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EXECUTIVE SUMMARY 

The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of 
development. The project is designed to support collaborative modeling and study of various advanced 
SMR (non-light water cooled) concepts, including the use of coupled reactors at a single site. 

In FY2015, the project has transitioned from the Advanced Small Modular Reactors Research and 
Development Program to the Advanced Reactors Technology Program. The objective of the project; 
however, remains the same; namely to provide a common simulation environment and baseline modeling 
resources to facilitate rapid development of dynamic advanced reactor models, ensure consistency among 
research products within the Instrumentation, Controls, and Human-Machine Interface technical area, and 
leverage cross-cutting capabilities while minimizing duplication of effort.  

The combined simulation environment and suite of models are identified as the Modular Dynamic 
SIMulation tool. The critical elements of this effort include (1) defining a standardized, common 
simulation environment that can be applied throughout the program; (2) developing a library of baseline 
component modules that can be assembled into full plant models using existing geometry and thermal-
hydraulic data; (3) defining modeling conventions for interconnecting component models; and 
(4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration 
and parameterization), execution, and results display and capture.  

Previous deliverables focused on the development of component and system models as well as end-to-end 
system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid 
Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this deliverable is the 
release of the first beta version of the web-based application for model use and collaboration, as well as 
an update on the FHR model. The web-based application allows novice users to configure end-to-end 
system models from preconfigured choices to investigate the instrumentation and controls implications of 
these designs and allows for the collaborative development of individual component models that can be 
benchmarked against test systems for potential inclusion in the model library. A description of this 
application is provided along with examples of its use and a listing and discussion of all the models that 
currently exist in the library. 

The remaining work in FY2015 includes the addition of preliminary models for advanced gas cooled 
reactor designs as well as the development of models that include additional I&C control for an end-to-
end plant concept.
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1. INTRODUCTION 

1.1 BACKGROUND 

As documented previously (Refs. 1–3), the intent of this project is to develop simulation resources and 
tools to allow collaborative modeling and control study for various advanced (non-light water reactor), 
small modular reactor (SMR) configurations. The project has been funded under the Advanced SMR 
Program and is in the third and final year of development. This program, however, is currently being 
transitioned to the Advanced Reactor Technology (ART) Program with less emphasis on SMRs and more 
emphasis on advanced reactor concepts. As a result, any further development will be transitioned to the 
ART Program priorities. 

High-level objectives of this effort include (1) defining a standardized, common simulation environment 
that can be applied throughout the program; (2) developing a library of baseline component modules that 
can be assembled into full plant models; (3) defining modeling conventions for interconnecting 
component models (i.e., a standard architecture for simulation development); and (4) establishing user 
interfaces and support tools to facilitate simulation development (i.e., configuration and 
parameterization), execution, and results display and recording. Objectives 1–3 have been met and are 
documented for two different advanced reactor architectures in previous updates (Refs. 1–3). The user 
interfaces for novice, intermediate, and expert users have been developed. The purpose of this report is to 
document the integration of these interfaces into a web-based application for potential users. 
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2. WEB-BASED APPLICATION 

2.1 INTRODUCTION/TASK DESCRIPTION 

Simulations with Dymola and the Functional Mock-up Interface (FMI) tool demonstrate the flexibility of 
the modeling approach and architecture to study the behavior of different feedback measurements, control 
strategies, and transient events. However, both of these methods require the user to have access to and 
licenses for Dymola and/or Modelon’s FMI Add-In to Excel. A goal of the project is to remove as many 
restrictions as possible from the use of advanced reactor models. To this end, the creation of a web-based 
application that allows permitted users to access models and share licenses transparently will greatly 
simplify the process and provide for greater collaboration among designers and developers across a broad 
spectrum of research programs both within and external to the US Department of Energy (DOE). 

Previously, a prototype of a web-based application was developed for internal use and development [2]. 
The initial prototype was used to identify the necessary tools, files, and protocols that would be needed 
for a web-based application that would be distributed for wider use. The principal focus of this report is 
the description of and instructions for use for this web-based tool. Although intended for use by all, the 
target audience for the web-based application is the beginner user with little to no familiarity with 
Modelica/system models. More detailed analysis would be expected for using the FMI tool separately (by 
the more advanced intermediate user) and directly in Dymola (for the advanced user). A detailed 
discussion of the activities associated with intermediate and advanced users can be found in Ref. 2. A 
discussion of the use of the web-based application for the beginning user follows. 

The beginning user is assumed to have no experience or proficiency in modeling activities and is 
considered to be an end user who is interested in running simple scoping analyses on existing models. He 
or she is not presumed to have access, familiarity with, or licenses for Modelica solvers such as Dymola. 
Additionally, the beginning user is expected to either work from pre-generated Functional Mock-up 
Interface for Excel (FMIE) simulation runs or to have access to shareable licenses for the FMIE tool. 
These scoping analyses allow the user to modify basic parameters and a small subset of advanced 
parameters and generate a predefined or reduced set of results through a web-based interface. The 
intention of this interface is to provide a robust set of features that do not allow the inexperienced user to 
cause failure or hang up the tool. This ensures a positive experience for the user and is intended to 
encourage continued use and development of more advanced modeling, such as that of novice and 
advanced users.  

2.2 WEB-BASED APPLICATION DESCRIPTION 

The development of a web-based application has been made possible in large part through the use of a 
modular architecture approach to end-to-end advanced reactor system models, as shown in Figs.1–2. The 
adoption of this approach follows those established in other Modelica-based system integration 
applications, such as the automotive industry. The development of individual component models that fit 
into a structured architecture in a plug-and-play format allows a user to make drop down selections which 
can be coded in a web-based application. The early prototype for the web-based application required 
preconfigured models with Functional Mock-up Units (FMUs) that could be selected and pulled into the 
FMI Add-In to Excel tool developed by Modelon, Inc. The major advancements in this beta version of the 
web-based application include the following upgrades, which are described in the subsections below: 
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1. multiple platform application deployment/hosting, 
2. user authentication and access control, 
3. simplified web-based application file structure/needs, 
4. simplified web-based application updating, 
5. integration with central repository, and 
6. simplified user interface. 

