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ABSTRACT 

Heat pump water heaters (HPWHs) are a promising technology that can decrease domestic hot water 

energy consumption by more than 50% compared with electric resistance storage water heaters. Hybrid 

HPWHs are really two water heaters in one; they can heat water by using a heat pump or by using electric 

resistance elements. During large water draw events the HPWHs will use the resistance elements that 

decrease the overall efficiency of the units. The Oak Ridge National Laboratory team proposed and tested 

an advanced control algorithm that anticipates the large water draw events and appropriately raises the 

temperature of the tank water using only the heat pump. With sufficient energy stored in the tank at the 

elevated temperature, electric resistance use is avoided for large water draws. Simulations using a 

validated HPWH model and measured water draw data from 25 homes, show average yearly energy 

savings of 9% for the advanced control algorithm. If the advanced control algorithm perfectly predicts the 

large water draw events, the savings increase to 19%. This discrepancy could be due to a lack of 

predictability of water draw patterns in some homes or a needed improvement in the water draw 

forecasting algorithm. 

1. INTRODUCTION 

Water heating is the second largest energy consuming end use in the residential buildings sector after 

space conditioning (BTP 2012). Heat pump water heaters (HPWHs) are a promising technology with 

energy savings of more than 50% compared with electric resistance storage water heaters (Hudon 2012). 

The hybrid HPWH heats water using two different methods. When hot water demand is low a heat pump 

is used, which moves heat from the air around the unit to the water in the tank. During high water demand 

events the HPWH behaves like an electric resistance storage unit, which uses electric elements to quickly 

bring the water back to the set-point temperature because the heat pump is relatively slow in heating 

water. 

A team from Oak Ridge National Laboratory (ORNL) investigated whether the efficiency of the HPWH 

could be improved by avoiding the use of electric resistance elements, which are not as efficient as the 

heat pump alone. This approach requires an advanced control algorithm—one that would predict large 

water draw events and raise the temperature of the tank appropriately, using only the heat pump, in 

anticipation of the large water draw. In this scenario, the energy used by the heat pump to increase the 

tank water temperature is less than if the tank had to recover using electric resistance heating. 

To investigate this advanced control algorithm ORNL created an HPWH computer model in MATLAB. 

With time series inputs of incoming cold water temperature, outgoing hot water temperature, ambient 

temperature, and water draw volume, the model yields the power draw of the water heater on a 1 min 

basis. This model was validated using real data from the Campbell Creek Research Homes (Christian 

2010). After the model was validated it was used to test the advanced control algorithm. 

The advanced control algorithm has two parts. The first part is a forecasting algorithm that predicts the 

flow pattern for the upcoming day based on a historical window of water draw data. The second part of 

the algorithm is a tank temperature set-point algorithm that computes the appropriate temperature 

set-point schedule for the upcoming day on an hourly basis so that no electric resistance will be used. 

In this report, the HPWH model is described and the model validation is presented. The forecasting 

algorithm and temperature set-point algorithm are also presented in detail. Finally, energy savings results 

are presented for simulations of 25 homes using the advanced control algorithm. 
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2. METHODS  

2.1 HEAT PUMP WATER HEATER MODEL 

2.1.1 Model Description 

To test the advanced control algorithm a simple one dimensional HPWH model was built in MATLAB. 

This model simulates energy consumption of the unit based on water draw, ambient air temperature, 

incoming water temperature, and temperature set point. The model uses the manufacturer’s logic to 

determine when the heat pump or electric resistance heat is used. This model is used to find the baseline 

energy consumption and the advanced control energy consumption. These energies are compared to 

determine the possible savings of the advanced control algorithm. The specific unit that was modeled for 

this research has the condenser from the heat pump wrapped around the bottom half of the water tank and 

two electric elements, one at the top of the tank and the other at the bottom. Hot water is drawn from the 

top of the tank, and cold water is added at the bottom of the tank. 

