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EXECUTIVE SUMMARY 

Small modular reactors (SMRs) can provide the United States with a safe, sustainable, and carbon-neutral 
energy source. Because of their small size and, in many cases, simplified nuclear island configurations, it 
is expected that the total cost of power generation will be significantly less for SMRs compared to those 
of large Generation III+ light-water reactors. Advanced SMRs, which use coolants other than water as the 
primary heat transport medium, can enhance the simplicity gains by introducing several passive safety 
and control characteristics. 

The benefits of SMRs can include reduced financial risk, operational flexibility, modular construction, 
grid flexibility, and waste reduction. Achieving these benefits can lead to a new paradigm for plant 
design, construction, and operation to provide for multi-unit, multi-product stream-generating stations and 
compensate for reduced economy-of-scale savings from their smaller size. However, there are technology 
needs that must be addressed to resolve challenges to establishing this new paradigm. This condition is 
particularly true for the unique characteristics and different operating environments associated with 
advanced SMR concepts. Consequently, the US Department of Energy (DOE) Office of Nuclear Energy 
(NE) established the Advanced SMR (AdvSMR) Research and Development (R&D) Program.  

The economic factor most strongly affected by the loss of economy of scale is the day-to-day cost of plant 
operations. The controllable day-to-day costs of SMRs are expected to be dominated by operation and 
maintenance (O&M) costs, which are heavily dependent on staffing size and plant availability. Efficient, 
effective operational approaches and strategic maintenance can help contain these costs and ensure 
economic viability. 

Instrumentation, Control, and Human-Machine Interface (ICHMI) technologies provide the foundation 
for what is the equivalent of the central nervous system of a nuclear power plant. Therefore, innovative 
use of intelligent automation can have a significant impact on reducing plant staffing compared to current 
plants and controlling O&M costs based on reductions in workload realized with improved plant control 
systems. Intelligent automation in the control systems can be used to increase plant availability (and thus 
safety) by maintaining system operational parameters within safety system setting. Essentially, the 
economy of automation can serve as a compensating factor for the loss of economy of scale while 
simultaneously increasing plant availability. 

Unfortunately, highly automated, intelligent control capabilities have not been demonstrated for nuclear 
power plant operations, and there is limited experience in other application domains. Improved 
supervisory control system capabilities provide a means for the integration of control, decision, and 
diagnostics to support extensive automation. The targets for automation include operational management 
of highly complex plants, dynamic management and control of multiple product streams from a plant, and 
coordinated management of multiple modules. 

Within the ICHMI technical research area under the AdvSMR R&D program, the Supervisory Control of 
Multi-Modular SMR Plants project was established to proceed with development and demonstration of 
the architectural framework and foundational modules that are needed to facilitate the integration of 
control, decision, and diagnostics to support the necessary level of automation.  

This report builds on the architecture and decision-making methods identified and documented in the 
previous phase of the project, where an advanced automated decision-making process was incorporated 
into the supervisory control system architectural layers through the introduction of a tiered-plant systems 
approach. 
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This technical report documents the findings and progress made during the third phase of research 
activities for the AdvSMR Supervisory Control project. Specifically, the report introduces a Generalized 
Framework for Decision-Making, which can be used as a template flow sheet for automated or 
autonomous decision-making in various applications. This general framework is composed of three 
fundamental steps: (1) identify decision alternatives, (2) evaluate alternative decisions, and (3) generate a 
single solution or a single trajectory. In step 1, the module identifies possible or available courses of 
action given a deviation from nominal state. These can be due to failure or degradation of a component. In 
step 2, these options are assessed based on a predetermined metric. Finally in step 3, a single solution is 
selected for execution. The objectives and the requirements of this framework can be realized using 
various methods and analytical tools. 

Furthermore, this report illustrates the specific implementation of autonomous decision-making—based 
on the generalized decision-making framework—for a supervisory control system intended for use in an 
AdvSMR plant with multiple reactor modules. In this proposed implementation, the autonomous 
decision-making module includes two functional blocks: (1) decision-options block and (2) decision-
analysis block. The options block uses a probabilistic risk assessment (PRA) tool with real-time updates, 
which is called real-time PRA in this report. With this unique implementation, it is possible to represent a 
wide spectrum of system and component states without having to create decision logics. Fault trees and 
event trees, common tools in conventional PRA analyses, provide insight about system topology, 
whereby available options and decision trajectories can be ascertained given an abnormal event. The 
decision analysis block uses utility theory to perform the deterministic portion of decision-making. 

