

ORNL/LTR-2014/424

Radiation-Hardened Circuitry Using
Mask-Programmable Analog Arrays

C. L. Britton
J. Shelton
M. N. Ericson
M. Bobrek
B. Blalock

September 2014

Approved for public release:
distribution is unlimited.

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

iii

CONTENTS

Page

LIST OF FIGURES .. v
ACRONYMS .. vii

ABSTRACT .. 1
1. PROJECT STATUS .. 1
2. FUNCTIONAL BLOCK DIAGRAM ... 1
3. HIGH-LEVEL ELECTRICAL BLOCK DIAGRAM ... 2
4. SYSTEM DEVELOPMENT ... 3

4.1 RAD-HARD BOARD .. 4
4.1.1 Voltage regulator and frequency synthesizer ... 6

4.1.2 ASIC on the RHB .. 6
4.2 SENSOR BOARD ... 7
4.3 INTERFACE BOARD ... 9
4.4 NEXYS 3 BOARD FIRMWARE/COMPUTER INTERFACE 10

4.5 LABVIEW INTERFACE PROGRAM ... 13
4.6 PRELIMINARY TEST DATA .. 14

5. CONCLUSION.. 16
6. REFERENCES .. 17

v

LIST OF FIGURES

Figures Page

Fig. 1. System functional description. .. 2
Fig. 3. System partition and function. .. 4

Fig. 4. Detailed radiation-hardened block diagram. .. 5
Fig. 5. The completed rad-hard board. ... 7
Fig. 6. Detailed sensor board block diagram. .. 8
Fig. 7. The Sensor board with insulation coatings. .. 9
Fig. 8. Detailed interface board data flow block diagram.. 10

Fig. 9. The interface board (right) connected to the Nexys 3 board. ... 11
Fig. 10. Decimation filter mathematical structure. The “N” represents the filter order,

and the “R” is the filter decimation ratio. In this application N = 3, and R = 256. 12
Fig. 11. Decimation filter frequency response. .. 13
Fig. 12. Screen shot of the LabView interface program. ... 14
Fig. 13. ADC preliminary testing data. .. 15

Fig. A1. Top-level instantiation of the VHDL code. ... 18

file://gadx1/P-Projects/PB1400669_Britton-dps/Edited_Rad%20Hard%20Task%202%20Rev%20J.docx%23_Toc399247720
file://gadx1/P-Projects/PB1400669_Britton-dps/Edited_Rad%20Hard%20Task%202%20Rev%20J.docx%23_Toc399247721

vii

ACRONYMS

ADC analog-digital converter

ASIC application-specific integrated circuit

CIC cascade, integrate and comb

FPGA field-programmable gate array

G-M Geiger-Mueller

IB interface board

IC integrated circuit

NEET Nuclear Energy Enabling Technologies

PC personal computer

PCB printed circuit board

RHB rad-hard board

UART universal asynchronous receive transmitter

USB universal serial bus

VCA Via-Configured Array

1

ABSTRACT

As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic

technologies capable of withstanding high radiation environments need to be readily available to

enable operations, repair, and recovery under severe accident scenarios when human entry is

extremely dangerous or not possible. Telerobotic technologies that enable remote operation in

high dose rate environments have undergone revolutionary improvement over the past few

decades. However, much of this technology cannot be employed in nuclear power environments

because of the radiation sensitivity of the electronics and the organic insulator materials currently

in use.

This is a report of the activities involving Task 2 of the Nuclear Energy Enabling

Technologies (NEET) 2 project “Radiation Hardened Circuitry Using Mask-Programmable

Analog Arrays” [1]. Using the analog blocks available in our currently preconfigured via-

configured array (VCA), we will perform a detailed schematic design of our system to include

the signal-processing blocks for temperature, radiation and pressure. Control and data acquisition

will be implemented with the Spartan-6 field-programmable gate array (FPGA), as well as with

wired serial communications using a remote computer. In addition, batteries and associated

voltage regulators will be selected for powering the system. Fabrication may include a

polyimide, printed circuit board (PCB) for improved radiation and temperature tolerance. The

PCB will go through a layout process by one of the organizations we use for this function and be

fabricated by another external vendor. Population of the system board will be performed by one

of our in-house technicians or by an outside vendor we commonly use. Five prototype systems

[each system consisting of sensors, electronics board, battery power supply, and personal

computer serial communications port] will be constructed to support the testing objectives of this

work. The submitters and the vendors will perform quality assurance at each step.

1. PROJECT STATUS

We are currently on schedule or slightly ahead of schedule. Our published schedule

shown in the project plan [1] states that fabrication of all five systems should be complete by the

middle of the first quarter of FY 2015, and we expect to be ready on or before that time. We

presently have the complete system operating end-to-end and are able to take data. In addition,

we currently have two fully-functioning systems and are having the remaining boards fabricated

to complete the five plus spares. We will be refining the personal computer–based data-

acquisition software to simplify data presentation.

2. FUNCTIONAL BLOCK DIAGRAM

The final goal of the data acquisition system is to provide intelligible data to the end users

so that they can assess a reactor environment operating condition. In order to transform the

2

output signals from the environmental sensors, a few steps must be taken. First, each sensor will

output a specific type of signal, and these signals must be converted to a digital structure so that

a computer processor or controller can process and relay this information to the user in a useful

format, as depicted in Fig. 1. The conversion methods for each signal will differ slightly, and

those variations can be considered on a lower sublevel. The controller will convert the data into a

format that the user will find easy to understand (for example, temperature, pressure, and

radiation count in standard units). Ultimately, each conversion will result in a binary output

value, or DN, that the controller will prepare and display for the user.

= Individual PCB

= Data Signal

= Power

= Control

Analog Rad-hard
Signal Conditioning

Sensor &
Environmental Data

FPGA Interface &
Processing, and

Control

Radiation Hardened Data
Acquisition System

= Remote Transmission

Fig. 1. System functional description.

3. HIGH-LEVEL ELECTRICAL BLOCK DIAGRAM

The high-level block diagram, shown in Fig. 2, illustrates the electrical signal-processing

paths for three distinct types of sensors. Each sensor will require some level of input gain and

filtering and an analog-digital converter (ADC) to convert the signals to a digital format. The

sensor and electronics signal flow will be presented in the following sections. The three

channels of signal conditioning/signal processing will be implemented using the circuitry present

on the Triad via-configured array (VCA). Each VCA application-specific integrated circuit

(ASIC) contains multiple single-ended operational amplifiers, biquad filters designed as input

anti-aliasing filters for the sigma-delta modulators which are also on the ASIC, and a bandgap

voltage reference.

ASICs are very important to electronic systems for multiple reasons. First, integrated

circuits (ICs) have the inherent capability of performing numerous electrical functions and

operations within one area efficient space. Not only do ICs optimize circuit density, but they

3

also offer improved matching behavior performance when compared to using individual

functional blocks to accomplish the same operation. This is because the IC fabrication process,

although precise, is not perfect, and silicon substrate variations from chip to chip are inevitable.

Combining multiple functions into one IC effectively reduces matching errors and provides

minimal variation from expected results.