The model that was created splits the water tank into six equal volumes and calculates the uniform change 

in temperature of each volume node every minute. The change in temperature is calculated based on heat 

added to the tank from the heat pump or a resistance element, heat lost to the ambient environment 

through the tank walls, and water draws. In general, the temperature change per time step of a node (N) is 

given by the following equation. Note that there is no conductive heat transfer between nodes in the 

equation. Also note that for each node there is no radial temperature change; each node is considered to 

have a homogeneous temperature.  

∆𝑇(𝑁)

∆𝑡
=  

𝐸𝐻𝑃,𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∗ 𝐶(𝑁) − 𝑈𝐴(𝑁) ∗ (𝑇𝑤(𝑁) − 𝑇𝑎𝑚𝑏) − �̇� ∗ 𝑐𝑝 ∗  (𝑇𝑤(𝑁) − 𝑇𝑤(𝑁 + 1))

𝑐𝑝 ∗ 𝑚(𝑁)
 

Where 

𝐸𝐻𝑃,𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = Energy added to tank by the heat pump or elements [Btu], 

𝐶(𝑁)  = fraction of energy added to node (see below), 

𝑈𝐴(𝑁)  = standby heat loss coefficient of node N [Btu/min °F], 

𝑇𝑤(𝑁)  = Water temperature of node N [°F], 

𝑇𝑎𝑚𝑏  = ambient temperature [°F], 

�̇�  = mass flow rate [lb/min], 

𝑐𝑝 = Specific heat of water [Btu/lb °F], 

𝑇𝑤(𝑁 + 1)  = Water temperature of node N+1 [°F],  

𝑚(𝑁)  = mass of water in node N [lb]. 

The energy added to the tank by the heat pump or elements, 𝐸𝐻𝑃 , is calculated using an empirically 

derived formula and is a function of ambient temperature and average tank temperature. When the heat 

pump is on, the following equation is used to determine how much of the energy is added to each node. 

This equation is adapted from a presentation, “Heat Pump Water Heater—Quick Simulation Approach,” 

by Larson and Logsdon (Larson 2013).  When the electric elements turn on the energy is split equally 

among the top five or bottom five nodes for the upper and lower elements respectively. 

𝐶(𝑁) =  
1

1 + 𝑒
𝑇𝑤(𝑁)−𝑇𝑤(6)

3.7
−5

(𝑇𝑠𝑒𝑡 − 𝑇𝑤(𝑁)) 
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The model controls the elements and heat pump based on an average of the top two node temperatures 

plus a small fraction of cold makeup water temperature (if a water draw is occurring during the time step) 

to account for flow through the anti-siphon hole in the cold water dip tube, which most closely matches 

how the actual unit is controlled. After this temperature is compared to the set-point temperature the 

model uses the same logic as the real unit to determine whether there is a demand for heating and which 

heating apparatus to use. 

2.1.2 Heat Pump Water Heater Model Validation 

The model described above was validated by using 1 min resolution hot water flow and cold water 

temperature and ambient air temperature data from a real house with a General Electric GeoSpring 

Hybrid Water Heater (Boudreaux 2012). The model output was then compared to the measured energy 

consumption and node temperatures. This was done for a data set of 27 consecutive days. Figure 1 shows 

the results for daily energy consumption and for minute energy consumption. The coefficient of variation 

of the root mean square error (CV-RMSE) for the daily data is ±7%, and the normal mean bias error 

