing of the two dimensionally inconsistent domains, solid and coolant, is achieved through 
interdimensional model coupling—a three step process in which solution variables are collected, 
formatted, and applied across dimensionally inconsistent boundaries. 
 
The second of the simplified models is the s-z plane coolant simplification known as the bulk model.  
Where the coupled model simplifies the coolant domain by homogenizing the s-direction, the bulk model 
seeks to achieve additional computational savings by reducing the widthwise fidelity of a fully explicit 
coolant channel to a single cell width.  Bulk coolant properties are then calculated as a straight average of 
bounding wall values.  In order to do this the bulk model neglects no-slip wall effects, boundary layer 
formation, and turbulent flow.  This has the effect of greatly reducing the degrees of freedom associated 
with the coolant domain by minimizing both the number of mesh points as well as the number of solution 
variables associated with each one. 
 
Lastly, results will be presented only for the coupled model with comparable outputs for the 3D model 
serving as comparison.  The bulk model is not yet matured enough to have produced results of sufficient 
quality for analysis.  Results will also be used to provide justification for simplifications in the coupled 
model.  The sum of the coupled model’s results will be used to weigh, empirically, the model’s benefits 
versus any potential detractions resultant of its simplifications. 
 
5.2 3D MODEL FOR COMPARISON 
 
5.2.1 Construction 
 
All geometry pieces were created in SolidWorks and imported into COMSOL for assembly.  The 
assembly process begins with the coolant geometries which are imported first.  For ease of meshing the 
coolant domain is split into six axial components.  The coolant channel geometries extend in the t-
direction to midstream lines of periodicity between adjacent fuel plates.  The six coolant components and 
their axial lengths are listed in Table 5.1. 

                                                           

1 This chapter utilizes an involute coordinate system (s, t, z) for its primary frame of reference.  The coordinate s 
denotes arc-length along an involute curve with its datum (s = 0) on the surface of the base circle (inner side plate).  
It is everywhere-parallel to the involute curve.  The coordinate t is everywhere perpendicular to the involute curve in 
a horizontal (non-axial) plane.  The coordinate z is unaltered from the traditional Cartesian coordinate system (x, y, 
z).  It denotes axial position with its datum (z = 0) located at the leading edge of the fuel meat (not the fuel plate 
which is located at z = -5.08 cm).  The direction of coolant flow is assumed positive with z increasing down the 
length of the channel.  For additional information on the involute coordinate system, see Section 6.3. 
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Table 5.1.  Coolant components 

Component Axial Region Length (cm) 
1 Entrance 2.032 
2 Leading Edge Cap 0.178 
3 Fuel Plate 60.782 
4 Trailing Edge Cap 0.178 
5 Exit 1 1.194 
6 Exit 2 2.311 

 
The exit region is divided into components due to a difference in lengths of the inner and outer side plates 
which will be added to the model assemblage last.  The assembled coolant components are shown in 
Fig. 5.1. 
 

 
 

Fig. 5.1.  Assembled coolant components.  Flow direction is in the +z-direction. 
 
Next, the fuel plate components are added to the assemblage.  Again, for ease of meshing the fuel plate 
domain is subdivided into four components which are listed in Table 5.2. 
 

Table 5.2.  Fuel plate components 
Component Axial Region Length (cm) 
1 Leading Edge 0.089 
2 Unfueled Top 4.991 
3 Fueled Section 50.800 
4 Unfueled Bottom 5.080 

 
The leading edge is separated from the unfueled top region because it is rounded and is easier to mesh 
separately.  The fuel plate components are imported into the COMSOL assemblage and a Boolean 
subtraction performed in order to remove the overlapping coolant domain.  The fuel meat is then imported 
and subtracted from the fuel plate using the same process.  A generalization of the side profile that this 
produces is shown in Fig. 5.2. 
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Fig. 5.2.  COMSOL assemblage side profile diagram.  Note that the diagram is not to scale.  The coolant 
channel is shown in blue, the fuel plate in grey, and the fuel meat in orange.  While the coolant and fuel plate 

extend to both side plates, the fuel meat does not. 
 

The side plates are imported last.  The inner side plate has an axial length of 64.364 cm and the outer side 
plate a length of 66.675 cm.  They are aligned equally with their leading edges 2.121 cm upstream of the 
fuel plate’s leading edge.  This is even with the entrance boundary on the top of the leading coolant 
component.  This placement leads both side plates to extend downstream of the fuel plate’s trailing edge.  
Their disparity in length dictates that the outer side plate extends 2.311 cm farther downstream than the 
inner side plate.  The orientation is shown in Fig. 5.3. 
 

 
 

Fig. 5.3.  Solid geometry assemblage.  Flow direction is in the +z-direction.  The inner side plate is shown on 
top in this figure.  The geometry in between is the fuel plate.  Coolant geometry components are not pictured. 
 
This length disparity is an intentional design feature.  After a core’s operation cycle has ended it is 
removed from the reactor and placed in the spent fuel pool.  Ideally, it is placed on top of a rack allowing 
ample water to enter into the core from below where natural convection due to heat generated by the 
leftover fuel expels the water upwards.  The side plates are designed such that if a spent core should 
somehow fall off of its rack and come to rest upright on the floor of the pool, water is able to access the 
bottom of the core via the vacant flux trap in the center and then be driven upward through the fuel 
elements via convection.  This opening must also be taken into account in the COMSOL model, thus the 
necessity for coolant components 5 and 6 to exist separately. 
 
With the inclusion of the side plates, the model geometry is completely assembled in COMSOL.  The last 
step is in stitching the geometry components together.  COMSOL is capable of doing this in two ways via 
connections that are known as unions and assemblies.  A union is the ideal inter-component connection as 
it directly links adjacent elements to one another.  In a union, any shared face between connected 
components is considered a single entity.  The mesh in one component must match the mesh in the other 
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component at the interface between the two.  In an assembly, a shared face between components is 
considered as two elements, one for each component.  For instance, two blocks stacked on top of one 
another would share a single surface—the bottom of the upper block and the top of the lower block.  In an 
assembly, the top of the lower block and the bottom of the upper block are considered independent of one 
another.  Meshes do not have to match across this interface and physics, such as heat flow, do not 
inherently maintain continuity across it.  This can be remedied, however, by placing a boundary pairing 
on both sides of a shared surface so that continuity is enforced between them. 
 
The assembly interface, while not ideal, can be necessary for complex geometries in which meshing is 
difficult.  Such is the case with some of the components in the fully three-dimensional model with its 
extremely high-aspect ratio and narrow channels.  The effect on results is miniscule.  The requirement 
that the model analyze each assembly interface every iterate, interpolating values and fluxes across its 
surface from one side to the other and back again, does, however, slightly increase the time per iterate. 
 
Components which can be connected via union are done so.  All of the coolant components, for example, 
can be connected to one another via union as can the fuel meat to the fueled section of the plate.  The 
fueled section, however, must be connected to the unfueled top and bottom of the plate via assembly.  
This is due to a disparity in meshes on their shared faces. 
 
Given the need for this assembly, the fuel plate cannot be unionized with the coolant channel as one 
entity.  The simplest way to divide them is to create an assembly between the external surface of the fuel 
plate and the adjacent wall surfaces of the coolant channel.  The last required assemblies exist between 
the side plates and the adjacent coolant channel/fuel plate surfaces. 
 
5.2.2 Inputs 
 
The primary model inputs are composed largely of reactor design criteria.  Initial conditions are specified 
for pressure, temperature, and velocity according to the inlet and outlet conditions in Table 5[14]. 
 

Table. 5.3.  Initial Inlet and outlet conditions 
 

Variable Inlet Outlet 
p (MPa) 3.33 2.59 
T (K) 322 342 
u (m/s) 7.77 7.77 

 
The initial conditions for pressure and temperature are specified as the linear interpolation between their 
respective inlet and outlet values.  The initial condition for velocity was specified using the constant flow 
rate relation which states that flow through an area of A/2 will have a velocity twice that of the same flow 
through an area of A.  Given the uniformity in thickness between the fuel plates and coolant channels, the 
flow area through the fuel section of the reactor core is half the area of the unimpeded section 
immediately upstream.  Initial conditions for pressure, temperature, and coolant velocity as functions of 
axial position are given in Figs. 5.4, 5.5, and 5.6, respectively.  In all three figures dotted red lines 
indicate extrapolated values.  The initial temperature condition was applied to all domains, both solid and 
liquid.  The initial pressure and velocity conditions were applied only to the coolant domain. 
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Fig.5.4.  Initial pressure profile. 
 
 

 
 

Fig. 5.5.  Initial temperature profile. 
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Fig. 5.6.  Initial velocity profile. 
 
The second model input is the nuclear power generation profile which is divided into two components:  a 
power distribution and fuel thickness factor.  The power distribution is a two-dimensional map of LEU 
beginning-of-cycle (BOC) power density (W/m3) as a function of radial and axial position, (r,z).  The 
power distribution is generated by the Monte Carlo N-Particle (MCNP) transport code[112].  MCNP is a 
neutronics code which models the release of nuclear energy throughout the core.  It outputs neutron fluxes 
(neutrons/cm2-s) as a function of (r,z).  These can then be converted into fission rate densities 
(fissions/cm3-s) by multiplying by the macroscopic fission cross-section (atoms/cm).  Finally, these can 
be converted into power densities (W/cm3) by multiplying by the amount of energy released per fission 
reaction (J/fission), which is a constant. 
  
MCNP performs this simulation by homogenizing the reactor core internals (fuel meat, aluminum clad, 
coolant water, etc.) into a single entity and then dividing the core into axisymmetric cells along an r-z grid 
as shown in Fig. 5.7.  As a result of this homogenized grid structure, power density profiles are output in 
the form of power-per-cell-volume, cellP ′′′ .  The profile is shown in Fig. 5.8. 
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Fig.5.7.  MCNP Cells.  The inner fuel element cells are boxed in red. 
 
For this thermal-hydraulic study, however, it is more convenient to restrict the nuclear power generation 
to the fuel meat alone.  While not strictly physical it does produce a conservative temperature estimate as 
an equal power output is being produced in a smaller volume, thus raising the local power densities in the 
fuel.  To make the conversion from power-per-cell-volume to power-per-fuel meat-volume, fuelP ′′′ , the 
MCNP power density output can be divided by the ratio of a cell’s fuel meat volume-to-total volume, 
Vratio.  Given that width and height are equal for both fuel meat and total cell volume, it is essentially a 
ratio of the average fuel meat thickness in each cell normalized against the cell’s thickness.  The result is 
thus the fuel meat’s thickness profile as a function of radius. 
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Fig. 5.8.  MCNP power density profile.  The direction of flow is in the +z-direction. 
 
The thickness data is imported directly into COMSOL alongside the power-per-cell-volume nuclear 
power generation density.  The final power-per-fuel meat-volume is calculated by dividing the MCNP 
power density output by the volume ratio of each cell as given in Equation  5.1. 
 

i
ratio

i
cellii

fuel V
PcP
′′′

×=′′′ 1
 .....................................................................................................................................(5.1) 

 
where i is an index denoting cell-specific values and the coefficient c1 is a correction factor that can be 
used to manually set the magnitude of the distribution in order to maintain the relation 
 

∑
=

×′′′=
I

i

i
fuel

i
fuelplate VPP

1  .............................................................................................................................(5.2) 
 where I is the total number of MCNP cells in a single plate and the total power output, Pplate, is known to 
be 217.72 kW.  The total power output can be determined independently according to 
 

IFEIFEcoreplate nfPP ×=  ..........................................................................................................................(5.3) 
 
where Pcore is the total power output of the core, 100 MW,  fIFE is the fraction of the total power output 
produced in the inner fuel element, 37.23%, and nIFE is the total number of inner fuel element plates, 171.  
The final power density profile that is input into COMSOL is shown in Fig. 5.9. 
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Fig. 5.9.  COMSOL Power Density Profile.  The direction of flow is in the +z-direction. 
 
5.2.3 Physics 
 
Energy transport occurs through three methods in the 3D model:  heat transfer in the solid domains, heat 
transfer in the coolant domain, and turbulent mass transport in the coolant domain.  Heat transfer in the 
solid domains is governed by the steady-state heat equation[38]. 
 
 ( ) 0=+∇⋅∇ QTλ  .....................................................................................................................(5.4) 
 
where thermal conductivity, λ, is a function of T and thus dependent on position and Q is volumetric heat 
generation.  The total volumetric heat generation, Qtot, is defined such that all of the power generated in 
the fuel plate is assumed to be in form of heat energy 
 
 platetot PQ ′′′= . .................................................................................................................................(5.5) 
 
It is important to note that the involute coordinate system (s, t, z) was developed only to aid with the 
specification of model inputs and the analysis of results.  The computational scheme still operates in a 
Cartesian coordinate system (x, y, z).  The gradient thus has the familiar form 
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The volumetric heat generation term Q in Equation 5.4 is present only in the fuel meat.  In the 
surrounding aluminum fuel plate and side plates Q equals zero causing Equation 5.4) to reduce to 
Fourier’s law, giving rise to linear heat flow according to 
 
 q ′′=∇− Tλ  ................................................................................................................................(5.7) 
where q ′′  represents the heat flux vector with components xq ′′ , yq ′′ , and zq ′′ .  The solid domains 
experience three types of boundaries:  thermally insulated, convective, and periodic.  Thermally insulated 
boundaries are applied to the inner surface of the inner side plate and the outer surface of the outer side 
plate—the inner and outer circumferences of the model, respectively.  The thermally insulated boundaries 
satisfy the Neumann-type constraint that the temperature gradient be zero.  The convective boundaries 
ensure continuity of temperature and heat flux across the solid-liquid interface.  The periodic boundaries, 
applied to the concave and convex faces of the side plates, enforce the same conditions. 
 
Mass transport in the coolant domain is governed by the Reynolds-Averaged Navier-Stokes (RANS) 
equations with the k-ε turbulence model chosen to provide closure.  In the most recent COMSOL release 
as of the onset of this project, version 4.3.A, the only available turbulence models were k-ε, k-ω, and 
Low-Reynolds Number (LRN) k-ε.  The k-ε model was selected through the process of reduction.  The 
models were considered on a two-tiered scheme with the two-equation k-ε and k-ω models being on a 
similar level of complexity and the LRN k-ε model adding an additional level.   
 
The LRN k-ε model’s added complexity comes from the fact that it explicitly models the fluid domain in 
its entirety, including all the way up to wall boundaries.  The two other models, by contrast, utilize wall 
functions to simplify the already complex boundary layer region.  Use of the LRN k-ε model requires 
considerably more boundary-layer mesh elements which in turn gives rise to added computational cost, 
stability issues, and meshing difficulties.  Given the desire to produce as efficient a model as possible 
with the coupled model, the LRN k-ε turbulence model was considered too expensive for use. 
 
The two remaining turbulence models were both tested on simplified proof-of-concept models and the 
completed 3D model.  In the simplified models the k-ω model displayed a marginally faster convergence 
rate than the k-ε model.  In the 3D model, however, the k-ω suffered from stability issues resultant of the 
high-aspect ratio mesh elements in the narrow coolant channel.  These effects were especially pronounced 
in corners between the fuel plate and side plates where inter-element mesh structures often became 
mangled.  While this problem can be overcome through the use of more advanced meshing techniques not 
incorporated in either model, the k-ε model proved the most stable and robust of the available turbulence 
models. 
 
Both models consider variable-property flow in which coolant properties are given as functions of 
temperature.  In order to model such a flow, the use of the semi-compressible N-S equations is required.  
Favre mass-averaging is used to decompose flow variables in lieu of the traditional Reynolds time-
averaging which is insufficient for compressible flow.  The final set of equations, therefore, will still be 
referred to as the RANS equations.  They are 
 

( ) 0~ =⋅∇ uρ , ............................................................................................................................................ (5.8a) 
 

( )RSp τρτρ +⋅∇+−∇=∇⋅ ~~~ uu  ............................................................................................................. (5.8b) 
 
where a ‘–’ overbar denotes a Reynolds time-averaged quantity and a ‘~’ overbar denotes a Favre mass-
averaged quantity and the viscous stress tensor and the specific Favre-averaged Reynolds stress tensor can 
be written, respectively, as 
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and 
 

″
′′−= T

R uuρτρ . ................................................................................................................................. (5.10) 
 
where a double quotation mark denotes the fluctuating component of a flow variable decomposed via 
Favre mass-averaging. 
 
