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ABSTRACT 

The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful 
optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos 
National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at 
accurate uncertainty quantification, but it can be very computationally demanding. Previously, the 
DREAM method in INVERSE performed a user-defined number of particle transport calculations. This 
placed a burden on the user to guess the number of calculations that would be required to accurately solve 
any given problem. This report discusses a new approach that has been implemented into INVERSE, the 
Gelman-Rubin convergence metric. This metric automatically detects when an appropriate number of 
transport calculations have been completed and the uncertainty in the inverse problem has been accurately 
calculated. In a test problem with a spherical geometry, this method was found to decrease the number of 
transport calculations (and thus time required) to solve a problem by an average of over 90%. In a 
cylindrical test geometry, a 75% decrease was obtained.   
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1.   INTRODUCTION 

The forward problem of particle transport can be defined as “the determination of the population 
of particles in a system given the physical parameters of the system, including the particle source.” Using 
this calculated particle population, values such as detector responses can be calculated. The inverse 
problem asks the opposite question: if detector responses are determined by measurement, can the 
physical parameters of a system be reconstructed?  

Los Alamos National Laboratory has a software package called INVERSE that is capable of 
solving inverse transport problems of interest to the NA-42 mission space, including the problems of 
material interface location identification, source isotopic content identification, material density 
identification, and shield material identification. INVERSE uses a variety of methods for solving inverse 
transport problems. One of the most promising is the DiffeRential Evolution Adaptive Metropolis 
(DREAM) method, a hybridization of Markov chain Monte Carlo sampling and the evolutionary 
algorithm differential evolution [1]. The DREAM method has been shown to be an effective method for 
solving and quantifying uncertainty in inverse transport problems, but its use of many multiple forward 
simulations makes it computationally expensive. 
 One of the most glaring issues with the implementation of DREAM within INVERSE was the 
burden placed on the user to decide the number of transport calculations required to accurately solve the 
problem. The user could only follow very general guidelines in choosing this number, and it was unclear 
whether the user-determined value was too large, and would waste valuable time and computing 
resources, or if it may have been too small, not sufficiently solving the problem. In order to overcome this 
burden, the Gelman-Rubin convergence criterion [2] has been implemented in this work. The Gelman-
Rubin method is a technique for detecting convergence of simultaneous Markov chains exploring the 
same solution space. It uses a measure of the variance of chain states within the individual chains and 
between the chains in order to make this detection. This method has proven useful for problems in fields 
such as uncertainty quantification for ground penetrating radar data [3] and groundwater modeling [4].  

. 
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2.   THE DREAM METHOD 

2.1  BACKGROUND 

Markov chain Monte Carlo methods provide a generalized methodology for inferring the 
posterior distribution of the unknown parameters in an inverse transport problem. This posterior 
distribution represents the ranges that the unknown values may take given the measured data and its 
associated uncertainty. In an idealized problem in which there is no uncertainty in measurements, the 
posterior distribution for each unknown parameter would be a single value.  

The posterior probability distribution 𝑝(𝐮|𝑀!) represents the probability of a model 𝐮 (where 𝐮 
is a vector representing postulated values for the unknown parameters) given observed measurements 𝑀!. 
This distribution is proportional to a likelihood function times a prior probability distribution. For this 
study, it was assumed that the prior distribution had an equal probability that the parameter lies 
somewhere within its constraints, and a probability of zero that the parameter lies outside of its 
constraints. The likelihood function, 𝑝 𝑀! 𝐮 , is the probability of measurements 𝑀! given parameters 𝐮. 
The likelihood function was defined as 
 

𝑝 𝑀! 𝐮 = exp −
1
2

𝑀! 𝐮 −𝑀!,!

𝜎!

!!

!!!