 
Fig. 1. Modular architecture for advanced liquid metal reactor end-to-end system model. 

 

 
Fig. 2. Modular architecture for fluoride high-temperature reactor end-to-end system model. 
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2.2.1 Web-Based Application Deployment/Hosting 

The server/hosting requirements for the web-based application are minimal. The application is being 
deployed as a collection of “Docker” containers. 

Docker is an open platform for developers and sysadmins to build, ship, and run distributed applications. 
The Docker suite consists of the Docker Engine, a portable, lightweight runtime and packaging tool, and 
Docker Hub, a cloud service for sharing applications and automating workflows. Docker enables apps to 
be quickly assembled from components and eliminates the friction between development, QA, and 
production environments. As a result, IT can ship faster and run the same app, unchanged, on laptops, 
data center VMs, and any cloud [4] 

Docker was chosen as the deployment platform for a number of reasons. First, it significantly reduces the 
overhead associated with virtualization while preserving much of the reliability and safety. Second, there 
are a number of providers for Docker hosting which is an important factor in reducing the need for special 
hardware or potentially even any hardware. 

Docker is a system that allows different (Linux) OS installations to be hosted on a single machine with 
almost no memory or disk storage overhead. All virtual machines share memory and disk space but are 
sufficiently partitioned to avoid any mixing of data (i.e., to maintain security). This has the added benefit 
that the same machine (and in some sense the same Linux host) can have multiple versions of the 
supporting software tools installed as long as they exist in separate containers. 

Docker provides what amounts to a firewall between every virtual machine. This makes it very easy to 
relocate Docker images to other hosts. The use of Docker means it can be almost trivially relocated 
between different hosting environments, and the program can be run on most server environments. It even 
can be run on a Windows desktop running tools like VMWare or VirtualBox (although it isn’t clear what 
impact this would have on performance).  

2.2.2 Web-based Application Authentication and Authorization 

The release of a beta version of the web-based application necessitates the verification of a potential 
user’s credentials to access the application. The goal is to ensure access to only those participants that 
have been approved and authenticated. Collaboration for model development is facilitated with GitHub, 
and GitHub-based (OAuth) authentication is provided as an option to users of the web-based application. 
This easily handles the case of GitHub developers but does not necessarily include others, who may not 
be collaborating on model development. For this more casual user, a simple method of accomplishing the 
same level of authentication is to use existing authentication platforms that exist for widely used services. 
These include services like Google and Facebook. The objective of this approach is to use other 
authentication services without having to build in the software overhead in the application. The web 
application sysadmin can input the potential user’s GitHub, Google, or Facebook profile information, and 
the authentication is then passed through these services. 

2.2.3 Web-based Application Structure/File Needs 

The web-based application makes use of FMU files that are generated when the Modelica models are 
compiled. As described in previous reports (Refs. 1–3), FMI defines a standardized interface to be used in 
computer simulations of complex cyber-physical systems. The FMI implementation enables the creation 
of an FMU, either a model that can be interconnected or a self-contained simulation model with an 
integrator. A FMU can be used for simulations outside the native development tool. The web-based 
application takes the FMUs generated and connects these to the FMI-Add-In Tool for Excel provided by 
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Modelon, Inc. Therefore, the simulation environment for the web-based application is Excel. However, 
the use of the FMI Add-In also requires the establishment of parameters established for input and output. 
The web-based application automates this process. The previous prototype made use of separate files 
necessary to establish these parameters. The current beta version has progressed to a point where most 
information required to generate the web-based application and establish the simulation parameters is 
stored in the Modelica models directly. As a result, this approach has significantly streamlined the process 
of application generation and eliminated the previous (multistep) YAML-based approach. The new 
approach requires far less work and expertise from the modeler, and it is a completely repeatable process 
so it is easy to keep the web-based applications synchronized as the models evolve. The key information 
required for the web-based application includes: 

• architecture to which a model belongs, 
• subsystems within an architecture, 
• subsystem implementations used in a particular model, and 
• parameters and outputs associated with a given subsystem. 

The new approach has the following benefits: 

• elimination of YAML files, 
• annotation of models with information to support web app creation, 
• creation of FMUs from annotated models, and 
• Xogeny web application built from FMUs by parsing model annotations. 

Annotation of the models to be used by the web-based application follows the following conventions: 

• Parameters to be included in the web-based application should be propagated to the top level of a 
subsystem. 

• Outputs should be defined as output variables at the top level of a subsystem. 
• Parameters and outputs can be defined in base classes plus actual implementations. 

- Common parameters and outputs can be defined in base classes, while those specific to an 
implementation can be added in the implementation. 

• Variable descriptions are used by web building applications to identify parameters and outputs. 
• Subsystem “roles” must be unique (i.e., reactor, coolant loop, intermediate coolant loop, controller). 
• Subsystem “choice” must be unique and thus should be assigned at implementation (i.e., each 

implementation should be given a unique identifier).  

Additional details about how models are annotated in order to provide the necessary information for the 
web-based application are included in Sect. 5.2. The information covers steps to annotate models using 
the same reactor demonstration models used previously to illustrate the YAML approach.  

2.2.4 Simplified Web-Based Application Updating 

The prototype web-based application was initially developed without consideration of the need to update 
it rapidly to incorporate model updates. To accommodate this need, the web-based application was 
designed to facilitate update in three steps: (1) initialization, (2) creation, and (3) preview. Following 
successful preview, the application is published to the server. Details of the commands for updating the 
application are found in Appendix A Sect. 5.1. 
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2.2.5 Integration with Central Modeling Repository 

The prototype web-based application makes use of files resident on a local server. In a collaborative 
environment, these files will reside in a central repository. This central repository has been established as 
a private repository in GitHub (Sect. 3.2.1). The beta version of the web-based application links to the 
necessary files in GitHub to further reduce the number of steps necessary to update and publish the web-
based application for online use (Sect. 2.2.4). 

