Milestone M3FT-15OR0202268: Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

Christian Petrie¹, Joel McDuffee¹, Yutai Katoh¹, Kurt Terrani¹ ¹Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6051

1. Introduction

This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

2. Experimental Design

The capsule design uses an embossed aluminum foil to transfer heat from the cladding and sleeve (see Figure 1) to the capsule housing. The foil compresses as the cladding swells under irradiation and keeps the clad surface temperature approximately constant throughout the irradiation. Heat transfer through the embossed foil has been validated experimentally (see Figure 2). This design allows the SiC tubes can be irradiated under a representative light water reactor temperature (300-350 °C outer surface temperature) and heat flux (0.5-1.0 MW/m²). The molybdenum heaters provide the heat generation required to reach the desired heat flux. Titanium centering thimbles keep both the SiC tube specimens and the molybdenum heaters centered within the capsule housing. Figure 1 shows a stack up of two 16 mm length specimens, one 12 mm length specimen, and one 4 mm length specimen. Alternatively, a stack up of three 16 mm length specimens was used for capsules ATFSC01 and ATFSC02, which were assembled and delivered to the HFIR for insertion during cycle 462 (October 2015).

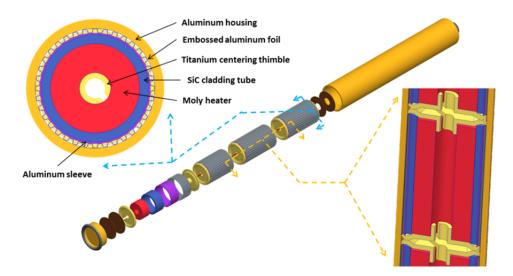


Figure 1. Schematic overview of experimental design

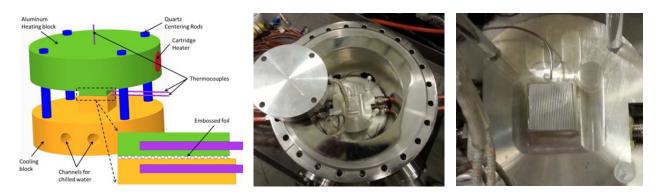


Figure 2. Validation experiment schematic (left), and pictures of the experimental rig (center) and foil loaded inside the rig (right).

3. Component Fabrication

Silicon carbide composite tube specimens were manufactured by General Atomic (GA). Composite tube specimens GA-TGI-1 and GA-TGI-4 were loaded into capsules ATFSC01 and ATFSC02, respectively. Pictures of these specimens are provided in Figure 3. In addition to the composite tube specimens, two CVD SiC tubes (monoliths) were loaded into each capsule to serve as a reference for comparison between the composites and the monoliths. The embossed aluminum foils were fabricated using a custom foil fabrication system (see Figure 4) that allows the foils to be rolled through mating gears without tearing the foil.

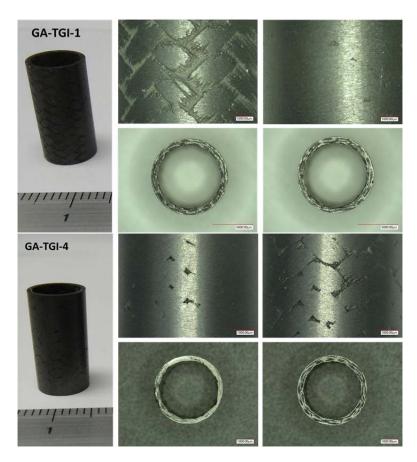


Figure 3. Pictures of SiC composite tube specimens GA-TGI-1 (top) and GA-TGI-4 (bottom)

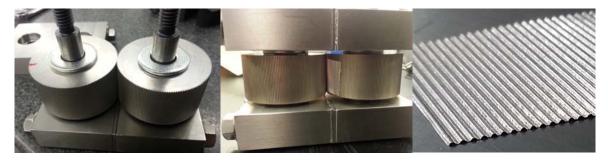


Figure 4. Pictures of the foil fabrication system

4. Capsule Assembly

The centering thimbles were pressed into the molybdenum heaters and the SiC tubes were inserted around the heaters. The sleeve was rolled around gage pins of the appropriate diameter and then wrapped tightly around the SiC tubes. The embossed foils were then wrapped around the sleeve to form the sub-assemblies (i.e. two centering thimbles, a heater, tube, sleeve, and foil). The sub- assemblies were then pressed into the housing. The foils were sized so that they must be compressed during insertion to ensure that there is good contact at the tube/sleeve, sleeve/foil, and foil/housing interfaces. Figure 5 shows pictures taken during the assembly process including the sub-assemblies and the fully assembled rabbit housings.

