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ABSTRACT 

An embedded system is a small footprint computing unit that typically serves a specific purpose closely 

associated with measurements and control of hardware devices. These computing units are designed for 

reasonable durability and operations in a wide range of operating conditions. Some embedded systems 

support real-time operations and can demonstrate high levels of reliability. Many have failsafe 

mechanisms built to handle graceful shutdown of the device in exception conditions. The available 

memory, processing power, and network connectivity of these devices are limited due to the nature of 

their specific-purpose design and intended application. Industry practice is to carefully design the 

software for the available hardware capability to suit desired deployment needs. 

Volttron is an open source agent development and deployment platform designed to enable researchers to 

interact with devices and appliances without having to write drivers themselves. Hosting Volttron on 

small footprint embeddable devices enables its demonstration for embedded use. This report details the 

steps required and the experience in setting up and running Volttron applications on three small low cost 

computing units: the Intel Next Unit of Computing (NUC), the Raspberry Pi 2, and the BeagleBone 

Black. In addition, the report also details preliminary investigation of the execution performance of 

Volttron on these devices. 
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1. INTRODUCTION 

 

The Volttron software platform was developed at Pacific Northwest National Laboratory (PNNL) to 

address the need for enabling energy transactions on the electrical distribution grid between centralized 

and distributed energy generation, distributed energy storage, and distributed loads.  The Volttron 

software platform is based on the Zero MQ publisher subscriber message bus, and supports agents that 

perform various tasks with local or remote data.  Previous work [1, 2, 3, 4] that was supported by the 

Building Technologies Office at the U.S. Department of Energy demonstrated the application of Volttron 

to interact with Modbus devices, WIFI devices, the external cloud, internet resources, and  local 

algorithms.  

The previous work [1, 2, 3, 4] utilized platforms such as fan less box personal computers, etc. to host the 

local Volttron applications at the test and deployments sites. Significant interest in extending Volttron to 

edge devices and more deeply embedded devices has led to interest in the investigation of deploying the 

Volttron platform on lower level embedded single board computers. This interest includes applications on 

equipment such as thermostats, sensors, and HVAC equipment controls to provide a higher level of 

distrusted functionality for building transactional capability.  

There has been some prior work in setting up Volttron on small size and low-cost computing devices. 

PNNL and Virginia Tech have explored the deployment of Volttron on a BeagleBone platform [5]. This 

document describes Oak Ridge National Laboratory’s evaluation and benchmarking of three common 

single board computing platforms, the BeagleBone Black, the Raspberry Pi, and the Intel Next Unit of 

Computing, for potential Volttron applications. 

1.1 EMBEDDED PLATFORMS 

An embedded system is a small footprint computing unit that typically serves a specific purpose closely 

associated with measurements and control of hardware devices. These units are designed for reasonable 

durability and operations in a wide range of operating conditions. Some embedded systems support real-

time operations and can demonstrate high levels of reliability. Many have failsafe mechanisms built to 

handle graceful shutdown of the device in exception conditions. The available memory, processing 

power, and network connectivity of these devices are limited due to the nature of their specific-purpose 

design and intended application. Industry practice is to carefully design the software for the available 

hardware capability to suit desired deployment needs. 

The Building Technologies Office at the U.S. Department of Energy is funding a multi-laboratory 

projects that will deliver a ‘Transactional Network’ that supports energy, operational, and financial 

transactions initially between roof top units (RTUs), between RTUs and the electric power grid using 

applications, or 'agents' that reside in the equipment either on local building controllers or in the Cloud. 

The purpose of these projects is to demonstrate and propagate an open source, open architecture platform 

that enables a variety of site/equipment specific applications to be applied in a cost effective and scalable 

way. This will lower the cost of entry for both existing and new service providers as the data transport or 

information exchange typically required for operational and energy related products and services will be 

ubiquitous and interoperable. 

Volttron is an open source agent development and deployment platform designed to enable researchers to 

interact with devices and appliances without having to write drivers themselves. Hosting Volttron on 

small footprint embeddable devices enables its demonstration for embedded use. 
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This report details the steps required and the experience in setting up and running Volttron applications on 

three small footprint devices: the Intel Next Unit of Computing (NUC), the Raspberry Pi 2, and the 

BeagleBone Black. In addition, the report also details preliminary investigation of the execution 

performance of Volttron on these devices. 