, 

 
where 𝐷 is the total number of detector measurements, 𝑀! 𝐮  is the calculated measurement at detector 𝑑 
for postulated parameter set 𝐮, 𝑀!,! is the observed measurement for detector 𝑑, and 𝜎! is the uncertainty 
in the measurement for detector 𝑑. Since the prior probability distribution is equal to 1.0 in feasible 
regions of the search space, the posterior distribution is equal to the likelihood: 𝑝 𝐮 𝑀! =  𝑝 𝑀! 𝐮 . 
The goal of the inverse problem is to find the regions for which 𝑝 𝐮 𝑀!  is near its maximum.  

In the traditional Markov chain Monte Carlo (MCMC) approach, a single Markov chain is 
employed. The chain begins at some initial parameter set 𝐮! for which the posterior 𝑝(𝐮!|𝑀!) is 
calculated, and then a trial parameter set is created. The posterior  𝑝(𝐮!!!|𝑀!) is calculated for this trial 
parameter set, and the trial parameter set is either accepted or rejected according to the Metropolis 
acceptance probability 
 

𝛼 𝐮!,𝐮!!! = min
𝑝(𝐮!!!|𝑀!)
 𝑝(𝐮!|𝑀!)

, 1 . 

 
In Eq. (2) we see that if the trial point has a posterior larger than the current chain state (i.e., parameters 
𝐮!!! yield a closer match between calculated and observed measurements), then the acceptance 
probability is 1, and the chain is moved to the trial state. If parameters 𝐮!!! do not lead to a closer match 
between calculated parameters, they are still accepted with a probability equal to 𝑝 𝐮!!! 𝑀! /𝑝(𝐮!|𝑀!). 
The chain progresses in this way until it creates the full posterior distribution describing the probabilities 
for the values of the unknown parameters. In this report, the creation and testing of the new chain state 
𝐮!!! is referred to as a “generation” of the MCMC algorithm. New generations of the chain are created 
until the posterior distribution has been accurately constructed.  

(1) 

(2) 
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Traditional MCMC approaches have generally been inefficient because trial parameters are either 
too close to the current point, leading to a high acceptance rate but slow convergence to the posterior 
distribution, or they are too far from the current point, leading to a low acceptance rate. The issue of 
choosing an appropriate trial parameter has been explored for many years. One particularly successful 
method for solving this problem is the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. 
This method employs simultaneous multiple Markov chains (generally 3–5), and it uses the Differential 
Evolution algorithm to generate trial points for each chain. Suppose we have a set of 𝑀 chains, each 
containing a postulated parameter set 𝐮! (𝑚 = 1,… ,𝑀). For chain 𝑚, the differential evolution approach 
generates a trial point according to 
 

𝐮!,!"#$% = 𝐮! + 𝛾 𝐮!! − 𝐮!! + 𝐞. 
 
In Eq. (3), 𝐮!! and 𝐮!! are the current states of two randomly selected chains that are different from 
chain 𝑖 and different from each other. The term 𝛾 is a scalar parameter set equal to 2.38/ 2𝑁, where 𝑁 is 
the number of unknown parameters in the problem. The term 𝐞 is a small scalar value used to increase 
diversity in the trial chain values. The DREAM approach for generating trial values for Markov chains 
has been shown to be highly successful for solving difficult optimization problems in the presence of 
noise. 

2.2  MARKOV CHAIN CONVERGENCE 

One of the most pressing questions in Markov chain sampling is how many generations are 
required to build accurate posterior distributions? Previously, this number of generations was set by the 
user of INVERSE. This put a particularly difficult burden on the user, because numerical experience has 
indicated that the necessary number of generations varies greatly by problem. In an (unpublished) user’s 
guide provided to LANL staff members, the following guidelines were given: 

Table 1.  Initial guidelines for the number of generations to use with the DREAM method in INVERSE 

Number of parameters Number of generations 
1 10,000–20000 
2 10,000–30,000 
3 20,000–50,000 
4 50,000–400,000 

 