Figure 5. Pictures of sub-assembly in capsule housing (left), building of sub-assemblies (top right), and fully assembled capsules (bottom right)

5. Final Capsule Welding and Testing

Upon successful assembly of the capsules, the end caps were electron beam welded to the housings. Preliminary non-destructive examination (NDE) was performed on the end cap trepan welds to ensure that the weld joints were hermetically sealed. A final sealing weld was then made for each capsule, providing an inert helium internal atmosphere for all capsules. A formal helium leak rate test and external hydrostatic compression test were performed on the capsules to ensure they were properly sealed. THIEG engineering staff used the final loading and assembly data to perform the necessary evaluations required to ensure that each capsule is bounded by existing HFIR safety basis calculations and meets the requirements of the ORNL Research Reactor Division's Experiment Authorization Bases Document EABD-HFIR-2009-004 Rev. 11. Upon completion of the THIEG review, the capsules were delivered to the HFIR for final quality assurance review and insertion for irradiation. **Attachments – Fabrication Request Sheets**

Fill Gas	Welding & Cleaning	Assembly Drawing	18	Assembly		Small Thermometry	Quartz Wool	Insulator Disc w/o Hole	Insulator Disc with Hole	Foil #6	Sleeve #5	Heater #4	Cladding #3	Centering Thimble	End Cap	Housing		Capsule Fabrication	Fill Gas	Irradiation Charge Number	Irradiation Time	First Cycle Goal	Target Fluence	Irradiation Location	Irradiation Conditions	Capsule Number:	Capsule Fabrication Request Sheet
Helium	X3E020977A633	S15-27-SIC-CLAD-01	Drawing			X3E020977A540	S15-27-SIC-CLAD-01	S15-28-SIC-CLAD-02	S15-28-SIC-CLAD-02	S15-28-SIC-CLAD-02	S15-28-SIC-CLAD-02	S15-28-SIC-CLAD-02	S15-28-SIC-CLAD-02	S15-28-SIC-CLAD-02	X3E020977A634	X3E020977A634	Drawing									ATFSC01	ion Request She
	0	0	Rev.			0	0	В	в	в	в	B	в	в	A	A	Rev.				1.0		2	TRRH- 4			et
						ω	NA	18	17	6	сл	4	ω	2	2	-	Part		Helium	N/A	cycle	462	2.3E+21	4			
			Comment			SIC	Quartz	Grafoil	Grafoil	AI 1100	AI 1100	Мо	SIC	Ti6AI4V	AI 4047	AI 6061	Material										
				1		3	AR	2	2	з	ω	ω	ω	6	-	_	Count										
											Sleeves for the CVD tubes must have ~8 µm RMS surface roughness. Sleeves for GA-TGI-1 tube can use standard surface roughness	Note the pairing of cladding and heaters shown above	GA-TGI-1 -> ARM00002				t Comment				Checked by:		Performed by:		Approvals		
						19502	20224	19812	19812	20388	20378 20379	20153	20380 20470	20369	20157	20483	MAT IR						1	Request			
						20469	20279	19812	19812	20473	20471	20420	20380 20470	20419	20157	20483	FAB IR										
			Internal Mass	Specimen Mass	Total Mass	01,02,03	NA	2 total	2 total	3 total	2 from S02 1 from S01	ARM00002 ARM00003 ARM00004	GA-TGI-1 CVD-T1 CVD-T2	35,49,62,63,66,67	14-5	18-1	ē							Build			Date 1
			20.6860	2.5754	N	0.0528	0.0866	0.0160	0.0155	0.1950	0.4290	16.3004	2.5754	1.0153	0.5139	4.2941	Mass (g)										Page 1 of 1 Date 9/23/2015

Capsule Fabrication Request Sheet

ORNL/LTR-2015/569

Checked by:

ORNL/LTR-2015/569

Capsule Fabrication Request Sheet

Irradiation Conditions Capsule Number:

ATFSC02

Approvals

Page 1 of 1 Date 9/23/2015