From here the two-equation k-ε model is chosen to provide closure for the RANS equations.  This 
introduces two more transport equations for specific turbulent kinetic energy, k, and the dissipation rate of 
turbulent energy, ε.  They are 
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where the turbulence production term, Ρk, is given by 
 

u~∇=Ρ Rk τρ  ........................................................................................................................................... (5.13) 
 
and the Favre-averaged Reynolds stress tensor by 
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The dynamic eddy viscosity, μT, is given by 

ε
ρµ µ

2kCT =
. ....................................................................................................................................... (5.15) 

 
Dimensionless constants for both turbulent transport equations are given in Table 5.4[113]. 

 
Table 5.4.  k-ε Transport constants 

Constant Value 
Cμ 0.09 
Cε1 1.44 
Cε2 1.92 
σk 1.00 
σε 1.30 

 
Heat transfer in the coolant is governed by the heat equation for translating media 
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( )TTcp ∇⋅∇=∇⋅ λρ u~

. ......................................................................................................................... (5.16) 
 
At the inlet, Dirichlet boundary conditions are imposed for temperature and velocity based on the model 
inputs in Table 5.3.  Dirichlet conditions are also imposed for specific turbulent kinetic energy and 
dissipation rate.  They are 
 

( )2
2
3

Tinin Ik u=
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and 
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where IT is the turbulence intensity and LT is the turbulent length scale.  Typical values for IT in fully 
turbulent flows typically vary between 5% and 10%. Five percent was chosen for the 3D model.  LT was 
set to 7% of the hydraulic diameter, DH, which is a standard value for fully developed pipe flow. 
 
A Dirichlet condition was specified for pressure at the outlet boundary.  Homogeneous Neumann 
conditions were imposed for specific turbulent kinetic energy, dissipation rate, and viscous stress. 
 
The inward facing coolant boundary that is the result of the difference in lengths between the inner and 
outer side plates is constrained using an open condition.  The open boundary condition can function as 
either a pseudo-inlet or pseudo-outlet boundary condition depending on the sign of u· n̂ .  Given the open 
boundary’s location adjacent to the coolant outlet at the bottom of the model, in this instance it functions 
purely under outlet condition restraints.  The open boundary condition imposes outlet boundary 
conditions along with a homogeneous Neumann condition for temperature 
 
Both the coolant outlet and the bottom faces of the side plates serve as heat outflows in which a 
homogeneous Neumann condition for temperature is imposed to ensure that the normal temperature 
gradient is zero.  The open coolant boundary also serves as a heat outflow, with the condition of zero heat 
flux already specified. 
 
The periodic coolant boundaries impose the same continuity conditions on temperature and its gradient as 
the periodic boundaries in the side plates.  Additional continuity conditions are specified for coolant 
velocity, pressure, specific turbulent kinetic energy, and dissipation rate. 
 
The final boundary type in the coolant domain is the solid, no-slip, impermeable wall.  The k-ε turbulence 
model utilizes wall functions to model near-wall boundary layer flow.  This creates a gap of thickness δw 
between the physical wall and the edge of the computational fluid domain across which the fluid flow is 
not explicitly modeled.  This wall-offset distance is calculated according to 
 

 µ
δρ

δ τ w
w

u
=+

 .......................................................................................................................................... (5.19) 
 

where 
+
wδ  is the dimensionless wall-offset distance and the shear velocity, uτ, is provided by 
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2/14/1 kCu µτ = . ...................................................................................................................................... (5.20) 

 
The wall-offset distance is calculated as half the height of the local wall-adjacent boundary mesh element 

or that value which produces a 
+
wδ  of 11.06, whichever is greater.  A 

+
wδ  of 11.06 corresponds to the 

dimensionless distance from the wall, 
+
cy , where the linear velocity profile relationship of the near-wall 

viscous sub-layer intersects the logarithmic relationship of the inner log-law layer.  This intersection is 
shown in Fig. 5.10. 
 

 
 

Fig. 5.10.  Law of the wall.  The linear relation for u+, in blue, is valid to the left of the intersection point in the 
viscous sublayer.  The logarithmic relation, in green, is valid to the right in the inner log-law layer.  The 

smooth Spalding approximation, in teal, is valid throughout[43]. The von Kármán constant, κ, equals 0.41.  B 
equals ~5.5. 

 
5.2.4 Meshing 
 
The axial consistency of the 3D model makes meshing a relatively straightforward affair.  Many geometry 
components can be meshed by mapping a 2D surface in the s-t plane and extruding down their axial 
lengths.  This extrusion process was modeled after the MCNP cell distribution.  Tests showed that, as a 
minimum, the fuel meat, fuel plate, and adjacent coolant should be mapped with an axial mesh 
distribution at least equal to the MCNP cell distribution.  The MCNP axial cell distribution is shown in 
Table 5.5.  The MCNP distribution is only defined for the length of the fuel meat.  It is symmetric about 
the axial midplane of the fuel meat with tighter cell spacing in the center and at the ends corresponding to 
areas with the greatest heat generation. 
 
The MCNP distribution was continued into the adjacent coolant and side plates.  For geometries up- and 
downstream of the fueled region, axial distributions were devised that were comparable to the MCNP 
distribution.  In order to increase the smoothness of solutions, the MCNP mesh distribution was doubled 
in the final 3D model.  Both axial distributions are shown in Fig. 5.11. 
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All of the distinct mesh domains are shown via diagram in Fig. 5.12.  Mesh domains are color-coded 
according to the mesh type associated with them.  The most predominant, and the most ideal, mesh type is 
the structured mesh which is applicable to every axially-consistent geometry component free of internal 
vacancies.  The clad surrounding the fuel meat is the only axially-consistent geometry incompatible with 
the structured mesh type.  Due to the hole in the geometry’s center where the fuel meat sits, its s-t cross-
section had to be mapped using a free-triangular mesh which was then extruded the same as the structured 
meshes.  A cross-sectional cut-out showing the s-t plane through the fuel meat, surrounding clad, inner 
side plate, and coolant is shown in Fig. 5.13. 
 

Table 5.5.  MCNP axial cell distribution 
Cell wall axial position (cm) Cell height (cm) 

50.8 0.5 
50.3 0.5 
49.8 1 
48.8 1 
47.8 1.4 
46.4 4.2 
42.2 4.2 
38 8.4 

29.6 3.2 
26.4 2 
24.4 3.2 
21.2 8.4 
12.8 4.2 
8.6 4.2 
4.4 1.4 
3 1 
2 1 
1 0.5 

0.5 0.5 
0  

 
The remaining geometries—the rounded leading edge of the fuel plate and the leading and trailing edge 
coolant caps—were meshed using free-tetrahedral meshes unstructured in all three dimensions.  They are 
shown in Fig. 5.14.  Lastly, a boundary-layer mesh was added to every wall boundary in the coolant 
domain as demonstrated in Fig. 5.15. 
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Fig. 5.11.  3D Axial Mesh Distributions.  The MCNP axial mesh distribution is shown in (A) and the 2X 
MCNP distribution in (B).  The side plates are highlighted in blue.  The coolant channel is shown in grey.  

The fuel plate and fuel meat are obscured behind the coolant channel.  Figure is not representative of final 
mesh as all spanwise (along the length of the involute curve) mesh distributions have been set to 1 for ease of 

viewing.  The final mesh structure would not be discernible at this scale. 
 

 
 

Fig. 5.12.  Mesh Domains.  Figure is not to scale. 



ORNL/TM-2015/656 

128 

 
 
Fig.5.13.  Fueled section cross-sectional mesh.  Structured quadrilateral mesh elements in the coolant region 
have been converted to triangular elements in order to facilitate meshing between axial coolant components. 

 

 
 

Fig. 5.14.  Free-tetrahedral mesh domains.  The leading edge coolant cap geometry is shown in (A), the 
rounded leading edge clad in (B), and the trailing edge coolant cap in (C). 
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Fig. 5.15.  Boundary-layer mesh detail. 
 
Given the use of the MCNP axial cell distribution, mesh convergence studies were performed by varying 
the resolution of the s-t plain face meshes only.  Mesh densities were driven by the competing needs to 
produce a scale that was sufficiently small so as to capture all, or enough of, the underlying physics in a 
domain without adding undue complexity to the model.  In the coolant domain this is most evident in the 
creation of the boundary layer and its effect on perceived near-wall viscous shear stresses.  In the fuel 
meat, the problem arises in capturing the quadratic nature of the temperature profile resultant of internal 
heat generation.  This quadratic nature can easily be demonstrated via solution of the 1D heat equation 
with heat generation. 
 

Q
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Integrating yields 
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Integrating again and dividing by λ produces a temperature profile with quadratic elements 
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The quadratic temperature profile is, obviously, most easily captured using quadratic basis functions.  The 
continuity between the coolant and the solid domains in the 3D model, however, prevents multiple basis 
functions from being used, even in separate domains.  In the COMSOL distribution utilized for this work, 
using quadratic basis functions to solve for temperature in the fuel meat means that they must also be used 
in the coolant.  Such an approach proves computationally unfeasible as the model’s degrees of freedom 
increases drastically due to the required resolution of the boundary-layer mesh.  It is thus simpler and 
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more expedient to increase the mesh resolution in the fuel meat and use linear elements throughout the 
model. 
 
5.3 SIMPLIFIED T-Z PLANE MODEL (COUPLED MODEL) 
 
5.3.1 Construction 
 
The three-dimensional fuel meat and fuel plate geometries used in the 3D model are also used in the 
coupled model.  The coolant, however, is represented using a two-dimensional slice in the t-z plane as 
shown in Fig. 5.16.  The axial heights of the entrance and exit coolant regions above and below the fuel 
plate, respectively, are the same as in the 3D model.  The coolant domain is broken into three components 
for ease of meshing.  The coolant domain’s axial boundaries upstream and downstream of the fuel plate in 
the t-direction correspond to the midplane of the adjacent fuel plates. 
 

 
 

Fig. 5.16.  Coupled model coolant domain.  The coolant slice is shown in blue.  The obstructions created by 
the adjacent fuel plates in the coolant channel are marked with dotted lines.  Note, however, that the fuel 

plates are not included in the 2D geometry.  The approximate position of the fuel meat within each fuel plate 
is shown in orange.  Flow direction is in the +z-direction.  Diagram is not to scale. 

 
The side plates are not included in the coupled model.  This is due, in part, to the issue of how to include 
them in the model.  The contact interface with the fuel plate could easily be appended to the three-
dimensional fuel plate domain.  The coolant domain, however, homogenizes the s-direction.  There would 
be no physically meaningful way to attach them to the coolant domain.  This simplifying decision is 
validated by the 3D model.  Energy balances performed on the coolant-facing surfaces of the side plates 
show that the heat transfer into both to be minimal compared to both the overall entropy change in the 
coolant channel and the heat generation in the fuel meat. 
 
The use of unions and assemblies—continuous and discontinuous inter-component mesh boundaries—is 
the same in the fuel plate as in the 3D model.  The coolant domain’s three components are joined via 
union resulting in a single continuous mesh throughout. 
 
5.3.2 Inputs 
 
The coupled model had the same inputs as the 3D model for initial conditions as well as inlet and outlet 
conditions and nuclear heat generation.  The only major difference is the addition of an involute 
coordinate system which was imported into the model for use in implementing the interdimensional 
coupling mechanism.  Since there is no direct way to translate from an x-y Cartesian coordinate system to 
an s-t involute coordinate system, the impromptu coordinate had to be generated via a contour plot.  A 
table of points with structured θ and t values was created in Matlab.  The x- and y-coordinates were then 
calculated for each point and stored in a matrix.  The grid that this produces is shown in Fig. 5.17. 
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Fig. 5.17.  Involute coordinate contour grid points.  Each group of colored markers is associated with a 
constant t value in which t (in) = -0.12, -0.11, -0.06, -0.01, 0.04, 0.09, 0.14, 0.15.  θ = 0.00 to 1.65 by 0.01 radian 

increments for each group. 
 
All four coordinate values (x, y, θ, and t) were then imported into COMSOL.  The x- and y-coordinates 
were treated as independent variables while θ and t were treated as dependent functions.  This allowed for 
a contour map of each involute coordinate to be created.  These are shown in Figs. 5.18 and 5.19. 
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Fig. 5.18.  θ-Coordinate contour map.  The involute geometry is shown for reference. 
 
Each coordinate map was made much larger than the involute geometry, which is shown underlain for 
reference.  This was due primarily to the jaggedness of the contours on the edges of the maps where the 
coordinate grid ends.  In order to prevent these discrepancies from infiltrating into the solution domain the 
boundaries were expanded to ensure smooth contours throughout.  Once the functions θ(x,y) and t(x,y) 
exist they can be referenced in COMSOL the same as a coordinate.  The involute coordinate s was created 
as a function of the two dependent variable, s(θ,t). 
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Fig. 5.19.  t-Coordinate contour map.  The involute geometry is shown for reference. 
 
The other additional model input is the channel width as a function of axial position, wc(z).  It is used in 
averaging flow properties across the width of the 2D channel slice.  The channel width is constant for the 
length of the entire fuel plate except at the rounded leading edge (the right-hand side of coolant Region 1 
in Fig.5.16.  Therefore, the channel width function defines the axially-varying width along the length of 
the rounded leading edge.  Constant-value extrapolations are used from the boundary values of the 
function to define the constant width along the rest of the length of the fuel plate. 
 
The width of one-half of the rounded leading edge, wr, is given as a function of its axial position 
 

( ) ( )22
ocr zzrzw −−=  ........................................................................................................................ (5.24) 

 
where rc is the radius of the rounded leading edge and zo is the leading edge segment’s axial center of 
rotation.  The inverse of this width, the void width, wv, is calculated by 
 

( ) ( )zwrzw rcv −= . .................................................................................................................................. (5.25) 
 
Both functions are shown in Fig. 5.20. 
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Fig. 5.20.  Axially-dependent leading edge widths.  rc is set to 1 and zo to 0.  Flow direction is in the –z-
direction. 

 
At its widest (at the stagnation point at the tip of the rounded leading edge) the void width is 4rc.  At its 
narrowest (once the rounded leading edge has reached the axially-constant width that it will maintain for 
the length of the fuel plate) this width is 2rc.  The channel width in cm is thus provided by 
 

( ) ( ) 0165.508.5,24 22 −≤≤−−−−= zzzrrzw occc  .......................................................................... (5.26) 
 
where zo equals -5.0165 cm.  The channel width is only applicable for axial positions bounded by the fuel 
plate.  Even though the function returns values in the entrance and exit coolant regions, they are 
irrelevant.  The final function is shown in Fig. 5.21. 
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Fig. 5.21.  Channel width input function.  Flow direction is in the +z-direction.  The z-coordinate in the figure 
is a localized coordinate system, not the global s-t-z system. 

 
5.3.3 Interdimensional Model Coupling 
 
The interdimensional model coupling mechanism functions in two directions:  from the surface of the fuel 
plate to the surface of the coolant channel (3D-to-2D) and from bulk values in the coolant channel back to 
the surface of the fuel plate (2D-to-3D).  In this way it produces a looped dependency between the two 
models in which their respective outputs and inputs are iteratively solved along with the domains to 
which they belong until the coupled system reaches a satisfactory equilibrium state. 
 
Labeling the respective coupling mechanisms as such (3D-to-2D and 2D-to-3D) can be slightly 
misleading.  The fuel plate-to-coolant channel coupling, for instance, involves the collection of variables 
on a 2D surface boundary (s-z plane) that are then reformatted and applied to a 1D edge boundary (t-z 
plane).  It would not be incorrect to think of this as a 2D-to-1D coupling based on the dimensions of the 
collected and applied coupling variables. 
 
The reverse coupling mechanism, however, involves the collection of fluid properties that are inherently 
2D that are then reformatted and applied to a 2D surface.  The destination surface exists in the s-z plane 
and the coolant channel in the t-z plane, however.  Coupling variables can only be passed in a dimension 
that is shared between the two domains.  In this case the axial dimension z is the only common dimension 
shared between the two.  As with the first coupling mechanism, the result is a 2D-to-1D coupling.  The 
respective coupling mechanisms are, therefore, most easily identified based on the dimensionality of the 
two respective domains, fuel plate (3D) and coolant channel (2D). 
 
