
ORNL/TM-2015/342

Query Optimization for Graph Analytics
on Linked Data Using SPARQL

Seokyong Hong
Sangkeun Lee
Seung-Hwan Lim
Sreenivas R. Sukumar
Ranga R. Vatsavai

07/08/2015

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

http://www.osti.gov/scitech/
http://www.ntis.gov/help/ordermethods.aspx
http://www.osti.gov/contact.html

ORNL/TM-2015/342

Computational Sciences & Engineering Div (50159093)

Query Optimization for Graph Analytics on Linked Data Using SPARQL

Authors

Seokyong Hong

Sangkeun Lee

Seung-Hwan Lim

Sreenivas R. Sukumar

Ranga Raju Vatsavai

Date Published: 07/08/2015

Prepared by

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283

managed by

UT-BATTELLE, LLC

for the

US DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

iii

CONTENTS

CONTENTS ... iii

ABSTRACT .. 1

1. INTRODUCTION .. 1

2. RELATED WORK ... 2

3. GRAPH ANALYSIS AND TRIPLESTORES ... 2

3.1 Graph Analysis and Operations .. 2

3.2 Triplestores ... 3

4. GRAPH ANALYSIS OPERATIONS IN SPARQL ... 4

4.1 Graph Representation in RDF Model ... 4

4.2 Node Eccentricity (NE) ... 4

4.3 Triangle Counting (TC) .. 5

4.4 Connected Components (CC) ... 7

5. PERFORMANCE EVALUATION .. 9

5.1 Experiment Setup .. 9

5.2 Experiment Results ... 10

6. Conclusion .. 12

Reference .. 14

1

ABSTRACT

Triplestores that support W3C standards such as Resource Description Framework (RDF) and SPARQL,

have emerged as one of the preferred solutions to store and analyze heterogeneous graphs. However,

there is a gap in being able to express graph-theoretic operations in SPARQL over the RDF data model.

This report describes the process of optimizing performance of the SPARQL-based implementation of

such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity, and

removing redundant computations by analyzing query plans. Our optimized approach shows significant

performance gains on triplestores hosted on stand-alone workstations as well as supercomputers

specialized in graph-processing such as the Cray's uRiKA. In this report, we evaluate our optimization

with three popular graph operations, counting triangles, finding eccentricity, and testing connectivity over

real world graph data.

1. INTRODUCTION

Resource Description Framework (RDF) [22] has gained popularity for representing and linking data.

The minimal unit of data in RDF is called a triple: subject, predicate, and object. In an RDF triple, subject

and object can map into a source and destination vertex, respectively. With the predicate representing an

edge between two vertices, a set of RDF triples logically denote a graph G with vertices and edges.

SPARQL is the standard language to perform queries for RDF triples. For RDF triples that represent a

graph G, SPARQL has a set of primitives capable of managing graph data ranging from creating/dropping

graphs to inserting/modifying/deleting RDF triples. Using SPARQL, users can describe subgraph-patterns

of interest. Hence, database systems for RDF triples, or triplestores are powerful tools for performing

graph operations on graph data.

Recently, there is a growing demand for graph-theoretic analysis such as degree distribution, node

eccentricity, finding triangles, and finding connected components. Addressing the demand, recent

research efforts [1, 9] proposed several graph analysis operations for data stored in triplestores. Those

operations give a general idea for building graph operations using SPARQL. However, those efforts are

restricted in the following ways: (1) delivering only a single non-iterative graph operation that is

optimized for directed graphs [1], and (2) focusing only on a generic programming abstraction for

building iterative operations on triplestores [9]. The lack of research on systematic way of optimizing

SPARQL queries for graph analysis offsets the attractiveness of RDF triplestores for large-scale graph

analysis, compared with alternatives such as property graph based graph databases [28] and graph

processing systems [14, 16, 27].

This study presents a systematic-way of developing highly optimized graph analysis operations using

SPARQL queries, while being cognizant of resulting query plans and underlying SPARQL query

processing engines. Our main contributions are: (1) we deliver three graph analysis operations via the

SPARQL interface covering both non-iterative and iterative operations, (2) we present our optimization

process based on query plan analysis on a popular open-source triplestore, Apache Jena [21], and (3) we

evaluate those optimized graph analysis operations on a standalone workstation and a Cray XMT

supercomputer-based graph analytics platform, uRiKA [26].