Secondly, as their name implies, ASICs are application specific, which means they can be

designed to perform precisely to the exact requirements of an application. On the other hand,

general ICs must be designed to satisfy a wide variety of applications, and nothing comes free

with circuit design. Tradeoffs must be made; thus certain performance characteristics of the IC

will diminish relative to an ASIC. This advantage over general ICs makes ASICs almost

necessary, especially when stringent conditions such as extreme environment operation is

required.

T Sensor Gain &
Filtering ADC

FPGA
(Xilinx

Development
Board)

ADC

Rad.
Sensor

Pressure
Sensor

Comparator

Gain &
Filtering

Triad Rad-Hard Via Configured Array (VCA)

Remote
Data

Collection
PC

Frequency
Synthesizer

Fig. 2. Data acquisition system based on commercial and near-commercial rad-hard

circuits.

4. SYSTEM DEVELOPMENT

The system was developed and partitioned as shown in Fig. 3. The boards labeled sensor

board, rad-hard board, and interface board were designed at Oak Ridge National Laboratory

(ORNL). The Nexys 3 board is the commercial board developed and sold by Digilent, Inc., that

contains the Spartan 6 field-programmable gate array (FPGA), along with the communications

hardware interface. Of all the boards shown, only the rad-hard board (the RHB) has hardened

components. The other boards were not designed to be exposed to radiation. The system, with

the exception of the commercial Nexys 3 board, is designed to operate off 9–12 V DC so that

either NiMH batteries or lithium batteries can be used. The Nexys 3 board actually uses a 110 V

to 5 V DC universal adapter and was not redesigned to be used with a battery, but this could be

done if required. If, after surveying the radiation test facilities, it is determined that a battery for

4

this board is necessary, we will provide one. The board developments and associated software

will be individually presented. Schematics of each board can be found in Appendix B.

Sensor Board Rad-Hard Board

Interface Board

Nexys 3 Board

Power to
Sensor Board

Data from
Sensor Board

Data to/from
Rad-Hard Board

110V-5V
converter

Power
Supply/
Battery

USB Data Cable

Fig. 3. System partition and function.

4.1 RAD-HARD BOARD

The RHB consists of the Triad ASIC; the FMI synthesizer ASIC; and various passive

resistors, capacitors, and connectors used for board-board or board-power connections. As

previously mentioned, the RHB implements the interface functions between the sensors and the

ADCs, and the ADCs themselves. It also contains the rad-hard voltage regulators which supply

5 V and 3.3 V to the on-board circuitry.

The temperature, pressure, and gamma radiation sensors will supply voltage waveforms

to radiation-hardened analog circuits on the Triad chip to begin analog-to-digital conversion.

Since these measurements are inherently low frequency in nature, low-frequency single-ended op

amps, and thus low-frequency single-ended sigma-delta modulators will be chosen from the

Triad chip selection in order to increase noise filtering and reduce power consumption.

Both the temperature and pressure sensor analog data will undergo sigma-delta

modulation to generate a digital pulse density modulated bit stream. This bit stream will then be

converted into a digital number (DN) through proper filtering. The sigma-delta modulator works

by increasing the output bit stream pulse density as the input analog waveform voltage increases,

and decreasing the bit stream pulse density as the input analog waveform voltage decreases.

Given a stable loop, the output bit streams are passed to the FPGA digital sinc filter for final

translation into a DN, as seen in Fig. 4. Different values of external offsets for sigma-delta

5

modulation are needed for their respective temperature and pressure data, considering these

waveforms exhibit differing peak voltages and DC offsets.

Microsemi SGR117A
Voltage Regulator

ΣΔ Modulator
Channel A

Single-ended, Op Amp
(Comparator)

Vin = 2.29 V ± 7.68 mV/K

From Temperature
Sensor Circuitry

ΣΔ Modulator
Channel B

Vin = 0.5 V + 1.665 V/atm
(relative)

From Pressure
Sensor Circuitry

Vref

From Gamma
Detector

FMI Frequency
Synthesizer

CLK
(1.024 MHz)

Single-ended, Op Amp
(Gain & Shift)

V = 3.2 V - 0.7 V/atm
(relative)

Vref

5 V 3.3 V

9 V

Alternate CLK
(1.024 MHz)

Analog Rad-hard Signal Conditioning Board

Fig. 4. Detailed radiation-hardened block diagram.

Digitizing radiation events is much different from digitizing analog waveforms, in that

the charge generated by the event is only present for a short period of time, and it needs to be

classified. The current spike output from the Geiger-Mueller (G-M) tube is converted to voltage

through a resistor, and depending on the peak level of current, the voltage will also reach a

certain peak value. In order to discern whether a voltage spike is in fact a radiation event, a

certain voltage threshold must be met. This can be achieved by comparing the voltage spike

with a reference voltage that is unachievable by any excitation other than a radiation event. If

the voltage spike surpasses this threshold, the comparator will output a digital ‘high’ value,

representing one event, and subsequently return to a digital low in preparation for the next event.

These events can be summed with an FPGA digitally implemented counter, which will notify

users of the total ionizing dose, as well as the dose rate, which is derived through the rate of

change of the event count. Because there is no comparator circuit on the Triad chip, the output

6

of an op amp will need to be buffered so as to replicate a comparator and produce a full-swing

digital output that can be counted.

4.1.1 Voltage regulator and frequency synthesizer

Two other components will be present on the radiation-hardened printed circuit board:

the Microsemi voltage regulator and the FMI frequency synthesizer. The rad-hard voltage

regulator, which is radiation-hardened beyond 1 Mrad total integrated dose (TID), will supply

the voltage and current necessary for all circuits to operate. It will be powered by an external

battery. We have designed the board to be used with battery packs from 9 V to 12 V, which

encompasses chemistries of NiCd, NiMH, lithium ion, and lead-acid. We presently have NiMH

batteries ordered for this application since they are easily chargeable and readily available.

Multiple copies of the voltage regulator will be present for circuits with varying voltage

requirements. The rad-hard frequency synthesizer is capable of precise operation to at least

300krad TID and will serve as the clock generator for the FPGA controller. It is mounted on a

so-called interposer board, which allows quick changes of the FMI ASIC.

4.1.2 ASIC on the RHB

Some additional components are necessary to provide the power required by the system

and enable full circuit operation. All circuits within the system will need specific levels of

voltage and current supply generated from a voltage regulator, and for radiation rich

environments, this supply must be very robust across a large range of dose rates, potentially up to

200 krad/h. Microsemi Corporation produces a variety of radiation-hardened voltage regulators

with differing total dose capabilities, but the SGR117A model stood out with the highest TID

capability of all, claiming total doses exceeding 1 Mrad. This voltage regulator can produce

output voltages ranging from 1.25 to 34 V, supply at least 1.5 A of current across all operating

conditions, and maintain a 0.3% load regulation specification. The SGR117A is available in a

3-pin K package with a thermal dependence of only 3ºC/W and operating temperatures up to

150ºC. These voltage regulator specifications can satisfy power requirements for every circuit

within the system, with the exception of the G-M tube which will require a high-voltage DC

converter to reach a 500 V potential. A photograph of the RHB is shown in Fig. 5.

7

Fig. 5. The completed rad-hard board.