The 3D-to-2D coupling will be considered first.  In many ways it is the simpler of the two couplings.  
Primarily, only a single variable, versus four in the reverse direction, is being coupled.  Additionally, the 
manner in which the reformatted variable is applied to its destination domain is the simpler of the two.  
The only communication from the fuel plate to the coolant channel is in the passing of surface 
temperature values, Tsurf.  Inherently, surface temperature is a function of s and zp, where a subscript p 
denotes a coordinate in the fuel plate domain.  The original surface temperature variable is given by 
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( )psurf zsTT ,= . ...................................................................................................................................... (5.27) 
 
The two-dimensional axial surfaces in the fuel plate domain become one-dimensional axial edges in the 
coolant domain.  The Tsurf variable must have its dependency in the s-direction removed in order to be 
applied to these edge boundaries.  This can be achieved by integrating in the s-direction to produce a new 
variable, ηT, given by 
 

( ) ( )∫=
2

1

,
s

s
psurfpT dszsTzη

. ....................................................................................................................... (5.28) 
 
where s1 is the s-coordinate at the fuel plate-inner side plate boundary and s2 is the s-coordinate at the fuel 
plate-outer side plate boundary.  This new variable has the correct spatial dependency but not the correct 
units—K-m versus the desired K.  To rectify this, it is divided by the length it was integrated over.  This 
produces a variable of spanwise-averaged surface temperature values as a function of axial position 
 

( ) ( )
s
z

zT pT
psurf ∆
=
η

 ................................................................................................................................... (5.29) 
 
where Δs is the span of the fuel plate.  This spanwise-averaged temperature variable is then applied 
directly to the coolant domain boundaries such that 
 

( ) ( )psurfcsurf zTzT =  ................................................................................................................................ (5.30) 
 
where a subscript c denotes a coordinate in the coolant channel domain.  The entire process is shown in 
the flow chart in Fig. 5.22. 
 

 
 

Fig. 5.22.  3D-to-2D Coupling mechanism flow chart. 
 
This procedure is applicable for every axial surface on the fuel plate, including the rounded leading edge.  
Returning to Fig. 5.22 shows, however, that the trailing edge of the fuel plate (in the fuel plate domain) is 
confined to the s-t plane.  Surface temperatures are thus given as a function of s and t instead of s and z 
 

( )psurf tsTT ,= . ...................................................................................................................................... (5.31) 
 
The t-coordinate is now the common coordinate shared between the two domains.  The Surface 
temperature values are once again averaged along the span of the plate and stored as a function of t.  The 
final application then takes on the form 
 

( ) ( )psurfcsurf tTtT = . ............................................................................................................................... (5.32) 
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Additionally, the coupling of the convex and the concave sides must be kept separate so that they are 
allowed to vary independently of one another.  Therefore there are technically two 3D-to-2D coupling 
variables, one for each side of the fuel plate.  Surface temperature values are applied to the coolant 
channel edge boundaries via Dirichlet constraints.  The coupling process, however, also inherently 
conserves the heat flux. 
 
The reverse coupling mechanism is the 2D-to-3D coupling in which coupling variables are passed from 
the coolant to the fuel plate in order to complete the feedback loop.  By the merit of its construction as a 
two-dimensional t-z slice, the coolant channel is, in essence, already representative of bulk flow 
properties in the s-direction.  Given the coolant channel domain (t-z) and the fuel plate surfaces (s-z), the 
only common variable is again the axial coordinate z.  In order to remove the t-coordinate dependency 
from the coolant channel flow variables, bulk values are taken in the t-direction as a function of z.  The 
four coupling variables are T, ρ, μ, and Pr. 
 
The definition for bulk temperature in a flow is 
 

rate flowcapacity heat 
rate flowenthalpy  total

==
C
I

bT




. ........................................................................................................ (5.33) 
 
In the t-z coolant channel, for variable-property flow, this takes on the form. 
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. ....................................................................................................................... (5.34) 
 
This operation, however, is extremely expensive in that each integral requires its own coupling 
mechanism.  Every additional coupling mechanism in the model increases the solution time by a 
nontrivial fraction.  This is especially true of the two mechanisms contained in this formulation given the 
relatively large number of operations contained within (compared to the coupling mechanism in Equation 
5.28 in which only a single variable is collected).  It is more computationally efficient to calculate bulk 
temperature in the same manner as surface temperature.  While less accurate, the difference in passed 
bulk temperature values is small enough that the use of the more rigorously physical formulation is not 
warranted. 
 
In this simplified formulation, bulk temperature, or any coupling flow variable, ϕ, represented by 
 

( )ztc ,φφ = . ............................................................................................................................................. (5.35) 
 
can be passed according to 
 

( ) ( )
( )

( )
dtztz

cc

cc

zw

zw
cc ∫

+

−

=
2/

2/

,φηφ

, .......................................................................................................................... (5.36) 
 

( ) ( )
( )cc

c
cb zw

z
z φηφ =

, .................................................................................................................................... (5.37) 
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and 
 

( ) ( )cbpb zz φφ = . .................................................................................................................................... (5.38) 
 
The 2D-to-3D coupling process is shown in Fig. 5.23. 
 

 
 

Fig. 5.23.  2D-to-3D coupling mechanism flow chart. 
 
Unlike the 3D-to-2D coupling, the process of collecting and passing variables from the trailing edge in 
the coolant domain to the fuel plate domain is unchanged.  Flow properties across both surfaces are still 
averaged in the t-direction and stored as a function of z.  Therefore, a single value for each flow property 
is applied to the entire trailing edge. 
 
The coupled flow properties are applied to the fuel plate surface via a simple convective boundary 
condition 
 

( ) ( )bsurfpn TThzq −=′′  ........................................................................................................................... (5.39) 
 
where the heat transfer coefficient, h, is given as 
 

( )
h

p D
zh λNu=

 ..................................................................................................................................... (5.40) 
 
where Dh is the hydraulic diameter and the Nusselt number, Nu, comes from a modified form of the 
Hausen correlation[114]. 
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 .................................................................... (5.41) 
 
where Dh is the hydraulic diameter of the full 3D coolant channel, not the channel width of the 2D coolant 
slice, a subscript z denotes a local value, and a subscript w denotes a wall value.  The original Hausen 
correlation is valid in both the turbulent and transition flow regimes.  The modified Hausen correlation 
was derived by Gambill and Bundy[32] as a result of experimental work performed in the study of 
turbulent flow in thin rectangular channels.  The range of conditions over which Gambill and Bundy 
experimentally verified the applicability of the modified Hausen correlation is shown in Table 5.6.  The 
range of nominal HFIR operating conditions are also shown for comparison. 
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Table 5.6.  Modified Hausen correlation validation range 
 Experimental conditions Nominal HFIR conditions 

q'' (W/cm2) 32 - 2334 50 – 500 
Dh (cm) 0.191 - 0.267 0.249 
u (m/s) 3.1 - 26.0 7.8 - 18.0 

Rez 9x103 - 2.7x105 6.9x104 - 1.0x105 
p (MPa) 0.11 - 3.91 2.51 - 3.17 
Lh (cm) 30.5-45.7 50.8 

 
The only criteria in which nominal HFIR operating conditions fall outside of the experimentally verified 
range is in the heated length.  But even then the disparity is only 10% of the maximum verified heated 
length. 
 
Values for Prbz and μbz are provided directly from the coupled variables for both.  Values for Rebz are 
calculated using coupled values for ρbz and μbz according to 
 

bz

hbmbz
bz

Du
µ

ρ
=Re

 ................................................................................................................................... (5.42) 
 
where ubm is bulk, mean axial velocity.  The mean axial velocity is used, in lieu of an axially-dependent 
velocity, because the convective boundary condition requires a constant value for the external flow 
magnitude.  Attempts to input velocity as a function of z failed after a single iteration.  While an axially-
dependent bulk flow velocity would be able to account for developing flow in the hydrodynamic entrance 
region, its exclusion is required by the code itself.  As would be expected for such a high aspect ratio 
channel, the hydrodynamic entrance region turns out to be small, as will be shown in the results section of 
this chapter.  Given this necessary simplification, ubm was set to twice the inlet velocity.  The wall 
viscosity, μwz, is calculated based on wall-adjacent flow conditions. 
 
A key component in the successful implementation of the interdimensional model coupling mechanism is 
the exclusion of all of the coupling variables from the Jacobian solution matrix.  Failure to do so increases 
the computation time by more than a factor of two.  The exclusion of any coupling variable can be forced 
through the use of a nojac operator in its definition.  As would be expected, the loss of such information 
in the Jacobian can lead to solution instabilities, sometimes severe.  This is not an issue with the coupled 
model given the nature of the coupling variables in which they serve only as adaptive boundary 
conditions with which to drive internal domain solutions. 
 
The coupling mechanisms are created in COMSOL using general projection model couplings.  The 
general projection function allows for the selection of source domains in up to three dimensions and 
destination domains in up to two.  In specifying the dimensions of the source domain, the last dimension 
is the one in which the integration is performed.  The remaining dimensions (if applicable) are used to 
store the remaining information.  The dimensionality of the information to be applied to the destination 
domain must necessarily be of one fewer dimensions than the source due to the integration process.  Once 
a general projection has been defined a variable can be created from it.  This variable can then be applied 
to boundary nodes the same as any number or predefined boundary condition. 
 
The implementation of both coupling mechanisms creates a looped dependency between the models 
which, like the solutions of the internal domains, can converge to an equilibrium value through an 
iterative process.  The complete coupling loop is shown in Fig. 5.24. 
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Fig. 5.24.  Model Coupling Interdependency Loop.  Flow is in the +z-direction. 
 
The full iterative solution process implemented in the coupled model is shown in Fig. 5.25. 
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Fig. 5.25.  Coupled Model solution process flow chart. 
 
5.3.4 Physics 
 
The same physics govern the coupled model that govern the 3D model.  The only difference is in the 
application of boundary conditions.  The coolant has the same inlet and outlet conditions.  The axial 
boundary edges above and below the fuel plate coincide with the plate midpoint and are governed by 
periodic mass and heat flow conditions.  The fuel plate boundary edges are modeled as no-slip, 
impermeable walls with imposed coupled heat flow conditions. 
 
In the fuel plate, every coolant-adjacent surface is specified using the previously detailed convective 
boundary condition.  The two surfaces that would mate with the side plates in the 3D model are modeled 
as thermally insulated boundaries.  Given the extremely high-aspect ratio in the plate, heat conduction 
tends to occur predominantly in the t-direction.  Heat conduction, as will be shown in the results section 
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of this chapter, is minimal in the s-direction.  As such, stopping off the heat outlet that traditionally exists 
via the fuel plate-side plate shared surface has a negligible effect on the model. 
 
5.3.5 Meshing 
 
An important feature of the coupled model is the separation of its two solution domains, solid and liquid.  
This separation allows for separate basis functions to be used in each domain.  Namely, the solid domain, 
in which the heat generation-resultant quadratic temperature profile is found, is able to use quadratic 
functions while the coolant can still use linear functions.  The solid domain mesh has the same structure 
as in the 3D model.  Meshes are mapped to s-t faces, where applicable, and extruded using the 2X MCNP 
axial mesh distribution.  The maps in the fuel meat and the unfueled plate are structured meshes while the 
plate surrounding the meat is mapped using a free-triangular mesh.  The rounded leading edge is meshed 
using free-tetrahedral elements.  The mesh resolution in all of these domains is lower than in the 3D 
model, however, given the ability of the quadratic basis functions to provide a more accurate 
approximation using fewer elements. 
 
As previously mentioned, the Coolant domain is split into three sections:  upstream, fuel plate, and 
downstream.  The upstream and downstream sections are mapped using unstructured triangular meshes.  
The fuel plate section was originally meshed using the same triangular elements.  This proved extremely 
inefficient, however, given the high-aspect ratio of the channel.  A second mesh was created consisting of 
a structured rectangular mesh.  The mesh was extruded axially using both constant-width cells and the 2X 
MCNP distribution.  A boundary layer was added to all three fuel plate section meshes along the wall 
boundaries.  The two mesh types, free-triangular and structured, are shown in Fig. 5.26. 
 

 
 

Fig. 5.26.  Coupled model coolant mesh comparison. 
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An interesting limitation of the coupling mechanism is that it is incompatible with non-triangular mesh 
elements.  This means it cannot be used on a surface that contains rectangular mesh elements.  In the 
coolant, this requires the insertion of diagonal mesh walls to divide a single rectangular element into two 
triangular elements.  In the solid domain, 3D volume mesh elements must be cut in half.  A detailed view 
of a converted boundary-layer mesh is shown in Fig. 5.27. 
 

 
 

Fig. 5.27.  Coupled model converted boundary layer detail. 
 
5.3.6  Paneling 
 
The biggest drawback of the coupled model is the homogenizing effect the coolant channel slice has on 
the fuel plate temperature profile.  Surface temperature values passed from the clad to the coolant must 
necessarily drop a dimension given the dimensional disparity between the two domains.  The passed 
variable cannot have a dimensionality greater than either its source or destination.  This is also true in 
reverse.  The problem, however, is that in this latter case the passed variable has a lower dimensionality 
than the boundary it is being passed to.  In essence, the boundary is capable of storing more information 
than the passed variable is able to provide it.  The result is that an entire dimension’s worth of information 
is wasted. 
 
This means that the incoming bulk properties, especially bulk temperature, have a profile proportional to 
spanwise-averaged surface temperature rather than local surface temperature.  Thus, at any point where 
the local surface temperature is greater than the spanwise-averaged surface temperature, the incoming 
bulk temperature is lower than it should be.  Conversely, at any point where the local surface temperature 
is less than the spanwise average, the incoming bulk temperature is higher than it should be.  This has a 
smoothing effect on the surface temperature profile, blunting its maxima and minima.  This smoothing 
effect propagates into the interior of the fuel plate and fuel meat as well.  Given the model’s primary 
intent of predicting maximum temperatures, this is an undesirable consequence of the model’s 
construction. 
 
An attempt was made to reintroduce a certain level of spanwise fidelity that the coupled model’s 
construction had erased.  In this model, the paneled model, the surface of the fuel plate is split into a finite 
number of axial strips as shown in Fig. 5.28. 
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Fig. 5.28.  Fuel plate paneling.  Depicted is a five-panel decomposition.  Figure is not to scale. 
 
Each plate surface strip, along with its counterpart on the opposite side of the fuel plate, is paired with its 
own coolant channel slice.  Plate surface temperatures are averaged across each strip and passed to their 
respective slice.  Bulk flow properties are then passed back from slice to strip.  Instead of relying on a 
single spanwise bulk flow, the model is split into a finite number of bulk flows.  If the number of panels 
were increased to infinity one would essentially recreate the original 3D channel.  By creating a small 
number of slices, however, a measure of that spanwise variation in flow and plate surface properties is 
allowed to manifest itself without the burden of solving the entire flow channel. 
 
The dependency loop for a two-panel model is shown in Fig. 5.29.  Ultimately, the design proved 
infeasible due to two factors.  Firstly, increasing the number of panels beyond two increases the model’s 
computational cost to a degree that it is no longer a viable improvement over the 3D model.  This is due 
to the fact that every additional panel precipitates the need for an entire new coolant channel slice, thus 
doubling the degrees of freedom from that half of the model.  While the coolant channel slice is the 
simpler of the two domains, from a geometry standpoint, the fact that it must solve the N-S equations 
means that the additional degrees of freedom are significant.  Secondly, as will be shown in greater detail 
in the results section of this chapter, even a two-panel configuration does not produce the desired results 
due to the high-aspect ratio of the geometry. 
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Fig. 5.29.  Fuel plate paneling diagram. 

 
5.4 SIMPLIFIED S-Z PLANE MODEL (BULK MODEL) 
 
5.4.1 Construction 
 
The bulk model is most like the 3D model in its construction in that all domains are modeled explicitly 
including the side plates and coolant.  There are only two differences.  The first is with regards to the 
model’s widthwise (t-direction) span.  Rather than encompassing one fuel plate and two half coolant 
channels it includes one fuel plate and two full coolant channels.  The second is with regards to the exit 
region coolant subdomains.  Whereas the 3D model split this region up into three subdomains—one to 
encapsulate the trailing edge of the fuel plate, one to correspond with the bottom of the inner side plate, 
and one to correspond to the bottom of the outer side plate—the bulk model removes the trailing edge 
cap.  Instead, the fuel plate subdomain and the inner side plate subdomains extend to the fuel plate trailing 
edge where they meet.  This new t-z plane cross-section is shown in Fig. 5.30.  Widthwise boundaries in 
the fuel plate and exit regions correspond to the wall boundaries of the two adjacent fuel plates.  The 
widthwise boundary in the entrance region corresponds to the midplate of the two adjacent fuel plates. 
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Fig. 5.30.  Bulk model t-z plane cross-section.  Not to scale. 
 