In order to perform autonomous decision-making, the supervisory control system must properly flag a 
component for failure or degradation in the model. This requires that the decision-making module must 
reconstruct an associated event tree, map the fault to the appropriate event tree branch, and then 
deconstruct the event tree to identify available control options. 

The present research demonstrates the probabilistic portion of autonomous decision-making through a 
simple thermal-hydraulic loop example, where changing component’s operational status leads to changes 
in the probabilistic models. The supervisory control system then identifies, evaluates, and implements 
optimum operational decisions. 

In the next phase of the project, new features and functionalities will be implemented to recognize 
complex operational scenarios, such as change of equipment status, and ability to rank and evaluate 
multiple valid options. 
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ABSTRACT 

This technical report was generated as a product of the Supervisory Control for Multi-Modular Small 
Modular Reactor (SMR) Plants project within the Instrumentation, Control and Human-Machine Interface 
technology area under the Advanced Small Modular Reactor (AdvSMR) Research and Development 
Program of the US Department of Energy. The report documents the definition of strategies, functional 
elements, and the structural architecture of a supervisory control system for multi-modular AdvSMR 
plants. This research activity advances the state of the art by incorporating real-time, probabilistic-based 
decision-making into the supervisory control system architectural layers through the introduction of a 
tiered-plant system approach. The report provides background information on the state of the art of 
automated decision-making, including the description of existing methodologies. It then presents a 
description of a generalized decision-making framework, upon which the supervisory control decision-
making algorithm is based. The probabilistic portion of automated decision-making is demonstrated 
through a simple hydraulic loop example. 
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1. INTRODUCTION 

This report documents an approach to integrating automated decision-making in to the supervisory 
control system. The reference example used in developing the communication links and computational 
capabilities of a supervisory control system shows the successful merging of the system layout, structure, 
and capabilities that were specified in previous milestone reports [1-1, 1-2, 1-3]. 

The introductory chapter provides information on how key results from previous phases of the project are 
implemented into the supervisory control system model. Chapter 2 provides background information on 
analytical tools and methods available for automated decision-making. Chapter 3 introduces a generalized 
decision-making framework, which is used as the foundation for developing the supervisory control 
system for an Advanced Small Modular Reactor (AdvSMR). Chapter 4 discusses the functional 
requirements for the supervisory control system, whereas Chapter 5 discusses the functional requirements 
for automated decision-making, and provides an implementation of the probabilistic portion of the 
decision-making process. Chapter 6 provides a demonstration of the process with an example. Future 
work, as discussed in Chapter 7, will build-out the capabilities of the supervisory control system to 
address more complex problems including components that are out of service, degraded states, 
prognostics and diagnostics, and of course, multiple reactors in a module. 

1.1 TAXONOMY FOR AUTONOMOUS DECISION-MAKING 

Automated decision-making methods can be categorized in a number of ways. One possible breakdown 
deals with treatment of time and temporal variations in system behavior. In this sense, automated 
decision-making methods can be broken into two major categories: (1) static (or off-line) decision-
making methods, and (2) dynamic (real-time or online) decision-making methods. In a sense, the static 
versus dynamic distinction is more in reference to the type of environment and system for which a 
decision is being made. 

Static methods refer to a single-pass process that is performed only once in automated decision-making—
similar to open-loop system configurations. These methods likely require an extensive search wherever 
outcomes of possible decision alternatives are rigorously analyzed. Typically occurring at the beginning 
of a complex design or a major investment decision, the decision-making process is not repeated once the 
action is taken. An obvious example is the decision support tools used for large investments, e.g., to 
identify an appropriate geological site for building a facility. These support tools have been around and 
have been used by private investors, corporations, local administrations as well as governments. The 
nature of the investment does not permit refinement of decisions once the action is taken because of the 
prohibitive cost associated with alteration of course.  Static methods are the most common decision-
making methods identified in a survey of methods used in military, government, administration, business, 
and engineering. 

Current state-of-the-art decision-making modules are static in that all possible decisions have been 
analyzed a priori. In contrast, a real-time decision module must be able to account for component failures 
and system faults while they occur. Thus, a Supervisory Control System requires a real-time response to 
evaluate plant conditions and equipment failures/faults while the plant configuration changes because of 
maintenance and outages, as they occur. 