2

2. RELATED WORK

Several existing graph processing systems provide a set of graph operations for data analytics [14, 16, 27,

28]. For example, [27] enables users to access its graph operations in python and [14] provides Java-based

operations in MapReduce computation model [15]. While supporting a broad range of graph operations,

they are based on their own computation platforms and dedicated programming environments rather than

triplestores and SPARQL.

In [1], the authors introduced a triangle counting algorithm for triplestores written in SPARQL. The

proposed algorithm defines three patterns which represent all possible triangle structures constructed from

a set of directed edges. Those patterns efficiently eliminate duplicate triangles, resulting in slow increase

of time complexity as graph volumes become larger. However, this work has several limitations. First, the

proposed triangle counting operation only works over directed graphs. It cannot process undirected graphs

since the representative patterns fail to be defined without edge directions. Secondly, the algorithm

represents only non-iterative graph algorithms while many graph algorithms have an iterative nature of

computation.

[9] provided a programming abstraction for building efficient iterative graph operations in terms of

SPARQL and introduced three iterative graph operations. The abstract programming structure is a useful

basis for designing extended graph operations. They focused on a structural view of iterative graph

algorithms rather than optimization of individual graph operations. We followed the programming

abstraction in order to build iterative graph operations in SPARQL. However, our work is different in that

we explored opportunities to optimize individual graph operations ranging from non-iterative to iterative

ones rather than developing general programming abstraction for developing iterative graph operations.

[20] highlighted the necessity of graph mining algorithms based on linked data and proposed a few initial

graph analysis operations for triplestores. However, those operations did not consider resulting query

plans and were not optimized with understanding its underlying query processing engine, resulting not

comparable performance to alternatives even for moderate size of graphs [19].

3. GRAPH ANALYSIS AND TRIPLESTORES

This section explains graph analysis with three representative graph analysis operations that we focus on.

Then, we present a description of triplestores and describe the query processing mechanism of a popular

open-source triplestore, Apache Jena [21] which is the basis platform for our graph operation

optimization and also the query processing engine of Cray's shared-memory graph processing appliance,

uRiKA [26].

3.1 Graph Analysis and Operations

Figure 1. Examples of Graph Operations

3

Given a graph G = (V, E) where V and E are the sets of nodes and edges, respectively, graph analysis aims

at finding obscure properties and patterns from G. It consists of a broad range of analysis operations

each of which reveals different aspects of G [1-5]. Node eccentricity calculation [2] computes the

maximum distance from a node v to any other node in G. For example, in Figure 1(a), the eccentricity of

node 1 is three since the maximum distance from the node is the one to node 7 (Figure 1(b)). Node

eccentricity is an important topological attribute of a graph in that it can be extended to compute other

attributes such as radius and diameter of graphs [6, 12]. Another important graph operation is triangle

counting [1]. This operation finds all the occurrences of any three nodes in G which are connected with

edges forming triangles. The sample graph in Figure 1(a) contains two triangles as shown in Figure 1(c).

For triangle counting, it is especially critical to design an efficient processing algorithm since it can

produce a huge amount of intermediate results during computation [7]. Connected Components (CC) is

another important graph operation in that many real-world applications necessitate the decompositions of

large graphs into connected components [8]. This operation retrieves all subgraphs from G where each

node is reachable from any other nodes in a same subgraph. Figure 1(d) shows two connected

components in the sample graph one of which consists of <1, 2, 3, 4, 5, 7> and the other of <6, 8>.

3.2 Triplestores

Figure 2. A Sample Query Plan and The Corresponding Iterator Tree

Triplestores [21, 24-26] are special database systems for managing data in RDF (Resource Description

Framework) [22]. In this data model, data are represented as RDF triples. A RDF triple consists of

subject, predicate, and object where subject denotes a unique resource on the Web and object denotes

another resource or an attribute of the resource. Predicate describes a relationship between two resources

or an attribute type. By the nature of the RDF data model, triples form directed graphs where predicates

are correspondent to directed edges. Triplestores provide a standard query language called SPARQL [23].