Identity mapping functions are used to couple the model’s periodic boundaries.  The four identity mapped 
surfaces in the bulk model are highlighted in Fig. 5.30 for reference.  There are two pairs of mapped 
boundaries.  The concave surface of the fuel plate communicates with the outer boundary of the convex 
coolant channel (3-to-1).  The convex surface of the fuel plate communicates with the outer boundary of 
the concave coolant channel (2-to-4).  Communication also occurs through each pairing in reverse. 
 
The identity mapping function is similar to the general projection function used to create the 
interdimensional model couplings in the previous chapter.  The primary difference is that here, instead of 
using the coupling to remove one dimension’s worth of information from the passed variables, variables 
are passed from one boundary to an identical boundary in a one-to-one map.  In this capacity the identity 
map is essentially recreating the periodic boundary condition function. 
 
5.4.2 Inputs 
 
Inputs for the bulk model are identical to previous inputs in the first two models.  Initial and inlet/outlet 
conditions (as appropriate) for pressure, temperature, and velocity are unchanged.  As is the nuclear heat 
generation profile and the involute coordinate system. 
 
5.4.3 Physics 
 
The same governing physics apply in the fuel plate domain as in previous models.  The coolant channels 
are modeled using laminar flow instead of turbulent.  Additionally, all coolant wall boundaries are 
modeled as slip walls.  Despite the model’s explicit construction, however, the two domains do not 
interact directly for the most part but are instead coupled via the identity maps.  Surface temperatures 
from the fuel plate are applied to the outer coolant channels by the couplings outlined in Section B.  The 
only direct interaction between the two is in the application of temperature and heat flux across the two 
shared solid-liquid boundaries 2 and 3. 
 
Bulk coolant properties are then passed back to the fuel plate via the same convective boundary condition 
from the coupled model.  Bulk properties are obtained by averaging the wall values for each coupled flow 
variable across a given coolant channel.  Given the asymmetric placement of the fuel meat within the fuel 
plate there is traditionally a “hot” side and a “cold” side.  Since the model excludes no-slip wall effects 
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and the formation of a boundary layer, the average of these two points is assumed to represent the bulk 
state of the coolant.  The process of collecting bulk temperature values for the coolant-to-fuel plate 
coupling is illustrated in Fig. 5.31. 
 

 
 

Fig. 5.31.  Bulk model widthwise temperature profile. 
 
5.4.4  Meshing 
 
Meshing in the fuel plate and fuel meat is unaltered from the previous two models.  The solid domains 
can be meshed with any level of mesh resolution deemed appropriate for the model.  The coolant domains 
adjacent to the fuel plate, however, must be meshed a specific way.  The spanwise resolution (s-direction) 
can be set to according to desired resolution within the fuel meat and plate.  The widthwise resolution, 
however, must be set to one for each domain as shown in Fig. 5.32.  This ensures a linear temperature 
profile in the coolant domains for bulk averaging. 
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Fig. 5.32.  Bulk Model fueled section s-t plane mesh cross section. 
 
5.5 RESULTS 
 
5.5.1 Error Evaluation 
 
Before model results are presented, the means and methods of evaluating the validity of a given model 
configuration must be specified.  This is achieved primarily through the assessment of a model’s energy 
balance.  For steady-state models such as those under consideration here this means that the conservation 
of energy takes on the form 
 

0=−+ outgenin EEE 

 .............................................................................................................................. (5.43) 
 
where E is actually energy-per-unit-time and has units of power (W) and all terms are assumed to be 
positive. In order to break the model down further so as to trace energy imbalances to a specific domain—
fuel plate or coolant—this simple energy balance can be evaluated individually for each domain.  The fuel 
plate has no incoming energy term but does have an energy generation term due to the nuclear heat 

production in the fuel meat.  This generation term, genpE ,


, is given by 
 

∫∫∫=
V

genp QdVE ,


. .................................................................................................................................. (5.44) 
 

The outgoing energy for the fuel plate, outpE ,


, is the total heat transfer through the surface of the fuel 
plate given by 
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( )dAE
pA

poutp ∫∫ ⋅′′= nq ˆ,


 .............................................................................................................................. (5.45) 
 

where pn̂
is the local outward surface normal vector for the fuel plate geometry and Ap is the surface area 

of the fuel plate.  This outE term for the fuel plate becomes part of the inE term for the coolant (the side 
plates are considered part of the coolant domain for energy balance purposes in the 3D model).  The other 

inE  components come from the inlet enthalpy in the coolant and inlet heat transfer in the side plates.  The 
total term is given in the 3D model by 
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 .................................................. (5.46) 
 
where cn̂ is the outward surface normal vector of the coolant channel geometry in contact with the fuel 

plate and is the opposite of pn̂
.  The coolant domain does not possess an genE

 term.  outE  in the 3D 
model’s coolant is given by 
 

( ) ( ) ( )∫∫∫∫∫∫ ⋅′′+⋅+⋅=
outletspopenoutlet A

outletsp
A

popen
A

poutletDoutc dAdATcdATcE
,

,3, ˆˆˆ nqnunu ρρ

 .................................... (5.47) 
 
where the middle term is the outlet enthalpy along the open axial boundary beneath the inner side plate.  
Another way of looking at the energy balance in the coolant domain is to consider energy added to the 
system via the fuel plate and the change in enthalpy in the coolant and side plates between inlet and 
outlet.  Ideally 
 

0)(, =∆− cplateinc HE 

 ............................................................................................................................. (5.48) 
where cH∆  is the change in enthalpy-per-unit-time in the coolant domain and the terms are given by 
 

( ) outp
A

cDplateinc EdAE
p

,3)(, ˆ  =⋅′′−= ∫∫ nq
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and 
 

( ) ( ) opencinletspoutletspinletcoutletcDc EEEEEH ,,,,,3
 +−+−=∆

. ..................................................................... (5.50) 
 
Coolant energy values are formulated differently for the coupled model.  Since the coolant is represented 
as a two-dimensional t-z slice, boundary integrals become line integrals.  These quantities must be 
multiplied by the span of the fuel plate axial surface, Δs, in order to maintain dimensional parity.  The 
energy-in and enthalpy change terms become 
 

( ) ( )[ ]dzsE
z

z
convexconcavecoupledplateinc ∫ ⋅′′+⋅′′∆−=

2

1

n̂qn̂q)(,


 .......................................................................... (5.51) 
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and 
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 ....................................... (5.52) 
 
where terms for the side plates and the open boundary beneath the inner side plate are neglected because 
such features are not present in the coupled model and z1 and z2 correspond to the axial coordinates for the 
top and bottom of the coupled boundary, respectively.  The normal concaven̂  is the outward facing normal 
vector for the coolant domain edge boundary corresponding to the concave surface of the fuel plate.  The 
normal convexn̂ corresponds to the opposite fuel plate edge boundary in the coolant domain.  Whereas the 

energy leaving the fuel plate, outpE ,


, and the energy entering the coolant domain from the fuel plate, 

)(, plateincE
, are equal in the 3D model, the same assumption cannot be made in the coupled model.  This is 

due to the fact that they are separated via the interdimensional model coupling mechanism in the coupled 
model. 
 
Individual energy balances can be constructed for each domain such that 
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and  
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In both local energy balances, the incoming energy is assumed to represent the true energy.  Any nonzero 
result from the energy balance is thus attributed to the outgoing term (loosely defined in the coolant 
domain).  In the fuel plate, the nuclear heat generation term actually is the true energy since it is set at a 
fixed, predetermined value.  Thus, in this region, both the relative local error and the total global error are 
the same.  In the coolant, however, the incoming heat flow itself can be incorrect, thus ec is only good for 
quantifying the relative local error. In order to understand the total error in the coolant, a global energy 
balance, eg, is constructed to compare the nuclear heat generation against the change in coolant channel 
enthalpy 
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An additional error evaluation can be defined in the coupled model for the interdimensional model 
coupling mechanism itself.  The error of the 3D-to-2D coupling, eimc, can be calculated according to 
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The reverse, an evaluation of error in the 2D-to-3D coupling, is not readily calculable.  While the effects 
of the convective boundary condition in the fuel plate domain can be measured, there is no direct 
counterpart in the coolant domain with which to compare.  The fact that the convective boundary is itself 
composed of values calculated in both domains makes any such error analysis all but impossible.  Thus 
the 3D-to-2D error must be used to evaluate the entire model coupling mechanism. 
 

Using genpE ,


 as a reference value, the energy terms used in calculating error can be normalized to 
produce 
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and  
 

c
genp

c H
E

H ′∆=
∆

,




. ....................................................................................................................................... (5.60) 
 
Another means of model evaluation lies in fuel plate temperatures.  Specifically, the maximum fuel meat 
temperature can be used as a rough guide to determine a model’s validity.  While the energy balance 
method provides an empirical means of comparing a given model’s solution against a known quantity, the 
maximum temperature method is only useful for providing a relative comparison between models.  Thus 
when considering two models there is no way to declare one superior to the other based purely on their 
maximum fuel meat temperatures (assuming they are both within reason).  In the course of a mesh 
convergence study in which many similar models are compared against each other, however, it can 
provide a meaningful way with which to track convergence. 
 
5.5.2 3D Model Mesh Convergence 
 
Solutions presented in this section will be for the axially-consistent LEU fuel geometry only.  The axially-
graded LEU geometry is excluded sever hike in computational cost associated with solving the extra 
mesh elements in the axially-graded section of the fuel meat.  Solutions are otherwise centered on the 
LEU, versus the HEU, geometry because the desire to model it was the initial impetus behind the thesis.  
The 3D model mesh convergence study is truncated in comparison to the coupled model’s study.  This is 
a result of the model’s complexity and sensitivity.  The axial mesh distribution was held constant for the 
mesh convergence study.  The 2X MCNP axial mesh distribution was found to be adequate for all 
domains.  Solutions for temperature along an axial cut line bisecting the point of maximum fuel meat 
temperature using both the 2X and 1X mesh distributions are shown in Fig. 5.33. 
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Fig. 5.33.  Axial cut line temperature solution. 
 
While the 1X MCNP axial mesh distribution clearly captures the overall contour of the temperature 
profile, it is insufficiently fine to accurately resolve abrupt shifts in the profile.  The 2X distribution 
manages to resolve these shifts with greater clarity, especially with regards to the large temperature spikes 
at the top and bottom of the fuel meat.  Additional refinements to the MCNP axial distribution could not 
be evaluated due to the increasing computational cost.    Distribution refinements must necessarily double 
the previous distribution thus doubling the degrees of freedom in the model.  With the 4X distribution the 
computational cost becomes too great to meet on available resources.  It is doubtless that a 4X axial 
distribution would have further refined the profile in the vicinity of the temperature spikes.  The 
agreement between the 1X and 2X distributions, combined with the diminishing returns to solution 
improvement that accompany mesh refinements, indicate that the 2X axial distribution can be assumed 
sufficient. 
 
With the axial mesh distribution fixed the mesh convergence study dealt only with altering mesh densities 
in the s-t plane.  The breadth of the study was limited due to model solution instabilities at lower mesh 
resolutions and meshing difficulties at higher mesh resolutions.  What results were able to be obtained, 
however, show good convergence towards a state of minimal energy balance error.  The results of the 3D 
model mesh convergence study are shown in Table 5.7.  Mesh d2 was selected as the ideal 3D model 
mesh against which to base comparisons.  This mesh is representative of current core modeling efforts at 
HFIR using COMSOL.  The fact that the observed maximum temperature changed by only 0.3 K between 
the two meshes indicates that any increase in mesh resolution, and thus solution quality, would affect very 
little change to the overall temperature profile of the model.  Given that temperature is dropping with 
increases in mesh resolution, however, indicates that, if anything, the reported maximum temperature 
could be slightly higher than a true converged value. 
 

Table 5.7.  3D model mesh convergence study 

Mesh Mesh elements 
(in thousands) E'p,gen E'p,out ΔH'c ep (%) ec (%) eg (%) Max fuel 

meat T [K] 
d1 1103 1.0000 1.0027 1.0021 0.267 0.060 0.207 432.1 
d2 2311 1.0000 0.9997 0.9995 0.034 0.019 0.053 431.8 
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5.5.3 Coupled Model Mesh Convergence 
 
The separation of the coupled model into two distinct domains permits a more detailed mesh convergence 
study to be performed.  In fact, it permits two mesh convergence studies to be performed—one for the 
coolant and one for the fuel plate.  Using the previously defined local error quantities, this permits the 
mesh in each domain to be optimized individually, thus ensuring adequate mesh resolution to capture 
physics while precluding the risk of unnecessary refinement.  The coolant domain mesh convergence was 
performed first.  For that, the fuel plate domain mesh was held constant and the coolant domain 
successively refined until a mesh-converged solution was achieved.  The fuel mesh chosen was of a 
sufficient resolution that ep equaled zero for all cases.  Similarly, eimc was found to be zero at all times, not 
just in the coolant mesh convergence study but in every solution obtained over the duration of thesis-
related work.  Thus it can be said that 
 

0% =imce  ................................................................................................................................................ (5.61) 
 
is true at all times.  Coolant meshes were judged based on ec which, with ep = eimc = 0, equals eg in these 
cases.  The results of the coolant mesh convergence study are shown in Table 5.8.  The data in columns 
four, five, and six are plotted in Figs. 5.34, 5.35, and 5.36, respectively, as functions of the number of 
coolant mesh elements in each model.  The plot of ec is presented in logarithmic format to demonstrate 
that the error is decreasing near-logarithmically in accordance with finite element analysis theory. 
 

Table 5.8.  Coupled model coolant domain mesh convergence study 

Mesh Coolant mesh elements 
(in thousands) )(, plateincE′  cH ′∆  ec (%) Max fuel  

meat T (K) 
c1 163 1.0000 0.8493 15.07 425.1 
c2 301 1.0000 0.9301 6.99 427.2 
c3 456 1.0000 0.9686 3.14 428.2 
c4 717 1.0000 0.9900 1.00 428.7 
c5 1,035 1.0000 0.9971 0.29 428.9 
c6 1,429 1.0000 1.0006 0.06 429.0 

 
*Fuel plate domain mesh elements (in thousands) = 454 
**Residual tolerance = 1.00x10-2 
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Fig. 34.  Coupled model coolant mesh convergence—coolant channel enthalpy.  The normalized nuclear heat 

generation, 1.00, is marked with a red line to show the coolant channel’s convergence towards the correct 
value. 

 

 
 

Fig. 5.35.  Coupled model coolant mesh convergence—logarithmic coolant error. 
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Fig. 5.36.  Coupled model coolant mesh convergence—max fuel meat temperature.  The 3D model’s 
maximum fuel meat temperature is marked with a red line to demonstrate the offset between the two models’ 

converged states. 
 
The coolant mesh convergence study shows not only good convergence but also that the model is 
converging to a state very similar to that of the converged 3D model.  The converged temperature is only 
2.8 K below that of the 3D model.  With the goal of balancing the efficiency and accuracy of the model, a 
total error of eg ≈ 5% was chosen as an acceptable margin.  Given the relative difficulty of modeling the 
RANS equations in the coolant versus modeling heat transfer in the fuel plate, the majority of this error 
should be expected to come from the coolant.  Thus mesh c3 was chosen as the ideal coolant mesh 
resolution.  With only 456,000 mesh elements it has one-third the number of mesh elements as the 
“converged” mesh.  Even still it has an energy balance error of only 3% and its maximum fuel meat 
temperature is still within 1 K of the converged value. 
 
With the coolant mesh held constant at mesh c3, a mesh convergence study was then performed on the 
fuel plate domain.  All meshes considered utilized quadratic basis functions.  The results of the fuel plate 
mesh convergence study are shown in Table 5.9..  The data in columns six, eight, and nine are plotted in 
Figs. 5.37, 5.38, and 5.39,  respectively. 
 