Static decisions are simple, conventional, one-time decisions that calculate the system in equilibrium, and 
thus are time-invariant. Current state-of-the-art decision-making modules used in Integrated Control 
Systems are only static in that any possible decision for given inputs have been previously analyzed. 
However, decisions may be revisited multiple times or perhaps continuously. 
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The design process itself is a static decision-making tool. That is, the design is frozen when it is analyzed 
for various metrics of interest such as availability, reliability, and capability. 

Dynamic methods work analogous to closed-loop systems, in which the system output is continuously 
monitored; the system output and internal states are exclusively used for the next decision, or correct the 
course of action to achieve a specified objective—decisions take place in a time varying environment due 
either to the effect of previous actions of the decision maker or to exogenous events. Dynamic decisions, 
or real-time decisions, unlike static decisions, are typically complex and occur in real-time. Thus, 
dynamic decisions account for time-dependent changes in the state of the system. 

The ORNL survey identified limited engineering applications that work in such a recursive manner. An 
example of dynamic decision-making is vehicular route planning and execution. A common decision-
making tool used in this fashion is the expert system. 

Capabilities of dynamic decision-making in a supervisory control system include: 

• identify multiple failures/faults/outages simultaneously, 
• identify failures on a real-time basis, 
• identify problems for which a priori patterns have not been constructed, and 
• change or modify a decision based on newly evolving conditions. 

Alternatively, decision-making systems can be categorized in terms of treatment of uncertainties in the 
environment, as well as the inherent uncertainties associated with functioning of the system. In this sense, 
automated decision-making methods and tools are in three major categories: (1) probabilistic (or risk-
based) methods, (2) deterministic (or mechanistic) methods, and (3) risk-informed methods, which 
combine the first and the second tools. 

Nuclear power plants cannot operate outside known and understood safety limits, which place restrictions 
on the creation of new (not previously reviewed) action steps. Neither can plants be allowed to operate 
outside certified regulatory (NRC) limits. Any decision-making process, then, must recognize that limits 
for specific plant parameters are clearly set. 

All data are known beforehand for realizing a deterministic analysis—such an analysis is prefaced by 
knowing what is going to happen next with little or no uncertainty. However, for real systems, there is 
always the possibility of not achieving the design objective, i.e., to ensure that the system performs 
satisfactorily within a specified time period. Thus, system and equipment designs rely on safety margins 
to reduce the risk of adverse performance. The weakness of deterministic decision-making is that it 
cannot inherently account for the stochastic nature of system behavior, or of component failures. 

Decision-making based on a probabilistic analysis introduces the element of chance, in which variable 
states are not described by unique values, but rather by probability distributions. The ensuing risk 
assessments become essentially a decision-making process, often between competing interests, that 
provides insight as to whether the risks are, or are not, being adequately controlled. 

Risk-based decision-making is a process that organizes information regarding the risk probabilities for 
one or more unwanted outcomes into a broad, orderly structure that helps decision makers make more 
informed choices. A risk-based decision-making process uses only probabilities to select the action to be 
taken. Addressing the practical need of supervisory control is risk-informed decision-making. Risk-
informed decision-making uses risk assessments as an input (but not exclusively) to decision-making. 
Other factors, which may themselves be deterministic, are also parts of the decision-making process. 
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The supervisory control system under development will use a risk-informed decision-making process 
wherein the probabilities are coupled to characteristics such as magnitude of the response, rate of 
recovery, and secondary effects of the action. 

1.2 FOUNDATIONS DEVELOPED IN PREVIOUS REPORTS SUCCESSFULLY 
IMPLEMENTED 

Before the development of the actual supervisory control system could begin, the functional requirements, 
capabilities, and architecture of the system had to be determined. How these requirements could be 
implemented were reviewed, analyzed, and selected. A brief summary of the foundations or building 
blocks of the supervisory control system are provided below. 

1.2.1 Supervisory Control System Architecture 

Previous milestone reports on supervisory control discussed the structure of hierarchy for control. 
Because this report details the successful implementation of a supervisory control system based on the 
topology discussed in earlier reports, a summary is provided below. With this architecture, the 
supervisory control system can evaluate operational alternatives and select the best option at the single 
reactor level; future efforts will be to evaluate more complex problems, including decisions made at a 
reactor module level. 