Table 1 indicates the difficulty of assigning a maximum number of generations. For instance, for four 
unknown parameters, anywhere between 50,000 and 400,000 generations were thought necessary. 
 In order to overcome this ambiguity, a new method has been implemented into INVERSE to 
automatically detect when the Markov chains have sufficiently sampled the posterior distribution. This 
method, known as the Gelman-Rubin convergence metric, is described in Ref. [2]. The Gelman-Rubin 
metric monitors the standard deviations both within and between the parallel Markov chains run by the 
DREAM method in order to detect when chains have stabilized to the posterior distribution. The metric is 
described by the following equations. The between-chain variance, measuring the variance between the 
3–5 chains in the DREAM method for parameter 𝑛, given by 

(3) 
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𝐵! =
𝐿

𝑀 − 1
(𝑢!,! − 𝑢!)!

!

!!!

,   where 𝑢!,! =
1
𝐿

𝑢!,!!
!

!!!

  ,    𝑢! =
1
𝑀

𝑢!,!

!

!!!

, 

 
where 𝑀 is the number of chains, 𝐿 is the length of the chains (number of generations), and 𝑢!,!!  is the 
mean value of parameter 𝑛 for chain 𝑚 at generation 𝑙. The within-chain variance for parameter 𝑛, which 
gives a measure of the variance within the chain over the 𝐿 generations, is given by   

𝑊! =
1
𝑀

𝑠!!
!

!!!

,   where 𝑠!! =
1

𝐿 − 1
 (𝑢!,!! − 𝑢!,!)!
!

!!!

. 

The between-chain and within-chain variances are then combined to form what is called the posterior 
marginal variance for parameter 𝑛, 𝑉!: 

𝑉! =
𝐿 − 1
𝐿

𝑊! +
𝑀 + 1
𝐿𝑀

𝐵! 

If the 𝑀 chains have reached the target distribution, the posterior variance estimate should be very close 
to the within-chain variance 𝑊. Therefore, the ratio 𝑉/𝑊 should be close to 1. The square root of 𝑉/𝑊, 
called the potential scale reduction factor (PSRF), is then used to measure whether the target distribution 
has been reached and thus accurately quantified uncertainty in the unknown parameters. In this work, a 
value of PSRF < 1.1 was used to indicate success.  

  

(4) 

(5) 

(6) 
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3.   SAMPLE PROBLEMS 

3.1  BACKGROUND 

The Gelman-Rubin convergence metric was applied to two numerical test cases, one in a 
spherically symmetric geometry, and one in a cylindrical geometry. Both cases had a highly enriched 
uranium source with a composition of 94.73% 235U and 5.27% 238U.  

3.2  TEST PROBLEM 1 -  SPHERICAL GEOMETRY 

In the spherical test problem, the source has a radius of 8.741 cm and is surrounded by a layer of 
void with a radius of 12.4 cm. This is followed by a 0.5 cm-thick layer of lead and a 0.3 cm-thick layer of 
aluminum. This geometry is shown in Figure 1. The measured values in this problem are the total (4𝜋) 
leakages of the four strongest photon emission lines of uranium: 144-, 186-, 766-, and 1001-keV. 
“Measured” leakage values were simulated using Monte Carlo N particle (MCNP) transport code with a 
small number of histories in order to simulate the uncertainty of real measurement. Table 2 shows the 
simulated measured leakages for the system. 
  
  

 

 
Figure 1. Geometry for Test Problem 1.  

 

 

Table 2. Simulated 4π leakage measurements for Test Problem 1 
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Energy line (keV) Simulated 
measurement 

144  9.96 × 10-1 ± 0.56% 
186  4.67 × 103 ± 0.12% 
766  2.53 × 103 ± 4.26% 

1001  9.86 × 103 ± 2.32% 
 

In this sample problem, the three interior radii (8.741 cm, 12.4 cm, and 12.9 cm) in the problem are 
unknown. We assume that the only information we have about them is that they are within the 13.2 cm 
outer aluminum radius. Results for the DREAM method using the Gelman-Rubin metric and with a fixed 
total number of transport calculations following previous guidelines (30,000 generations, 150,000 total 
calculations) are presented in Table 3. In both cases, 10 independent DREAM calculations were 
conducted; each of these calculations used a different random number seed. Using the Gelman-Rubin 
diagnostic, an average of 12,622 calculations was required to accurately quantify uncertainty for the 
unknown radii. This is a 92% reduction in the number of transport calculations required (and thus time 
required) to solve the problem.  