Users can define interesting patterns and constraints by combinations of provided primitives. SPARQL

queries are parsed and transformed into query plans and executed by query execution engines.

Apache Jena [21] is a popular open-source triplestore [1, 10]. uRiKA, a Cray's supercomputer-based graph

analysis appliance, also employs Jena for its SPARQL query processing engine [26]. Jena executes query

plans in an iterator-based manner [11]. In this approach, each operator in a query plan is mapped into a

corresponding iterator as shown in Figure 2(a) and Figure 2(b). At query execution time, the query engine

calls the root iterator in a query plan and the calling propagates through the iterator tree, returning one

record per call. It is notable that some iterators such as ones for GROUP BY and JOIN make the query

4

plan staged as shown in Figure 2(c). That is, those iterators require all input data to be ready before they

are performed. This staged query execution can make a huge impact on the overall query processing

performance if a query plan contains several stages which generate excessively large amount of

intermediate data. Jena provides a staging-free counterpart operation of JOIN, named SEQUENCE. This

operation is far more efficient since it returns an intermediate record immediately without waiting for the

entire intermediate data are processed and its physical implementation is much more efficient than that of

JOIN. It retrieves one record at a time from one child operation tree and iterates the entire data of another

child operation tree to find and return matched records. Hence, even if it is more efficient than JOIN, the

SEQUENCE operation can become costly when several large child iterator trees exist in a plan or the

degree of vertices is high.

4. GRAPH ANALYSIS OPERATIONS IN SPARQL

We designed and implemented three SPARQL-based graph analysis operations: node eccentricity

calculation (NE), triangle counting (TC), and connected component computation (CC), which are highly

optimized on triplestores. Each operation consists of three steps: (1) an initialization step for performing

initial tasks such as creating an intermediate graph and generating an initial state, (2) a computation step,

and (3) a finalization step for removing intermediate states and producing output. Each step issues one or

more SPARQL queries. When designing each query, our preference is toward generating a query plan

which consists of less number of physical operations, in general. In this section, we provide details on the

graph analysis operations along with principal guidelines for designing graph operations using SPARQL.

4.1 Graph Representation in RDF Model

As explained in the previous section, directed graphs can be natively represented in RDF data model. For

undirected graphs, however, there is an obvious discrepancy between them and the RDF model. In order

to overcome such discrepancy, two general approaches are come up with. First, each undirected edge can

be stored twice. For example, an edge Ni ↔ Nj is represented as two triples < Ni <edge> Nj > and < Nj

<edge> Ni > which mean both directions. Hence, undirected graphs require twice as much storage space

as directed graphs. The second approach is that undirected edges are stored as if they are directed. When

graph operations are performed, their "undirect" properties are reproduced by using a union of two

patterns: { ?s <edge> ?o } UNION { ?o <edge> ?s }. Although it imposes an additional computation for

such reproduction, the latter approach is preferred in this report to reduce the memory space used for

storing graph datasets.

4.2 Node Eccentricity (NE)

The NE operation performs a breadth-first-search (BFS) on an input graph which can be considered as a

tree rooted at a given node, N. At the initialization step, the operation creates a temporary named graph,

GT, which maintains intermediate state and inserts N as the starting node. At the computation step, the

operation retrieves the neighbors of each node in GT and stores them into GT. This process is repeated

until the number of nodes in GT converges. At the finalization step, the intermediate state is discarded by

dropping GT. At computation step, a naive SPARQL query may iterate over every node in GT and try to

insert into GT nodes that have been already inserted at each iteration. This approach possibly yields

unnecessary computations causing performance degradation. In order to avoid such unnecessary

computation, we leverage tightly binding triple patterns and filter operations SPARQL provides. First,

nodes inserted to GT at iteration I are labeled with I + 1 so that only those nodes can be iterated at the next

iteration. Second, we minimize intermediate triples passed to INSERT command by using a NOT EXIST

filter. The algorithm for our NE operation is shown in Table 1.