(NMBE) is +2%. These metrics give a good indication of the prediction uncertainty of the model. Better 

prediction uncertainty is indicated by lower values. These prediction metrics are better than the hourly 

and monthly standards set forth in ASHRAE Guideline 14, which are ±30% and ±15%, respectively, for 

the CV-RMSE and ±10% and ±5% for the NMBE (ASHRAE 2002). The total modeled energy 

consumption for these 27 days was only 1.5% less than the measured data. Notice in the minute data that 

there were two instances that the model did not turn on the electric resistance heat, which explains why 

the model underpredicted the energy consumption. The measured water flow and tank temperature do not 

warrant the electric resistance heat according to the control logic from the manufacturer for these two 

instances, so it is unclear why this occurred. However, this may be due to some slight discrepancies 

between the unit’s temperature sensor and the temperature sensor added for data collection. 
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Fig. 1. Comparison of measured and modeled daily and minute water heater 

energy consumption for 27 consecutive days. As can be seen in the upper plot, the daily 

hot water use of the occupants of this home is not consistent. 

Figures 2 and 3 each show a day of interest within the 27-day data set. Figure 2 shows a comparison of 

energy and top and bottom node temperature between the model and measured data for December 12, 

2013. For this day the electric resistance heat was used. The daily modeled energy consumption was 3% 

less than the measured daily HPWH energy use. 

Figure 3 shows a comparison of energy and top and bottom node temperature between the model and 

measured data for December 22, 2013. For this day the heat pump was used exclusively. The daily 

modeled energy consumption was 3.2% more than the measured daily HPWH energy use. 
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Fig. 2. Modeled data compared to measured water heater data for day with electric resistance energy use. 
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Fig. 3. Modeled data compared to measured water heater data for day with only heat pump energy use. 

2.2 ADVANCED CONTROL ALGORITHM 

To avoid using electric resistance energy requires two steps. The first step is to predict the hot water use 

pattern for a period of time in the future. To achieve this, a forecasting algorithm was developed. The 

second step is to adjust the temperature set point based on the forecasted hot water draws so that no 

electric resistance heat will be used. To achieve this step a temperature set-point algorithm was 

developed. Both algorithms will be described below. 

2.2.1 Forecasting Algorithm 

To predict future water draws a computer program developed at ORNL called the General Systems 

Problem Solver (GSPS) was used; this software realizes the modeling algorithms described by Klir and 

Elias (2003). For this project the program was set up to choose the most likely value of water draw 

volume for a given time and day (weekend or weekday) based on a set of historical data. Following is an 

example of how the GSPS forecasts demand for hot water. 

The GSPS first needs a historical window of data, an example of which is shown in Fig. 4. Typically a 

historical window of 3–9 weeks is needed to predict what will happen the next day. As seen in Fig. 4, 

water draw volume is connected to metadata such as month, day, day of week, season, and time of day.  
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Fig. 4. Example of dependent flow data with independent metadata such as month, day, 

day of week, season, and time of day. 

The historical data are entered into the GSPS and organized based on metadata that are most correlated to 

the variable of interest. For this example the water draw volume is the variable of interest and is 

organized as a function of day of week and time of day (in 15 min intervals). The program determines the 

number of occurrences and the probability that each water draw volume happens throughout the historical 

window based on the day of week and time of day as shown in the left-most chart in Fig. 5. Then a filter 

is set to ignore water draw volumes that are below a certain number of occurrences or probability. In this 

example, anything that happened only once was ignored, and the resulting water draws are shown in the 

middle table of Fig. 5. Finally, for a given day-of-week–time combination, the largest volume draw is 

chosen, which is shown in the right-most table in Fig. 5. So the algorithm predicts that on Friday at 

5:15 a.m. a draw of 9.5 gal will occur. 

Flow data from a real home were used to do a sensitivity analysis on the flow metadata. It was found that 

time of day (hourly) and a weekday/weekend Boolean variable were best for predicting water flow. Also, 

flow data were rounded to the nearest 5 gal increment before being input into the GSPS program to help 

clustering of the data into occurrence/probability bins. A historical window of 42 days was used to predict 

the water volume draws each hour for the upcoming day. 