1.2 HARDWARE SPECIFICATIONS 

The three devices in this study have a range of possible hardware configurations. Different vendors 

supply different combinations of add-on hardware. Below are the specifications of the hardware used in 

this study. 

1.2.1 Intel Next Unit of Computing (NUC) 

The Intel NUC product is sold as a barebones system. It does not come with memory cards or a hard 

drive. These have to be purchased additionally and must be assembled by the user.  The cost of a NUC 

with an Intel i3 processor, with 4 GB RAM and a hard drive was $496.00. Its dimensions are 4.6 x 4.4 x 

1.4 inches and weighed 2.6 pounds. The baseboard DC power requirements are 19V, 65 Watts. Figure 1 

shows an assembled and labeled NUC with a SD card adaptor placed side by side for a sense of scale, as 

well as a partially assembled NUC. 

The NUC used in this study is the Intel® NUC Kit D34010WYK and had the following system 

configuration:  

Processor 4th generation Intel® Core™ i3-4010U processor (soldered down) with active fan 

heatsink 

Memory Two SO-DIMM slots supporting up to 16 GB of 1600/1333 MHz 1.35V DDR3L 

memory (Note: 1.5V DDR3 memory is not supported) 

Display One mini DisplayPort 1.2 with audio support 

One mini HDMI port 1.4a with audio support 

Audio Intel® High Definition Audio (Intel® HD Audio)1 subsystem in the following 

configuration: 

 8-channel (7.1) digital audio via HDMI 1.4a output and via one DisplayPort 1.2 
connector 

 Headphone/microphone jack on the front panel 

LAN support Intel® Gigabit Ethernet Controller 

Peripheral 

interfaces 

Two USB 3.0 connectors (front panel) 

Two USB 3.0 connectors (back panel) 

Two USB 2.0 ports (internal headers) 

One SATA port (internal header) 

Consumer infrared sensor on the front panel 

Expansion 

capabilities 

One full length mini PCI Express slot with mSATA support 

One half-length mini PCI Express slot 
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Figure 1: Left: An assembled and labeled NUC with a SD card adaptor for a sense of scale, and Right: A 

partially assembled NUC. 

1.2.2 Raspberry Pi 2 

The Raspberry Pi 2 Model B is a newer and more powerful system in comparison to the original 

Raspberry Pi. The devices are available from different vendors in different packages. The one used in this 

study is a packaged kit from Canakit which included a Raspberry Pi 2, two heat sinks, a wireless Ethernet 

adapter, a transparent plastic enclosure, and an HDMI cable for connection to a monitor. Note that this is 

a standard Type A HDMI connector. The user must assemble these components. 

The Canakit Raspberry Pi 2 kit retailed for $84.50 and had product dimensions of 3.37 x 2.13 x 0.67 

inches. The weight of just the board was 1.59 ounces. The power requirements depend on the number of 

USB units connected and can be between 700 -1000mA for the Model B although the maximum is 1 

Amp. A powered external USB hub is recommended when multiple USB devices are to be connected to 

the device to keep from drawing too much power. The keyboard, mouse, USB WiFi, and display can add 

to the power draw from the device. Figure 2 shows a Canakit Raspberry Pi 2 fully assembled in its 

transparent enclosure. 
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Figure 2: A Canakit Raspberry Pi 2 fully assembled in its transparent enclosure. A credit card and an SD 

card adapter are placed nearby for a sense of scale. 

 

The hardware specifications are below: 

Processor A 900MHz quad-core ARM Cortex-A7 CP 

Memory 1GB RAM 

Display One standard HDMI port  

Graphics VideoCore IV 3D graphics core 

LAN support Ethernet port 

Peripheral 

interfaces 

Four USB ports 

40 GPIO pins 

Combined 3.5mm audio jack and composite video 

Camera interface (CSI) 

Display interface (DSI) 

Micro SD card slot 

 

1.2.3 BeagleBone Black 

The BeagleBone Black is another small footprint credit card sized device. Like the Raspberry Pi 2, the 

BeagleBone Black is also available from multiple vendors. The one used in this study was a kit from 

MakerShed which included the barebones BeagleBone Black and several additional wire connectors for 

assembling by the user.   Figure 3 illustrates a BeagleBone Black with a credit card and an SD card 

adapter placed nearby for a sense of scale. 
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Figure 3: A BeagleBone Black with a credit card and an SD card adapter placed nearby for a sense of 

scale. The BeagleBone Black kit did not have an enclosure. 