2.2.6 Simplified User Interface 

The prototype web-based application made use of drop down selections for web models to create an end-
to-end system. One limitation, however, was the need for users to understand which potential drop down 
selections corresponded to available end-to-end system models. The beta version eliminates this problem. 
Each user-selected choice now serves to populate the remaining user choices only with available choices 
that constitute established end-to-end systems. This approach ensures that the user can not select a series 
of choices for which data does not exist. This approach also simplifies the user’s interface and ensures the 
generation of usable data from the application. Where choices are unavailable, notes are provided to the 
user to identify needed data and points of contact for further development of desirable architectures. 

2.3 WEB-BASED APPLICATION MODELS 

The web-based application is designed to generate simulations from established end-to-end system 
FMUs. Individual component and subsystem models are connected via the architectures seen in Figs. 1–2. 
These component and subsystem models represent attempts at optimized designs to achieve the desired 
overall end system performance goals. A principal challenge is integrating individual component and 
subsystem designs into a simulatable overall plant architecture and providing the necessary controls to 
achieve plant performance. The difference between the advanced liquid-metal reactor (ALMR) and the 
fluoride high-temperature reactor (FHR) development of end-to-end system models serves as a good 
example and is described later. 

2.3.1 Liquid Metal Reactor Models 

The liquid metal reactor models are based on the power reactor innovative small module (PRISM) design 
seen in Fig. 3 and described in detail in Ref. 2. The ALMR model is the most complete end-to-end system 
developed using Modelica to date. The design layout and architecture for this end-to-end system model is 
seen in Fig. 4. This work was based on a full design documented in Ref. 5. As a result, the individual 
component models and end-to-end system models have data for which the Modelica models can and have 
been calibrated. The subsystem and component models used in the web-based application to represent the 
ALMR architecture are described in Sect. 3.3. 
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Fig. 3. PRISM system design. 

 

 
Fig. 4. Modular architecture for advanced liquid-metal reactor end-to-end system model. 
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2.3.2 Fluoride High-Temperature Reactor Models—Update 

The FHR models are based on the small modular advanced high-temperature reactor (SmAHTR) design 
shown in Fig. 5 and described in detail in Ref. 3. A description of the current state of the end-to-end FHR 
model is included below. The FHR model is conceptual and therefore has not been optimized for all 
subsystem and components. The final architecture for the FHR end-to-end system model is shown in 
Fig. 6. The currently implemented architecture for the system is shown in Fig. 7. This work was based 
upon a conceptual design documented in Ref. 6. As a result, the individual component models and end-to-
end system models do not have data by which the Modelica models can be calibrated. This represents a 
challenge when the components and subsystems are integrated to develop end-to-end models for the web-
based application. The subsystem and component models that are used in the web-based application to 
represent the FHR architecture are described in Sect. 3.3. 

 
Fig. 5. Small modular advanced high-temperature reactor system design. 

 
Fig. 6. Modular architecture for fluoride high-temperature reactor end-to-end system model. 
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Oak Ridge National Laboratory (ORNL) previously delivered a Modelica model of the SmAHTR plant. 
While this model met the performance requirements at the individual subsystem level, the integrated end-
to-end system model was not complete. The SmAHTR design is still conceptual, and unlike the ALMR 
PRISM plant designs, detailed component and interface definitions are incomplete. ORNL conducted 
limited design revisions based on plant functional requirements and high-level performance specifications 
such as the amount of steam to be delivered. 

The top-level diagram of the SmAHTR plant model is shown in Fig. 7. The model includes the primary 
heat transport system (PHTS), the intermediate heat exchanger (IHX), and the intermediate heat transport 
system (IHTS). Since the IHTS and the steam generator designs are not available, the IHTS performance 
is calculated using mass flow and enthalpy boundary conditions at the steam generator interface. 

 
Fig. 7. Current top-level integrated end-to-end system model of the small modular advanced high-

temperature reactor plant. 

The SmAHTR employs a direct reactor auxiliary cooling system (DRACS) safety-grade passive heat 
rejection system for dissipation of decay heat during an extended station blackout condition. However, the 
scope of this dynamic simulation project is currently limited to anticipated operational occurrences. 
ORNL created a null subsystem block to allow incorporation of future implementations of the DRACS. 
The key design parameters of the SmAHTR are reported in Ref. 3. The same core, fuel, and 
interconnected coolant system parameters were in this model. The IHX design parameters were modified 
slightly to match the performance specifications such as power output per IHX, coolant flow velocity 
within the channels (shell and tube side), and pressure drops across.  

2.3.2.1 Primary heat transport system 

Two versions of the PHTS model were created to demonstrate the power and modularity of the simulation 
package. Both models consist of a coolant channel coupled to the fuel element; a primary pump; a lower 
plenum; and an upper plenum, where fluid mixing occurs. The single-zone core model includes one 
reactor module, connected to a fuel element and a coolant channel as shown in Fig. 8. This 
implementation is the baseline implementation. 
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Fig. 8. Single-zone model of the reactor, fuel, and the connected coolant system. 

The two-zone core model includes two reactor modules, each connected to their fuel element and coolant 
channel as shown in Fig. 9. This implementation provides a basic capability for simulation of radial 
power profile distributions. Each reactor is furnished with its own reactivity control elements. This 
implementation also provides the capability to demonstrate multivariate control. Currently, the two 
reactors are not neutronically coupled.  

 
Fig. 9. Dual-zone model of the reactor, fuel, and the connected coolant system. 
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2.3.2.2 Intermediate heat exchanger 

The SmAHTR IHX model is nearly identical to the one reported in Ref. 3. Minor modifications were 
made to match the hydraulic characteristic of the design. The Modelica diagram layer of the IHX is 
shown in Fig. 10. 