Table 3. Results of the Gelman-Rubin Method for Test Problem 1 

DREAM with Gelman-Rubin Method 

Test Source radius  Inner lead radius Outer lead radius Transport calculations 
1 8.58 ± 0.21 12.45 ± 0.06 12.96 ± 0.07  36,000 
2 8.56 ± 0.26 12.46 ± 0.08 12.96 ± 0.08  10,353 
3 8.54 ± 0.22 12.46 ± 0.07 12.97 ± 0.07  14,191 
4 8.56 ± 0.26 12.46 ± 0.08 12.96 ± 0.08  12,885 
5 8.56 ± 0.31 12.46 ± 0.09 12.96 ± 0.10  8,334 
6 8.58 ± 0.26 12.45 ± 0.07 12.95 ± 0.07  9,135 
7 8.58 ± 0.26 12.46 ± 0.07 12.96 ± 0.07  6,192 
8 8.53 ± 0.24 12.46 ± 0.07 12.96 ± 0.07  9,234 
9 8.56 ± 0.25 12.46 ± 0.08 12.96 ± 0.08  11,557 

10 8.59 ± 0.30 12.45 ± 0.09 12.95 ± 0.09  8,343 
DREAM without Gelman-Rubin Method 

Test Source radius  Inner lead radius Outer lead radius Transport calculations 
1 8.54 ± 0.25 12.46 ± 0.07 12.96 ± 0.08 150,000 
2 8.56 ± 0.25 12.46 ± 0.07 12.96 ± 0.07 150,000 
3 8.55 ± 0.24 12.46 ± 0.07 12.96 ± 0.07 150,000 
4 8.56 ± 0.24 12.46 ± 0.07 12.96 ± 0.07 150,000 
5 8.54 ± 0.25 12.47 ± 0.07 12.97 ± 0.08 150,000 
6 8.56 ± 0.26 12.46 ± 0.07 12.96 ± 0.08 150,000 
7 8.57 ± 0.25 12.46 ± 0.07 12.96 ± 0.08 150,000 
8 8.56 ± 0.24 12.46 ± 0.07 12.96 ± 0.08 150,000 
9 8.56 ± 0.27 12.46 ± 0.08 12.96 ± 0.08 150,000 

10 8.56 ± 0.24 12.46 ± 0.07 12.96 ± 0.07 150,000 
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3.3  TEST PROBLEM 2 -  CYLINDRICAL GEOMETRY 

The cylindrical test geometry is shown in Figure 2. The region of highly enriched uranium has a radius of 
4.0 cm. Its bottom is located at 1.5 cm and its top is at 6.0 cm. The source is surrounded by layers of lead 
and aluminum shielding, and detectors below (r,z) = (0.0 cm, -1.0 cm) and outside the radial face (r,z) = 
(10.0 cm, 4.0 cm) of the geometry measure the uranium emission lines. The simulated measurements are 
given in   
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Table 4. 
Due to longer run times for two-dimensional problems, previous DREAM calculations were kept 

to a minimum of 90,000 transport calculations. A comparison of results obtained using the Gelman-Rubin 
convergence metric and the standard 90,000 transport calculations is given in Table 5. Using the Gelman-
Rubin criterion, the average number of transport calculations required to accurately quantify the 
uncertainty on the unknown parameters was 22,875—a 75% decrease in the number of calculations 
required.  