 

The kit retails for $119.99 on MakerShed and has product dimensions of 3.5 x 2.15 x 0.187 inches. The 

weight of just the board was 1.4 ounces. The power requirements are similar to the Raspberry Pi 2 and 

dependent on the connected USB devices, however, a 2 Amp power supply is recommended. 

The hardware specifications are as follows: 

Processor AM335x 1GHz ARM® Cortex-A8 

NEON floating-point accelerator 

Memory 512MB DDR 3 RAM 

4GB 8-bit eMMC on-board flash storage 

Display One mini HDMI port  

Graphics 3D graphics accelerator 

LAN support Ethernet port 

Peripheral 

interfaces 

USB client for power & communications 

USB host 

2x 46 pin headers 
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2. INSTALLATION 

This section describes the step-by-step instructions for installing the operating system, Volttron’s required 

dependencies, and the Volttron software platform on each of the three small footprint embeddable 

hardware platforms. 

2.1 OS INSTALLATION 

This section details the steps required to install the operating system on the three devices. 

2.1.1 Intel Next Unit of Computing (NUC) 

Ubuntu 14.04 (Trusty) was installed on the NUC. Following were the steps taken. 

Step 1: On a desktop or a laptop computer, download the latest Ubuntu 14.04.2 LTS release ISO file from 

http://www.ubuntu.com/download/desktop 

Step 2: Burn the ISO file onto a DVD using optical disk image writing software. 

Step 3: After assembling the NUC, connect a keyboard, mouse, and a display to the device. 

Step 4: Connect a USB optical media drive to the NUC.  

Step 5:  Power on the device and press F2 to enter the Intel Visual BIOS interface. 

Step 4: Under Boot Order, ensure the Optical drive has priority. If not, click ‘Advanced’ to make required 

changes. 

Step 5: Save changes and exit the Visual BIOS interface. 

Step 6: Insert the Ubuntu DVD into the optical drive and boot from the media. 

Step 6: Follow on-screen instructions to install Ubuntu on the device. 

1.2.4 Raspberry Pi 2 

Installation of Ubuntu 14.04 (Trusty) was done in the following steps: 

Step 1: On a desktop or laptop computer running Linux, download the Ubuntu 14.04 image for the 

Raspberry Pi 2 from https://wiki.ubuntu.com/ARM/RaspberryPi. Note that this is a community 

maintained image and is not supported by Ubuntu. 

Step 2: Download the zipped image file from http://www.finnie.org/software/raspberrypi/2015-04-06-

ubuntu-trusty.zip 

Step 3: Extract the contents into a directory. 

Step 4: Use the bmap-tool to write the image onto a micro-SD card. You may use an SD card adapter to 

plug in the micro-SD card into your laptop or desktop. Execute the following command where /dev/sdX is 

the SD card device. 

http://www.ubuntu.com/download/desktop
https://wiki.ubuntu.com/ARM/RaspberryPi
http://www.finnie.org/software/raspberrypi/2015-04-06-ubuntu-trusty.zip
http://www.finnie.org/software/raspberrypi/2015-04-06-ubuntu-trusty.zip
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$ sudo bmaptool copy --bmap ubuntu-trusty.bmap ubuntu-trusty.img 

/dev/sdX 

Step 4: Optionally, you may wish to resize the partitions on the SD card. Instructions for partioning can 

be found at https://wiki.ubuntu.com/ARM/RaspberryPi  

Step 5: Insert the SD card into the raspberry Pi 2’s SD card slot. Connect a keyboard, monitor, and 

connect a power supply to boot up into Ubuntu. The Raspberry Pi 2 has a standard sized HDMI port for 

connecting a monitor. 

Note: An attempt was made to install the unofficial Ubuntu Mate for the Raspberry Pi 2 from 

https://ubuntu-mate.org/raspberry-pi/. While the software installed correctly, the screen resolution was set 

to 1920x1080 and does not adjust to a monitor supporting a different resolution. It was also slow in 

responding to keyboard and mouse events. This is a known problem and a class 6 or a class 10 high-

throughput micro-SD card are recommended. A class 4 micro SD card was used in the experiments here. 

1.2.5 BeagleBone Black 

Installation of Ubuntu 14.04 on the BeagleBone Black was performed in the following steps: 

Step 1: Download a complete image from https://rcn-ee.com/rootfs/2015-05-08/ubuntu-14.04.2-console-

armhf-2015-05-08.tar.xz 

Step 2: Extract the image into a directory. 