Flow data from this real house were used as described above and analyzed for how well they predicted 

hours when flow was 20 gal or more. Figure 6 shows actual draws (rounded to the nearest 5 gal 

increment) when hourly volume is 20 gal or more. These are the flow events of interest as it is during 

these large flow events that resistance heat use is most likely to occur. Notice that the forecasting 

algorithm misses many of these events and predicts 0 gal for most of them. A few events are predicted 

correctly, and most that are predicted are lower than the actual flows. The CV-RMSE of ±86% (NMBE of 

−73%) was computed for how well the algorithm predicted large flow events (20 gal or more) for this 

home for a period of 311 days. This poor prediction accuracy is not indicative of all homes, as will be 

seen later, and is a function of how regular a household’s hot water use is.  
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Fig. 5. Example of General Systems Problem Solver data flow. 

 

Fig. 6. Actual and predicted hourly flow when 20 gal or more. Plot does not show 

prediction comparisons when the actual flow was below 20 gal. 
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2.2.2 Temperature Set-Point Algorithm 

The second part of the advanced control algorithm is a set of formulas to decide by how many degrees 

and for how long the temperature set point (𝑇𝑠𝑒𝑡) should be adjusted to avoid using electric resistance 

energy. Because large water draws are what typically trigger the use of resistance heat, only draws of 

20 gal or more will be targeted by this algorithm. If the predicted water draw for an hour is less than 

20 gal, then no action is taken and 𝑇𝑠𝑒𝑡 remains at 120°F. For each hour in the prediction for the 

upcoming day that the water draw volume is 20 gal or more, the following happens. 

First, the new 𝑇𝑠𝑒𝑡 is computed by setting the energy in the volume of water drawn from the tank above 

the 20 gal threshold to the energy added to the tank if the set point is raised to a temperature higher than 

𝑇𝑠𝑒𝑡 called 𝑇𝑠𝑒𝑡,𝑛𝑒𝑤. This is represented by the following formula, where ∆𝑉equals the water flow volume 

minus 20 gal. Again, this formula is only used when the water draw for an hour is above 20 gal so that a 

higher temperature set point can be computed; otherwise the temperature set point remains at 120°F. 

∆𝑉 ∗ 8.34 ∗ (𝑇𝑠𝑒𝑡 − 𝑇𝑐𝑜𝑙𝑑) = 𝑉𝑡𝑎𝑛𝑘 ∗ 8.34 ∗ (𝑇𝑠𝑒𝑡,𝑛𝑒𝑤 − 𝑇𝑠𝑒𝑡) 

If 𝑇𝑠𝑒𝑡 is equal to 120°F, then solving the above equation for 𝑇𝑠𝑒𝑡,𝑛𝑒𝑤 yields the equation below.  Due to 

the model of water heater under test, 𝑇𝑠𝑒𝑡,𝑛𝑒𝑤 has a maximum value of 170°F. 

𝑇𝑠𝑒𝑡,𝑛𝑒𝑤 =  
∆𝑉 (120 −  𝑇𝑐𝑜𝑙𝑑)

𝑉𝑡𝑎𝑛𝑘
+ 120 

Because the heat pump is used to raise the tank to the new set-point temperature with an estimated heat 

rate of 4,000 Btu/h, the number of hours that the heat pump needs to turn on before the large flow event 

occurs can be calculated as shown in the equation below. When the tank temperature is raised above 

120°F, the unit is switched from hybrid mode (where it can use the heat pump or the electric resistance 

elements) to heat pump only mode. Figure 7 shows the flow diagram for the temperature set-point 

algorithm. 