Table 5.9.  Coupled model fuel plate domain mesh convergence study 

Mesh 
Fuel plate mesh 

elements 
(in thousands) 

E’p,gen E’p,out ΔH’c ep (%) ec (%) eg (%) Max fuel  
meat t (K) 

p1 24 1.0000 1.0036 0.9665 0.356 3.689 3.346 426.9 

p2 35 1.0000 1.0003 0.9676 0.033 3.269 3.237 427.6 
p3 51 1.0000 1.0002 0.9681 0.020 3.209 3.190 427.9 
p4 84 1.0000 1.0002 0.9682 0.016 3.195 3.180 428.2 
p5 110 1.0000 1.0001 0.9683 0.009 3.177 3.168 428.1 

p6 (c3) 454 1.0000 1.0001 0.9686 0.008 3.146 3.138 428.2 
 
*Coolant channel domain mesh elements (in thousands) = 456 
**Residual tolerance = 1.00x10-2 
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The convergence data for the fuel plate mesh study does not follow the same orderly exponential 
convergence rate that the coolant mesh study did.  In looking at the fuel plate error for cases p6 and p5 it 
is apparent that the study reaches machine accuracy prior to case p6.  The difference in solution in case p6 
is attributable only to round-off error.   
 

 
 

Fig. 5.37.  Coupled Model Fuel Plate Mesh Convergence—Fuel Plate Error. 
 

 
 

Fig.5.38.  Coupled model fuel plate mesh convergence—global error. 
 
The fuel plate domain stays in a near-constant state, at least from the perspective of the energy balance, 
from mesh p2 to mesh p6.  It is only once the mesh count passes below 35,000 that the local fuel plate 
error, ep, begins to increase drastically.  Even then, “drastically” amounts to a 0.3% increase in local error.  
The local energy balance data would indicate that the mesh convergence study was focused on over-
refined meshes in which increases to mesh resolution do not yield commensurate increases in solution 
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quality.  Mesh p1 is rapidly approaching the coarsest possible mesh.  As shown in Fig. 5.40, mesh p1 
already spans the width of the fuel meat with only two mesh elements and, in some places, the 
surrounding fuel plate with only one.  Further mesh reduction could be achieved only by decreasing the 
mesh resolution along the span of the plate. 
 

 
 

Fig.5.39.  Coupled model fuel plate mesh convergence—max fuel meat temperature. 
 
The global error data suggests that further mesh reduction is unnecessary.  Its convergence shows a steady 
increase on return with decreasing mesh resolution throughout the study.  The same is true of the 
maximum fuel meat temperature data which increases rapidly between meshes p1 and p4 before leveling 
out.  In analyzing the global error for the fuel plate mesh convergence study it is apparent that the 
imposed 5% limit was never reached.  The maximum fuel meat temperature becomes the limiting factor 
instead due its higher sensitivity to fuel plate mesh resolution.  An ad hoc temperature “error” can be 
formulated using the maximum fuel meat temperature from mesh d2 as the ideal.  This difference, eT, is 
given by 
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where all temperature values are in Kelvin.  Note that the temperature “error” value is not a true error as 
the reference value, Tmax, d2, is not known to be correct.  It is merely a reference value with which to 
compare deviations in subsequent model variants.  The plot of temperature error is shown in Fig. 5.41. 
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Fig. 5.40.  Coupled model fuel plate mesh p1.  Fuel plate s-t face is highlighted in blue, fuel meat face in green. 
 

 
 

Fig. 5.41.  Coupled model fuel plate mesh convergence—max fuel meat t error. 
 
Mesh p3, with a maximum temperature of 427.9 K and a temperature error of 2.46%, was chosen as the 
ideal mesh.  With ideal meshes selected for each domain and associated solution characteristics with 
which to evaluate alterations to the configuration, attention was turned once again to the coolant domain.  
Rather than seeking to alter the solution through either mesh reduction or refinement, simplifying mesh 

2.200

2.400

2.600

2.800

3.000

3.200

0 100 200 300 400 500

e T
 (%

) 

Fuel Plate Mesh Elements (in thousands) 



ORNL/TM-2015/656 

159 

alternatives were sought that affected the solution as little as possible.  Such meshes were variants of the 
constant-width extruded mesh detailed in Section 5.2. 
 
The results of the alternate coolant mesh study are shown in Table 5.10.  The constant-width mesh 
distributions, meshes alt1-alt6, showed promising results.  Meshes of this type with sufficient axial 
distributions allowed the overall number of mesh elements in the coolant to be greatly decreased without 
a serious effect on the solution.  Mesh alt7 was included only to show that with sufficient mesh resolution 
the constant-width structured meshes converged to a sufficiently small global error.  Interestingly, the 2X 
MCNP distribution, mesh alt9, failed to produce good results.  The reason for this is unclear.  Its use in 
the 3D model, as well as the fuel plate domain of the coupled model, has no ill effect on the solution.  Its 
use in the coupled coolant domain, however, causes the model to converge to a much hotter state.  The 
data for meshes alt1-alt6 from columns 8 and 9 are plotted in Figs. 5.42 and 5.43, respectively.  Mesh alt7 
was excluded because it skewed the scale of the convergence plots, making the inter-mesh behavior 
between coarser meshes harder to analyze.  Reference quantities for meshes p3 and d2 are included where 
appropriate. 
 

Table 5.10.  Coupled model alternate coolant mesh study 

Mesh 
Coolant mesh 

elements 
(in thousands) 

Structured 
mesh? 

Axial 
mesh 
distr 

E’p,out ΔH’c ec (%) eg (%) Max fuel 
meat T (K) 

alt1 12 Y l/50 1.0002 1.0253 2.512 2.533 429.3 

alt2 15 Y l/100 1.0002 1.0351 3.488 3.509 429.6 
alt3 21 Y l/200 1.0002 1.0392 3.904 3.925 429.7 
alt4 28 Y l/300 1.0002 1.0389 3.870 3.890 429.7 
alt5 46 Y l/600 1.0002 1.0374 3.718 3.739 429.7 
alt6 71 Y l/1000 1.0002 1.0341 3.385 3.406 429.6 
alt7 319 Y l/5000 1.0002 1.0111 1.086 1.106 429.1 
alt8 
(p3) 456 N N/A 1.0002 0.9681 3.209 3.190 427.9 

alt9 14 Y 2X MCNP 1.0002 1.5189 51.860 51.891 442.8 
 
*Constant-width axial mesh distributions are given as functions of plate length, l, divided by number of axial elements. 
**Fuel plate domain mesh elements (in thousands) = 454 
***Residual tolerance = 1.00x10-2 
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Fig. 5.42.  Coupled model alternate coolant mesh study—global error. 
 

 
 

Fig. 5.43.  Coupled model alternate coolant mesh study—max fuel meat T. 
 
The fuel plate error, ep, is constant at 0.02% for each case and was thus not plotted.  The coolant error, ec, 
is offset from the global error by this amount making the two nearly identical.  From the temperature plot 
it is clear that the alternate coolant mesh variant of the coupled model is converging to a state somewhere 
between the 3D model and the initial converged coupled model.  In both plots it is clear that meshes alt3 
through alt6 show solid convergence while meshes alt1 and alt2 begin to diverge significantly with 
decreases to mesh resolution.  The fact that these coarse meshes momentarily reproduce a model state 
close to the converged state is not to be taken as a positive attribute but merely a coincidence that rather 
than continuing to diverge upwards they change direction and diverge towards a lower energy state. 
Interestingly, meshes alt3 through alt6 are approach a converged state from higher energy states.  The 
opposite was true with the original unstructured coolant mesh in which both temperature and coolant 
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channel enthalpy change approached their respective values from below.  This behavior, coupled with the 
fact that the alternate coolant mesh model is converging towards a higher state than the original model, 
reintroduces a small measure of conservatism into the model that was removed, dually, by the smoothing 
effects of the coolant channel dimensional reduction and the convergence characteristics of the original 
coupled model. 
 
In looking at the global energy balance errors it is clear that mesh alt3 is the coarsest alternate coolant 
mesh to sufficiently approximate the original converged solution.  The fact that its maximum temperature 
is also closest to the 3D model’s maximum temperature, while appealing, is really arbitrary in this 
instance.  The only meaningful comparison is to the alternate model’s converged temperature which mesh 
alt3 does a sufficient job of approximating. 
 
One final tweak is made to this model.  The alternate mesh study was performed using constant-width 
cells throughout the length of the fuel plate section of the channel.  While this facilitated a faster mesh 
study it also created a large mesh size disparity on the mesh boundary separating the structured mesh 
from the unstructured mesh upstream and downstream of the fuel plate.  In order to smooth over this 
transition, the first and last structured mesh elements in mesh alt3 were replaced with successively smaller 
transition mesh elements as shown in Fig. 5.44.  This has a minimal, yet positive, effect on the solution as 
shown in Table 5.11. 
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Fig. 5.44.  Mesh alt3 distribution comparison. 
 

Table 5.11.  Mesh alt3 comparison solutions 

Mesh 
Coolant mesh 

elements 
(in thousands) 

Structured 
mesh? 

Axial mesh 
distribution E’p,out ΔH’c ec (%) eg (%) 

Max fuel 
meat T 

[K] 

alt3 21 Y l/200 1.0002 1.0392 3.904 3.925 429.7 

alt3b 22 Y ~l/200 1.0002 1.0358 3.557 3.577 429.6 
 
5.5.4 Validation of Simplifying Coupled Model Assumptions 
 
As mentioned previously, the exclusion of the side plates from the coupled model is due in large part to 
their incompatibility with the 2D coolant domain.  Their exclusion is justified by results from the 3D 
model which show that heat flow into the side plates is minimal compared to that in the fuel plate and 
coolant channel.  Local heat flux into the inner side plate is shown in Fig. 5.45.  Across the boundary with 
the fuel plate heat flow is predominantly into the side plate.  Across the boundary with the coolant 
channel heat flow is predominantly outward.  A surface integral of heat flux through the fuel plate 
boundary shows that the total inward heat flow is only 578 W.  The total outward heat flow through the 
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coolant common boundary is only 227 W.  Both of these are three orders of magnitude smaller than the 
total nuclear heat generation production.  It is worth noting that replacing the thermally insulated 
boundary on the outer walls of the side plates in the 3D model would most likely increase these heat flow 
values significantly.  Since this was not accounted for in the 3D model, however, the effect on the 
solution from removing them in the coupled model is minimal 
 

 
 

Fig. 5.45.  3D model inner side plate inward heat flux.  Figure is not to scale.  The t-direction has been 
stretched by a factor of 20 for ease of viewing.  The fuel plate is outlined in three parts with the coolant 

channel surrounding it. 
 
Additional simplifications can be made to the coupled model through observation of preliminary solutions 
to the model itself.  The use of a single bulk velocity value along the length of the plate is validated by the 
short length of the hydrodynamic entrance region, as shown in Fig. 5.46.  For reference, the leading edge 
of the fuel plate is situated at -5.08 cm.  Within 2 cm, and still well before the top of the fuel section, the 
flow is fully developed.  Similarly, the onset of turbulence is extremely rapid as shown in Fig. 5.47, 
validating both the assumption of turbulent flow throughout as well as verifying that the model remains 
within the limits of the modified Hausen correlation as experimentally verified by Gambill and Bundy.  
The thermal entrance region, shown in in Fig. 5.48, is also extremely short.  The onset of thermally 
developed flow is delayed until just upstream of the fueled section.  This gives the flow adequate space to 
become both fully developed and fully turbulent before interacting significantly with the fuel.  The 
distance from onset to fully developed thermal flow occurs in less than 4 cm. 
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Fig. 5.46.  Coupled model hydrodynamic entrance region velocity profiles. 
 
Performing a surface integral of heat flux on the leading and trailing edge surfaces shows the total heat 
flow through each to be less than 1 W.  This is a completely trivial quantity with respect to the magnitude 
of the nuclear heat generation.  The coupling mechanisms attached to these surfaces can therefore be 
removed without affecting any noticeable change in the model’s solution.  With the coupling boundaries 
dropped, both surfaces—in both domains—are treated as insulated boundaries.  Although a trivial 
quantity compared to the millions of degrees of freedom in the model, this allows a few hundred 
unnecessary coupling variables to be removed from the model.  The greatest gain is in the increased 
simplicity of the coupling mechanism which is now active only on axial faces. 
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Fig. 5.47.  Coupled model entrance region Reynolds number profile. 
 

 
 

Fig.5.48.  Coupled model thermal entrance region temperature profiles. 
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5.5.5 Paneling 
 
The concept of paneling was first tested using a conceptual model.  This model substituted the high-
aspect ratio fuel plate with a simple block with two opposing faces cut in half and coupled to 2D coolant 
channel slices.  Heat flow was triggered in the system by a specified midplane temperature profile.  The 
interactions of the conceptual model are shown in Fig. 5.49. 
 

 
 

Fig. 5.49.  Conceptual paneling model diagram. 
 
The model performed exceedingly well, providing validation for the paneling concept.  The bifurcated 
bulk temperature profile that the model yielded, as projected onto the panels themselves, is shown in 
Fig. 5.50.  The gain of the model was that instead of imposing a single bulk temperature across the span 
of the heated body, a two-part discontinuous temperature profile could be imposed.  Despite the 
discontinuity in the bulk temperature profile the conceptual model produced a smooth surface 
temperature, as shown in Fig. 5.51.  The imposed midplane temperature profile is included for reference. 
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Fig. 5.50.  Conceptual paneling model bulk temperature projections. 
 

 
 
Fig. 5.51.  Conceptual paneling model surface and midplane temperature profiles.  Temperature profiles are 

not on the same color scale.  They are merely intended to provide a qualitative comparison. 
 

The paneling concept failed to transition successfully to the coupled model.  The issue arises from the 
high aspect ratio of the fuel plate.  The coolant creates a path of least resistance, so to speak, for heat 
flowing out of the fuel meat.  Given the extremely short distance between the two, compared to both the 
length and the span of the fuel plate, heat flow occurs almost exclusively in the t-direction, parallel to the 
normal of the fuel plate’s surface.  Any diffusion occurring within the fuel plate in the s- or z-directions is 
miniscule in comparison.  As a result, the surface temperature profile that this yields contains an artifact 
of the bifurcated bulk temperature profile.  This surface temperature profile is shown in Fig. 5.52.  There 
is a “kink” visible running down the axial midline of the temperature profile.  It is likely that with an 
increasing number of panels the severity of the kinks between each would decrease.  Eventually they 
would decrease to the point that they became trivial.  The requisite number of panels would likely over-
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encumber the model, however, and negate the benefit of its lowered computational expense.  As such, the 
paneling concept was not pursued further, it being deemed incompatible with the fuel plate geometry. 
 

 
 

Fig. 5.52.  Coupled paneled model concave fuel plate surface temperature profile. 
 

5.5.6 Model Comparisons 
 
Solution comparisons in the fuel plate are relatively straightforward given that the geometry itself is 
identical in both models.  Coolant channel comparison are more difficult due to the dimensional disparity 
between the two models.  While comparing profiles of surface variables provides the most information 
about the state of a given solution, it is less useful for quantifying differences between solutions.  
Consider, for example, Fig. 5.53 in which the temperature profile on the concave surface of the fuel meat 
in each model is shown.  The surface profile comparison readily conveys the similarity in solution 
between the two models, showing similarly topographies and corresponding hot and cold patches.  It does 
provide a clear understanding of the difference in magnitude between the solutions at any given point, 
however.   
 
For this purpose, consider the 1D temperature data from Axial Lines 1 and 2 plotted in Fig. 5.54.  Axial 
Lines 1 and 2 were placed such that they ran through sections of relatively high and low temperature, 
respectively.  As was expected for the coupled model, in areas of higher temperature, Axial Line 1, the 
difference in observed temperatures between models is greatest.  In areas of mid to lower temperature, 
Axial Line 2, the observed temperatures are in much closer agreement.  This is a combination of the 
smoothing effect of the bulk coolant slice used in the coupled model which affects local minima and 
maxima as well as the sacrifice to accuracy made for the sake of computational cost associated with the 
final coupled model which lowers the temperature of the entire model by a few Kelvin. 
 

 
 

Fig.5.53.  Fuel meat concave surface temperature profile comparison. 
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Fig. 5.54.  Fuel meat concave surface axial 1D temperature profiles. 
 
The 1D temperature comparison does a much better job of quantifying the difference between the two 
solutions than the 2D comparison does.  The trade off with the 1D comparison is that it conveys much 
less information than the surface comparison, the former having one fewer dimension than the latter.  For 
this reason, model comparisons, where appropriate, will be presented in two parts:  one part to provide a 
qualitative comparison between models and another to quantify the difference between them. 
 