Step 3: For this experiment, a Windows flasher was used which can be downloaded from 

https://wiki.ubuntu.com/Win32DiskImager (Note that Linux install steps can be found at 

http://elinux.org/BeagleBoardUbuntu#eMMC:_BeagleBone_Black) 

Step 4: Use the Windows flasher software to write the image onto a micro-SD card. You may use an SD 

card adapter to plug in the micro-SD card into your laptop or desktop. The inserted SD card will show 

under the ‘Device’ drop down on the interface as illustrated below. 

 
Figure 4: A Windows based flasher program to write boot images to an SD card or flash drive. 

 

Step 5: Insert the SD card into the SD card slot on the BeagleBone Black.  

https://wiki.ubuntu.com/ARM/RaspberryPi
https://ubuntu-mate.org/raspberry-pi/
https://rcn-ee.com/rootfs/2015-05-08/ubuntu-14.04.2-console-armhf-2015-05-08.tar.xz
https://rcn-ee.com/rootfs/2015-05-08/ubuntu-14.04.2-console-armhf-2015-05-08.tar.xz
https://wiki.ubuntu.com/Win32DiskImager
http://elinux.org/BeagleBoardUbuntu#eMMC:_BeagleBone_Black
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Step 6: Connect a monitor and a keyboard to the board and while holding down the power button down, 

connect the 5v power supply to the board to power the device. Then the device should now begin to flash 

the image on the MMC of the BeagleBone Black.  

Step 7: Once the flashing is complete, remove the SD card and reboot the device to boot into the freshly 

installed OS. 

2.2 INSTALLING VOLTTRON DEPENDENCIES 

Step 1: A software update that applies the latest Ubuntu updates is highly recommended after successfully 

booting up for all three small form-factor devices. Connect to a wired or wireless network to access the 

internet. The Intel NUC comes with a wireless adapter and connecting to a network is the easiest. The 

Raspberry Pi 2 and the BeagleBone Black have an Ethernet port which makes wired Ethernet connections 

very easy. The Canakit setup also came with a WIFI adapter. Drivers are required for the adapter and at 

the time of this writing, the adapter was not used for connecting wirelessly.  

Open a terminal window and execute: 

sudo apt-get update 

Step 2: The software will not install correctly if the system date and time are not correctly set. Install the 

ntpdate package if it is already not installed and update the date and time.  

sudo apt-get install ntpdate 

sudo ntpdate –s time.nist.gov 

Note that it was observed that the previous command step appeared to exit gracefully without changing 

the time. Please use the date command to force set the date and time if the command fails. 

Step 3: Install the required software dependencies for Volttron. The main packages to be installed are: 

 git 

 build-essential 

 python-dev 

 openssl 

 libssl-dev 

 libevent-dev 

Execute the following command to install these packages: 

sudo apt-get install build-essential python-dev openssl libssl-dev 

libevent-dev git 

This should install all your required dependencies. For details, please visit: 

https://github.com/VOLTTRON/Volttron/wiki/VOLTTRON-Development-Quick-Start 

https://github.com/VOLTTRON/volttron/wiki/VOLTTRON-Development-Quick-Start
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2.3 INSTALLING VOLTTRON  

Step 1: To install Volttron, you must first obtain a copy of the Volttron codebase. Execute the following 

in a terminal to obtain the source code. 

git clone https://github.com/VOLTTRON/Volttron 

Step 2: Change your working directory to the root directory of the Volttron code and bootstrap Volttron. 

In the opened terminal, execute the following commands. 

cd Volttron 

python2.7 bootstrap.py 

The installation may take some time to finish. To test that installation worked, activate the platform in 

verbose mode and set a log file as below: 

. env/bin/activate  

Volttron -vv -l Volttron.log& 

If the setup is correct, there will be no errors.  

2.4 PLATFORM NOTES 

Installation of Volttron on the Raspberry Pi 2 and the BeagleBone Black took significantly longer than 

the Intel NUC. The Raspberry Pi 2 took about 1.5 hours while the BeagleBone Black took well over 2.5 

hours. Fetching, unpacking, and the installation of numpy, pandas, and pyzmq are the most time-

consuming pieces. 