4.2 SENSOR BOARD

As previously mentioned, the sensor board (block diagram in Fig. 6) provides

temperature, pressure, and gamma radiation detection elements. The analog device AD592

temperature sensor outputs a nominal current at room temperature (~25 ºC) of 298.1 µA and will

vary at 1 µA/K. The sensor also requires a supply voltage between 4 and 33 V, which will be

provided by the selected Microsemi rad-hard voltage regulator. Placing a 10 kΩ resistor at the

sensor output converts this current into a DC voltage of 2.981 V with a sensitivity of 10 mV/K.

This resistance value optimizes the Vout,DC and ΔV components of the temperature sensing circuit

output voltage Vout so that the common voltage of the ADC is not exceeded and temperature

change resolution is measurable. This voltage is input to rad hard block sigma-delta modulator

for digitization.

FMI chip on Interposer Board

8

Fig. 6. Detailed sensor board block diagram.

The Honeywell ASDX pressure sensor outputs a voltage that is dependent on gauge

pressure and proportional to supply voltage. Based on the sensor characteristics, such as 5 V

supply and 10–90 % calibration, the output voltage will be 0.5 V minimum plus 1.66 V/atm

above the sealed 1 atm reference pressure, up to 2 atm (Fig. 6). These voltages ranges are

sufficient for analog-to-digital conversion without signal conditioning; therefore, this voltage is

connected directly to the Triad sigma-delta modulator circuit input.

The LND 714 G-M tube is a purely gamma radiation detection device; it requires a large

electric field, in the range of 500 V, in order to gather quickly moving electron-hole pairs freed

by high energy incident radiation. When a radiation event occurs, the G-M tube essentially

“shorts” as a result of numerous charge carriers traveling toward their respective electrodes.

Sizeable current limiting resistors are required to prevent any significant current spikes as a

consequence of shorting a 500 V electric field. As the G-M tube shorts, electrons move toward

the positive supply, producing a fast positive current spike at the cathode. Since this waveform

has a very high frequency AC characteristic, it will take the low impedance path through the

capacitor and be converted to voltage across the potentiometer. This voltage is then input to the

rad-hard comparator for conversion to a digital logic signal. We have set up the GM-tube

voltage and comparator thresholds using a 5-C
137

Cs source.

The manufacturer of the LND 714 G-M tube recommends a 500 V potential for operation

in order to capture high-speed freed electrons and holes, but a significant current supply is not

9

required because the charge produced comes directly from the tube itself. The EMCO A05P5

1 W, positive adjustable DC converter can output up to 500 V at a maximum current of 2 mA,

with only a 5 V and less than 200 mA input at no load. This EMCO DC converter is not

radiation-hardened and will be placed on the shielded sensors board to minimize high power

transmission lengths and optimize board density. The 5 V, 200 mA converter input will be

supplied by the Microsemi voltage regulator from the radiation-hardened board. A heat sink will

be added to the 5 V regulator to allow operation from both 9.6 V NiMH batteries and lithium ion

11.1 V devices. A photograph of the finished sensor board is shown in Fig. 7. The black coating

is a high-voltage insulation material.

Fig. 7. The Sensor board with insulation coatings.

4.3 INTERFACE BOARD

The function of the interface board (IB, shown in Fig. 8) is to translate the 5 V signals

generated by the RHB and buffer and convert them to 3.3 V signals for the Nexys 3 board. In

addition, the IB is used to perform the physical connections between the Nexys 3 board and the

cable which connects the IB to the RHB and provides an ADC sample-clock/clock loopback

from the Nexys 3 board if needed. The isolators are from the Texas Instruments ISO isolator

family of interface devices. These circuits allow different supply voltages (in this case, 5 V and

3.3 V) to be used on either side of the devices; they can transmit or receive digital pulses of the

appropriate amplitude.

Geiger Tube

Pressure

Sensor

Temperature Sensor

10

Fig. 8. Detailed interface board data flow block diagram.

4.4 NEXYS 3 BOARD FIRMWARE/COMPUTER INTERFACE

The program created for the FPGA controller was written as a state machine

implementation of a universal asynchronous receive transmitter (UART) communications

interface. The UART provides a serial data interface to a standard universal serial bus (USB)

found on all modern computers. The USB interface provides fast data transfer between the data-

collection computer and the rad-hard system. The electrical hardware portion of the interface,

made by FTD International, is already resident on the Nexys 3 board (shown in Fig. 9) and

requires code to implement the software functionality. The UART interfaces to a standard

personal computer USB port and is configured to operate at 9600 baud. Figure A1 illustrates the

functional flow and will be described below. All VHDL code can be found in Appendix A.

11

Fig. 9. The interface board (right) connected to the Nexys 3 board.

UART (Block t_serial) is the UART state machine code. It was taken from open-source

VHDL code developed by Bainville [2] and modified for this project’s purpose. The code

implements a single-byte receive and retransmit UART which was minimally modified to

receive a command byte and then retransmit either a status byte or a data byte, depending on the

code sent. The UART is programmed to receive any of X different ASCII bytes and then parse

them in a state machine. If the byte is a valid command, there is a predefined action that takes

place. A list of the commands is as follows:

COMMAND FUNCTION RETURN CHARACTER

hex 20 (space) system-wide reset hex 20 (space)

hex 21 (!) counter reset hex 21 (!)

hex 22 (") system-wide data load hex 22 (")

hex 30 (0) counter high-byte load (data)

hex 31 (1) counter low-byte load (data)

hex 32 (2) adc1(temp) low-byte load (data)

hex 33 (3) adc1(temp) high-byte load (data)

hex 34 (4) adc2(press) low-byte load (data)

hex 35 (5) adc2(press) high-byte load (data)

For these commands, “temp” means the temperature ADC, and “press” means the

12

pressure ADC. The command architecture is designed such that combinations of these

commands can be issued to perform a greater overall function than any single command. For

example, issuing system-wide reset, system wide data load, adc1(temp) low-byte load,

adc1(temp) high-byte load would read the entire data from the temperature ADC for a single

reading.

Counter (Ctr_16_dp). The counter maintains a running count of the individual events

received from the Geiger-tube comparator. After an interval of time determined by the computer

software, the counter value is transferred 8 bits at a time (2 bytes) to the computer. Each data

transfer requires a transfer command. The counter is then reset and allowed to begin counting

again.

Decimation Filter (Decimation_filter_top). The purpose of the decimation filter is to

filter out the out-of-band digitization noise from the sigma-delta modulator data. Input to the

filter is a single-bit data with variable pulse density that corresponds to the signal level at the

modulator/ADC input. In this particular case, the input data represent slowly changing

temperature and pressure measurements. For all practical purposes, the modulator input is

considered a DC signal.

The decimation filter is implemented as a third-order Cascade, Integrate and Comb (CIC)

low-pass filter (shown in Fig. 10). The “N” in Fig. 10 represents the filter order, and the “R” is

the filter decimation ratio. In this application, N = 3, and R = 256.

+ + + +

Z-1 Z-1 Z-MZ-M

↓R

Stage 1 ….. Stage N Stage 1 ….. Stage N

Integrator Section Comb Section

Input
x(n)

Output
y(n)

….. …..