The same quantitative comparison can be made in the spanwise direction using temperature data from 
Spanwise Lines 1 and 2, as shown in Fig. 5.55.  Again, the hotter of the two lines, Spanwise Line 2, 
shows the greatest temperature disparity between the two models.  In Spanwise Line 2’s temperature 
profiles alone the effect that higher temperature has on differences between the models is also apparent.  
It is at the profile’s lowest point, ignoring its outer edges, in which the two profiles are in the closest 
agreement.  Performing a temperature average along Spanwise Line 2 in the coupled model shows that 
the average temperature is 385.8 K which is very close to the region in which the profiles are in the 
closest agreement.   
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Fig. 5.55.  Fuel meat concave surface spanwise 1D  temperature profiles. 
 

Looking at a cross-sectional plane cut through the entire model along Spanwise Line 2, a topographical 
comparison can be made in the s-t plane as well.  This comparison is shown in Fig. 5.56.  Both models 
show the same general topography with the coupled model showing slightly higher temperatures along 
the inner side plate border at top left than the 3D model.  This is likely due to the fact that local fuel plate 
temperatures fall below the spanwise average in this area and the bulk coolant is thus higher than it should 
be.  A small part of it could also be the removal of the side plate.  A more direct comparison can be made 
between the models by looking at the 1D temperature profiles along Widthwise Line 1 drawn on both 
plots.  Temperature data is plotted along Widthwise Line 1 in Fig. 5.57.  The widthwise line corresponds 
roughly to the intersection of Axial Line 1 and Spanwise Line 2 in Fig .5.53 and serves as a high 
temperature comparison.  A low temperature comparison is made with Widthwise Line 2 near the 
intersection of Axial Line 2 and Spanwise Line 1, as shown in Fig. 5.58.  As with the 1D axial and 
spanwise temperature comparisons, the higher the local temperature the greater the temperature disparity 
between the two models.  In the cold widthwise comparison the coolant temperatures are nearly aligned. 
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Fig. 5.56.  Cross-Sectional Cut-Out Temperature Profile Comparison.  The 3D model cross-section is shown 
with all geometry elements present including the fuel meat, fuel plate, coolant channels, and inner side plate.  
Given the dimensional disparity across the coupling interface in the coupled model, only the fuel meat and 

fuel plate are shown. 
 

 
 
Fig. 5.57.  Cross-Sectional cut-out widthwise line 1 1D Temperature profiles.  While the 3D profile is plotted 

as a single entity, the coupling interface in the coupled model necessitates that the fuel plate and coolant 
temperature profiles be plotted separately. 
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Fig. 5.58.  Cross-sectional cut-out widthwise line 2 1D Temperature profiles.  While the 3D profile is plotted 
as a single entity, the coupling interface in the coupled model necessitates that the fuel plate and coolant 

temperature profiles be plotted separately. 
 

Qualitative comparisons can be made between the coolant channels using a t-z plane oriented along the 
same widthwise lines in Fig. 5.56.  Given the extremely high aspect ratio of the coolant channel in the t-
direction, two magnified velocity contours are presented which focus on the leading and trailing edge in 
Figs. 5.59 and 5.60, respectively.  Both models’ leading edge velocity contours look very similar from the 
effects of the mid-plate stagnation point to the rapid of flow acceleration leading from the rounded 
leading edge to the constant-width fuel plate.  The effects of the boundary layer are more pronounced in 
the 3D model’s solution. 
 
The topography at the trailing edge is dominated by “cores” of high- and low-velocity coolant that persist 
downstream of the coolant channel and the fuel plate, respectively.  Both high- and low-velocity cores 
appear to persist farther downstream in the coupled model than in the 3D model.  This is to be expected as 
the coupled cores can only diffuse in the t-direction while the 3D cores experience a lesser diffusion in the 
s-direction as well.  When considering these differences, however, it is important to note that the 3D 
model velocity contour is a local dissection of an explicit coolant channel while the coupled model profile 
is a homogenization of the entire span of the channel.  The difference in exit core lengths could simply be 
attributed to a variation in upstream fuel plate temperatures. 
 
Both models capture the slight misalignment in coolant channel exit core velocity caused by the 
nonsymmetric placement of the fuel meat inside the fuel plate.  This yields a hot side (the concave side) 
and a cold side (the convex side).  In the velocity profiles the hot side is on the right-hand side of the 
coolant channel.  More energy enters the coolant channel from this, creating a slight non-uniformity in 
pressure across the width of the channel.  At the trailing edge, this non-uniform pressure, higher on the 
right-hand side, pushes the flow slightly to the left.  This non-symmetric pressure profile is shown in 
Fig. 5.61.  In both models, the velocity field reaches a uniform profile well before the outlet, located 
roughly another 2 cm below the bottom cut-off of the figures, indicating that the exit region is sufficiently 
long enough to justify the use of a uniform pressure boundary condition. 



ORNL/TM-2015/656 

173 

 
 
Fig.  5.59.  Coolant channel leading edge total velocity contour comparison.  Note that the coolant domain in 

each model consists of only a single channel.  Three channels are presented side-by-side in order to better 
show the profile continuity across the periodic boundaries. 

 
The smoothing effect of the coolant channel slice in the coupled model decreases with increasing distance 
from the coolant-fuel plate boundary.  This diminishing effect with increasing distance can be illustrated 
by comparing maximum temperature values at varying distance from the coolant-fuel plate boundary.  
The effect’s propagation is shown in Table 5.12.  The ad hoc temperature error, eT, from the coupled 
model fuel plate mesh convergence study can be reapplied here with the 3D model’s temperature at each 
point serving as the reference value.  Not only does the difference in maximum temperature decrease as 
the points move inward but the percent error decreases as well.  The coolant slice’s smoothing effect has 
very nearly worn off by the point it has propagated into the interior of the fuel meat. 
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Fig. 5.60.  Coolant channel trailing edge total velocity contour comparison.  Note that the coolant domain in 
each model consists of only a single channel.  Three channels are presented side-by-side in order to better 

show the profile continuity across the periodic boundaries. 
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Fig. 5.61.  Coupled model non-symmetric trailing edge pressure profile.  The trailing edge pressure profile 
was taken from a widthwise line located at z = 55.78 cm, 0.1 cm above the trailing edge itself. 

 
Table 5.12: Propagation of coolant smoothing effect into fuel plate 

Domain 
Max domain T (K) 

ΔT (K) eT (%) 3D Coupled 
Coolant 375.3 364.6 10.7 10.5 
Fuel Plate Surface 403.0 393.7 9.3 7.2 
Fuel Meat Surface 409.1 400.7 8.4 6.2 
Fuel Meat Internal 431.8 429.6 2.2 1.4 

 
5.5.7 Computational Efficiency 
 
It is indisputable that the coupled model trades a small measure of accuracy for the ability to replicate 
core conditions much faster and with fewer computational resources.  While the former sacrifice is small, 
the latter gain is considerable.  The solution times for both models are given in Table 5.13, along with the 
computational resources required to obtain the solution.  All runs were performed on the computer cluster 
Betty at ORNL.  Eight of the nodes on Betty are reserved for COMSOL use.  Each node possesses two 
AMD Opteron 6128 processors, 16 cores, and 128 GB of RAM.  For a small trade in accuracy, the 
coupled model can be run in ~1/23rd the time of the 3D model using 1/3rd of the computational resources.  
The true decrease in required computational resources is even greater.  A single run of the coupled model 
requires less than half of the available resources on a single Betty node.   
 

Table 5.13.  Coupled vs. 3D speed-up 

Model Computation 
time (hrs) 

Mesh elements 
(in thousands) 

Degrees of freedom 
(in thousands) 

Betty 
nodes 

3D 69 2311 6465 3 

Coupled 3 21 288 1 
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5.5.8 Justification of Selected Residual Tolerance 
 
All solutions presented in this section were performed using a relative residual of 1.00x10-2 which was 
deemed sufficient to ensure adequate convergence.  To demonstrate this point, the final coupled model 
was run using a relative residual of 1.00x10-5.  A comparison of the two solutions is shown in Table 5.14.  
Any change in solution in the fuel plate fails to register with five significant digits.  A slight drop in the 
change in coolant enthalpy is measured by the higher tolerance case but its effect is so minimal that it 
doesn’t register a change in the maximum temperature to four significant digits.  The only truly non-
trivial effect that increasing the tolerance had was to increase the solution time substantially. 

 
Table 5.14.  Relative tolerance 

Tolerance Solution time 
(hrs) E’p,out ΔH’c ec (%) eg (%) Max fuel 

meat T [K] 

1.00x10-2 3 1.0002 1.0358 3.557 3.577 429.6 

1.00x10-5 27 1.0002 1.0304 3.011 3.035 429.6 
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6.0 SUPPORTING DEVELOPMENTS 
 
6.1 MATERIAL PROPERTY LIBRARIES 
 
The LEU Materials library is utilized by the COMSOL users in order to accurately model the properties 
of the fuel meat. This database, originally compiled by Kirk Lowe, contains all of the relevant thermal-
physical properties of the U-10MO fuel. The material properties for the LEU fuel are taken from two 
sources provided to the HFIR facility from the Reduced Enrichment for Research and Test Reactors 
(RERTR) website. Because there are two sources released at different times, the newest source[15] takes 
precedence over the older source[115]. This procedure will be the same for any future updates to the 
library and the updates should be completed as new data becomes available. The only material property 
that did not change from the previous material library was the Young’s Modulus. 
 
The majority of the U-10MO material properties changed to a curve fit definition.  Table 6.1 provides the 
new values: 
 

Table 6.1.  The updated U-10MO materials library values 
Property Equation Units Range 

Specific Heat, Cp 𝟎.𝟖𝟑𝟖 + �𝟓.𝟖𝟖 × 𝟖𝟎−𝟓� ∙ 𝑻 + (𝟖.𝟑𝟑 × 𝟖𝟎−𝟖) ∙ 𝑻𝟖 J g-1˚C-1 100 – 1000 ˚C 
Thermal Expansion, α 𝟖𝟖.𝟖 + (𝟖.𝟎𝟖 × 𝟖𝟎−𝟑) ∙ 𝑻 X 10-6 ˚C-1 100 – 800 ˚C 
Density, ρ 𝟖𝟖.𝟖𝟓 − (𝟖.𝟏𝟑 × 𝟖𝟎−𝟑) ∙ (𝑻 + 𝟖𝟎) g cm-3 20 – 700 ˚C 
Thermal Conductivity, k 𝟖𝟎.𝟖 + (𝟑.𝟓𝟖 × 𝟖𝟎−𝟖) ∙ 𝑻 W m-1 ˚C-1 20 – 800 ˚C 
Elastic Modulus, E 83,000 MPa Room temp 
 
Of the five properties listed in Table 6.1, only the Elastic Modulus remained unchanged from the previous 
materials. Note that all curve fitting was done for temperatures given in Celsius, and thus were converted 
in COMSOL to Kelvin by subtracting 273.15 from the temperature value in COMSOL. 
 
It is also suggested that a new naming scheme should be implemented into the materials library with the 
phrase “Updated_date” included at the end of the file name in order to keep track of the relevance of the 
material library.  A README file has also been created that details the updates made and the references 
used in the updating process. 
 
In order to verify the new material properties implemented in COMSOL, a test case was created. The test 
case utilized the Thermal-Stress module of COMOSL and was set up as a 2-D problem. This model 
consisted of a long, rectangular rod with the LEU fuel properties imposed with aspect ratio of 1:100. The 
long sides of the rod were set as insulated boundaries which created a 1-D problem. Each smaller side 
was set to a constant temperature of 20 ◦C and 1200 ◦C. The simulation consisted of 25,000 elements and 
was run to single precision convergence. The figures below present the experimental data taken from an 
Idaho National Lab report and from the data created  in COMSOL. 
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Fig. 6.1.  The specific heat capacity as a function of temperature. 
 

 
 

Fig. 6.2.  The thermal expansion coefficient as a function of temperature. 
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Fig. 6.3.  The density as a function of temperature. 
 

 
 

Fig. 6.4.  The thermal conductivity as a function of temperature. 
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The COMSOL simulation data follows the data provided by the INL report. The extreme high 
temperature range for the thermal conductivity, seen in Fig. 6.4, contains the only outlier for the 
simulation. As new data becomes available, the materials library needs to be updated to stay current with 
the standards used for the LEU conversion. 
 
6.2 MATERIAL PROPERTY LIBRARIES  
 
COMSOL contains access to a built-in materials library that allows for the direct implementation of a 
large selection of material properties for multiphysics simulations. Because COMSOL will be used to 
verify the safety basis for the conversion to LEU fuel, it is desired to include the best materials properties 
available. As already demonstrated, the material properties for the U-10MO have been implemented and 
verified in Section 6.1. In order to ensure the most reliable properties for the coolant for the fuel plates, it 
is desired to include the water properties from the NIST Steam Tables. 
 
The National Institute of Standards and Technology (NIST) has taken over the task of maintaining the 
Steam tables formerly maintained by the American Society of Mechanical Engineers (ASME).  The NIST 
steam tables are derived from the “official international formulations for water properties developed and 
maintained by the International Association for the Properties of Water and Steam (IAPWS).”  NIST has 
taken these formulations and implemented them into a FORTRAN code capable of providing 43 
properties of water. The list of outputs is available in the NIST documentation. The majority of steam 
tables are derived from this formulation. 
 
In order to implement the NIST Steam Tables into COMSOL, the MATLAB interface for COMSOL will 
be used. This interface facilitates the use of a MATLAB function inside of the COMSOL code. COMSOL 
sends a list of user-defined parameters, in matrix form, to MATLAB to be input into the function. The 
results of the function are then returned to COMSOL, in matrix form, and the data is used for the 
simulation. The MATLAB function can be used at any point in the COMSOL code: it can be used for 
initial conditions, during computation, or in post processing. 
 
6.2.1 FORTRAN Compilation in MATLAB 
 
COMSOL does not provide a direct way to call FORTRAN codes but can allow the user to create a 
custom function utilizing a function created in MATLAB.  MATLAB in turn has a built in compiler, 
called the MEX-function, that allows the user to create a function from C++ or FORTRAN codes.  This 
link will allow COMSOL to directly call the FORTRAN subroutines in the NIST Tables. 
 
As an initial step, a fundamental understanding of the workings of the MEX-function in MATLAB is 
desired and MATLAB provides many examples of simple C++ and FORTRAN codes ready for 
compilation.  Because the NIST Tables are FORTRAN subroutines, only the FORTRAN example codes 
are of interest.  When compiling the FORTRAN code in MATLAB, one simply types “mex code.F” in 
the Command Window and MATLAB generates a file named “code.mexa64,” which doubles as a 
MATLAB function of the name “code()” where the parenthesis includes any arguments fed to the 
FORTRAN code.   
 