∆𝑡 (ℎ𝑟) =  
𝑉𝑡𝑎𝑛𝑘 ∗ 8.34 ∗ (𝑇𝑠𝑒𝑡,𝑛𝑒𝑤 − 𝑇𝑠𝑒𝑡)

4,000
 

 

 

Fig. 7. Logic flow diagram to determine Tset,new. 
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For each hour’s flow, 𝑇𝑠𝑒𝑡,𝑛𝑒𝑤 (rounded to the nearest 5°F) and ∆𝑡 (rounded to the nearest hour) are 

computed. From these results a 24 by 24 matrix is created with an individual temperature schedule for 

each hour, assuming that is the only hour with flow during the day. Figure 8 shows an example of this. To 

combine the individual schedules (columns), the maximum temperature set point for each hour (rows) is 

chosen, resulting in a final hourly temperature set-point array for the upcoming day based on the 

forecasted hourly flows. Figure 8 shows the forecasted hourly flows and the resulting 24 by 24 matrix 

with the final temperature set-point schedule. For the sake of brevity, most of the hours with no 

temperature “set-ups” are hidden in Fig. 8. Also notice that the schedule increases the water temperature 

up to 170°F. This is a feature of the units available to ORNL to test. A mixing valve was installed after 

the HPWH to temper the hot water down to 120°F. 

 

Fig. 8. Illustration of how the final temperature set-point schedule is computed. For the sake of brevity 

most of the hours with no temperature set-ups are hidden. 

3. RESULTS 

3.1 INITIAL TESTING OF ADVANCED CONTROL ALGORITHM USING COMPUTER 

SIMULATIONS 

The forecasting and temperature set-point algorithm were both combined with the HPWH model 

presented above so that computer simulations could be done to determine the potential energy savings of 

the advanced control strategy.  

Hour of 

Day

Forecated 

Flow Tset,new Δt Hour 1 Hour 8 Hour 15 Hour 16 Hour 19 Hour 20

Final 

Temperature 

Set-point 

Schedule

1 0 120 0 120 120 120 120 120 120 120

2 0 120 0 120 120 120 120 120 120 120

3 0 120 0 120 120 120 120 120 120 120

4 0 120 0 120 120 120 120 120 120 120

5 0 120 0 120 150 120 120 120 120 150

6 10 120 0 120 150 120 120 120 120 150

7 0 120 0 120 150 120 120 120 120 150

8 25 150 4 120 150 120 120 120 120 150

9 10 120 0 120 120 120 120 120 120 120

10 0 120 0 120 120 120 120 120 120 120

11 5 120 0 120 120 120 170 120 120 170

12 5 120 0 120 120 120 170 120 120 170

13 10 120 0 120 120 145 170 120 120 170

14 0 120 0 120 120 145 170 120 120 170

15 20 145 3 120 120 145 170 120 120 170

16 40 170 6 120 120 120 170 120 120 170

17 15 120 0 120 120 120 120 145 120 145

18 0 120 0 120 120 120 120 145 120 145

19 20 145 3 120 120 120 120 145 120 145

20 15 120 0 120 120 120 120 120 120 120

21 0 120 0 120 120 120 120 120 120 120

22 10 120 0 120 120 120 120 120 120 120

23 0 120 0 120 120 120 120 120 120 120

24 0 120 0 120 120 120 120 120 120 120
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Initial testing of the simulation was done on the same flow data shown in Fig. 6. The simulation was run 

three times, once without the advanced control algorithm to get a baseline energy consumption, once with 

the advanced control algorithm turned on, and once with perfect knowledge of the flow events. This 

perfect forecast was used to determine the best case scenario: if the forecasting algorithm predicted all 

large flow events then how much energy could be saved? Analysis of the data included computing 

different metrics such as energy consumption, electric resistance energy use, and hot water quality. The 

hot water quality is the number of hours that the hot water temperature is below 115°F. Table 1 shows 

these results as well as the forecasting CV-RMSE. This is computed by comparing the perfect knowledge 

flow events of 20 gal and above to the predicted flow events for those hours. Notice that hardly any 

energy was saved for the test house with the forecasting algorithm, which is due to the poor prediction 

accuracy. The algorithm only predicted three large water draw events (out of 88) correctly. However if 

the forecasting algorithm had predicted all the large draws, then an energy savings greater than 14% 

would have been achieved. This shows that the temperature set-point algorithm is working well and that a 

possible weak point in the advanced control algorithm is the forecasting routine. The weak point however 

could be due to a lack of predictability in the large water draw patterns of the home instead of an issue 

with the forecasting algorithm itself.  