-1 -1

Fig. 10. Decimation filter mathematical structure. The “N” represents the filter order,

and the “R” is the filter decimation ratio. In this application N = 3, and R = 256.

The size of the filter is 1 bit, and the output size is 16 bits. The filter’s magnitude

frequency response without the decimation is shown in Fig. 11.

13

Fig. 11. Decimation filter frequency response.

The performance of the decimation filter was simulated using Simulink. When using the

first-order modulator to feed the decimation filter, the dynamic range of the filter’s output was

around 80, which corresponded to more than 13 bits of resolution. The decimation filter

structure from Fig. 10 was implemented in FPGA, and its proper behavior was confirmed in

hardware testing.

Clock Generator (ClkGen). The clock generator is a backup clock generator

implemented as a frequency divider off of the 100 MHz Nexys 3 system clock. The output value

of the clock is 100 MHz/2
6
 or 1.5625 MHz.

4.5 LABVIEW INTERFACE PROGRAM

The LabView interface program collects data from the Nexys 3 board programming and

displays the value of the data. It transmits the selected command outlined in the UART section

and displays the return value of the requested command. It also configures the COM port on the

computer to the appropriate settings. A screen shot of the program is shown in Fig. 12.

14

Fig. 12. Screen shot of the LabView interface program.

4.6 PRELIMINARY TEST DATA

We have set up the boards and are now testing each section. Final temperature and

pressure calibration will be performed after all boards are fabricated, but preliminary measured

data for Board 1 is available (Fig. 13). The input range is adjusted for the particular sensor; it is

the actual range that will be used. The output data are in ADC counts; these data will be used to

convert the input voltage to the actual temperature and/or pressure. The major feature of interest

is that the data are linear and continuous, as expected. There is an additional signal inversion in

the temperature ADC chain, and that is the reason that increasing input results in a decreasing

ADC code.

15

Volts In

Volts In

Fig. 13. ADC preliminary testing data.

0
5000

10000

15000
20000
25000
30000

35000
40000
45000
50000
55000

60000
65000

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Pressure ADC

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40

Temperature ADC

A
D

C
 C

o
u
n
t

A
D

C
 C

o
u
n
t

16

5. CONCLUSION

We have presented the results of Task 2 of the NEET 2 project “Radiation Hardened

Circuitry Using Mask-Programmable Analog Arrays” [1]. This task included design of new

boards and implementation of digital filters and communications on the Xilinx Spartan 6 FPGA

board. Bench testing was also performed to ensure correct functionality.

The system was subdivided into three component boards. These are a rad-hard analog

board, a non-rad-hard sensor board, and a non-rad-hard digital controller board. The digital

controller board was chosen to be non-rad-hard because of the excessive cost (many tens of

thousands of $ each) for a truly rad-hard digital part. The sensors are off-the-shelf parts that are

readily available.

17

6. REFERENCES

1. C. L. Britton, M. N. Ericson, and B. Blalock, “Radiation Hardened Circuitry Using Mask-

Programmable Analog Arrays,” proposal submitted under NEET-2: Advanced Sensors and

Instrumentation, 2012.

2. Eric Bainville, http://www.bealto.com/home.html.

18

APPENDIX A. VHDL Code

Top-Level VHDL Schematic

Fig. A1. Top-level instantiation of the VHDL code.

19

T_serial VHDL Code

**

T_SERIAL

**

-- EB Mar 2013

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity t_serial is

port(

 sys_clk: in std_logic; -- 100 MHz system clock

 led: out std_logic_vector(7 downto 0);

 uart_rx: in std_logic;

 uart_tx: out std_logic;

 pmod_1: out std_logic; -- debug outputs

 pmod_2: out std_logic;

 reset_btn: in std_logic;

 -------New ports for register control

 sys_rst: out std_logic:= '0'; -- Generates the system-wide reset (includes all resets)

 ctr_rst: out std_logic:= '0'; -- Counter reset generates the counter ctr_16, NOT the register

 sys_load: out std_logic:= '0'; -- Loads the data from all registers

 ctr_data_H: in std_logic_vector(7 downto 0); --Inputs high byte counter data

 ctr_data_L: in std_logic_vector(7 downto 0); --Inputs low byte counter data

 --ctr_rate_H: in std_logic_vector(7 downto 0); --Inputs high byte counter rate data

 --ctr_rate_L: in std_logic_vector(7 downto 0); --Inputs low byte counter rate data

 adc1_data_H: in std_logic_vector (7 downto 0); --Inputs high byte temperature adc data

 adc1_data_L: in std_logic_vector (7 downto 0); --Inputs low byte temperature adc data

 adc2_data_H: in std_logic_vector (7 downto 0); --Inputs high byte pressure adc data

 adc2_data_L: in std_logic_vector (7 downto 0) --Inputs low byte pressure adc data

 -------End of new signals for register control

);

end t_serial;

architecture Behavioral of t_serial is

component basic_uart is

generic (

 DIVISOR: natural

);

port (

 clk: in std_logic; -- system clock

 reset: in std_logic;

 -- Client interface

 rx_data: out std_logic_vector(7 downto 0); -- received byte

 rx_enable: out std_logic; -- validates received byte (1 system clock spike)

 tx_data: in std_logic_vector(7 downto 0); -- byte to send

20

 tx_enable: in std_logic; -- validates byte to send if tx_ready is '1'

 tx_ready: out std_logic; -- if '1', we can send a new byte, otherwise we won't take it

 -- Physical interface

 rx: in std_logic;

 tx: out std_logic

);

end component;

type fsm_state_t is (idle, received, emitting);

type state_t is

record

 fsm_state: fsm_state_t; -- FSM state

 tx_data: std_logic_vector(7 downto 0);

 tx_enable: std_logic;

end record;

signal reset: std_logic;

signal uart_rx_data: std_logic_vector(7 downto 0);

signal uart_rx_enable: std_logic;

signal uart_tx_data: std_logic_vector(7 downto 0);

signal uart_tx_enable: std_logic;

signal uart_tx_ready: std_logic;

signal state,state_next: state_t;

signal sys_rst_state, ctr_rst_state, sys_load_state: std_logic;

begin

 basic_uart_inst: basic_uart

 generic map (DIVISOR => 651) -- 9600

 port map (

 clk => sys_clk, reset => reset,

 rx_data => uart_rx_data, rx_enable => uart_rx_enable,

 tx_data => uart_tx_data, tx_enable => uart_tx_enable, tx_ready => uart_tx_ready,

 rx => uart_rx,

 tx => uart_tx

);

 reset_control: process (reset_btn) is

 begin

 if reset_btn = '0' then --modified

 reset <= '0';

 else

 reset <= '1';

 end if;

 end process;

 pmod_1 <= uart_tx_enable;

 pmod_2 <= uart_tx_ready;

 fsm_clk: process (sys_clk,reset) is

21

 begin

 if reset = '1' then

 state.fsm_state <= idle;

 state.tx_data <= (others => '0');

 state.tx_enable <= '0';

 else

 if rising_edge(sys_clk) then

 state <= state_next;

 end if;

 end if;

 end process;

 fsm_next: process (state,uart_rx_enable,uart_rx_data,uart_tx_ready, ctr_data_H, ctr_data_L,

 adc1_data_H, adc1_data_L, adc2_data_H,

adc2_data_L, sys_clk) is

 begin

 --sys_rst_state <= '0';