The supervisory control system is divided into three layers for control as shown in Fig. 1. The supervisory 
control at the organization layer (layer 1) provides control for the power blocks in the coordination layer 
(layer 2) and the reactor modules in the functional layer (layer 3).  

The sample problem successfully showed the ability to probabilistically/deterministically evaluate control 
options and demonstrate the communications between the coordination layer and the functional layer. 

 
Fig. 1. Scope of this report within the supervisory control system architecture. 
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1.2.2 System-Level Functional Taxonomy 

Previous milestone reports on supervisory control discussed the system-level functional taxonomy for 
control, which is an essential step to create interface descriptions for the supervisory control system. 

The architecture for the supervisory control system divided the plant systems into three tiers based on 
their functions: 

1. Tier-I systems, 
2. Tier-II systems, and 
3. Tier-III systems. 

Tier-I systems are directly involved in the heat transport path from the reactor (heat source) to the 
ultimate heat sink (UHS). The UHS can be a river, lake, sea, or ocean, which is the typical heat sink. It 
can also be a passive heat dissipation mode that allows heat exchange to the air. Tier-I functions are those 
performed by Tier-I systems. 

The classification of Tier-I system encompasses safety systems, safety-related systems, and non-safety-
related systems. In many cases, Tier-I systems may have redundant components to perform their assigned 
functions to reduce the probability of failure. Some of these functions may be performed by diverse 
systems to minimize common-mode failures. 

Tier-II systems directly provide support functions for Tier-I systems. Similarly, Tier-II functions are those 
performed by Tier-II systems. Tier-II systems and functions have particular significance for the 
supervisory control system: Systems in this tier provide necessary actuation interfaces for event-based 
control, such as taking a pump off-line while commencing a start-up sequence for a backup pump, or 
isolating a main flow pipe using an isolation valve and establishing an auxiliary flow path. They also 
provide additional sensory information for fault diagnostics to establish a holistic status of plant condition 
based on the health status of critical components. 

Tier-III systems provide common services that supply bulk materials, energy, or data to the Tier-I and 
Tier-II systems. Tier-III functions are those performed by Tier-III systems. Examples of Tier-III systems 
include plant electrical, service water, gas supply (argon, helium, nitrogen, compressed air and instrument 
air), and auxiliary steam supply. 

The distinction between Tier-II and Tier-III systems may be obscure for certain systems. The key 
distinction of a Tier-III system lies in the fact that it does not offer any control options for the operator in 
the event of loss of availability or reduced performance. 

The modular-designed, multi-unit plants have more and stronger dependencies among systems than 
primarily single-unit plants at a common site. In fact, the design philosophy of the modular multi-unit 
plants is to form a single power plant station with respect to power generation and control. This 
philosophy is readily apparent with the single turbine-generator shared among three reactor modules for 
the ALMR PRISM power block. 

Stand-alone units at multi-unit sites commonly share Tier II (support) and Tier III (utility) systems. 
However, because of the increased sharing of systems between reactor modules, some Tier I (heat 
removal) systems may be shared at AdvSMRs. This introduces new management and control criteria at 
Layer 1 and Layer 2 of the supervisory control system. 
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As shown in previous subsections of this report, the operation and health of the Tiered systems are 
successfully captured in the fault tree/event tree (FT/ET) models. The supervisory control system 
recognized the failures in the major plant systems, identifies alternatives for maintaining operation, and 
selects the best option based on probabilistic/deterministic criteria. 

1.2.3 Graded Autonomy 

Previous milestone reports on supervisory control discussed the divisions of the integrated control system 
(ICS), the supervisory control system (SCS), and the reactor protection system (RPS); trip setpoints, and 
operator involvement. Simply stated, the supervisory control system strives to maintain plant parameters 
from reaching trip setpoints. 

The method is based on a hierarchically structured control system. At the top of the pyramid are the RPS 
setpoints. Feeding into the RPS setpoints are those conditions or variables that can be controlled to drive 
the system out of the degraded region back into the homeostatic region. These in turn lead to systems and 
components that can be controlled via local controllers. For example, a high outlet temperature from the 
reactor core can be lowered by decreasing power, reducing the coolant inlet temperature, and increasing 
secondary side flow rate. Each of these can be adjusted using plant controls. Inserting the control rods, 
increasing coolant flow, etc., are means to reduce core thermal power. 