5

Step Algorithm

Initialization
CREATE GRAPH GT;

INSERT { GRAPH GT { N < label > 1 }};

Computation

while(convergence_check() == false) {

 INSERT { GRAPH GT { ?neighbor <label> Inext }

 WHERE {

 SELECT ?neighbor

 WHERE {

 { GRAPH GT { ?node <label> Icurrent }}

 {

 { ?node ?edge ?neighbor }

 UNION

 { ?neighbor ?edge ?node }

 }

 FILTER NOT EXIST { GRAPH GT { ?neighbor <label> ?any }}

 }

 };

}

convergence_check() :

 SELECT (COUNT(*) AS ? count)

 WHERE { GRAPH GT

 { ?s ?p ?o }

 };

 if (?count == previous_count)

 return true ;

 else return false ;

Finalization DROP GRAPH GT;

Table 1. Node Eccentricity Algorithm

4.3 Triangle Counting (TC)

Implementing TC operation in SPARQL has a potential problem in that it can produce large intermediate

data [7]. Moreover, since we focus on undirected graphs and represent each undirected edge with a single

triple, it is unavoidable to union two patterns < ?s ?p ?o > and < ?o ?p ?s > for recovering the

"undirected" property of edges, producing more intermediate data. In order to reduce such intermediate

data, we impose an order on the subject and object of triples so that only triples whose subjects are

lexicographically less than the objects are counted. As a result, only one triangle pattern can be retrieved

among isomorphic patterns. We accomplish the lexicographic ordering by using two filter conditions:

FILTER(STR(?x) < STR(?y)) and FILTER(STR(?y) < STR(?z)). Those two filter conditions sufficiently

impose the necessary ordering because STR(?x) < STR(?z) is automatically met by the transitive property

of inequality [7]. The resulting initial algorithm for TC operation is shown in Table 2. This algorithm is

not iterative and just a single run of the SPARQL query can count the entire triangles in a given dataset.

However, this query still produces unnecessary intermediate data during query processing. When we

carefully consider the triple patterns in that query, it is observed that each line of UNION performs

semantically same computation in conjunction with two filters. The query plan generated from the query

is shown in Figure 3(a). The query plan has a SEQUENCE that consists of three children. If STR(?x) <

STR(?z) that is implicitly met is added to the third child, the three children conducts the exactly same

work wasting computation and memory resources. Moreover, due to the iterator-based query processing

approach of Jena, the SEQUENCE operator iterates the entire triples several times for each triple returned

from one child operation tree. This can cause a lot of computation. Hence, we optimize the initial

algorithm so that such duplicate computation can be avoided. The optimized algorithm is shown at the

right-side of Table 2. At initialization step, the optimized TC operation creates a temporary named graph,

GT, and retrieves triples that meet the ordering restriction only once. The intermediate result from the

initializing query is stored in GT. At computation step, the operation finds and counts triangles from the

6

reduced intermediate triples in GT. Finally, it removes the intermediate state by removing GT. The query

plans for the optimized algorithms are shown in Figure 3(b).

Step (A) (B)

Initialization

 CREATE GRAPH GT;

INSERT { GRAPH GT { ?s ?p ?o }}

WHERE {

 SELECT ?s ?p ?o

 WHERE {

 { ?s ?p ?o }

 UNION

 { ?o ?p ?s }

 FILTER(STR(?s) < STR(?o))

 }

};

Computation

SELECT COUNT (DISTINCT *)

WHERE {

 { ?x ?p ?y } UNION { ?y ?p ?x }

 { ?y ?p ?z } UNION { ?z ?p ?y }

 { ?z ?p ?x } UNION { ?x ?p ?z }

 FILTER(STR(?x) < STR(?y))

 FILTER(STR(?y) < STR(?z))

};

SELECT COUNT (DISTINCT *)

WHERE {

 { GRAPH GT

 {

 ?x ?p ?y .

 ?y ?p ?z .

 ?x ?p ?z .