 
Fig. 10. Modelica diagram layer of the small modular advanced high-temperature reactor intermediate heat 

exchanger model.  

The primary fluid (flibe) flows on the shell side while the secondary fluid (flinak) flows on the tube side. 
Nominal steady state temperature profiles on the shell and tube sides are shown in Fig. 11 
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Fig. 11. Temperature profiles on the shell and tube sides of the small modular advanced high-temperature 

reactor intermediate heat exchanger. 

2.3.3 Intermediate Heat Transport System 

The IHTS couples the IHX and the steam generator (Fig. 12). The length of the piping each way accounts 
for the dynamic time delay between core power generation and steam generator heat rejection. As the 
SmAHTR steam generator design information is limited, the IHTS performance is assured by using 
boundary conditions at the steam generator interface. 
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Fig. 12. Modelica diagram layer of the small modular advanced high-temperature reactor intermediate heat 

transport system. 

2.4 INSTRUMENTATION AND CONTROLS OVERLAYS AND SIMULATION 

The Modelica models are designed for evaluating potential control concepts for small modular reactors 
and advanced reactor concepts under transient operational conditions. To accommodate this within the 
Modelica architectural framework, separate modules for instrumentation and controls (I&C) overlays and 
event drivers have been developed. To date, two control system strategies have been implemented and 
demonstrated. The Modelica structure and flexibility for these two control strategies are displayed in 
Figs. 13–14. The first control strategy is based on controlling to temperature setpoints at key locations in 
the plant model; the second control strategy is based on controlling to temperature difference setpoints at 
key locations in the plant model. These control strategies are implemented through the conceptual 
architecture as displayed in Fig. 13, with the modeling implementation of the architecture as displayed in 
Fig. 14. Both strategies are fully developed and discussed for the ALMR design in Ref. 2 and have been 
implemented on the FHR concept.  

 
Fig. 13. Instrumentation and controls conceptual diagram. 
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Fig. 14. Instrumentation and controls Modelica diagram. 

The baseline FHR model contained PHTS, IHX, IHTS, event driver (ED), and control system 
components. The model was updated to use appropriate molten salt thermophysical properties. The 
SmAHTR conceptual design information is less mature than the PRISM example, which results in less 
system and subsystem design details to develop the model components.  

PHTS and IHTS were updated to add temperature measurements and control to support I&C modeling. 
The PHTS reactivity control rod and primary cooling pump and the IHTS cooling pump were added to 
the control bus for control system access and connectivity. The IHTS cooling pump model has not yet 
been properly developed with a suitable pump curve due to the limited SmAHTR reference information. 

Control strategy #1 for the FHR model is developed as position control loops for the PHTS reactivity 
control rod and the PHTS primary cooling pump speed (Fig. 15). The reactivity control rod controller is a 
proportional-integral control loop that adjusts the reactivity control rod position to maintain the reactor 
outlet temperature to a setpoint of 700°C. The primary cooling pump speed controller is a proportional-
integral control loop that adjusts the pump speed to maintain the PHTS inlet temperature (return from the 
IHX) to a 650°C setpoint. 
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Fig. 15. Control loops for primary heat transport system reactivity control and primary cooling pump. 

2.4.1 Fluoride High-Temperature Reactor Example Transient Simulations 

The response of the FHR system to system disturbances was examined. In Fig. 16, a reactivity 
disturbance step change occurs at 1500 seconds (noted as event #1 on the figure). The reactivity control 
rod control can be observed making a correction to maintain the reactor outlet temperature, and the PHTS 
primary cooling pump control makes a transient correction to reduce the upset to the PHTS inlet 
temperature. The IHTS cooling pump and fluid flow is fixed speed (not a control variable). In Fig. 17, a 
13% increase in flow disturbance in IHTS occurs at 1500 seconds. The PHTS reactivity control and the 
PHTS primary pump control increase the reactivity and the pump speed to maintain the desired 
temperatures. 

2.5 WEB-BASED APPLICATION USE 

The ALMR end-to-end model is complete. The current state of the end-to-end FHR model is described in 
the previous section. As described in Refs. 1–3, the development of high-fidelity models is a deeply 
technical undertaking requiring highly specific skills. However, the use of the resulting models for 
analysis is open to a much broader set of participants. To make these models accessible to others, it is 
important to have one or more avenues through which the models can be “deployed.” This deployment 
should move the models out of the model development tools needed to create them and into forms that are 
intuitive and easy to use. 
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Fig. 16. Reactivity disturbance example simulation. 

 
Fig. 17. Intermediate heat transport system flow disturbance example simulation. 

For this reason, we are working with Modelon and Xogeny to develop web-based engineering analysis 
tools for our models. These tools take the models (compiled into FMUs) and transform them into web-
based applications for each architecture of interest. 

An important feature of this process is that these applications are generated in a virtually automatic way. 
By leveraging information contained in the models themselves, the Xenarius application generator 
(developed by Xogeny) is able to create complete web applications without writing any code. 
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Upon startup, the user is given a choice of different architectures to explore, as shown in the screenshot 
below. 

 
Fig. 18. Web-based application reactor architecture selection. 

From this screen, the user selects the architecture of interest. At present, only two architectures are 
supported. But as this list grows, the search bar shown can help prune the set of architectures. 

Once the architecture has been chosen, the user is presented with configuration options for the various 
subsystems in that architecture (Fig. 19). 

 
Fig. 19. Web-based application subsystem architecture selection shown in a screen capture from a desktop 

browser. 

This screen allows the user to filter specific configuration choices to find a model that fits the system 
configuration he is interested in. The list of system models is filtered based on specific subsystem 
requirements. 

Once a particular configuration is chosen, the user is presented with the key design parameters associated 
with that configuration as indicated by the model developer in the annotated models. These parameters 
can be edited to formulate specific designs. A complete set of design parameters is available to the 
advanced user via the Excel interface. 
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Fig. 20. Web-based application subsystem parameter selection. 