The question to be answered is 

“What is the appropriate level of automation for an advanced SMR?” 

The exact degree of autonomy is a design decision. The Human Machine Interface (HMI) functions 
provide the operator with proper interfaces to guide and direct the control system to operate in the proper 
modes. The HMI will provide key summary information to the operators in a clear manner. Large systems 
are prone to large quantities of HMI information such as alarms that must be properly organized and 
managed. Alarm management is significant task for large hierarchal systems. Alarms must be properly 
classified to their severity and time response requirements to discriminate between long-term maintenance 
items and critical items demanding immediate attention. Fig. 2 illustrates graphically the relationship of 
alarm categories. As can be seen, as the system moves away from the nominal state space, importance of 
status indications increases from alerts to alarms.1 

If the system parameters progress into the degraded region of control, operator awareness and 
involvement increases. The three levels of operator involvement, based on the scale of degrees of 
automation [1-5], are 

1. Nominal operator range: The computer decides everything and acts autonomously, ignoring the 
operator. That is, no operator intervention; status information provided to operator. 

2. Alerts: The computer determines a complete set of action alternatives, selects one, and executes 
automatically, then necessarily informs the operator 

3. Operator alarm: The computer determines a complete set of action alternatives, selects one, and 
executes that suggestion if the operator approves 

 
                                                        
1 An alert is a notification to be watchful and is not to be considered the same priority as an alarm. An alarm indicates if and 
when the value (or rate of change value) of a measured or initiating variable is out of limits, has changed from a safe to unsafe 
condition, and/or has changed from a normal to an abnormal operating state or condition. 
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Fig. 2. Graphic description of the relationship of alarm categories. [Adopted from Ref. 1-4]  

1.3 FUTURE EFFORTS 

Future efforts in the development of the supervisory control system will involve programming the 
supervisory control system to recognize more complex systems with several control options given a 
component failure. With multiple options, the programming must allow the control system to select an 
optimal control decision. In addition, the programming must be expanded to allow the system to 
differentiate between options if a component is out of service in one of the options. 

In addition, the ability to differentiate different options based on power level will be incorporated into the 
supervisory control system. 
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2. BACKGROUND 

Decision-making can be defined as a process that results in the selection of a particular course of action 
among several alternative scenarios [2-1]. A key element of decision-making is incorporation of existing 
information—generally called a priori information—and the subsequent analysis with the purpose of 
ascertaining its validity. The analysis specifies the performance measures, which provide the basis for 
determining how a particular course of action is to be assessed. Higher-level rules can be imposed to 
constrain the model outputs to avert undesirable or unacceptable course of actions. Finally, a number of 
criteria are established to select the best option leading to the resolution of the decision process. 

The state-of-the-art of autonomous decision-making was surveyed in detail, and the results were 
published in an earlier milestone report [2-2]. Therefore, this background section is only intended to 
provide a high-level summary of this field. Further information can be found in Ref. 2-2. 

2.1 DECISION-MAKING AS A RATIONAL PROCESS 

Decision-making is one of the basic cognitive processes of human behaviors by which a preferred option 
or a course of actions is chosen from among a set of alternatives based on certain criteria [2-3, 2-4]. 
Decision theories are widely applied in a number of disciplines encompassing cognitive science, 
computer science, management science, economics, sociology, psychology, political science, statistics, 
engineering, business, and governments. 

From an engineering standpoint, decision-making is a problem-solving activity to identify and analyze 
available course of actions, and to determine the most appropriate option given the set of conditions and 
constraints. The search is essentially terminated if and when a satisfactory solution is reached. The 
solution space can vastly differ depending on the nature of the problem being solved. 

Drawing analogies of decision-making in other psychological, social and engineering fields is important 
because it helps create a framework by which a robust and consistent process can be developed. 

It is necessary to make a distinction between an automated process and autonomous process. Automated 
process refers to a predetermined action or set of actions to reach a desired state given a condition or 
change in condition. Automation is widely used in almost every facet of our lives; but it does not in fact 
involve decision-making. Automation is merely a convenience that performs certain tasks in the case of a 
triggering event without human intervention. What is implied in an automated process is that all input 
states are assumed known. Therefore, uncertainties in monitored processes, unforeseen system states, or 
deteriorating conditions are not treated directly. However, potential implications of uncertainties can be 
incorporated into control system design, such as the case in robust control. Evidently, automation implies 
that a limited and relatively small set of actions—typically identified in a decision table or logic table—is 
considered given the input states with highest impact on output states. 