 }

 }

};

Finalization DROP GRAPH GT;

Table 2. Triangle Counting: (A) Initial Algorithm (B) Optimized Algorithm

7

Figure 3. Query Plans for Triangle Counting Algorithms

4.4 Connected Components (CC)

The algorithm for our CC operation resembles min-label propagation [13]: at initial time, each node n

sets min_label(n) = n and propagates its min_label(n) to the neighbors. When n receives min_label* from

its neighbors, it updates its min_label(n) = min(min_label*) and propagates the new min_label(n). This

process is repeated until all nodes agree on termination. In our SPARQL-based approach, min_labels for

all N nodes are initialized in a temporary named graph GT as triples of < ni <label> ni > (1 ≤ i ≤ N). At

computation step, an UPDATE command (DELETE followed by INSERT) retrieves the egocentric

network Gego(ni) centered on ni where nodes in Gego(ni) represent min_label*. Then, it calls an aggregation

function MIN(min_label*) on Gego(ni) to calculate a new min_label(ni)' and updates the corresponding

labeling triple < ni <label> min_label(ni) > in GT as < ni <label> min_label(ni)' >. At the same time, the

UPDATE command inserts into GT a triple of < ni <count> 1 > for ni whose min_label(ni) is updated. The

UPDATE command is repeatedly processed until there is no < ni <count> 1 > in GT. After the

8

computation step completes, GT is dropped for discarding intermediate state. This initial CC operation is

shown in Table 3(A). In order to minimize intermediate data, it exploits filter operation in two ways. The

inner filter FILTER(STR(?minimum) > STR(?label)) prevents any label l ∈ min_label* in Gego(ni) and l

> min_label(ni) from being passed to the GROUP BY operation. The outer filter

FILTER(?original != ?update) avoids operations updating min_label(ni) to min_label(ni)' if min_label(ni)

= min_label(ni)'. Having analyzed the initial CC operation, we observed a notable problem on the

underlying query processor in the current release of Jena, which can make a huge impact on the overall

query processing performance. The observation is that when a binary JOIN operation has one input from

a nested SELECT query with a GROUP BY or ORDER BY operation while the other input comes from a

graph, the order of the two input sources represented in a SPARQL query decides the selection of the

actual operation for the join. If the nested SELECT block appears before the GRAPH block, then the

compiler replaces the JOIN operation with a SEQUENCE operation. Since the SEQUENCE operation

does not generate a stage but passes processed record to its upper operation, it is more efficient than a

JOIN operation. Figure 4(a) shows the query plan generated from the UPDATE SPARQL query for the

initial CC operation. The query plan contains two staging operations (JOIN and GROUP BY) which are

expensive as discussed in Section 3.2. In order to accomplish such platform-aware optimization, we

switch the nested SELECT and the GRAPH blocks of the query. The query plan of the optimized

SPARQL query is shown in Figure 4(b). Compared to the initial query plan, the optimized plan contains

just one staging operation (GROUP BY).

Step (A) (B)

Initialization CREATE GRAPH GT;

INSERT { GRAPH GT { ?node <label> ?node }}

WHERE {

 { ?node ?edge ?o }

 UNION

 { ?s ?edge ?node }

};

Same

Computation while(convergence_check() == false) {

 DELETE { GRAPH GT { ?s <count> ?o }}

 WHERE {

 { GRAPH GT { ?s <count> ?o }}

 };

 DELETE { GRAPH GT { ?node <label> ?original }

 }

 INSERT { GRAPH GT

 { ?node <label> ?update ; <count> 1 }}

 WHERE {

 { GRAPH GT[PatternBlockA]

 { ?node <label> ?original }

 }

 {[PatternBlockB]

 SELECT ?node (MIN(?label) AS ?update)

 WHERE {

 {

 {

 { GRAPH GT { ?node <label> ? minimum }

 }

 { ?node ?edge ?neighbor }

 UNION

 { ?neighbor ?edge ?node }

 { GRAPH GT

 { ?neighbor <label> ?label }

 }

 FILTER (STR(?minimum) > STR(?label))

 }

 UNION

PatternBlockA

and

PatternBlockB

are reversed.

9

 { GRAPH GT

 { ?node <label> ?label }

 }

 }

 GROUP BY ?node

 }

 FILTER (?original != ?update)

 };

}

convergence_check():

 SELECT (COUNT(*) AS ?changed)

 WHERE {

 { GRAPH GT { ?node <count> ?count }}

 };

 if(?changed == 0) return true;

 else return false ;

Finalization DROP GRAPH GT; Same

Table 3. Connected Components: (A) Initial Algorithm (B) Optimized Algorithm

Figure 4. Comparison of the Query Plans for CC Operations

5. PERFORMANCE EVALUATION

In this section, we provide information about experiment setup and present and discuss the evaluation

results. We evaluated the execution time of our implementation so as to discover the efficiency of the

optimizations we performed.