 --ctr_rst_state <= '0';

 --sys_load_state <= '0';

 state_next <= state;

 case state.fsm_state is

 when idle =>

 sys_rst_state <= '0';

 ctr_rst_state <= '0';

 sys_load_state <= '0';

 --Parses the input and loads an alternative value for output to the screen

 if uart_rx_enable = '1' then

-- Defines a hex 20 (space) as the character for a system-wide reset

 if uart_rx_data = X"20" then

 sys_rst_state <= '1';

 state_next.tx_data <= X"20";

-- Defines a hex 21 (!) as the character for a counter reset

 elsif uart_rx_data = X"21" then

 ctr_rst_state <= '1';

 state_next.tx_data <= X"21";

-- Defines a hex 22 (") as the character for a sytem-wide load

 elsif uart_rx_data = X"22" then

 sys_load_state <= '1';

 state_next.tx_data <= X"22";

-- Defines a hex 30 (0) as the character for a counter high-byte load

 elsif uart_rx_data = X"30" then

 state_next.tx_data <= ctr_data_L (7 downto 0);

22

-- Defines a hex 31 (1) as the character for a counter low-byte load

 elsif uart_rx_data = X"31" then

 state_next.tx_data <= ctr_data_H (7 downto 0);

-- Defines a hex 32 (2) as the character for adc1(temp) low-byte load

 elsif uart_rx_data = X"32" then

 state_next.tx_data <= adc1_data_L (7 downto 0);

-- Defines a hex 33 (3) as the character for adc1(temp) high-byte load

 elsif uart_rx_data = X"33" then

 state_next.tx_data <= adc1_data_H (7 downto 0);

-- Defines a hex 34 (4) as the character for adc2(press) low-byte load

 elsif uart_rx_data = X"34" then

 state_next.tx_data <= adc2_data_L (7 downto 0);

-- Defines a hex 35 (5) as the character for adc2(press) high-byte load

 elsif uart_rx_data = X"35" then

 state_next.tx_data <= adc2_data_H (7 downto 0);

 else

 state_next.tx_data <= X"00"; --Outputs NULL if one of the preferred keys is not

pressed.

 end if;

 --Sets up for next state

 state_next.tx_enable <= '0';

 state_next.fsm_state <= received;

 end if;

 when received =>

 if uart_tx_ready = '1' then

 state_next.tx_enable <= '1';

 state_next.fsm_state <= emitting;

 end if;

 when emitting =>

 if uart_tx_ready = '0' then

 state_next.tx_enable <= '0';

 state_next.fsm_state <= idle;

 end if;

 end case;

 end process;

 fsm_output: process (state, uart_rx_data, ctr_rst_state, sys_load_state, sys_rst_state) is

 begin

 uart_tx_enable <= state.tx_enable;

23

 uart_tx_data <= state.tx_data;

 led <= state.tx_data;

 sys_rst <= sys_rst_state;

 ctr_rst <= ctr_rst_state;

 sys_load <= sys_load_state;

 end process;

end Behavioral;

**

BASIC UART

**

-- Eric Bainville

-- Mar 2013

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.math_real.all;

entity basic_uart is

 generic (

 DIVISOR: natural -- DIVISOR = 100,000,000 / (16 x BAUD_RATE)

 -- 2400 -> 2604

 -- 9600 -> 651

 -- 115200 -> 54

 -- 1562500 -> 4

 -- 2083333 -> 3

);

 port (

 clk: in std_logic; -- clock

 reset: in std_logic; -- reset

 -- Client interface

 rx_data: out std_logic_vector(7 downto 0); -- received byte

 rx_enable: out std_logic; -- validates received byte (1 system clock spike)

 tx_data: in std_logic_vector(7 downto 0); -- byte to send

 tx_enable: in std_logic; -- validates byte to send if tx_ready is '1'

 tx_ready: out std_logic; -- if '1', we can send a new byte, otherwise we won't take it

 -- Physical interface

 rx: in std_logic;

 tx: out std_logic

);

end basic_uart;

architecture Behavioral of basic_uart is

 constant COUNTER_BITS : natural := integer(ceil(log2(real(DIVISOR))));

 type fsm_state_t is (idle, active); -- common to both RX and TX FSM

 type rx_state_t is

 record

 fsm_state: fsm_state_t; -- FSM state

 counter: std_logic_vector(3 downto 0); -- tick count

24

 bits: std_logic_vector(7 downto 0); -- received bits

 nbits: std_logic_vector(3 downto 0); -- number of received bits (includes start bit)

 enable: std_logic; -- signal we received a new byte

 end record;

 type tx_state_t is

 record

 fsm_state: fsm_state_t; -- FSM state

 counter: std_logic_vector(3 downto 0); -- tick count

 bits: std_logic_vector(8 downto 0); -- bits to emit, includes start bit

 nbits: std_logic_vector(3 downto 0); -- number of bits left to send

 ready: std_logic; -- signal we are accepting a new byte

 end record;

 signal rx_state,rx_state_next: rx_state_t;

 signal tx_state,tx_state_next: tx_state_t;

 signal sample: std_logic; -- 1 clk spike at 16x baud rate

 signal sample_counter: std_logic_vector(COUNTER_BITS-1 downto 0); -- should fit values in 0..DIVISOR-1

begin

 -- sample signal at 16x baud rate, 1 CLK spikes

 sample_process: process (clk,reset) is

 begin

 if reset = '1' then

 sample_counter <= (others => '0');

 sample <= '0';

 elsif rising_edge(clk) then

 if sample_counter = DIVISOR-1 then

 sample <= '1';

 sample_counter <= (others => '0');

 else

 sample <= '0';

 sample_counter <= sample_counter + 1;

 end if;

 end if;

 end process;

 -- RX, TX state registers update at each CLK, and RESET

 reg_process: process (clk,reset) is

 begin

 if reset = '1' then

 rx_state.fsm_state <= idle;

 rx_state.bits <= (others => '0');

 rx_state.nbits <= (others => '0');

 rx_state.enable <= '0';

 tx_state.fsm_state <= idle;

 tx_state.bits <= (others => '1');

 tx_state.nbits <= (others => '0');

 tx_state.ready <= '1';

 elsif rising_edge(clk) then

 rx_state <= rx_state_next;

 tx_state <= tx_state_next;

 end if;

 end process;

 -- RX FSM

25

 rx_process: process (rx_state,sample,rx) is

 begin

 case rx_state.fsm_state is

 when idle =>

 rx_state_next.counter <= (others => '0');

 rx_state_next.bits <= (others => '0');

 rx_state_next.nbits <= (others => '0');

 rx_state_next.enable <= '0';

 if rx = '0' then

 -- start a new byte

 rx_state_next.fsm_state <= active;

 else

 -- keep idle

 rx_state_next.fsm_state <= idle;

 end if;

 when active =>

 rx_state_next <= rx_state;

 if sample = '1' then

 if rx_state.counter = 8 then

 -- sample next RX bit (at the middle of the counter cycle)

 if rx_state.nbits = 9 then

 rx_state_next.fsm_state <= idle; -- back to idle state to wait for next start bit

 rx_state_next.enable <= rx; -- OK if stop bit is '1'

 else

 rx_state_next.bits <= rx & rx_state.bits(7 downto 1);

 rx_state_next.nbits <= rx_state.nbits + 1;

 end if;

 end if;

 rx_state_next.counter <= rx_state.counter + 1;

 end if;

 end case;

 end process;