However, as engineering systems and the processes got increasingly more complex with significantly 
higher degree of interconnectedness, designing automation systems that address a wide range of operating 
conditions and equipment availability becomes a challenging task. Furthermore, logic tables are usually 
constructed for nominal operating conditions, such as for 100%-capacity at steady state; hence, they are 
limited in terms of covering all possible necessary actions as a function of system status. Therefore, 
capabilities are needed to (1) diagnose a situation, (2) identify viable course of actions, and (3) determine 
the best, optimal or at least an acceptable action—or sequence of actions—to transition to a safe state. 
The process is called decision-making. 
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Autonomy is the ability of a system to determine and perform necessary tasks without human interaction. 
Decision-making capacity is the fundamental pillar of autonomy. 

Decision-making, in a broad sense, is an expansion of automation capability whereby possible system 
states are either represented as a continuum, or with a highly refined discrete space, rather than a small 
number of states. Furthermore, uncertainties associated with processes or component statuses are taken 
into account explicitly as opposed to some bounding assumptions. Clearly, using a decision table 
becomes impracticable as the number of combinations of input states prohibits a feasible implementation 
of the logic. Further discussion of this aspect of decision-making is provided in Section 4.1. 

2.2 ANALYTICAL METHODS AND TOOLS FOR DECISION-MAKING 

Autonomy and decision-making have been a topic of research and development since the arrival of 
computing machines in the second half of the 20th century. While there were academic groups developing 
various methods and applications for robotics, the interest and need for autonomous systems gained a 
more focused direction with deep space missions, where intervention for course correction from the Earth 
clearly would not be conceivable. 

This section provides a summary of methods and tools used in decision-making. A collection of 
automated decision-making examples from a number of industrial applications is provided in 
Appendix A. 

2.2.1 Statistical Decision Theory 

Statistical decision theory is concerned with the making of decisions in the presence of statistical 
knowledge, which sheds light on some of the uncertainties involved in the decision problem. These 
uncertainties can be considered to be unknown numerical quantities [2-5]. 

Classical statistics is directed towards the use of sample information, i.e., the data arising from the 
statistical investigation, in making inferences about their use. In contrast, decision theory attempts to 
combine the sample information with other relevant aspects of the problem with the intention of making 
the best decision. 

In addition to sample information, two other types of information are typically relevant. The first is 
knowledge of possible consequences of decisions. Often this knowledge can be quantified by determining 
the loss that would be incurred for each possible decision and for various possible values of uncertainties. 
The incorporation of a loss function into statistical analysis was first studies extensively by Abraham 
Wald [2-6], which also gives a comprehensive bibliography of leading theorists and practitioners of the 
field before Wald. 

The second source of non-sample information that is useful to consider is called prior information. This is 
information about uncertainty arising from sources other than statistical investigation. Generally, prior 
information comes from past experience about similar situations involving similar uncertainties—often 
called the base rate by economists. 

The approach to statistics, which formally seeks to utilize prior information, is called Bayesian analysis, 
which was named after Bayes [2-7]. Bayesian analysis and decision theory go rather naturally together, 
partly because their common goal of utilizing non-experimental sources of information, and partly 
because of deep theoretical ties. 
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Existing mathematical models of decision-making relies on set theory. The axiom of choice—an axiom of 
set theory, which states that for every indexed family of nonempty sets, there exists an indexed family of 
elements. The axiom of choice was formulated by Ernst Zermelo to formalize his proof of the well-
ordering theorem [2-8]. It is included in Zermelo-Fraenkel set theory with the axiom of choice extension, 
which is accepted as the standard form of axiomatic set theory. 

Decision 

A decision is a selected alternative from a non-empty set of alternatives based on a given set of criteria. 

Decision-making 

Decision-making is a process of a selecting a decision from available alternatives against chosen criteria 
for a given decision goal. Alternatively, decision-making can also be described as the process of 
constructing the choice criteria or choice function and associated strategies, and use them to select a 
decision from a set of possible alternatives. 

In this view, existing decision theories with special mathematical tools provide a method to identify a 
proper choice function, to come up with an optimal or acceptable decision. Evidently, different decision-
making methods and analytical tools generate different choice functions. 