Table 1. Results from initial testing of advanced control algorithm on one home 

 Baseline 
Advanced 

Control 
Perfect 

Forecast 

Savings 
Perfect Savings 

Total Energy (kWh) 518.3 517.3 442.9 0.2% 14.5% 

Electric Res. Energy 

(kWh) 
157.9 126.7 8.4 19.8% 94.7% 

Hours under 115°F 560.8 709.9 436.2 −26.6% 22.2% 

Forecast CV-RMSE 

(NMBE) 
±86% (−73%)     

 

According to the results shown in Fig. 6, there were a few times where the prediction algorithm correctly 

predicted a large flow event. One of those instances was on May 10th. Figure 9 shows the results of the 

baseline simulation on May 10th for the test home. Notice that the large 30 gal flow event (over 1 hour) 

caused the electric resistance heat to come on. The energy consumption for this day was 3.7 kWh. 

Figure 10 shows the same day with the advanced control algorithm implemented. Notice that there is no 

electric resistance energy consumption and the temperature set-point algorithm raised the set point to 

140°F from 3:00 p.m. to 6:00 p.m. With the advanced control algorithm the daily energy use was 

1.6 kWh—more than a 50% energy savings over the baseline. This savings is due to the 3-hour 

temperature set-point set-up as well as the carryover afforded from a temperature set-point set-up the 

previous day. While this is substantial, the advanced control algorithm predicted many high volume flow 

events that didn’t actually occur. On these days the advanced control algorithm caused higher energy 

consumption over the baseline. This is why, for this home; the energy savings were not significant. 

However, as shown in the analysis to follow, the energy savings are specific to the hot water consumption 

patterns of each home. We expect, and verify in the following section, that the savings are greater for 

most homes. 
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Fig. 9. Baseline simulation results for one home on May 10th. 

 

Fig. 10. Advanced control algorithm simulation results for one home on May 10th. 
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3.2 ANALYSIS OF 25 HOMES FOR HPWH SAVING USING THE ORNL ADVANCED 

CONTROL ALGORITHM 

To get a better idea of how well the advanced control algorithm performs, a set of 25 homes was tested. 

These homes had 1 min data for hot water flow, ambient temperature, and incoming cold water 

temperature for at least 1 year. Just as with the test home described previously, each home was put 

through the simulation three times, for a baseline, advanced control algorithm, and perfect prediction 

result. Because the methods and conditions differ, the reported baseline results are not comparable to 

rated product performance and should only be used to estimate performance under the modeled condition. 

Figure 11 shows the average energy consumption for the baseline, advanced control, and perfect 

prediction cases. Notice that the advanced control yields savings on average but does not meet the perfect 

prediction case. The energy savings of the advanced control and perfect prediction cases are shown in 

Table 2. Home specific results similar to Table 1 are presented in Appendix A. 

 

Fig. 11. Average energy consumption of the baseline, advanced control, 

and perfect prediction cases for a set of 25 homes. 

Table 2. Statistics of 25-home study 

 
Advanced Control 

Savings 

Perfect Prediction 

Savings 
CV-RMSE of Forecast 

Average 8.9% 18.5% ±67.1% 

Standard Deviation 7.4% 8.2% ±11.8% 

Minimum -0.8% 3.9% ±52.2% 

Maximum 24.4% 39.5% ±91.7% 

 

Figure 12 shows histograms of energy savings for both the advanced control algorithm and the perfect 

prediction cases and a histogram of electric resistance energy savings for the advanced control algorithm. 

The majority of the savings for the perfect prediction are between 20% and 25%. The two largest bins for 

the forecasting algorithm case are split on either side of the average savings bin at 0–5% and 10%–15%. 