It is anticipated that with the appropriate skill level about 2.5 man-hours of time is required from 

unpacking an Intel NUC to installing the Volttron platform. This estimate goes up to about 4 hours for the 

Raspberry Pi 2 and 5 hours for the BeagleBone Black. The time required can become significant if a large 

number of devices are to be setup. For large scale deployments, it may be possible to create an operating 

system image with Volttron and agents preinstalled. This will significantly reduce the required time for 

setup. It was outside of the scope of this work to evaluate the effectiveness of the proposed deployment 

methodology, therefore, the above should be considered speculative.  
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3. APPLICATIONS ON THE PLATFORM 

After the setup and installation of Volttron on the three computing platforms, their behavior and 

performance was tested in two scenarios while running Volttron applications. The first evaluation 

scenario employs several agents, which publish and communicate via the Volttron message bus. Its agent 

architecture is described next, followed by observed behavior of the applications on the three platforms.  

The second was a simpler application where the Python pymobus module was used to make temperature 

readings at different speeds to understand hardware performance for Modbus communication and 

Volttron execution. This consisted of four scenarios: commutation with thermostats using pymodbus 

alone, via a Volttron app, via a Volttron app while publishing to SMAP, and via a Volttron app while 

pushing to a MySQL database. The experimental setup is described next followed by the first and second 

application scenarios and a summary of the limitations experienced. 

3.1 EXPERIMENTAL SETUP 

The experimental setup is illustrated in Figure 5. A set of five TEMCO Modbus thermostats are 

connected accessed via a RS-485 serial computer interface. A serial to USB converter is used to connect 

the thermostats to the selected computing device. The test setup also a thermostat relay status display 

panel with light emitting diodes to visually illustrate the state and the mode of operation of the 

thermostats. Figures 6, 7, and 8 illustrate the wiring diagrams in detail. 

 
Figure 5: The experimental setup with thermostats connected over the serial to USB interface. 
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Figure 6: Wiring diagram of the thermostats and relays. 

 
Figure 7: Wiring diagram of the thermostats and the Modbus interface. 
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Figure 8: Display panel light emitting diode connections. 

3.2 SCENARIO I 

3.2.1 Agent Architecture  

The following figure (Fig 9 and 10?) illustrates the overall architecture of the Volttron agents in the first 

application.  

 
Figure 9: Agent architecture of the Volttron applications tested. 

 

A Building Monitor Agent observes thermostats in a building and publishes observed values. It is also 

subscribed to commands from the Control Agent as well as the Web-Interface. When a control command 

is published by either of these agents, the Building Monitor Agent takes action upon the request. The 

communication with the thermostats is over the Modbus protocol. 
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The Control Agent houses the control logic and is subscribed to messages from the Building monitor as 

well as the Weather Agent. It periodically publishes control messages to alter the state of the building. A 

command is issued every 5 seconds. 

The Web-Interface Agent provides a convenient remote web-based interface to interact with the devices. 

Figure 6 illustrates a screenshot of the web-interface agent which supports a fluid layout to adapt to 

different screen sizes such as laptops, tablets, and smart phones. The purpose of this agent is to facilitate 

occasional control of the devices by a human. The frequency of use of the web-interface is dependent on 

the human user and is anticipated to be used sparingly. As such, only a handful of web requests are issued 

to the platform on a given day.  

 
Figure 10: The web-based control interface for local human-machine-interface. The three 

screenshots illustrate the fluid design of the control interface to support small touch-screen 

devices such as smartphones. 

 

The Weather Agent fetches the current weather conditions from WUnderground every 4 minutes and 

publishes it on the Volttron message bus. This is the standard Weather app that is part of the Volttron 

codebase. 
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All agents publish pertinent log messages. The SMAP Agent is subscribed to these log messages and its 

purpose is to get the data out of the compute platform and log these messages in a remote data store. The 

SMAP agent pushes the weather data out of the platform every four minutes when the weather data is 

updated. 

(Note that although the MySQL agent is illustrated in the architecture and described here, it was a later 

addition for the Scenario II test cases only and therefore not part of Scenario I test results.) 

The MySQL Agent is also subscribed to relevant log messages and its purpose is to log the data values to 

a MySQL database. At the time of this experiment, the MySQL database was hosted locally on the same 

compute device. Its behavior was designed to be similar to that of the SMAP agent, which creates an 

HTTP request per log message and receives a success or failure response. The MySQL agent creates a 

database connection when initializing and creates a new cursor to submit an INSERT query per log 

message. Internally, the agent uses the Python MySQLdb module for MySQL communication.  