5.1 Experiment Setup

As datasets, we used Stanford Network Analysis Platform (SNAP) dataset collection [18]. The SNAP

dataset collection is provided for general purpose network analysis and graph mining and has more than

10

50 large graph datasets. We chose seven datasets each of which has different numbers of nodes and edges.

Each dataset is stored in an individual file where each line has two node labels that are linked with a

directed edge. We converted those graph data into N-Triples [29]. Table 4 shows the summary of datasets.

For node eccentricity (NE) operation, we used the input nodes shown on the fifth column. We evaluated

our operations on a standalone workstation which has an i5-4252U 1.3GHz quad-core processor and 16

GB 1600 MHz DDR3 RAM. We installed two popular open-source triplestores, Apache Jena Fuseki 1.1.1

[21] and RDF4J Sesame 2.8.1 [24] and configured the maximum heap space for JVM to 80% of the total

memory. Both triplestores performed in-memory data processing. As a large-scale high performance

computing environment, we used uRiKA [26] which is based on Cray XMT supercomputer with 2 TB

shared-memory and 8192 hardware threads. We only took processing time into account and did not count

data loading time since our query optimization only affects processing time.

Name Nodes Edges Triangles Input Node to NE
ca-AstroPh(AS) 18,772 198,110 1,351,441 node:2444

com-DBLP(DB) 317,080 1,049,866 2,224,385 node:0

soc-Epinion1(EP) 75,879 508,837 1,624,481 node:0

com-Youtube(YO) 1,134,890 2,987,624 3,056,386 node:1

web-Google(GO) 875,713 5,105,039 13,391,903 node:0

soc-LiveJournal(LI) 4,847,571 68,993,773 285,730,264 node:0

com-Orkut(OR) 3,072,441 117,185,083 627,584,181 node:1

Table 4. Dataset Summary

5.2 Experiment Results

Figure 5. Comparisons of the Operations on Different Triplestores

11

Stand-alone systems: first, we evaluated our three graph analysis operations on the workstation and

measured execution times. Due to the limited processing resources, we used three smallest datasets in this

setup: ca-AstroPh, com-DBLP, and soc-Epinion1. Figure 5(a) to Figure 5(c) show the execution times of

our graph analysis operations. The NE operation was processed fastest taking less than 15 seconds on

both triplestores. While the NE operation is iterative, tightly bounding filter conditions could keep the

computation cost of the operation low. The optimization we performed on the initial TC operation could

effectively improve performance: 64 - 93% on Jena and 36 - 74% on Sesame. Jena showed 1.5 - 4.8

times worse performance than Sesame over the three datasets when they processed the initial TC

operation. However, the optimized TC operation reduced such gap on performance and even showed

better performance on Jena with ca-AstroPh and com-DBLP. For the initial CC operation, Jena did not

complete with com-DBLP and soc-Epinion1 within an hour and we stopped its execution while Sesame

processed the operation in less than 150 seconds. The optimization on CC, however, could reduce the

execution times a lot even resulting in 40% and 53% faster execution times than Sesame on ca-AstroPh

and soc-Epinion1, respectively. We explain our query analysis results and discuss with the optimizations

and their impacts on performance on Jena.

Dataset Operation Initialization Computation Group By Total

ca-AstroPh
Initial TC 0 52,859,332 10,811,528 63,670,860

Optimized TC 792,320 4,499,218 1,351,441 6,642,979

com-DBLP
Initial TC 0 25,245,229 2,224,385 27,469,614

Optimized TC 2,099,732 7,773,591 2,224,385 12,097,708

soc-Epinion1
Initial TC 0 113,557,432 4,326,715 117,884,147

Optimized TC 1,017,674 23,667,393 1,624,481 26,309,548
Table 5. Numbers of Iterated Records in TC Operations