2.2.2 Bayesian Decision Theory 

Bayesian decision theory can be considered as a subset of statistical decision-making. However, Bayesian 
approach is one of the most commonly referred mathematical methods that are exclusively used in 
decision-making processes in a wide range of applications. 

In Bayesian decision theory, the choice function is called a decision rule [2-5, 2-6]. A loss function is 
adopted to evaluate the consequences of an action. Using the loss function for determining possible risks, 
a choice function is derived for decision-making. 

A generic Bayesian decision process is shown in Fig. 3, which can be considered in two phases: inference 
phase and decision phase. In the inference phase, i.e. steps 1 through 4 in Fig. 3, posterior probabilities 
are obtained using the prior information (also called evidence) associated with the random processes used 
in the decision-making process. In the decision phase, possible decision alternatives are identified, and an 
optimal decision is determined based on the construct of the loss function in that the decision minimizes 
the expected loss over the posterior probabilities. 
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Fig. 3. High-level steps involved in a general decision-making process. 
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2.2.3 Expert Systems and Rule-Based Decision-Making 

Plant operating procedures (OPs) are essentially rule-based decision modules executed by human 
operators. A rule-based model 

• identifies the system state, 
• associates the state with a task, and 
• accesses stored rules to perform the task. 

Operational limits and conditions (OLCs) are developed to ensure that the plant is operated in accordance 
with plant design assumptions and intent. OLCs also include actions to be taken and limitations to be 
observed by the operating personnel [2-9]. 

Operating procedures are developed for normal operation to ensure that the plant is operated within the 
OLCs and to provide instructions for the safe conduct of all modes of normal operation, such as starting 
up, power production, shutting down, shutdown, load changes, process monitoring and fuel handling.2 
Either event-based or symptom-based procedures are developed for abnormal conditions and design basis 
accidents.3[2-10, 2-11 ] 

Thus, the rule-based actions taken by operators to maintain plant parameters within OLCs are prescribed 
by the OPs. That is, 

• The operator identifies the system state and which parameter is outside operating limits, 
• The operator associates the system state with the appropriate OP, and 
• The operator modifies the system state based on the rules in that OP. 

The limits and conditions for normal operation include limits on operating parameters, stipulations for the 
minimum amount of operable equipment and staffing levels, prescribed actions to be taken by the 
operating staff in the event of deviations from the established OLCs and the time allowed to complete 
these actions. In addition, prescribed margins are used to ensure that normal operating values and the 
established safety system settings are avoided to prevent the actuation of safety systems. 

Any action taken by the Supervisory Control System4 must not diverge from the established OPs and 
cannot compromise established OLCs. 

A means of automating the plant procedural system could be to implement the rules through decision 
tables. Decision tables, like flowcharts and if-then-else and switch-case statements, associate conditions 
with actions to perform. Each decision corresponds to a variable, relation or predicate whose possible 

                                                        
2 Alarm response procedures are developed in support of the main OPs. The procedures ensure timely and correct response to 
deviations from the limits of steady state operation and ensure that the plant parameters are maintained within specified limits. 
3 For event-based procedures, the decisions and measures to respond to accidents are made on the basis of the state of the plant in 
relation to predefined events, which are considered in the design and safety analysis report. In using the event-based approach, 
the operator must identify the specific DBA before the recovery and/or mitigating operator actions have begun. In symptom-
based procedures, the decisions for measures to respond to events are specified with respect to the symptoms and the state of 
systems of the plant (such as the values of safety parameters and critical safety functions). This allows the operator to maintain 
optimal operating characteristics without the need to be concerned with the continuing accident scenario. That is, system-based 
procedures will use parameters indicating the plant state to identify optimum recovery routes for the operator without the need for 
accident diagnosis. 
4 As a reminder, the Integrated Control System is used to maintain plant variables within operating limits and to prevent 
situations that could lead to accidents. The Supervisory Control System is used to maintain plant variables within operating limits 
given an AOO, component failure/fault, or MWe load change. Mitigating the consequences of an accident is outside the scope of 
supervisory control. 
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values are listed among the condition alternatives. Each action is a procedure or operation to be 
performed, and the entries specify whether (and in what order) the action is to be performed for the set of 
corresponding condition alternatives. Many decision tables include in their condition alternatives the 
“don’t care” symbol (a hyphen). Using “don't cares” can simplify decision tables, especially when a given 
condition has little influence on the actions to be performed. 