Using the examples provided in the MATLAB directory proved to be difficult as any of the FORTRAN 
examples would cause MATLAB to crash during the compilation process.  As a test, the same examples, 
written in C++, were compiled using the MEX-function without any difficulty thus proving the MEX-
function was not broken in this MATLAB release.  A help request was sent to MATLAB and a response 
was given for the compilation problems encountered: “Although FORTRAN does not generally use 
pointers, the MEX interface has “pointer” variables, it should be declared as INTEGER*4 on the 32 bit 
machine, and declared as INTEGER*8 on the 64 bit machine.”  The FORTRAN examples provided by 
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MATLAB were written for 32 bit machines and the machine being used for compilation at ORNL was a 
64 bit machine and thus MATLAB would crash on every compilation attempt.  The difference in coding 
can be seen in this example for the sample code called timestwo.F.  The 32 bit code is written as: 
 
C Gateway routine 
 subroutine mexFunction(nlhs, plhs, nrhs, prhs) 
C Declarations 
 implicit none 
C mexFunction arguments: 
 mwPointer plhs(*), prhs(*) 
 integer nlhs, nrhs 
C Function declarations: 
 mwPointer mxGetPr 
 mwPointer mxCreateDoubleMatrix 
 integer mxIsNumeric 
 mwPointer mxGetM, mxGetN 
C Pointers to input/output mxArrays: 
  mwPointer x_ptr, y_ptr 
C Array information: 
 mwPointer mrows, ncols 
 mwSize size 
C Arguments for computational routine: 
 real*8  x_input, y_output 
 
Whereas the 64 bit code is written as: 
 
C Gateway routine 
 subroutine mexFunction(nlhs, plhs, nrhs, prhs) 
C Declarations 
 implicit none 
C mexFunction arguments: 
 integer*8 plhs(*), prhs(*) 
 integer nlhs, nrhs 
C Function declarations: 
 integer*8 mxGetPr 
 integer*8 mxCreateDoubleMatrix 
 integer mxIsNumeric 
 integer*8 mxGetM, mxGetN 
C Pointers to input/output mxArrays: 
 integer*8 x_ptr, y_ptr 
C Array information: 
 integer*8 mrows, ncols 
 mwSize size 
C Arguments for computational routine: 
 real*8  x_input, y_output 
 
Notice that for each declaration of mwPointer in the 32 bit code, it is replaced by integer*8 for the 64 bit 
code.  Upon replacing this pointer, all of the MATLAB examples could be successfully compiled. 
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6.2.2 MATLAB Function Implementation 
 
The compiled code has been compared to the steam tables available in Thermodynamics: An engineering 
Approach[116,117] with great accuracy.  This code has been implemented into the COMOSL GUI by 
creating a MATLAB function that calls the mex-function.  This implementation was made possible after 
several discussions with the COMSOL support group.  It was revealed that COMSOL sends it variables 
as vector arrays of 1xN while the mex-function was created to only accept a scalar variable, that is a 1x1 
variable.  In using the NIST code implemented in MATLAB, the mex-function was called as follows: 
 
 output = input(press,temp) 
 
where output is the desired output from the mex-function (density, thermal conductivity, etc.) and input is 
the mex-function.  The mex-function only accepts one value for press and temp where COMSOL gives an 
array of variables.  Using this knowledge allowed the creation of the following MATLAB function to call 
the mex-function: 
 
 function output = COMSOL_function(press,temp) 
 for ii = 1:length(press) 
 output(ii) = mex_function(press(ii),temp(ii)) 
 end 
 return 
 
The above MATLAB function has allowed the implementation of the NIST steam tables into COMSOL. 
 
6.3 DERIVATION OF THE INVOLUTE COORDINATE SYSTEM 
 
6.3.1 The Basic Involute  
 
The basic circular involute shown in Fig. 6.5 is represented by the parametric relation 
 

( ) ( )[ ] 0,sincos ≥+= θθθθbrx  ......................................................................................................... (6.1a) 

( ) ( )[ ] 0,cossin ≥−= θθθθbry . ........................................................................................................ (6.1b) 
 
where rb is the radius of the base involute, assumed to be positive, and θ is measured in radians[117]. For 
the purpose of brevity, the basic circular involute will be called the basic involute herein.  The fact that it 
is a circular involute will be implied as this is the only involute curve detailed explicitly. 
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Fig. 6.5.  Basic circular involute.  The involute curve is shown along with its base circle.  Tangent guidelines 
are represented by dashed lines.  The numbers indicate the direction of progression of the involute in the 

direction deemed “positive.” 
 
While this is considered the basic involute equation, in truth however, this is a simplification of a more 
generalized form.  In this more general form there are two variables, θ and α, where one is a linear 
function of the other.  This generalized form is given by the parametric equation 
 

( ) ( )[ ] 0,sincos ≥+= αθαθbrx  ........................................................................................................... (6.2a) 
 

( ) ( )[ ] 0,cossin ≥−= αθαθbry  ........................................................................................................... (6.2b) 
 

( )θα ℑ=  ................................................................................................................................................ (6.2c) 
 
where the operator denotes that α is a linear function of θ.  In this generalized form, the variable θ 
specifies the angular position of the tangent line emanating from the perimeter of the base circle.  The 
variable α specifies the angular position along the length of the involute curve itself.  This is illustrated in 
Fig. 6.6. 
 
Using this generalized form of the parametric equation, an entire array of involute curves can be created 
by varying θo.  The process of incrementally increasing the angular offset of each successive curve can be 
repeated n times for n number of curves. 
 

ℑ
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( ) ( )[ ] niiibrix ,...,3,2,1,0,sincos =≥+= αθαθ

 ............................................................... (6.3a) 
 

 ( ) ( )[ ] niry iibi ,...,3,2,1,0,cossin =≥−= αθαθ ................................................................. (6.3b) 
 

 
ni

n
i

i ,...,3,2,1,0,12 =≥
−

+= απαθ
. ............................................................................ 6.3c) 

 
The HFIR core consists of 540 basic involute fuel plates, 171 of which are arrayed in the inner element.  
The HFIR inner core can be recreated with n = 342.  This is twice the number of fuel plates since each 
plate is separated by a coolant channel.  This produces 171 constant-width fuel plates and 171 constant-
width coolant channels.  A magnified slice of the geometry that this produces is shown in Fig. 6.6. 
 

 
 

Fig. 6.6.  Angular parameters.  In this example α = θ – π/4.  Instances in which α does not start at zero are 
also possible.  These will, however, have some angular offset separating them from contact with the base 

circle. 
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Fig. 6.7.  HFIR core inner element fuel plate configuration.  Inner element involute fuel plates are shown in 
grey with inner and outer side plates capping each end.  The alternating white spaces between fuel plates are 

coolant channels. 
 

6.3.2 Select Alterations to the Basic Involute 
 
While Equation 6.2 adequately describes any general involute curve, it is not sufficient for describing the 
internal fuel geometries of the plates nor does it lend itself to a practical reference frame.  For these 
purposes, Equation 6.2 can be rewritten in terms of two involute coordinates, θ and t.  The new involute 
variable t is the perpendicular offset distance from a base involute curve.  It takes the place of α such that 
 

( ) 0, ≥+= αθθα
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t

 ................................................................................................................................(6.4) 
 
where t is measured positive extending out from the convex side of the curve and negative out from the 
concave side.  A pair of curves in which t is set to equal 0 and rb such that θ equals α and α + 1, 
respectively, is shown in Fig. 6.8.  Both the arc length along the circumference of the base circle, a, and 
the perpendicular offset distance, t, between the two involute curves equals rb.  Thus it can be said that 
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Fig. 6.8.  Perpendicular involute offset.  The top involute curve has θ = α.  The bottom involute curve has θ = 

α + 1 which corresponds to a θo of 1 radian (CW positive). 
 
In this new reference frame, adjacent involute curves are generated by specifying t, the linear offset 
distance between them, rather than the angular offset between their origin points.  Equation 6.4 is valid 
for any involute with a constant offset.  For involute curves with non-constant offset, t can be specified as 
a function of θ. If t varies linearly with θ, the offset can be determined using point-slope form such that 
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 ........................................................................................................... (6.6a) 
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where θ1 and θ2 are the start and end points of the sloped line, respectively, and t1 = t(θ1), t2 = t(θ2).  If t is 
given as a smooth, continuous function of θ then Equation 6.6a can be used independently.   
 
In the same way that t is a more readily accessible substitute for θo, the angular coordinate θ can be 
converted into arc length along the involute curve, s.  The variable t will be assumed constant in the 
following relations.  First, consider the basic definition of arc length 

∫=→

b

a
ba dss

. ............................................................................................................................................(6.7) 
 
For the parametric equation given by Equations 6.2 and 6.4, the quantity ds is represented by 
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. .......................................................................................................................(6.8) 
 
Differentiating Eqations 6.2 and 6.4 with respect to θ and substituting into Equation 6.8) produces 
 

. .....................................................................................................(6.9) 
 
Simplifying via the Pythagorean identity and substituting into Equation 6.7 yields 
 

. ............................................................................................................................. (6.10) 
 
Integrating and assuming θa = sa = 0 as a universal point of reference produces 

( ) 0,
2

2

≥+= θθθθ trs b
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Arc length is considered a superior alternative to θ due to the fact that it increases linearly along the span 
of the fuel plate whereas θ increases at a rate proportional to the square root of s.  In addition to s and θ  
there is a third coordinate, radius, r, that is frequently used to define positions along the span of the fuel 
plate.  As various inputs and references use a mixture of all three coordinates, it is important to be able to 
easily and readily convert between the three.  Radial position, r, can easily be determined as a function of 
θ by starting with  
 

22 yxr += . ....................................................................................................................................... (6.12) 
 
Substituting Equations 6.2 and 6.4 into Equation 6.12 yields 
 

 ..................................................... (6.13) 
 
Squaring the quantities allows for the grouping of like terms 
 

 .............. 6.14) 
 

. 
 
Again using the Pythagorean identity and cancelling like terms produces r as a function of θ 
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To bring the reference frame relations full circle, s can also be solved as a function of r.  To start, 
Equation 6.15 is solved for θ 
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The result is then substituted into Equation 6.11 to produce 
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Squaring the first term and grouping like terms yields 
 

  ............................................................... (6.18) 
 
which reduces to 
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Simplifying yields 
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With Equations 6.11, 6.15, and 6.20, it is possible to quickly cycle among all three coordinate systems.  
The relations for s(r), r(θ), and s(θ) can readily be solved in reverse, allowing for quick conversions 
between any of the three primary involute coordinates.   
 
The final alteration to the basic involute equation that is required in order to recreate specific HFIR fuel 
configurations is the out-of-plane alteration for involute curves with an axial component.  The basic 
involute curve, referred to, in this context, as the in-plane involute, and all of its alterations presented thus 
far, exists solely in a two-dimensional s-t plane that is perpendicular to the axis of the core.  The question 
arises of how to most appropriately extend the involute into the axial dimension to create an out-of-plane 
involute.  There are many choices for defining the out-of-plane involute’s axial position.  Primarily, one 
could define the axial position as a function of θ, r, or s.  One could also envision the out-of-plane 
involute as the hypotenuse of an involute triangle with the in-plane involute and the axial line connecting 
their two ends completing the perimeter of the triangle. 
 
The most physically appropriate answer to this question comes from the fabrication process used to create 
the plates.  The fuel plates, consisting of aluminum cladding and enriched uranium fuel powder, are 
assembled in a flat, rectangular geometry.  The involute curve is introduced by pressing the flattened 
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assembly against an involute mold.  In envisioning this process, it is easy to understand that the fuel plate 
is bent as a function of arc length along the in-plane involute curve.  In the same way, the extension of the 
involute curve into the axial direction should be a function of arc length in order to realistically 
approximate the effects of this real-world bending process.  
 
The introduction of an axial component into an involute curve in this manner turns out to be fairly simple.  
Consider again Equations 6.2 and 6.4.  Let them represent a generic in-plane involute curve.  A third 
equation to represent the curve’s axial position as a function of the variable θ must be added to this set.  
The new parametric set then becomes Equations 6.2 and 6.4., and  
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where s(θ) is given by Equation 6.11.  The resultant out-of-plane involute curve that this produces is 
shown in Fig. 6.9. 
 

 
 

Fig. 6.9.  Out-of-plane involute curve.  The z-direction denotes the direction of the axis.  As viewed down the 
axis, the out-of-plane involute has the same footprint as its in-plane involute. 

 
6.4 CONSTRUCTING CAD GEOMETRIES IN SOLIDWORKS 
 
6.4.1 Defining the Geometries 
 
Only inner element geometries will be considered in this section.  The most basic involute geometry in 
the core is that of the aluminum fuel plate.  Its basic dimensions are shown in Fig. 6.10.  The fuel plate’s 
primary distinguishing features are a rounded leading edge and a chamfered inner corner.  Given that this 
second feature is obscured from the coolant channel during operation, however, it can be removed from 
the CAD construction.  In models in which the side plates are included for the purpose of analyzing heat 
transfer into them from the coolant and fuel plate, the fuel plate itself is cut off at this overlap boundary.  
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Anything beyond this line is assumed to be side plate—a trivial distinction given the uniformity of 
material used to construct both the fuel plates and the side plates.    
 

 
 

Fig. 6.10.  Inner element fuel plate dimensions. 
 
In considering the “basic” fuel plate, one is considering only the external dimensions.  In actuality, the 
fuel plate has an internal cavity in which the fuel meat is placed.  This cavity can be created through a 
Boolean subtraction of the fuel meat geometry from the solid fuel plate geometry, however, rather than 
through manual CAD construction.  For the fuel meat itself, three geometries will be considered in this 
thesis.  The first is the existing HEU fuel meat.  The HEU fuel has a thickness that varies as a smooth 
function of s. The HEU fuel is axially consistent, meaning that its profile in the s-t plane remains constant 
for all axial positions.  All of the fuel meats are non-symmetric such that one side forms a datum at t=0.  
The contour of the other side thus varies directly with the thickness of the fuel meat.  The HEU fuel meat 
thickness profile is shown in Fig. 6.11.  The profile is shown in linearized form in which the s-t plane has 
been mapped to an x-y Cartesian grid using a 1:1 mapping. 
 

 
 

Fig. 6.11.  Linearized HEU fuel thickness profile.  
The curve fit is generated from 35 unevenly distributed points. 
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The HEU thickness is given as a collection of points that can be represented in cm by the 4th order 
polynomial 
 

( ) ( ) 103.8152.0,102280128070503 5234 ≤≤×+++−= − sssssst  .................................................... (6.22) 
 
with a coefficient of determination, R2, of 0.9999 indicating a close approximation of the actual HEU 
thickness profile.  The coefficient of determination is given by[94]. 
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where ti is the collection of points used to define the HEU thickness profile, f(si) is the value of the 
approximation at those points, and t  is the average of the defining points. 
 
The second geometry is an intermediate LEU fuel meat.  The intermediate LEU fuel has a thickness that 
varies piecewise linearly with s and is also axially consistent. The linearized LEU thickness profile is 
shown in Fig. 6.12. 
 

 
 

Fig. 6.12.  Linearized LEU fuel thickness profile.  Overall, the LEU fuel profile is thinner than the HEU 
profile.  Even though the LEU fuel has less U235 per weight than the HEU fuel, it has a higher density. 
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The third geometry is another LEU fuel meat with the same starting profile as the first, but with the 
inclusion of axial grading.  This geometry tapers towards its trailing edge in an effort to prevent a sharp 
spike in nuclear heat energy output in the tail of the fuel meat.  This third geometry was, at the onset of 
this study, the geometry proposed for production.  Since that time, however, more viable alternative fuel 
geometries have been proposed.  The intermediate LEU fuel is included only because of the relative 
simplicity and ease of modeling that accompanies the change to an axially-consistent geometry.  The 
axially-graded LEU geometry is shown alongside the intermediate geometry in Fig. 6.13. 
 

 
 

Fig.. 6.13.  Linearized LEU fuel geometries.  The axially-consistent intermediate LEU geometry is shown on 
the left.  The axially-graded LEU geometry is shown on the right.  Figures not to scale. 

 
In the process of manufacturing the HEU plate, the cavity in the plate is filled with fuel powder to create 
the necessary profile.  The remainder of the void is then filled with a radioactively inert composition of 
“filler” powder.  In the outer fuel element, the filler is all aluminum powder. In the inner fuel element, the 
filler is composed by weight of ~99.9% aluminum powder and ~0.01% boron poison[16].  Since the 
poison constitutes such a small percentage of the overall filler material it can be disregarded with respect 
to its thermal properties.  The filler can thus be assumed to have the thermal properties of aluminum.  
Furthermore, since the powder is primarily aluminum, this entire filler region can be assumed to be a part 
of the fuel plate itself.  The only loss is in the modeling of the contact resistance between the two as well 
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as within the powder itself.  The final method of manufacturing LEU plates has not been set.  Therefore, 
the same assumptions are used in the LEU model.  Under these assumptions, the process of creating the 
finalized fuel plate geometry through a Boolean subtraction of the fuel meat geometry is valid. 
 
The last major geometry component is that of the coolant.  The coolant is, like the fuel plate itself, fairly 
simple to construct.  It encapsulates the fuel plate on the top and bottom as well as the concave and 
convex sides.  An entry region approximately 2.0 cm in length, corresponding to the top of the side plates, 
is inserted upstream of the leading edge.  This allows the inlet flow to be specified using the conditions 
under which it enters the reactor core.  The flow then naturally develops as a result of the impingement of 
the rounded leading edge.  A similar Region 3.5 cm in length, corresponding to the bottom of the outer 
side plate, is inserted downstream of the trailing edge.  This region allows the flow to homogenize 
downstream of the fuel plate before being bounded by outlet flow conditions.  The coolant is bounded in 
the t-direction by lines of periodicity. 
 
6.4.2 SolidWorks Construction Techniques 
 
SolidWorks was chosen to construct CAD geometries due to its inclusion of an equation-driven-curve 
function.  Operating in a 3D sketch, the equation-driven-curve function can create a curve from three-
dimensional Cartesian parametric equations.  Namely, the involute parametric equation set derived in the 
preceding section can be used to directly generate involute geometries as a function of the angular 
coordinate θ.  Steps for accessing the tool are outlined in Fig. 6.14. 
 