 -- RX output

 rx_output: process (rx_state) is

 begin

 rx_enable <= rx_state.enable;

 rx_data <= rx_state.bits;

 end process;

 -- TX FSM

 tx_process: process (tx_state,sample,tx_enable,tx_data) is

 begin

 case tx_state.fsm_state is

 when idle =>

 if tx_enable = '1' then

 -- start a new bit

 tx_state_next.bits <= tx_data & '0'; -- data & start

 tx_state_next.nbits <= "0000" + 10; -- send 10 bits (includes '1' stop bit)

 tx_state_next.counter <= (others => '0');

 tx_state_next.fsm_state <= active;

 tx_state_next.ready <= '0';

26

 else

 -- keep idle

 tx_state_next.bits <= (others => '1');

 tx_state_next.nbits <= (others => '0');

 tx_state_next.counter <= (others => '0');

 tx_state_next.fsm_state <= idle;

 tx_state_next.ready <= '1';

 end if;

 when active =>

 tx_state_next <= tx_state;

 if sample = '1' then

 if tx_state.counter = 15 then

 -- send next bit

 if tx_state.nbits = 0 then

 -- turn idle

 tx_state_next.bits <= (others => '1');

 tx_state_next.nbits <= (others => '0');

 tx_state_next.counter <= (others => '0');

 tx_state_next.fsm_state <= idle;

 tx_state_next.ready <= '1';

 else

 tx_state_next.bits <= '1' & tx_state.bits(8 downto 1);

 tx_state_next.nbits <= tx_state.nbits - 1;

 end if;

 end if;

 tx_state_next.counter <= tx_state.counter + 1;

 end if;

 end case;

 end process;

 -- TX output

 tx_output: process (tx_state) is

 begin

 tx_ready <= tx_state.ready;

 tx <= tx_state.bits(0);

 end process;

end Behavioral;

27

Decimation_filter VHDL Code

--

-- Company: ORNL

-- Engineer: Miljko Bobrek

--

-- Create Date: 15:23:08 07/31/2014

-- Design Name:

-- Module Name: decimation_filter_top - Behavioral

-- Project Name: NEET Controller

-- Target Devices:

-- Tool versions: ISE 14.7

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity decimation_filter_top is

 Port (clk : in STD_LOGIC; -- 1 MHz

 osr_sel : in STD_LOGIC_VECTOR(1 downto 0);

 --osr_sel2 : in STD_LOGIC_VECTOR(1 downto 0);

 mod_data1 : in STD_LOGIC;

 mod_data2 : in STD_LOGIC;

 adc1_Dout_H : out STD_LOGIC_VECTOR(7 downto 0);

 adc1_Dout_L : out STD_LOGIC_VECTOR(7 downto 0);

 adc2_Dout_H : out STD_LOGIC_VECTOR(7 downto 0);

 adc2_Dout_L : out STD_LOGIC_VECTOR(7 downto 0);

 RD : in STD_LOGIC; -- Transfers data from adc(s) to registers.

 RESET_SYS : in STD_LOGIC -- Overall system reset. Does reset the

output registers.

);

end decimation_filter_top;

architecture Inside of decimation_filter_top is

 component decimation_filter is

 Port(

 clk : in STD_LOGIC; -- 1 MHz

28

 rst : in STD_LOGIC;

 osr_sel : in STD_LOGIC_VECTOR(1 downto 0);

 --osr_sel2 : in STD_LOGIC_VECTOR(1 downto 0);

 mod_data1 : in STD_LOGIC;

 mod_data2 : in STD_LOGIC;

 adc1 : out STD_LOGIC_VECTOR(15 downto 0); -- 2's

complement

 adc2 : out STD_LOGIC_VECTOR(15 downto 0) -- 2's complement

);

 end component;

 component reg_16 is

 Port(

 RD : in STD_LOGIC; -- Moves input data to output.

 RST2 : in STD_LOGIC; -- Register reset.

 CTR_DIN : in STD_LOGIC_VECTOR (15 downto 0); -- Data intput from

counter data output. 15-0 MSB-LSB.

 REG_DOUT_H : out STD_LOGIC_VECTOR (7 downto 0);

 REG_DOUT_L : out STD_LOGIC_VECTOR (7 downto 0)

);

 end component;

signal adc1_int : STD_LOGIC_VECTOR (15 downto 0); -- Internal lines from adc1 output to register

signal adc2_int : STD_LOGIC_VECTOR (15 downto 0); -- Internal lines from adc2 output to register

begin

decimation_filter_inst : decimation_filter

port map (

 clk => clk,

 rst => RESET_SYS,

 osr_sel => osr_sel,

 mod_data1 => mod_data1,

 mod_data2 => mod_data2,

 adc1 => adc1_int,

 adc2 => adc2_int

);

reg_16_inst : reg_16

port map (

 RD => RD,

 RST2 => RESET_SYS,

 CTR_DIN => adc1_int,

 REG_DOUT_H => adc1_Dout_H,

 REG_DOUT_L => adc1_Dout_L

);

reg_16_inst2 : reg_16

port map (

 RD => RD,

 RST2 => RESET_SYS,

 CTR_DIN => adc2_int,

 REG_DOUT_H => adc2_Dout_H,

 REG_DOUT_L => adc2_Dout_L

);

29

end Inside;

--

==

=============================--

-- This file implements two 3rd order sinc decimation filters with selectable decimation/oversampling ratio (OSR)

-- osr_sel "00" "01" "10" "11"

-- OSR 128 256 512 1024

--

==

=============================--

library IEEE;

library UNISIM;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_arith.all;

use IEEE.STD_LOGIC_unsigned.all;

use UNISIM.Vcomponents.ALL;

entity decimation_filter is

port (

 clk : in STD_LOGIC; -- 1 MHz

 rst : in STD_LOGIC;

 osr_sel : in STD_LOGIC_VECTOR(1 downto 0);

 --osr_sel2 : in STD_LOGIC_VECTOR(1 downto 0);

 mod_data1 : in STD_LOGIC;

 mod_data2 : in STD_LOGIC;

 adc1 : out STD_LOGIC_VECTOR(15 downto 0); -- 2's

complement

 adc2 : out STD_LOGIC_VECTOR(15 downto 0) -- 2's complement

 --osr_en : out STD_LOGIC -- Possibly use for making sure no

metastability state (RD and adc data change at same time)

);

end;

architecture decimation_filter_arch of decimation_filter is

component integrator is

port (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 mod_data : in STD_LOGIC;

 out_data : out STD_LOGIC_VECTOR(31 downto 0)

);

end component;

component differentiator is

port (

30

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 en : in STD_LOGIC;

 in_data : in STD_LOGIC_VECTOR(31 downto 0);

 out_data : out STD_LOGIC_VECTOR(31 downto 0)