3.2.2 On-board processing  

During installation, these boards had a monitor and keyboard connected to them. However, to minimize 

display and keyboard interrupt loads on these small devices while testing Volttron applications, a secure 

shell terminal was used to connect to the devices. Note that the sshd daemon was already installed in the 

BeagleBone Black OS image; however, it has to be installed on the Raspberry Pi 2. The following 

command was used:  

sudo apt-get install openssh-server 

As a control, an experimental session with a connected keyboard and monitor was done; however, there 

was no major change in the CPU load of the small computing units. The following table illustrates 

system, CPU, and memory footprint while running the Volttron applications described above. 

 BeagleBone Black Raspberry Pi 2 Intel NUC* 

CPU load  ~2.5 - 4.5% ~2.5 – 4.5% <2% 

Memory use 331 MB of 490 MB 336 MB of 923 MB 2.2 GB of 3.8 GB 

* The Intel NUC had the Ubuntu Desktop (GUI) installed. 

 

The numbers reported were similar across top, iostat, and mpstat Linux utilities. The command top 

computes an average use since the last screen update. The other two commands, iostat and mpstat also 

compute average processor utilization. It was rare to see processor utilization above 10% while Volttron 

applications were executing. Only times processor utilization was in the 10 – 15% range was during 

communication with the Weather Underground server. It is anticipated that applications that require 

heavy communication with external data stores will drive up the CPU utilization. The above test results 

indicate that this configuration of Volttron agents as a use case performs successfully on all three 

computing devices. Scenario II described next illustrates the effect of significantly higher communication 

calls on CPU utilization. 
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3.3 SCENARIO II 

3.3.1 Experimental Setup 

While the first experiment represents a benchmark for a possible use case scenario, it does not provide 

adequate information on the capabilities, operating margin, or potential scalability of these computing 

devices while running Volttron applications.  A second, more controlled experiment was conducted to run 

a more thorough experiment as well as to derive preliminary benchmarks of performance while pushing 

the hardware to a certain degree. 

a. A simple Modbus read operation from the five thermostats (as illustrated in the setup in Figure 5) 

was tested in four execution scenarios: 

b. Without Volttron, simple repeated reads from the thermostats 

c. As an agent using the Volttron platform 

d. As an agent using the Volttron platform and publishing values on the Volttron message bus while 

a smap agent pushed the data to a remote smap server. 

e. As an agent using the Volttron platform and publishing values on the Volttron message bus while 

a MySQL agent pushed the data to a local MySQL database. 

The scan rate and the associated time-out for communicating with the Modbus thermostat devices were 

varied from 0.01 seconds to 0.5 seconds or 100 scans per second to 2 scans per second. Each scan 

consisted of a Modbus read of one of the thermostat devices to obtain the temperature measurement 

value. In other words, 100 scans per second is equivalent to reading from one thermostat 100 times per 

second or 10 thermostats 10 times each per second. In the test execution, the communication sequenced 

between all five thermostats evenly to achieve a realistic test of communicating with multiple devices. For 

each test condition of scan rate, each thermostat was read 50 times to obtain a reasonably statistical 

sample for benchmarking. 

3.3.2 Results 

Tables 1, 2, and 3 summarize the results and the observed behavior of reading data off thermostats at the 

different scan rates. The tool mpstat was executed to summarize system load every 5 seconds. The system 

utilization reported in the tables is the maximum load observed in any 5 second interval. The number 

reported is percentage of time the system is not idle (100% – idle%). This value constitutes sum of all 

user level activity, priority activity, system level, and interrupt service activity across all cores. The 

number serves as a benchmark for the maximum observed load in any 5 second period and does not imply 

continuous load over the execution of the scenario. This data is summarized in a plot in Figure 11. 

The incidence of no data being returned increases with a low timeout value/faster can rate. Occasionally, 

more severe exceptions would be thrown in the pymodbus function calls. It should be noted that for the 

scenarios with SMAP and MySQL, only valid data points were published onto the Volttron message bus 

for archiving. It should also be noted that the Intel NUC was running the Ubuntu desktop graphical user 

interface.
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Table 1: Performance on the BeagleBone Black. 