 

 
 

Fig. 6.14.  Accessing the equation-driven-curve tool in solidworks.  SolidWorks refers to the parametric 
parameter as t.  For an involute curve this traditionally represents the angular coordinate θ although any 

coordinate can be used is the parametric equations are given as a function of it. 
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Constructing CAD geometries in a 3D sketch allows not only for the creation of in-plane involute 
curves—such as those used to create the contours for the fuel meat, fuel plate, side plates, and coolant—
but also for out-of-plane curves like those necessary to create the axial grading in the LEU geometry.  For 
axially-constant geometries a sketch plane can be used in order to work in a simplified 2D x-y plane in 
which only the coordinates θ and t are defined.  For all of these geometries it is easiest to create a 2D 
“footprint” and then extrude in the axial direction.  An example of a basic one-plate two-channel domain 
is shown in Fig. 6.15. 
 

 
 

Fig. 6.15.  2D x-y Plane SolidWorks footprint.  Only the curves are created in SolidWorks.  The shading of 
specific areas was done purely as a means of orientation.  The two full coolant channels are shaded in blue.  

The fuel plate and both side plates are shaded in grey.  The fuel meat contour is not depicted. 
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7.0 CONCLUSIONS, RECOMMENDATIONS AND LESSONS LEARNED 
 
This chapter summarizes the major results of this work and makes recommendations regarding further 
work associated with the thermal-hydraulic, fluid-structure interaction, and thermal-structure interaction 
modeling of the High Flux Isotope Reactor. 
 
7.1 RESULTS FROM 2-D CONJUGATE HEAT TRANSFER MODELS 
 
It was shown that for the constant heat flux situation with both constant and variable fluid properties, the 
Seider-Tate correlation provided convection coefficient results very close to the COMSOL model results 
for the transfer of heat from a solid surface by the use of the low Reynold number k-ε turbulent flow 
model.  The Seider-Tate correlation produced a relative difference with the model Nusselt number of 
1.2% to 4.4%. As a result, the temperature of the surface of the generating solid was also closely matched 
by the Seider-Tate Nusselt modulus. 
 
In the case of constant heat flux with constant fluid properties, the model produces surface temperature 
results that are higher than those produced by the other correlations (i.e., Gnielinski, Seider-Tate, and 
Hausen).  This trend is inverted, however, with the use of variable fluid properties where the model 
surface temperature distribution is lowest in magnitude relative to the surface temperature distributions 
produced by the other correlations.  It was found that the Gnielinski correlation produced the highest 
estimate of the surface temperature for the constant heat flux case with variable fluid properties.   
 
For a surface exhibiting constant heat flux into a fluid where the material properties vary negligibly over 
the temperature range of interest, the Seider-Tate correlation produces estimates of the convection 
coefficient which translate into higher surface temperature distributions than the other correlations 
considered in this work.  On the other hand, if the fluid properties vary significantly over the temperature 
range of interest with a constant surface heat flux, then the Gnielinski correlation will provide higher 
surface temperature results than the other correlations investigated herein.  It should be borne in mind, 
however, that the use of constant fluid properties actually produced higher surface temperatures than the 
use of variable fluid properties.  It was discussed that the use of constant fluid properties greatly reduces 
the amount of computational effort associated with the developed computational model.  This reduction in 
effort is associated with the removal of the interpolation steps taken for the material properties at 
subsequent thermodynamic states. 
 
Similar results were found for the distributed heat flux model.  In the constant fluid property model, the 
surface temperature results associated with the model were larger in magnitude than the surface 
temperature results found from the correlations.  It was observed that one could use either the Seider-Tate 
correlation or the Hausen correlation to closely reproduce the model surface temperature results in the 
constant fluid property case.  Also, the Gnielinski correlation produced the lowest estimate for the surface 
temperature distribution.  As a result, to provide higher estimates of the surface temperature, one should 
use either the Hausen correlation or the Seider-Tate correlation.  
 
It was observed that the variable fluid property case produced the opposite trend (i.e., the Gnielinski 
correlation produced higher surface temperature results than the other correlations and the model).  Also, 
the model associated with the variable fluid property case produced the lowest magnitude surface 
temperatures.  For the variable fluid property case in conjunction with the distributed heat flux, the 
Hausen correlation most closely matched the model results over most of the range of the Reynolds 
numbers investigated here (i.e., 𝟖𝟎,𝟎𝟎𝟎 ≤ 𝑬𝒇𝑫 ≤ 𝟖𝟖𝟖,𝟎𝟎𝟎).  On the higher end of the Reynolds 
number range, the Seider-Tate correlation was a better fit.  The combination of a distributed power 
density in the generating material and variable fluid properties most closely matches the physics of the 
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HFIR core system.  As a result, it is recommended that the Gnielinski correlation be used to produce high 
estimates of the clad surface temperatures where conservative estimates are necessary. 
 
7.2 RESULTS FROM THE 3-D CONJUGATE HEAT TRANSFER MODELS 
 
Both the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop model results and the results 
from the fuel defect models are summarized in the following sections. 
 
7.2.1 Advanced Neutron Source Reactor Thermal Hydraulic Test Loop 
 
As part of the validation effort of the COMSOL code, experimental data collected from the Advanced 
Neutron Source Reactor Thermal Hydraulic Test Loop (ANSR THTL) was used.  In Chapter 5 it was 
demonstrated that the model of the ANSR THTL could reproduce the results of the experiment data 
considered in this work relatively well.  This exercise with the ANSR THTL should instill confidence in 
the ability of the code to produce quality results within the parameters established for the ANSR THTL 
(i.e., high heat flux and large flow rates through long, narrow channels). 
 
The ANSR THTL presents a unique experimental data set that has similar characteristics to that of the 
flow channels in the HFIR core (i.e., high surface heat flux and a long narrow coolant channel).  The 
aspect ratio of the THTL coolant channel, length to thickness, is 399, which is only 16.9% less than that 
of the HFIR.  Flow velocities through the THTL range from 62.34 fps (19.00 m/s) to 88.58 fps (27.00 
m/s) which are also comparable to, albeit larger than, the flow velocity characteristic of the HFIR which, 
as previously stated, is approximately 52.00 fps (15.85 m/s) at steady state operation.  The average and 
peak heat fluxes produced in the THTL are stated to be 6 MW/m2 and 12 MW/m2, respectively[39,40].  
The average heat flux through the HFIR core is calculated to be 2.13 MW/m2.  Therefore, with higher 
flow velocities and higher average heat fluxes, the THTL provides extreme cases, relative to HFIR 
conditions, with which to validate the commercial code COMSOL. 
 
7.2.2 Fuel Defect Analysis 
 
Two types of fuel plate defects were investigated, a lack of metallurgical bond (i.e., blister defect) and a 
segregation defect.  The blister defect is physically characterized by a region with relatively low thermal 
conductivity (i.e., fission gas).  The blister defect was incorporated into the model as an adiabatic disc 
located between the fuel and clad domains.  The segregation defect is physically characterized as a local 
region with excess 235U loading.  The segregation defect was incorporated into the simulation 
environment as a cylinder coincident with the fuel meat with an increased thermal generation rate per unit 
volume relative to the surrounding fuel material. 
 
These defect models were compared with a nominal base case model in which no defects were 
incorporated.  The location of the maximum surface temperature for the nominal case was used as the 
location for the defects.  The logic of this strategy follows.  The defects act to increase surface heat flux.  
The blister defect increases heat flux on the side of the plate opposite the defect geometry (i.e., the defect 
geometry was placed on the fuel contour side of the fuel plate and the heat flux was increased due to the 
defect on the uncontoured side of the fuel plate).  The segregation defect increases the surface heat flux 
by a local increase in thermal generation rate per unit volume.  An increase in surface heat flux results in 
an increase in surface temperatures, given that all other parameters remain unchanged (i.e., flow velocity, 
material properties, etc.).  The purpose of the fuel defect model is to investigate whether the surface 
temperature is comparable with the saturation temperature of the liquid which could result in a transition 
to two-phase flow.  It was shown that the segregation defect resulted in the highest surface temperatures 
with a magnitude of 219.24˚F (377.17 K), however, the probability of either defect resulting in a local 
change of fluid phase is very low.  
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7.3 RESULTS FROM FLUID-STRUCTURE INTERACTION MODELS 
 
The fluid-structure interaction modeling capabilities of COMSOL were tested for a number of cases. 
First, an oscillating cylinder with prescribed displacement was considered. The results follow the 
experimental setup quite well. Only one simulation was found to not follow the experimental results 
presented by Koopman at a plunge amplitude of 0.2 and a frequency ratio of 1.2. This “extreme” case is 
an outlier in all of the other lock-on cases, and based upon the success of the other simulations does not 
negate the solver. For instance, the simulations around the “fork” of the experimental results follow the 
lock-on/non lock-on progression as expected. The most reasonable explanation for this outlier is the fact 
that experiments, by their nature, have error involved and thus the “fork” may be in a different place.  
 
Next, we considered a cylinder, which was allowed to freely oscillate in the transverse direction due to 
the fluid forces acting on the body. COMSOL’s fluid solver was used to compute the flowfield and the 
structural dynamics were modeled as a mass-damper-spring system using the ODE solution module of 
COMSOL. The results provided insight into the capabilities of the FSI solver to capture the physics of the 
phenomena. The exploration of the three different solving techniques available in the code for the 2-D 
case allowed for an assessment of the applicability of the methods for the FSI cases. It was shown that the 
fastest solution can be obtained using the one-way coupling. While the one-way coupled solver produced 
oscillating frequencies similar to the fully-coupled solver, the maximum deflections were smaller than the 
fully-coupled case. The segregated solver was not able to capture the physics correctly resulting in an 
unstable solution in which the residual would diverge. 
 
The 2-D, free displacement case revealed the need for the perfectly symmetric mesh. The need for this 
new meshing technique was discovered by observing the displacement of the cylinder once it reached its 
limit cycle. Assuming a perfectly round cylinder, the displacement should oscillate around the original 
position of the cylinder but when the mesh was not symmetric, the cylinder would initially drift up and 
begin to oscillate about another mean position. 
 
The 3-D case, which included the linear-elastic structural model, was able to capture the physics as well. 
For each run, the maximum displacement was smaller than the 2-D cases since a relatively stiff cantilever 
cylinder was used in the simulations. Taking these assumptions into account, the displacements obtained 
from the simulations appear to be reasonable. 
 
As the next case, we considered a stationary cylinder with a moving elastic tail, which provides a context 
to explore large deflections produced by the fluid. In particular, the FSI2 case produced results for which 
the deflection at the tail was approximately 8 times larger than the thickness of the plate. This large 
deflection tests the code’s ability to resolve the large stresses in the linear-structural model, to adapt the 
mesh as the structure deforms, and to capture the change in fluid characteristics, especially around the end 
of the tail. The final solution of FSI2 demonstrating these attributes matched the test cases provided by 
Turek and Hron very well and also produces deflections for a much stiffer plate as shown in the steel tail 
case. 
 
Having gained confidence in COMSOL capabilities for simpler problems, next we turned our attention in 
modeling fluid-structure interaction phenomena in flat plates typically used in nuclear reactors. The first 
three-dimensional case was based on the experimental setup studied by Smissaert in late 1960s. The large 
aspect ratio of the Smissaert experimental setup (180 length to channel thickness ratio) presented a 
difficult computational problem when it comes to balancing computational time, size and stability. The 
long, thin flow channels required a large number of elements in order to properly capture the flow field. 
For the flow field, a free tetrahedral mesh was used with a mapped quadrilateral mesh along the no-slip 
boundaries of the side wall and plate. The final mesh consisted of approximately 750,000 elements.  
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As seen in Section 4.2.3, FSI simulations with strong fluid and structure coupling must be run using a 
fully coupled solver. In order to obtain a reasonable initial condition, one-way coupling is used to 
establish the initial condition for the fully coupled solver. Without this step, the solution process is not 
stable and no solution was obtained. A segregated approach was tried with too little success[79]. In order 
to obtain an FSI solution for high-aspect ratio fuel plates, the following solution process should be 
followed: 
 
Use the one-way coupled FSI solver to obtain a fluid solution and solid mechanics solution with a coarse 
mesh. 
 
Use the one-way coupled solution as an initial condition for the fully coupled solver using the same mesh 
that was used for the one-way coupling. 
 
Refine the mesh using the previous solution as an initial condition for the fully coupled solver until the 
solution is mesh converged. 
 
As the final test case related to fluid-structure interaction modeling, curved plates were considered. 
Similar to flat plate simulations, a one-way coupled solver should be used to obtain a “good” initial flow 
and deflection solution, which must be provided to the fully coupled solver. This has proven to be the 
most stable approach for strongly coupled FSI simulations. The HFIR SAR predicts, using an 
eigenfrequency analysis, that the first mode of the involute plates will have an ‘S’ shape near the leading 
edge[7]. This behavior was confirmed through the fully coupled FSI solutions that captured ‘S’ shaped 
leading edge deflections.  
 
It must be noted that, UTK’s efforts in this area are still ongoing as Mr. Curtis continues to pursue his 
PhD in Mechanical Engineering. We plan to provide ORNL new results in the future as they become 
available. 
 
7.4 RESULTS FROM THERMAL-HYDRAULIC INTERDIMENSIONAL COUPLING 

MODELS 
 
Without experimentally verified data against which to compare the coupled model, it is impossible to say 
definitively that it is a sufficiently accurate tool with which to model HFIR core thermal-hydraulics.  The 
close agreement between the coupled model and the more complete 3D model, however, is a strong 
indicator that both provide good approximations of core conditions.  In this regard, the coupled model has 
proven itself to be an exceedingly more efficient and less time-consuming alternative to the 3D model 
capable of producing results of a comparable quality.   
 
This thesis was begun with the intent to create a simplified model that could eventually be expanded to 
model the entire core.  It is doubtful that the coupled model is such a model.  It does, however, greatly 
expand the computational range possible for a single model.  The 3D model, with its gratuitous DOF, 
would be hard-pressed to encapsulate even two adjacent fuel plates and their surrounding coolant 
channels in a single model.  It is most likely possible with the available resources on Betty, but only just.  
The coupled mode, by contrast, could be expanded to encapsulate 22 fuel plates and coolant channels for 
the same DOF as the 3D model, assuming a linear expansion of DOF with added domains.  If the 
doubling of the 3D model is assumed plausible then so would be the creation of a 44 plate coupled 
expansion.  Additional improvements need to be made to the model before all 540 fuel plates in the 
reactor core, both inner fuel elements and outer fuel elements, can be modeled together.  Forty-four plates 
constitutes over a quarter of the 171 inner fuel elements, however, and would thus be sufficient to provide 
quarter-turn axial symmetry to a simulation of non-uniform core operation. 
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There are additional improvements that could be made to the coupled model to further increase its 
efficiency.  Chiefly, more advanced meshing techniques, some of them unavailable at the onset of thesis-
related work, would permit an even greater decrease in the DOF for the coupled model.  Mapped meshes 
could be inserted into the entrance and exit coolant channel regions above and below the fuel plate region, 
respectively, to replace the computationally inefficient free-triangular mesh that exists there now.  Virtual 
mesh elements could be used to replace the free-triangular s-t face mesh extruded down the length of the 
fueled section of the fuel plate with a neater, more evenly-spaced mapped mesh.  CAD repairing features 
could be used to remove the free-tetrahedral mesh in the rounded leading edge of the fuel plate with a 
similarly neat mapped mesh extruded down the span of the leading edge. 
 
The greatest advancement to be made in the coupled model, however, is finding the means to further 
separate the current segregated solution variable groups.  As was mentioned earlier, the coupled model 
currently requires that temperature in both the fuel plate domain and the coolant domain be solved in the 
same segregated step.  Otherwise the model fails.  This would indicate that an expansion of the model to 
include additional fuel plates and coolant channels would also require that the flow variables for every 
channel, u and p, be solved in a single step.  The same would be true for k and ε.  The means to break this 
limitation and create segregated steps capable of solving manageable chunks of the solution domain 
would permit the model to encapsulate the entire core without fear of memory limitations.  The only 
remaining concern would be computation time, which could become significant.  Still, this is more of an 
inconvenience than a true limitation. 
 
The coupled model might not be the definitive answer to the question first posed in this thesis but it is a 
confident step in the right direction. 
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