 

Figure 2. Geometry for Test Problem 2.  
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Table 4. Simulated scalar flux measurements for Test Problem 2 

Detector 1 (r,z) = (0.0 cm, -1.0 cm) 

Energy line (keV) Simulated measurement 

144  1.57 × 10-3 ± 60.45% 
186  1.92 × 100 ± 12.36% 
766  1.69 × 100 ±  1.77% 

1001  7.10 × 100 ± 1.49% 

Detector 2 (r,z) = (10.0 cm, 4.0 cm) 

Energy line (keV) Simulated measurement 

144 1.04 × 102 ± 9.94%  
186 9.86 × 102 ± 7.55% 
766 7.85 × 10-1 ± 3.92% 

1001 2.52 × 100 ± 2.19% 
 

Table 5. Results of the Gelman-Rubin Method for Test Problem 2 

DREAM with Gelman-Rubin Method 

Test Source radius  Source bottom Source top Transport calculations 
1 3.96 ± 0.20 1.51 ± 0.02 6.17 ± 0.39 23,121 
2 3.96 ± 0.14 1.51 ± 0.02 6.17 ± 0.33 12,456 
3 3.96 ± 0.18 1.51 ± 0.02 6.16 ± 0.37 16,758 
4 3.96 ± 0.17 1.51 ± 0.02 6.16 ± 0.36 38,313 
5 3.96 ± 0.18 1.51 ± 0.02 6.18 ± 0.36 24,327 
6 3.95 ± 0.18 1.51 ± 0.02 6.19 ± 0.38 32,868 
7 3.94 ± 0.16 1.51 ± 0.02 6.19 ± 0.35 17,802 
8 3.93 ± 0.18 1.50 ± 0.02 6.22 ± 0.37 15,093 
9 3.96 ± 0.17 1.51 ± 0.02 6.16 ± 0.39 22,086 

10 3.97 ± 0.21 1.51 ± 0.02 6.15 ± 0.44 25,929 
DREAM without Gelman-Rubin Method 

Test Source radius  Source bottom Source top Transport calculations 
1 3.96 ± 0.17 1.51 ± 0.02 6.16 ± 0.37 90,000 
2 3.96 ± 0.18 1.51 ± 0.02 6.16 ± 0.37 90,000 
3 3.96 ± 0.18 1.51 ± 0.02 6.16 ± 0.38 90,000 
4 3.96 ± 0.18 1.51 ± 0.02 6.18 ± 0.38 90,000 
5 3.97 ± 0.18 1.51 ± 0.02 6.15 ± 0.37 90,000 
6 3.96 ± 0.18 1.51 ± 0.02 6.15 ± 0.38 90,000 
7 3.97 ± 0.18 1.51 ± 0.02 6.15 ± 0.37 90,000 
8 3.96 ± 0.17 1.51 ± 0.02 6.17 ± 0.35 90,000 
9 3.96 ± 0.18 1.51 ± 0.02 6.17 ± 0.38 90,000 

10 3.96 ± 0.17 1.51 ± 0.02 6.18 ± 0.37 90,000 
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4.   SUMMARY AND CONCLUSIONS 

  The DiffeRential Evolution Adaptive Metropolis (DREAM) method has previously been shown 
to be a powerful tool for solving and quantifying uncertainties in inverse transport problems within Los 
Alamos National Laboratory’s inverse transport analysis tool, INVERSE. While the DREAM method is 
highly adept at accurate uncertainty quantification, it can require a large number of time-consuming 
particle transport calculations. Previously, there was no built-in capability in INVERSE to determine the 
number of calculations required for accurate uncertainty quantification, and the user was forced to choose 
a maximum number. In this work, we have implemented the Gelman-Rubin convergence metric, a 
method that compares within-chain to between-chain variances, to automatically detect when the 
DREAM method has successfully found the solution. 
 Numerical results have shown that previous estimates for the number of transport calculations 
required were far too large, and the Gelman-Rubin approach has significantly reduced this number and 
thus has also reduced the run time for the problem. In a numerical test case in a spherical system, the 
Gelman-Rubin approach reduced the number of transport calculations used by INVERSE by over 90%, 
and in a cylindrical system, this approach reduced the number of transport calculations used by INVERSE 
by 75%.  
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