  PyModbus only PyModbus on Volttron 
PyModbus on Volttron  
with SMAP archiving 

PyModbus on Volttron  
with MySQL archiving 

Timeout 
value (s) 

Number of errors 

Max % 
CPU use 

Number of errors 

Max % 
CPU use 

Number of errors 

Max % 
CPU use 

Number of errors 

Max % 
CPU use 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

No 
value 
read 

Exceptions 

0.01 239 16 22.27 243 7 89.62 241 9 76.54 246 4 58.39 

0.02 232 23 8.76 215 26 38.05 195 22 72.15 227 11 45.85 

0.03 220 11 8.07 124 5 34.03 123 6 69.65 116 1 85.42 

0.04 107 0 6.41 112 0 38.67 89 0 57.00 93 0 88.38 

0.05 59 0 6.62 142 0 31.25 130 0 57.67 145 0 67.01 

0.10 26 0 5.30 9 0 23.33 7 0 41.50 9 0 61.86 

0.15 0 0 3.98 0 0 19.46 0 0 37.78 0 0 56.72 

0.20 0 0 5.04 0 0 17.99 0 0 43.48 0 0 62.89 

0.25 0 0 3.76 0 0 14.71 0 0 42.62 0 0 51.77 

0.30 0 0 10.85 0 0 18.28 0 0 43.22 0 0 42.35 

0.35 0 0 7.05 0 0 11.92 0 0 41.74 0 0 53.15 

0.40 0 0 12.21 0 0 20.25 0 0 47.93 0 0 47.81 

0.45 0 0 4.63 0 0 10.27 0 0 37.24 0 0 46.04 

0.50 0 0 6.14 0 0 11.09 0 0 35.34 0 0 45.82 
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Table 2: Performance on the Raspberry Pi 2. 

  PyModbus only PyModbus on Volttron 
PyModbus on Volttron  
with SMAP archiving 

PyModbus on Volttron  
with MySQL archiving 

Timeout 
value (s) 

Number of errors 

Max % 
CPU use  

Number of errors 

 Max % 
CPU use 

Number of errors 

 Max % 
CPU use 

Number of errors 

 Max % 
CPU use 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

0.01 255 0 2.08 245 5 29.33 242 8 21.59 249 1 18.85 

0.02 237 18 0.96 224 26 8.83 221 29 7.24 224 26 8.53 

0.03 242 12 0.66 159 8 6.31 187 6 12.97 183 7 15.00 

0.04 86 1 0.51 92 0 5.33 3 246 14.50 85 0 21.57 

0.05 28 0 0.56 76 0 4.43 77 0 8.93 83 0 24.32 

0.10 10 0 0.41 30 0 4.42 37 0 11.68 46 0 14.81 

0.15 0 0 0.36 0 0 1.98 0 0 11.18 0 0 9.84 

0.20 0 0 0.30 0 0 3.10 0 0 4.08 0 0 11.38 

0.25 0 0 0.30 0 0 3.36 0 0 9.01 0 0 12.01 

0.30 0 0 0.30 0 0 1.27 0 0 13.66 0 0 6.38 

0.35 0 0 0.30 0 0 1.17 0 0 6.97 0 0 8.30 

0.40 0 0 0.30 0 0 1.02 0 0 4.99 0 0 9.93 

0.45 0 0 0.30 0 0 2.50 0 0 2.84 0 0 9.16 

0.50 0 0 0.30 0 0 2.60 0 0 4.53 0 0 11.39 
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Table 3: Performance on the Intel NUC. 

  PyModbus only PyModbus on Volttron 
PyModbus on Volttron  
with SMAP archiving 

PyModbus on Volttron  
with SMAP archiving 

Timeout 
value (s) 

Number of errors 

 Max % 
CPU use 

Number of errors 

Max % 
CPU use  

Number of errors 

 Max % 
CPU use 

Number of errors 

 Max % 
CPU use 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

No 
value 
read Exceptions 

0.01 247 3 8.78 248 2 14.81 248 2 7.42 248 2 6.87 

0.02 236 14 7.99 236 14 10.78 237 13 4.66 229 21 6.27 

0.03 241 8 6.87 236 9 10.60 244 6 5.87 239 7 3.66 

0.04 80 2 5.82 104 0 9.03 105 2 10.89 89 1 5.21 

0.05 28 0 6.22 41 0 8.63 29 0 12.55 42 0 5.61 

0.10 13 0 5.07 1 0 8.22 8 0 6.17 12 0 3.21 

0.15 0 0 4.66 0 0 3.56 0 0 3.91 0 0 3.50 

0.20 0 0 4.42 0 0 3.86 0 0 2.60 0 0 3.10 

0.25 0 0 4.87 0 0 3.21 0 0 3.91 0 0 2.86 

0.30 0 0 4.01 0 0 7.97 0 0 3.06 0 0 8.61 

0.35 0 0 3.91 0 0 3.61 0 0 2.91 0 0 3.00 

0.40 0 0 10.49 0 0 3.61 0 0 4.31 0 0 7.31 

0.45 0 0 9.62 0 0 3.26 0 0 3.46 0 0 2.61 

0.50 0 0 7.21 0 0 3.41 0 0 4.16 0 0 2.51 
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Figure 11: Summary Plot of Percent Maximum System Use in Five Second Intervals for all three Computing Devices. The BeagleBone 