These designs can then be downloaded as Excel spreadsheets and simulated via FMI Add-in Tool for 
Excel from Modelon. The screenshot below shows the page with the Excel sheet download. 

 
Fig. 21. Web-based application Excel download (FMI Add-in). 
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The Excel sheet served by the web app is fully automated to download the FMU with the design, 
simulate, and plot variables annotated by the model developer as key outputs for each subsystem. The 
screenshot below shows the user interface when the Excel sheet is opened. Clicking “Download Remote 
FMU” will download, simulate, and plot with one click. 

 
Fig. 22. Web-based application Excel option (FMI Add-in). 

The automated worksheet also creates an experiment sheet which can be used for additional batch 
simulations via further changes in the design parameters. 

 
Fig. 23. Excel experiment sheet (FMI Add-in). 

The parameters set in the web application are populated in the “Default” column of the experiment sheet 
and are simulated and plotted automatically. A subset of the plot output is shown below. All output 
variables annotated in the model are plotted. The user can run batch experiments in parallel using all the 
cores on the local machine by simply enabling the additional cases and providing the parameter values to 
be simulated. Users can also add additional parameters and outputs to the experiment sheet to allow full 
access to the design for advanced users (i.e., beyond those annotated in the model by the developers). 
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Fig. 24. Automatic Excel plot generation (FMI Add-in). 

Another advantage of the approach of annotating the parameters and outputs in the model is that the Excel 
sheet automation can be used for any model, even without the web application. Any users with access to 
the model source code in GitHub can simply generate an FMU from the annotated models, load the FMU 
into the Excel sheet via the “Load Local FMU” option, and run simulations with all outputs automatically 
plotted. The automatically created experiment sheet can be used for further design studies and to conduct 
batch simulations. 

2.6 FUTURE WEB-BASED APPLICATION DEVELOPMENT 

2.6.1 Online Simulation 

In the near future, we expect this web-based application to also allow completely interactive, web-based 
analysis without the need for external tools. While simulation from the web application in Excel offers the 
most flexibility for more technical users who wish to “crunch the data,” a web-based analysis tool that 
allows designs to be explored completely through the web opens the door to many additional possibilities. 
Users are no longer tied to a specific platform or tools. All they need is a web browser. This allows 
architecture studies to be performed anytime, anywhere and on any device. 

The current application requires the use of Excel to perform a simulation through the web application. 
Although this approach gives great flexibility for simulation in an environment that most engineers are 
quite familiar with, it does require a user to have Excel and access to a license for the FMI Add-in tool. 
The currently anticipated workflow involves the use of a shareable license that will be served via FlexLM 
from the web application server. This licensing mechanism will allow any authorized user to access the 
license and simulate models using his local version of Excel. Additional licenses for the FMI Add-in held 
separately by users would eliminate any potential conflict for multiple users accessing the application 
simultaneously. Additional sharable licenses can also be served from the web server to meet anticipated 
simulation demand. An additional workflow will allow the users to simulate directly on the Xogeny 
platform. This approach would eliminate the need for tool-specific licensing (though some sort of 
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licensing mechanism via the Xogeny platform is anticipated) and would enable simulation directly 
through the browser. To underscore what possibilities exist under this workflow plan, consider the 
configure selection screen from the web-based application. 

Figure 19 is a screen capture of a configuration selection screen from a desktop browser. Figures 25 and 
26 are screenshots of the same configuration selection screen taken from mobile devices (an iPad and an 
iPhone, respectively): 

 
Fig. 25. iPad display for subsystem architecture selection. 
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Fig. 26. iPhone display for subsystem architecture selection. 

Likewise, Figs. 27 and 28, screenshots of the Web-based application subsystem parameter selection on an 
iPad and an iPhone, illustrate that this subsystem is completely usable from a mobile device or from a 
desktop browser (Fig. 20). 

 
Fig. 27. iPad display for subsystem parameter selection. 
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Fig. 28. iPhone display for subsystem parameter selection. 

The key point is that the technologies being used here support what is called “responsive design.” This is 
a term to describe web applications that adjust based on the resolution of the screen used when accessing 
them. 

In other words, the development of this web-based tool has not only successfully created a desktop 
analysis tool that is accessible by anybody on a network, it has also made it possible (without having to 
develop a separate iOS or Android version of the application) for users to perform architecture studies of 
various reactor configurations on any web-enabled device. 

2.6.2 FMI Development 

The current implementation of the web-based application produces an Excel sheet for simulating the 
model after the user configures the model and sets parameters using FMI Add-in for Excel from Modelon. 
The Excel-based simulation approach works in conjunction with the web app to deliver off-line model 
simulation and analysis capability based on the FMI standard. There are some significant advantages to 
FMI-based simulation in Excel, especially for users who need more capability than can be reasonably 
implemented in online simulation focused on a quick start for novice users. These features include the 
following: 

• Experiment sheets to easily set up batch simulations and save/modify parameter settings. 

• Ability to save customized, local sheets with custom parameter settings, post-processing/analysis, etc. 

• Native utilization of all machine local cores for parallel processing. 

• Automation with Visual Basic for Application (VBA) builds on same model annotations for web-
based application to allow automated experiment sheet creation and plotting with automation built 
into sheets that can be distributed to local users (one click to download sheet with FMU and 
automatically run model and plot results, including comparison between batch runs). 

• Ability for advanced users to access additional parameters and outputs that were not accessible via 
web interface (impossible to understand all use cases for all users via pre-compiled web-based 
application). 
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• Automation with VBA to provide additional user-defined front ends, analysis front ends, or even 
parameter setting GUIs in addition to what is provided via the web-based application. 

• Additional analysis capabilities like Monte Carlo and Design of Experiments can be implemented 
directly by users. 