);

end component;

signal cnt1 : STD_LOGIC_VECTOR(15 downto 0);

signal cnt2 : STD_LOGIC_VECTOR(15 downto 0);

signal int_out1 : STD_LOGIC_VECTOR(31 downto 0);

signal int_out2 : STD_LOGIC_VECTOR(31 downto 0);

signal out_data1 : STD_LOGIC_VECTOR(31 downto 0);

signal out_data2 : STD_LOGIC_VECTOR(31 downto 0);

signal osr1b : STD_LOGIC_VECTOR(15 downto 0);

signal osr2b : STD_LOGIC_VECTOR(15 downto 0);

signal osr_en1 : STD_LOGIC;

signal osr_en2 : STD_LOGIC;

signal clkb : STD_LOGIC;

signal adc1_2s : STD_LOGIC_VECTOR(15 downto 0);

signal adc2_2s : STD_LOGIC_VECTOR(15 downto 0);

begin

buff1: BUFG port map (I => clk, O => clkb);

osr1b <= X"007F" when osr_sel = "00" else -- OSR = 128

 X"00FF" when osr_sel = "01" else -- OSR = 256

 X"01FF" when osr_sel = "10" else -- OSR = 512

 X"03FF"; -- OSR = 1024

osr2b <= X"007F" when osr_sel = "00" else -- OSR = 128

 X"00FF" when osr_sel = "01" else -- OSR = 256

 X"01FF" when osr_sel = "10" else -- OSR = 512

 X"03FF"; -- OSR = 1024

--adc1 <= (15 => not out_data1(21), OTHERS => out_data1(20 downto 6)) when osr_sel = "00" else -- Changed

adc1_2s to adc1

-- (15 => not out_data1(24), OTHERS => out_data1(23 downto 9)) when osr_sel = "01" else

-- (15 => not out_data1(27), OTHERS => out_data1(26 downto 12)) when osr_sel = "10" else

-- (15 => not out_data1(30), OTHERS => out_data1(29 downto 15));

adc1_2s <= out_data1(21 downto 6) when osr_sel = "00" else -- Changed adc1_2s to adc1

 out_data1(24 downto 9) when osr_sel = "01" else

 out_data1(27 downto 12) when osr_sel = "10" else

 out_data1(30 downto 15);

--adc2 <= (15 => not out_data2(21), OTHERS => out_data2(20 downto 6)) when osr_sel = "00" else -- Changed

adc1_2s to adc1

-- (15 => not out_data2(24), OTHERS => out_data2(23 downto 9)) when osr_sel = "01" else

-- (15 => not out_data2(27), OTHERS => out_data2(26 downto 12)) when osr_sel = "10" else

-- (15 => not out_data2(30), OTHERS => out_data2(29 downto 15));

adc2_2s <= out_data2(21 downto 6) when osr_sel = "00" else -- Changed adc2_2s to adc2

 out_data2(24 downto 9) when osr_sel = "01" else

 out_data2(27 downto 12) when osr_sel = "10" else

31

 out_data2(30 downto 15);

--osr_en <= osr_en1;

process (clkb,rst)

begin

if rst = '1' then

 cnt1 <= X"0000";

 cnt2 <= X"0000";

 osr_en1 <= '0';

 osr_en2 <= '0';

elsif clkb'event and clkb = '1' then

 if cnt1 = osr1b then

 cnt1 <= X"0000";

 osr_en1 <= '1';

 else

 cnt1 <= cnt1 + '1';

 osr_en1 <= '0';

 end if;

 if cnt2 = osr2b then

 cnt2 <= X"0000";

 osr_en2 <= '1';

 else

 cnt2 <= cnt2 + '1';

 osr_en2 <= '0';

 end if;

end if;

end process;

INTGR1: integrator

 port map (

 rst => rst,

 clk => clkb,

 mod_data => mod_data1,

 out_data => int_out1

);

INTGR2: integrator

 port map (

 rst => rst,

 clk => clkb,

 mod_data => mod_data2,

 out_data => int_out2

);

DIFF1: differentiator

 port map (

 rst => rst,

 clk => clkb,

 en => osr_en1,

 in_data => int_out1,

32

 out_data => out_data1

);

DIFF2: differentiator

 port map (

 rst => rst,

 clk => clkb,

 en => osr_en2,

 in_data => int_out2,

 out_data => out_data2

);

-- Converting 2's compliment to binary

adc1(15) <= not adc1_2s(15);

adc1(14 downto 0) <= adc1_2s(14 downto 0);

adc2(15) <= not adc2_2s(15);

adc2(14 downto 0) <= adc2_2s(14 downto 0);

end decimation_filter_arch;

--

-- Company:

-- Engineer:

--

-- Create Date: 10:11:06 06/25/2014

-- Design Name:

-- Module Name: integrator - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

library UNISIM;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_unsigned.all;

use UNISIM.VComponents.all;

entity differentiator is

port (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 en : in STD_LOGIC;

 in_data : in STD_LOGIC_VECTOR(31 downto 0);

 out_data : out STD_LOGIC_VECTOR(31 downto 0)

);

end;

33

architecture Behavioral of differentiator is

signal diff1 : STD_LOGIC_VECTOR(31 downto 0);

signal diff2 : STD_LOGIC_VECTOR(31 downto 0);

signal diff3 : STD_LOGIC_VECTOR(31 downto 0);

signal diffd1 : STD_LOGIC_VECTOR(31 downto 0);

signal diffd2 : STD_LOGIC_VECTOR(31 downto 0);

signal diffd3 : STD_LOGIC_VECTOR(31 downto 0);

signal in_data1 : STD_LOGIC_VECTOR(31 downto 0);

begin

out_data <= diff3;

diff1 <= in_data1 - diffd1;

diff2 <= diff1 - diffd2;

diff3 <= diff2 - diffd3;

process (clk,rst)

begin

if rst = '1' then

 diffd1 <= X"00000000";

 diffd2 <= X"00000000";

 diffd3 <= X"00000000";

 in_data1 <= X"00000000";

elsif clk'event and clk = '1' then

 if en = '1' then

 in_data1 <= in_data;

 diffd1 <= in_data1;

 diffd2 <= diff1;

 diffd3 <= diff2;

 end if;

end if;

end process;

end Behavioral;

--

-- Company: ORNL

-- Engineer: Miljko Bobrek

--

-- Create Date: 10:11:06 06/25/2014

-- Design Name:

-- Module Name: integrator - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

34

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

library UNISIM;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_unsigned.all;

use UNISIM.VComponents.all;

entity integrator is

port (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 mod_data : in STD_LOGIC;

 out_data : out STD_LOGIC_VECTOR(31 downto 0)

);

end;

architecture Behavioral of integrator is

signal acc1 : STD_LOGIC_VECTOR(31 downto 0);

signal acc2 : STD_LOGIC_VECTOR(31 downto 0);

signal acc3 : STD_LOGIC_VECTOR(31 downto 0);

signal mod_data1 : STD_LOGIC_VECTOR(31 downto 0);

begin

mod_data1 <= X"00000001" when mod_data = '1' else

 X"FFFFFFFF";

out_data <= acc3;

process (clk,rst)

begin

if rst = '1' then

 acc1 <= X"00000000";

 acc2 <= X"00000000";

 acc3 <= X"00000000";

elsif clk'event and clk = '1' then

 acc1 <= acc1 + mod_data1;

 acc2 <= acc2 + acc1;

 acc3 <= acc3 + acc2;

end if;

end process;

end Behavioral;