Black performance is illustrated using black lines, the Raspberry Pi 2 in red, and Intel NUC in blue. The grey region should be interpreted 

with caution since the device communication exhibited repeated increasing read and communication errors. 
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3.4 LIMITATIONS EXPERIENCED 

Volttron was successfully installed on all three computing devices. There were not many technical 

limitations experienced in the installation and running of Volttron on these devices. Installation time was 

significantly longer on the BeagleBone Black than the other two platforms.  

The overall execution of applications on the Volttron platform was successful for all platforms and the 

overall system memory use did not exceed 400 MBs. Testing of the first scenario, a baseline Volltron 

configuration, demonstrated that processor utilization for all three devices was rarely above 4%, except 

during installation when it ran at ~99%, and during communication with the Weather Underground 

server. Testing of the second scenario, performing Modbus thermostat scanning with different scan rates 

and software configurations, demonstrated that all platforms showed higher processor utilization with 

faster scan rates. The maximum demonstrated processor utilization rates were ~89% for the Beagle 

Board, ~29% for the Raspberry Pi 2, and ~14% for the Intel NUC at 100 thermostat scans per second (see 

section 3.3.1 for the experimental setup).  

It should be noted that the Volttron performed in a stable and predictable manner even with the highest 

thermostat scan rates for all platforms. The data indicates that unsuccessful Modbus communication is 

observed at the higher scan rates due to the nature of the serial Modbus network performance which is 

expected. The processor on the BeagleBone Black does not include a heat sink. During the installation of 

Volttron and during the execution of Volttron, the circuit board was observed to be warm. The behavior 

of the Raspberry Pi 2 and the NUC was not observable because of their protected enclosures. 

It should also be noted that the mpstat routine differed in the manner in which it reported the timestamps 

on the Raspberry Pi 2 and the Intel NUC or the BeagleBone Black. It used a 24 hour time format while 

the other devices used a 12 hour time format. The mpstat documentation indicates that the 

S_TIME_FORMAT environment variable affects the timestamp format; however, the environment 

variable was not defined on the devices. Additional investigation was not done to identify the cause of the 

difference in reporting styles. While speculative, there may be some differences in implementation of the 

routine for the different computing architectures and its investigation is considered future work. 

As expected, the Intel NUC demonstrated better performance compared to the other two computer 

platforms tested. It outperformed the BeagleBone Black and the Raspberry Pi 2 for both the Volttron 

installation time as well as perceived Volttron application execution performance.  

The automatic network update feature for date and time was an issue on the BeagleBone Black as well as 

the Raspberry Pi 2. On a cold start of the devices, the BeagleBone Black’s clock would resume from the 

timestamp of when it was shut down, and the Raspberry Pi 2 would reset its clock back to 1 January 

1970.  It was necessary to force set the date and time on the BeagleBone Black every time the device was 

powered back on.  The NUC had no issues in this regard. 
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4. FUTURE WORK 

The experiments described in this report represent a straightforward application scenario for 

benchmarking and document preliminary findings on executing Volttron applications on small and low 

cost single board computing platforms. The results provide useful information, and observed limitations 

and assumptions warrant additional investigation. The following is a notional list of several next steps: 

 Benchmarking of distributed Volttron communication and decision algorithms. Multiple small 

computing platforms will be running Volttron (connected to thermostats) and communicating 

with each other to arrive at a collective control decision. 

 Additional IO and network benchmarking of the computation platforms. 

 Ensuring benchmarking tools/utilities such as mpstat are similar in implementation across 

platforms.  

 Testing on other single board computing devices such as the Arduino, Intel Edison, or others in 

the evaluation. 

 The only Linux operating system version that was included in this testing was Ubuntu. It will be 

useful to understand the requirements and ease of deployment of Volttron on other operating 

systems. 

 Deployment of each of these small footprint computational devices in real work settings. 
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