Comparison of the initial and optimized TC operations: we counted the number of iterated records for

each TC operation on Jena. Table 5 shows the iteration numbers. As we discussed in the previous section,

the initial TC operation yielded a large iterator subtree rooted at a SEQUENCE (Figure 3(a)). This large

iterator tree caused that triples were iterated many times increasing computational complexity. For the

three datasets, the initial TC operation iterated around 2 - 10 times more input triples than the optimized

operation. Moreover, such large iterator tree produced 2.5 and 8 times more duplicate intermediate data

on soc-Epinion1 and ca-AstroPh datasets, respectively. On the other hand, the optimized TC operation

avoided duplicate computation and produced a query plan which did not contain a large SEQUENCE

subtree as shown in Figure 3(b). The query plan scanned the entire graph only two times to generate two

directed edges from each directed edge. The initialization query in the optimized TC also could reduce

duplicate intermediate data in advance by enforcing an order on nodes constituting an edge. This could

minimize the cost of the expensive GROUP BY operation.

Comparison of the initial and optimized CC operations: as shown in Table 3, the optimized CC operation

is exactly same as the initial version except the order of two pattern blocks. On Jena, the resulting query

plan of the optimized operation, however, replaces an expensive JOIN operation with a SEQUENCE

operation, reducing the number of stages at query execution. Because the CC operations are iterative so

that the same SPARQL query is executed multiple times, the accumulated benefit from those multiple

executions is tremendous. The initial CC operation performs JOIN in order to combine a previous

minimum label and an update minimum label for each node and results inV
2
 record iterations. Figure 5(d)

shows the total number of records the JOIN iterated. Even if ca-AstroPh contains the smallest numbers of

nodes and edges, the initial CC operation took about 20 minutes. On com-DBLP and soc-Epinion1 which

have more nodes and edges, it did not complete in a few hours. From this analysis, our experience is that

users cannot expect that the current Jena query engine always generates optimal query plans and they are

12

responsible for writing SPARQL queries which generate best query plans. We could not observe such

problems on Sesame.

Evaluation of our graph analysis operations on uRiKA: as shown in Figure 6(a), the NE operation

could be processed within 100 seconds even with the large graph datasets such as soc-LiveJournal and

com-Orkut which have several millions of nodes and tens of millions of edges. The graph in Figure 6(b)

reveals that the TC operation showed drastic increase on the execution times with larger graph datasets.

As explained in Section 4.3, this operation can produce a lot of intermediate data during its execution.

The query plan of the initial TC has a GROUP BY which is a staging operation as shown in Figure 3(a).

Hence, an amount of intermediate data from the SEQUENCE subtree can degrade the performance, even

making query executions failed. We observed that the initial TC operation could not run on soc-

LiveJournal and com-Orkut due to such large intermediate data. The CC operation completed its

execution in about 10 minutes for all datasets as shown in Figure 6(c). However, the optimization we

performed on the CC operation did not show much improvement on its performance on uRiKA.

Figure 6. Comparisons of the Operations on uRiKA

6. CONCLUSION

In this report, we extensively studied query plans for most commonly used graph operations on Jena,

Sesame, and uRiKA systems and proposed query optimization techniques. Our optimization process

13

achieved more than 35% performance improvement for triangle counting operation on those triplestores

and at least 38 times better performance for connected components operation on Jena. We believe that our

optimization work can be also leveraged for building a more extended set of graph analysis operations

that can be performed by similar SPARQL queries. We observed that current SPARQL query processing

engines do not produce optimal query plans in many cases, and it can cause significant performance

degradation. That is, in order to enable efficient graph analysis operations, users are responsible for

manually analyzing and optimizing their operations, which can be a burdensome and complicated work

for moderate-skilled users. Hence, as a future work, we plan to provide a framework that generates

optimized queries in a systematic way for triplestores.

The optimized code has been made available at https://github.com/ssrangan/gm-sparql.

7. ACKNOWLEDGEMENTS

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract

No. DE-AC05-00OR22725. The research was sponsored by the Laboratory Directed Research and

Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S.