• Native Excel interface for setting parameters, plotting results, and performing analysis on final values 
from simulation along with time histories. 

• Simulation capability for any FMU generated by an FMI-compliant tool, which makes it possible for 
the program to be used as a generic model simulator and deployment platform without requiring a 
web-based application interface (workflow directly from a model development environment to a 
simulator in Excel).  

• FMIE offers a local simulation and deployment platform that does not require online model storage 
since cloud-based options may not always meet security requirements. 

• FMIE also offers a rapid development environment for simulation of models that are in the pre-
deployment phase before web-based application deployment. 

• Extension via VBA scripting using FMIE APIs. 

Flexible licensing with standard FLEXlm technology allows license sharing and distinctions between 
model developers and run-time users for cost-effective deployment based on licenses as opposed to the 
number of simulations. To further enhance ORNL simulator workflows, future development of the ORNL 
infrastructure and FMIE tool will focus on the following: 

• native analysis capability and post-processing for common analyses (Monte Carlo, Design of 
Experiments, Robustness Analysis, Design for Six Sigma); 

• additional options for saving experiment sheet settings for rapid creation of experiment sheets without 
VBA scripting; 

• additional licensing options for situations where license serving via a license server is not deemed 
appropriate due to security and license server integrity requirements; and 

• additional compute options for distribution of simulations to local compute machines from FMIE 
front end. 
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3. MODEL COLLABORATION 

3.1 INTRODUCTION/TASK DESCRIPTION 

The use of the web-based application in concert with a private repository established through GitHub 
allows for the collaborative development and use of advanced reactor models within the DOE ART 
Program. The web-based application and the integrated end-to-end system models developed to date were 
presented in Sect. 2. The intention for collaboration is that multiple collaborators (government, industry, 
academia) will work together to develop component models that are used in the development of end-to-
end systems.  

3.2 COLLABORATION PLATFORM 

The two collaboration platforms are the GitHub repository (for model development and sharing) and the 
ModSIM Web-based application (for analysis and results collaboration and sharing). A brief description 
of the Web-based application platform is provided in Sects. 2.2–2.3. GitHub is described in detail in 
Refs. 2–3. A specific GitHub repository has been established to serve as the development platform for 
models that are incorporated into the ModSim web-based application. 

3.2.1 ORNL-ARM 

ORNL-ARM is a private model repository established for advanced reactor models created by DOE and 
its contractors as well as established collaboration partners. This repository hosts the source code for 
models that will be deployed as FMUs via the web-based application. The current list of potential 
collaboration partners [3] includes the following: 

Collaboration partner Point of contact Initial focus area/notes 
North Carolina State University Nam Dinh Data-driven safety/licensing modeling 

using Modelica 
New Mexico State University El-Genk Space-based liquid sodium reactor 
Massachusetts Institute of Technology  Charles Forsberg FHR modeling 
Georgia Institute of Technology Bojan Petrovic 

Chris Paredis 
Modelica domain expertise  

Ohio State University Xiaodong Sun Advanced modeling and 
instrumentation and control in 
multiphase flows 

 

DOE Partnerships 

Collaboration partner Point of contact Initial focus area/notes 
Idaho National Laboratory Humberto Garcia Hybrid energy systems modeling  
 

Business Partnerships 

Collaboration partner Point of contact Initial focus area/notes 
Modelon, Inc. John Batteh FMI development 
Xogeny, Inc. Michael Tiller Web-based application 
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ORNL and its partners work together in teams using the repository towards the development of advanced 
component models that can be integrated into advanced reactor system models. The objective is to 
establish teams along the lines of the architectural elements for system models described in Sect. 3.3. 
These collaboration teams have not yet been established although folders for these collaborations have 
been established in the ORNL-ARM GitHub repository. 

3.3 COLLABORATION MODELS 

The end-to-end systems for the currently available models follow the architecture displayed in Figs. 1 
and 2, respectively, for the ALMR and FHR designs. Although the details regarding the individual 
components and integration differ, these two designs have similar architectures. The models for these 
architectures are available for collaboration in the GitHub repository. A brief description of the major 
architectural system and component models is included in the subsections below, with source code for 
these models included in the identified folders in the GitHub ORNL-ARM repository. Further detailed 
descriptions for the ALMR and the FHR models as well as the analytical basis for these models can be 
found in Refs. 2 and 3, respectively. Collaboration is permitted on all of these models. 

3.3.1 DRACS/RVACS Models 

The DRACS/RVACS (reactor vessel auxiliary cooling system) models include a heat exchanger and 
piping used for natural convective cooling following shutdown. Their principal function is to transfer 
shutdown heat away from the core. The difference between RVACS and DRACS is that a DRACS heat 
exchanger is submerged directly in the primary coolant, while the RVACS heat exchanger is external to 
the reactor vessel. With DRACS, the heat exchangers that couple the system to core coolant are contained 
within the primary vessel rather than relying on conduction and radiation heat transfer to transport heat 
through the primary system vessel and into the air. The interfacial points for these subsystem models are 
the atmosphere and PHTS. Currently, the FHR model has a null implementation for the DRACS model. 
As the model develops, the source code for the DRACS/RVACS models for the ALMR and FHR designs 
will be included in the GitHub private repository and will be available for modeling collaboration. 

3.3.2 Primary Heat Transport System Models 

The current core model PHTS includes the core and the primary system piping. Their principal functions 
are neutronics control and transferring heat away from the core. The interfacial points for the primary heat 
transfer model are the DRACS/RVACS subsystems and IHX. The source code for all primary system 
models for the ALMR and FHR designs is included in the GitHub private repository; it is available for 
modeling collaboration. 

Reactor core components models 
 
The current core model is a component model within the primary coolant subsystem model. Two core 
models currently exist, one for ALMR and one for an FHR. The source code for these models is included 
in the GitHub private repository; it is available for modeling collaboration. 