The average energy savings for resistance heat was 50% for the advanced algorithm, with the largest bin 

of savings being 60%–70%.  
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Fig. 12. Histogram of advanced control algorithm (forecasted) energy savings results compared to perfect 

prediction energy savings results. Also shown is the electric resistance energy savings for the advanced control 

algorithm. 

The correlation of energy savings to forecasting uncertainty (CV-RMSE) and baseline electric resistance 

heat are shown and discussed below.  

Figure 13 shows the energy savings plotted against CV-RMSE. Although no definite trend is seen in this 

data, there is a definite CV-RMSE above which no significant savings are realized. Figure 12 shows that 

this is around 75%, where below the forecasting uncertainty of 75% the savings are typically higher than 

if the forecasting uncertainty is above 75%. This shows that greater savings are likely when the large 

water flow events are more predictable. It also shows that the predictability of large water flow events 

varies widely by household. 

Figure 14 shows the correlation between baseline electric resistance heater use and advanced control 

algorithm energy savings. These variables correlate much better than CV-RMSE and energy savings. 

Electric resistance heat use is a good indication of large water draws, and so the higher the electric 

resistance heat use, the more potential for savings using the advanced control algorithm. Given that 

reducing the use of electric resistance water heating is a primary goal of the advanced control algorithm it 

was expected that the savings would be correlated to resistance heater use. 



 

15 

 

Fig. 13. Advanced control algorithm energy savings plotted as a function of the 

coefficient of variation of the root mean square error (CV-RMSE) of forecasted water 

draw volume. 

 

 

Fig. 14. Advanced control algorithm savings plotted as a function of baseline yearly 

electric resistance energy consumption. 
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It was expected that the advanced control algorithm would increase the hot water quality (i.e., decrease 

the time that hot water in the tank was below 115°F) because during high water draw events the tank 

water would be warmer when the advanced control algorithm was in effect. It turns out that these results 

vary widely by home. Sometimes the advanced control algorithm yields higher water quality and 

sometimes lower, such that on average there is no statistical difference in water quality between the 

baseline and set-up schedules. 

4. CONCLUSION 

A team of ORNL researchers investigated the use of an advanced control algorithm to minimize electric 

resistance heater use in HPWHs to increase the energy efficiency of the units. The advanced control 

algorithm predicts water consumption for the upcoming day on an hourly basis based on historical data. 

For hours that have water draws that total 20 gal or more, the algorithm sets the temperature set point of 

the tank up a calculated number of hours before the anticipated large water draw to store enough thermal 

energy in the tank that electric resistance heat is not needed. 

The advanced control algorithm was tested with a validated HPWH model. Simulations of 25 homes 

showed that the advanced control algorithm saved an average of about 9% over the baseline case, where 

the unit was kept at a flat 120°F set point. Water heating energy for these homes was also simulated with 

the advanced control algorithm, assuming that the water draw forecasting algorithm perfectly predicted 

future draws that were 20 gal or more. In this case the average savings was 19%. This would be the best 

case scenario and could mean that improvements could be made to the forecasting algorithm or that some 

homeowners don’t have a predictable enough draw pattern for this technique to offer any energy savings 

benefit. 

More research can be done to improve the forecasting algorithm and to possibly auto-tune the algorithm 

for specific homes. It could be that not all homes work best with the independent prediction variables 

used in this study (time of day and a weekday/weekend Boolean). Furthermore, study of the predictability 

of hot water use occupancy patterns should be studied. If a household has an inconsistent hot water use 

pattern, then the advanced control algorithm presented here could increase the energy consumption of the 

HPWH.  
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APPENDIX A. RESULTS FROM 25-HOME STUDY 

 

Fig. A-1. Energy savings and prediction statistics for 25-house study. 