Department of Energy.

https://github.com/ssrangan/gm-sparql

14

REFERENCES

[1] Jimenez, E., Goodman, E. L.: Triangle Finding: How Graph Theory can Help the Semantic Web. In:

Joint Workshop on Scalable and High-Performance Semantic Web Systems, pp. 45–58 (2012)

[2] Hage, P., Harary, F.: Eccentricity and Centrality in Networks. J. Social Networks. 17(1), 57–63 (1995)

[3] Barab´asi, A. L., Albert, R.: Emergence of Scaling in Random Networks. J. Science. 286(5439), 509–

512 (1999)

[4] Bloem, R., Gabow, H. N., Somenzi, F.: An Algorithm for Strongly Connected Component Analysis in

n log n Symbolic Steps. In: 3rd International Conference on Formal Methods in Computer-Aided Design

FMCAD 2000. LNCS, vol. 1954, pp. 56–73. Springer, Austin (2000)

[5] Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the

Web. Technical report, Stanford University (1999)

[6] Takes, F. W, Kosters, W. A.: Computing the Eccentricity Distribution of Large Graphs. J. Algorithms,

pp. 100–118 (2013)

[7] Gubichev, A., Then, M.: Graph Pattern Matching - Do We Have to Reinvent the Wheel? In: 2nd

Internation Workshop on Graph Data Management Experiences and Systems, pp. 1–7 (2014)

[8] Najork, M., Fetterly, D., Halverson, A., Kenthapadi, K., Gollapudi, S.: Of Hammers and Nails: An

Empirical Comparison of Three Paradigms for Processing Large Graphs. In: 5th International Conference

on Web Search and Data Mining WSDM 2012, pp. 103–112 (2012)

[9] Techentin, R. W., Gilbert, B. K. Lugowski, A., Deweese, K., Gilbert, J. R., Dull, E., Hinchey, M.,

Reinhardt, S. P.: Implementing Iterative Algorithms with SPARQL. In: Proceedings of the Workshops of

the EDBT/ICDT 2014 Join Conference, pp. 216–223 (2014)

[10] Morsey, M., Lehmann, J., Auer, S., Ngomo, A. N.: Usage-Centric Benchmarking of RDF Triple

Stores. In: AAAI 2012, pp. 2134–2140 (2012)

[11] Hartig, O., Bizer, C., Freytag, J. C.: Executing SPARQL Queries over the Web of Linked Data. In:

8th International Semantic Web Conference ISWC 2009, pp. 293–309 (2009)

[12] Almeida, P. S., Baquero, C., Cunha, A.: Fast Distributed Computation of Distances in Network. In:

CDC 2012, pp. 5215–5220 (2012)

[13] Yan, D., Cheng, J., Xing, K., Lu, Y., Ng, W., Bu, Y.: Pregel Algorithms for Graph Connectivity

Problems with Performance Guarantees. In: PVLDB 2014. 7(14), 1821–1832 (2014)

[14] Kang, U., Tsourakakis, C. E., Faloutsos, C.: PEGASUS: A Peta-Scale Graph Mining System. In:

ICDM 2009, pp. 229–238 (2009)

[15] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI 2004,

pp. 137–150 (2004) 16 Optimizing Graph Analysis Operations on Linked Data

[16] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., Stoica, I.: GraphX: Graph

Processing in a Distributed Dataflow Framework. In: OSDI 2014, pp. 599–613 (2014)

[17] Angles, R., Gutierrez, C.: Querying RDF Data from a Graph Database Perspective. In: ESWC 2005,

pp. 346–360 (2005)

[18] Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection,

http://snap.stanford.edu/data (2014)

[19] Lim, S., Lee, S., Sukumar, S. R., Ganesh, G., Brown, R. C.: Graph Processing Platforms at Scale. In:

Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and

Software. (2015)

[20] Lee, S., Sukumar, S. R., Lim, S.: Graph Mining Meets the Semantic Web. In: ICDE Workshop on

Data Engineering meets the Semantic Web. (2015)

[21] Apache Jena, https://jena.apache.org/

[22] Resource Description Framework (RDF), http://www.w3.org/RDF/

[23] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/

[24] OpenRDF Sesame, http://rdf4j.org/

[25] Virtuoso, http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

15

[26] Cray uRiKA-GD, http://www.cray.com/products/analytics/urika-gd

[27] NetworkX, https://networkx.github.io/

[28] Neo4j, http://neo4j.com/

[29] RDF N-Triples, http://www.w3.org/TR/n-triples

16