3.3.3 Intermediate Heat Transport System Models 

The current core model IHTS provides the interface between primary and intermediate coolants Its 
principal functions are to provide this separation and to optimize heat transfer between these coolants. 
The interfacial points for the intermediate heat transfer model are the steam generator and the IHX 
component models. All source code for the intermediate system models for the ALMR and FHR designs 
is included in the GitHub private repository; it is available for modeling collaboration. 
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3.3.4 Heat Exchanger Components Models 

The current core IHX component model simulates the heat transfer between the primary and intermediate 
coolant systems. Its principal function is to provide this separation; it also optimizes heat transfer between 
these coolants. The interfacial points for the IHX are the steam generator and the IHX component models. 
The source code for all intermediate system models for the ALMR and FHR designs are included in the 
GitHub private repository and are available for modeling collaboration. 

3.3.5 Steam Generator Component Models 

The current core steam generator component model transfers heat from the intermediate heat transfer loop 
to water for the generation of steam. Its principal function is to provide this steam generation for the 
production of electrical power. The interfacial points for the steam generator are the ITHS and the power 
conversion system models. The source code for all steam generator models for the ALMR and FHR 
designs is included in the GitHub private repository; it is available for modeling collaboration. 

3.3.6 Power Conversion System Models 

The current core power conversion system model includes all remaining balance of plant components, 
including the turbines necessary to generate the power to the grid. Two power conversion system models 
currently exist, one for the ALMR and one for an FHR. All source code for these models is included in 
the GitHub private repository; it is available for collaboration. 

Feedwater heater component models 

The current core feedwater heater component model is a subsystem of the power conversion system 
model. A feedwater heater is used to preheat water delivered to steam generators. This preheating serves 
to reduce the irreversibilities and improve the thermodynamic efficiency of the system while helping to 
avoid thermal shock to the steam generator when the feedwater is introduced back into the steam cycle. A 
feedwater heater allows the feedwater to be brought up to the saturation temperature very gradually. The 
heat used to preheat the water is usually derived from steam extracted between the stages of the steam 
turbine. The percentage of the total cycle steam mass flow used for the feedwater heater is carefully 
determined to optimize maximum power plant thermal efficiency. Two feedwater heater models have 
been developed, representing an open and closed feedwater heater, respectively. The source codes for 
these models are included in the GitHub private repository; they are available for collaboration. 

3.3.7 Grid Models 

The grid is the end state system model. It provides the interface between power generation and supply 
distribution outside of the plant and the plant’s power production. In the ALMR and FHR models, the 
electrical generator is modeled the same way as an ideal synchronous generator where the frequency in 
the electrical connector is the electromotive force of the generator. The frequency of generated electrical 
current is defaulted to 60 Hz, which can also be adjusted by the user. In practice, the generator frequency 
must match the grid frequency; otherwise, it can cause a generator trip and disconnection from the grid, 
which will, in turn, initiate a turbine trip. The source codes for the grid models for the ALMR and FHR 
designs are included in the GitHub private repository; they are available for modeling collaboration. 
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3.3.8 Instrument and Controls and Event Driver Models 

Individual control system models are populated with distinct control features to provide desired control 
actions. Two control strategies have been implemented for the ALMR and FHR system models. In 
Control Strategy #1, PHTS is configured to operate in a load-following scheme with two single-input–
single-output (SISO) control loops. As the power generation load changes, the power conversion system 
adjusts the consumption of steam, which changes the energy flow to the PHTS system. The first PHTS 
control loop of Control Strategy #1 controls the primary cooling pump speed to maintain a desired 
temperature setpoint on the PHTS heat exchanger output. The second PHTS control loop of Control 
Strategy #1 adjusts the reactor control rod position to control reactivity in order to maintain a desired 
reactor output temperature setpoint. Classical proportional plus integral control methods are used for both 
control loops.  

The IHTS control system model uses a similar approach to the first PHTS control loop. In the case of the 
IHTS model, the SISO control loop adjusts the intermediate cooling pump speed to maintain the desired 
IHTS steam generator input temperature. The steam generator will react to load changes, which results in 
changes in the IHTS steam generator inlet temperature. 

The source codes for the I&C models for the ALMR and FHR designs are included in the GitHub private 
repository; they are available for modeling collaboration. 

The introduction of transients into the model simulation can be accommodated through an architectural 
element known as the “Event Driver.” Details of the ED module (Fig. 29) mirror the overall architecture 
(as events can occur in any subsystem); the ED module is included in the overall plant model architecture 
in a similar fashion to the I&C Control modules as seen in Fig. 1. This element interacts with the rest of 
the end-to-end plant model through the Control Bus. This allows the systematic introduction of initiating 
events into a simulation. 

 
Fig. 29. Event driver module. 

3.4 COLLABORATION WORKFLOW 

GitHub facilitates collaboration between ORNL and partners by providing access to the model source 
code for ongoing development. Access to the GitHub repository is controlled by ORNL with 
authentication. The typical collaboration workflow would focus on the implementation and verification of 
component or system models by ORNL collaborators. To support model verification, the GitHub 
repository can also contain a number of component and subsystem software test modules with defined 
inputs to assist in development and verification by ORNL collaborators. Verified component or system 
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models can then be integrated into larger systems with higher confidence. System models can then be 
deployed by ORNL via the web-based application and for offline simulators with FMI Add-in for Excel. 

The overall collaboration workflow is as follows: 

• ORNL collaborators request and attain access to the GitHub repository. With a shared repository 
model, a typical approach would involve working on a branch to isolate changes from the main line 
of development. 

• Collaborators work locally to develop and verify new models. 

• Changes can be committed and pushed to the branch. 

• When the collaborator feels that models are ready to be integrated, a pull request is submitted to the 
ORNL maintainers to notify of work for review. 

• Following a review of the work, ORNL maintainers can merge the branch into the main line of 
development to integrate the new features. 