--

-- Company: ORNL

35

-- Engineer: Chuck Britton

--

-- Create Date: 10:24:43 06/02/2014

-- Design Name:

-- Module Name: reg_16 - Behavioral

-- Project Name: NEET Controller

-- Target Devices:

-- Tool versions: ISE 14.7

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

library UNISIM;

use UNISIM.VComponents.all;

entity reg_16 is

 Port (RD : in STD_LOGIC;

 RST2 : in STD_LOGIC;

 CTR_DIN : in STD_LOGIC_VECTOR (15 downto 0);

 REG_DOUT_H : out STD_LOGIC_VECTOR (7 downto 0);

 REG_DOUT_L : out STD_LOGIC_VECTOR (7 downto 0));

end reg_16;

architecture Behavioral of reg_16 is

begin

register_process: process (RST2, RD)

begin

 if (RST2 = '1') then

 REG_DOUT_H <=(others => '0');

 REG_DOUT_L <=(others => '0');

 else

 if (rising_edge (RD)) then

 REG_DOUT_H(7 downto 0) <= CTR_DIN(15 downto 8);

 REG_DOUT_L(7 downto 0) <= CTR_DIN(7 downto 0);

 end if;

 end if;

end process ;

end Behavioral;

36

Counter VHDL Code
--

-- Company: ORNL

-- Engineer: Chuck Britton

--

-- Create Date: 13:04:28 05/30/2014

-- Design Name:

-- Module Name: ctr-16-dp - Behavioral

-- Project Name: NEET Controller

-- Target Devices:

-- Tool versions: ISE 14.7

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

library UNISIM;

use UNISIM.VComponents.all;

entity ctr_16_dp is

 Port (RESET : in STD_LOGIC; -- Counter reset after each read cycle. Does not reset the output

registers.

 RESET_SYS : in STD_LOGIC; -- Overall system reset. Does reset the output

registers.

 CLK : in STD_LOGIC; -- Events to be counted input.

 RD : in STD_LOGIC; -- Transfers data from counter to registers.

 DOUT_H : out STD_LOGIC_VECTOR (7 downto 0);-- Data output from registers.

 DOUT_L : out STD_LOGIC_VECTOR (7 downto 0);-- Data output from registers.

 DINTERNAL : out STD_LOGIC_VECTOR (15 downto 0) -- Output from the counter

that goes to the buffer.

);

end ctr_16_dp;

architecture inside of ctr_16_dp is

 component ctr_16 is

 Port(

 CTR_CLK : in STD_LOGIC; -- Event inputs. Not really a clock.

 CTR_RST : in STD_LOGIC; -- Resets the output of the counter but not the

register.

 SYS_RST : in STD_LOGIC; -- Also resets the output of the counter

 CTR_DOUT: out STD_LOGIC_VECTOR (15 downto 0) -- Output of the counter.

37

);

 end component;

 component reg_16 is

 Port(

 RD : in STD_LOGIC; -- Moves input data to output.

 RST2 : in STD_LOGIC; -- Register reset.

 CTR_DIN : in STD_LOGIC_VECTOR (15 downto 0); -- Data intput from

counter data output. 15-0 MSB-LSB.

 REG_DOUT_H : out STD_LOGIC_VECTOR (7 downto 0);

 REG_DOUT_L : out STD_LOGIC_VECTOR (7 downto 0)

);

 end component;

signal DINT : STD_LOGIC_VECTOR (15 downto 0); --Internal lines from the counter output.

begin

ctr_16_inst : ctr_16

port map (

 CTR_CLK => CLK,

 CTR_RST => RESET,

 SYS_RST => RESET_SYS,

 CTR_DOUT => DINT

);

reg_16_inst : reg_16

port map (

 RD => RD,

 RST2 => RESET_SYS,

 CTR_DIN => DINT,

 REG_DOUT_H => DOUT_H,

 REG_DOUT_L => DOUT_L

);

DINTERNAL <= DINT; -- Moves the counter data to the output. Just a diagnostic.

end inside;

--

-- Company: ORNL

-- Engineer: Chuck Britton

--

-- Create Date: 10:13:48 06/02/2014

-- Design Name:

-- Module Name: ctr_16 - Behavioral

-- Project Name: NEET Controller

-- Target Devices:

-- Tool versions: ISE 14.7

-- Description:

38

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

library UNISIM;

use UNISIM.VComponents.all;

entity ctr_16 is

 Port (CTR_CLK : in STD_LOGIC;

 CTR_RST : in STD_LOGIC;

 SYS_RST : in STD_LOGIC;

 CTR_DOUT : out STD_LOGIC_VECTOR (15 downto 0)

);

end ctr_16;

architecture Behavioral of ctr_16 is

signal CTR_DOUT_INCR : STD_LOGIC_VECTOR (15 downto 0);

begin

counter_process: process (CTR_CLK, CTR_RST, SYS_RST)

begin

 if CTR_RST = '1' then

 CTR_DOUT_INCR <=(others => '0');

 elsif SYS_RST = '1' then

 CTR_DOUT_INCR <=(others => '0');

 else

 if (rising_edge (CTR_CLK)) then

 CTR_DOUT_INCR <= std_logic_vector(unsigned(CTR_DOUT_INCR) + 1);

 end if;

 end if;

end process ;

CTR_DOUT <= CTR_DOUT_INCR;

end Behavioral;

--

-- Company: ORNL

-- Engineer: Chuck Britton

39

--

-- Create Date: 10:24:43 06/02/2014

-- Design Name:

-- Module Name: reg_16 - Behavioral

-- Project Name: NEET Controller

-- Target Devices:

-- Tool versions: ISE 14.7

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

library UNISIM;

use UNISIM.VComponents.all;

entity reg_16 is

 Port (RD : in STD_LOGIC;

 RST2 : in STD_LOGIC;

 CTR_DIN : in STD_LOGIC_VECTOR (15 downto 0);

 REG_DOUT_H : out STD_LOGIC_VECTOR (7 downto 0);

 REG_DOUT_L : out STD_LOGIC_VECTOR (7 downto 0));

end reg_16;

architecture Behavioral of reg_16 is

begin

register_process: process (RST2, RD)

begin

 if (RST2 = '1') then

 REG_DOUT_H <=(others => '0');

 REG_DOUT_L <=(others => '0');

 else

 if (rising_edge (RD)) then

 REG_DOUT_H(7 downto 0) <= CTR_DIN(15 downto 8);

 REG_DOUT_L(7 downto 0) <= CTR_DIN(7 downto 0);

 end if;

 end if;

end process ;

end Behavioral;

40

Clock Generator VHDL Schematic

4
1

APPENDIX B. BOARD SCHEMATICS

Rad-Hard Board Schematic

4
2

Sensor Board Schematic

4
3

Interface Board Schematic

4
4

Interposer Board Schematic