Site #

Total Energy 

(kWh)

Res Heat 

Energy (kWh)

Total Energy 

(kWh)

Res Heat 

Energy (kWh)

Total Energy 

(kWh)

Res Heat 

Energy (kWh)

Forecast 

Total 

Energy

Perfect 

Total 

Energy

Forecast 

Res. Heat 

Energy

Perfect 

Res. Heat 

Energy CVRMSE NMBE

# of large 

flow events 

# of large flow 

events predicted 

correctly

99065 1386.2 638 1159.6 193.7 1037 31.1 16% 25% 70% 95% 64.79132 -43.1237 260 46

99086 1440.7 747 1234.9 308.5 1050.8 44.3 14% 27% 59% 94% 71.56875 -51.2639 307 48

99087 771.5 204.5 758.6 172.7 654.4 3.6 2% 15% 16% 98% 82.02625 -73.2602 96 3

99088 1123.1 506.5 943.2 135.5 865.3 47.9 16% 23% 73% 91% 63.56548 -30.5986 182 23

99094 1579.6 635.2 1365.6 194 1275.9 108.2 14% 19% 69% 83% 56.33662 -30.6154 243 67

99095 656.8 166.4 647.1 139.8 564.3 14 1% 14% 16% 92% 88.3642 -83.4365 78 1

99096 1711.3 798.1 1413.8 204.9 1290.4 27 17% 25% 74% 97% 57.43726 -16.8348 345 41

99097 1993.4 1098.3 1643.2 383.9 1457.2 169.3 18% 27% 65% 85% 63.46625 -37.6186 359 46

99098 1653.5 762.2 1475.3 315 1266.8 77.2 11% 23% 59% 90% 59.72441 -33.4633 311 43

99100 1044 266.6 1024.5 180 911.4 16.4 2% 13% 32% 94% 69.03432 -53.3453 133 8

99101 708.9 68.8 712.8 70.1 681 12.3 -1% 4% -2% 82% 80.93833 -76.3571 49 2

99102 1562.2 1115.3 1181.5 354 944.4 29.1 24% 40% 68% 97% 71.62236 -46.0429 331 26

99103 762.3 97.1 768.6 88.6 710.4 4.5 -1% 7% 9% 95% 76.59366 -67.3849 84 10

99104 616.7 89.5 613.9 85.3 561.3 10.3 0% 9% 5% 88% 92.9348 -86.2694 38 0

99107 1361.8 654 1166.1 183.2 1011.8 28.8 14% 26% 72% 96% 59.36534 -35.1136 284 41

99108 866.6 378.2 730.4 113.5 674.8 43.9 16% 22% 70% 88% 60.89178 -32.6881 148 18

99118 747.4 301.7 748.5 269.9 585.7 27.5 0% 22% 11% 91% 86.34698 -77.0843 109 6

99119 1100.5 351.2 1044.2 211.3 930.4 57 5% 15% 40% 84% 63.82316 -48.8771 159 17

99122 1396.6 570.4 1208.1 109.3 1084 17.4 13% 22% 81% 97% 55.00508 -36.583 263 88

99123 984.8 224.2 938.8 112.5 874.2 28 5% 11% 50% 88% 58.40101 -40.4729 144 26

99124 1142.8 338.4 1120.2 228.6 978.8 25.7 2% 14% 32% 92% 82.05487 -68.4465 139 11

99140 642.4 171 593.6 53.6 551.8 5.5 8% 14% 69% 97% 56.6552 -24.1141 107 26

99150 475.4 40.2 473.7 18.6 454.5 0 0% 4% 54% 100% 56.74304 -29.3858 58 26

99155 1831.1 664.2 1634.9 214.7 1477.3 41.2 11% 19% 68% 94% 52.29543 -30.8147 323 47

99162 1278 523.8 1104.9 178.6 1006.5 56.7 14% 21% 66% 89% 55.44878 -18.764 228 32

Energy savingsBaseline Forecast Perfect Prediction Statistics



 

 

 