Software test modules can be supplied as part of the ORNL model repository. While these test rigs are 
under development, an example workflow is illustrated below for the development of a simplified 
electrical system. 

3.4.1 Example Subsystem Model Test Rig (Electrical) 

This section describes a sample workflow for the development of a simplified electrical system 
component for the PRISM system model architecture. For this use case, the collaborator will develop a 
new single shaft generator model with a clutch based on the existing implementation PRISM_G1. 

A Development package is available in the ORNL repository, with subpackages as shown below. New 
components are placed in the Components package. TestRigs contains available test modules for testing 
component and system models. The Tests folder contains executable tests for new components or 
subsystems. 

 
Fig. 30. Example test rig development package. 

A component test module exists for the simplified generator model, as represented in Fig. 30. The test 
software includes a replaceable model for the component to be tested and the appropriate boundary 
condition specifications. 
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Fig. 31. Electrical component generator model test rig. 

The first step in the workflow is to develop a new component model. The model must satisfy the interface 
requirements between the component and the test software. Component development can extend the 
interface (i.e., Interfaces.SingleShaftGenerator) or duplicate an existing implementation. In this example 
case, the existing implementation was duplicated, as shown in Fig. 31, and the new model was added to 
the Components package. 

 
Fig. 32. Dymola dialogue for duplicating model. 

The next step is to implement the new model. In this case, the implementation consists of adding a clutch 
to the model. A new signal is required from the control bus to support this new implementation (and thus 
would also need to be provided by the control system in the full system model). 
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Fig. 33. Dymola implementation of new model with clutch. 

After component model implementation is complete, testing can begin. To create a test model, the 
collaborator extends from the appropriate test rig, as shown in Fig. 33. 

 
Fig. 34. Dymola dialogue for extending model class. 

The new component model should be inserted into the test model by right-clicking on the component, 
choosing “Change Class,” and then “All Matching Choices,” as shown in Fig. 34. The newly 
implemented component is an available selection with the description “An implementation for PRISM 
electrical generator and grid with a clutch.” 
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Fig. 35. Dymola model inserted into test rig. 

Any new signals required from the control bus must be added to the test model as shown in Fig. 35 for the 
EG_clutch_command signal. The test model is now complete and ready for testing. Boundary conditions 
for testing must be provided, and the model can be verified under as many different operating conditions 
as needed to ensure the robustness and quality of the new component implementation. ORNL developers 
may also provide specific test conditions that must be simulated and certain behavioral characteristics to 
be noted in the response to help collaborators with the verification task. 

 
Fig. 36. Signal addition to model test rig. 

Once the behavior of the component has been verified, the model can be committed and pushed to the 
repository, typically on a branch, with a pnuull request sent to an ORNL maintainer to start the discussion 
for a merge of the new model. After the model is merged into the repository (typically by the ORNL 
developers), the model can be used in full system models and potentially deployed as a new subsystem 
option in the web-based application. 
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APPENDIX A. CREATING/UPDATING WEB-BASED APPLICATION  

As noted in Sect. 2.2.4, updating the web-based application is necessary as additional FMUs become 
available. In the beta version, updating the web-based application has been simplified to only a few steps. 
These are described in additional detail below. 

INITIALIZATION/UPDATED WEB-BASED APPLICATION  

This project was created using the simple command: 

$ xengen init. 

This created the suite.xen file and the appdata directory. The suite.xen file was then updated 
from the default: 

suite SampleApplication "SampleApplication Application Suite" {} 

...to... 

suite ORNL "Oak Ridge Web Application Suite" {} 

This created the application suite. Then we needed to create a specific application. This was done by 
running the command: 

$ xengen newapp --name Fixed --type fmu 

...inside the SampleApplication folder. This creates a directory named Fixed and a file inside that 
directory named app.xen. The initial contents of Fixed/app.xen were: 

fmu Fixed "Application Description" { 
  description="Put extended description here" "Extended application 
description";   
  image="images/placeholder.gif";   
  labels={} "Maps fmu signal -> nicer name";   
  groupByDescription "Use variable description to establish groups";   
} 

Customizing this results in the following: 

fmu Fixed "A Sample Application" { 
  description="A sample application created by @jbatteh";   
  image="images/placeholder.gif";   
  labels={} "Maps fmu signal -> nicer name";   
  groupBySubsystem; 
} 

At this point, the user can actually preview our application with the command: 

$ xengen serve -w 
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This command instructs xengen to start a server on the local machine to host a web-based application 
locally. The -w option instructs xengen to monitor the application source for changes and regenerate the 
application whenever a change is detected. 

At this point, the user can point the browser to http://localhost:8080 and see the web-based 
application. 

ADDING FMUs 

Models are added by copying the FMUs into the Fixed/FMUs directory. 

Now when the application is served again with: 

xengen serve -w 

The application can be seen and selected from the available FMUs. The data associated with those FMUs 
can also be viewed. 

COLLABORATION WORKFLOW DETAILS 

Collaboration includes the development of modules that can be included in the library of choices for the 
various reactor system architectures. Before these models can be utilized in end-to-end systems and made 
available in the web-based application, the modules must be annotated as described in Sect. 2.2.3. The 
following list and figures detail an overview of the new process for model annotation to support web app 
creation via FMUs using the simple reactor demo. 

• XenGen package provides records for annotating models. 

• SimpleReactor demo illustrates usage and resulting FMUs have been used to support web app 
creation. 
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Fig. A.1. Reactor architecture demo. 

 
Fig. A.2. Model annotation with Xengen package. 
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Fig. A.3. System definition steps. 

 

 
Fig. A.4. Subsystem definition steps. 
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Fig. A.5. Annotation heirarchy. 

 

 
Fig. A.6. Annotation syntax. 
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• Next steps 
 ORNL commits Modelica source code to GitHub. 

 Modelon annotates existing models based on the older YAML file technique and for any new 
models to be included in web-based application. 

Modelon creates FMUs for web-based applications building by Xo. 
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