Decision tables vary widely in the way the condition alternatives and action entries are represented. Some 
decision tables use simple true/false values to represent the alternatives to a condition (akin to if-then-
else), other tables may use numbered alternatives (akin to switch-case), and some tables even use fuzzy 
logic or probabilistic representations for condition alternatives. In a similar way, action entries can simply 
represent whether an action is to be performed (check the actions to perform), or in more advanced 
decision tables, the sequencing of actions to perform. 

Decision tables can be, and often are, embedded within computer programs and used to drive the logic of 
the program. A simple example might be a lookup table containing a range of possible input values and a 
function pointer to the section of code to process that input. 

2.2.4 Utility Theory 

Utility theory was developed by economists to explain and predict human decision-making under risk and 
uncertainty. The fundamental assumption underlying utility theory is that the decision maker always 
chooses the alternative for which the expected value of the utility is maximized.  Built into this 
assumption is a further supposition that a code of rationality is accepted and utilized by human decision-
makers—thus making it possible to construct a mathematical representation that allows prediction of 
human behavior. 

In traditional utility theory, a utility function is defined, which represents the sensibility of people to 
levels of wealth, i.e., the dissatisfaction of loss or satisfaction of gain. Utility functions, which are 
essentially transfer functions, are separately defined for situations of loss or gain because humans have 
uniquely different responses to loss and gain. These functions are typically represented using nonlinear 
relationships as shown in Fig. 4. 

 
Fig. 4. Utility function for losses. 

According to utility theory, the risk 𝑅 is calculated using a relationship as shown in Eq. (2-1).  This 
relationship, which includes both the utility related to the interested party and a probability of occurrence, 
effectively becomes the basis for many decision-making methodologies. 

Wealth
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 𝑅 = 𝜇! 𝑆   𝜇! 𝑃  (2-1) 

 

where µS is the utility function of losses and µP is the utility function of possibilities. It becomes possible 
to compare alternative scenarios on the basis of loss, gain, and probability of occurrence using the risk 
values calculated from Eq. (2-1). 

Concepts such as non-satiation, risk aversion, expected utility maximization, fair bets, certainty 
equivalents, market elasticity, and risk aversion are incorporated in numerous adaptations of this basic 
relationship described by utility theory. For example, a variant of the utility theory approach becomes the 
basis for portfolio optimization used by economists and investors. 

The basic approach of utility theory as described above can become a foundational building block for a 
decision-making system intended for real-time supervisory control.  Given a collection of (seemingly) 
viable alternative solutions, implementation risks determined for each alternative can be compared to find 
a minimum risk solution. Independent loss and gain (utility) functions as related to plant operating 
procedures or other decision strategies can be formulated and represented as nonlinear relationships as 
depicted in Fig. 4. Therefore, utility theory can be adapted as a probability-based decision-making 
method. 

2.2.5 Multi-Attribute Utility Theory and Multi-Criteria Decision-Making 

Constructing meaningful utility functions becomes progressively more complex as utility theory is 
broadened from trivial games of change (e.g., what is the preference ratio related to losing $50 or gaining 
$100 in a game of chance) to more complex applications such as the siting of nuclear facilities.  Although 
the basic mathematical relationship of utility and probability remains the same (see Eq. (1)), an effective 
method of identifying complex utility functions and expressing them appropriately is needed. Various 
researchers have extended utility theory to a form that combines multiple attributes [2-12]. 

A typical approach to scoring of utility values is to normalize them so that dissimilar measures of 
performance, cost, and risk can be compared. For most situations, values are normalized to a 
dimensionless unity scale. Criteria are then weighted according to importance. To identify the preferred 
alternative, criteria are multiplied by each normalized alternative’s utility score. 

The typical way of analyzing decisions under uncertainty is to represent options and uncertainties as a 
decision tree and then select the option with the highest expected value. As an example, consider two 
mutually exclusive options 𝐴! and 𝐴! [2-13]. Their mono-criterion outcomes may vary due to events 1 
and 2, respectively (see Fig. 5). If option 𝐴! were implemented, event 1 could generate either outcome 
𝑜!,! (with probability 𝑝!,!) or outcome 𝑜!,!(with probability 𝑝!,!). The probabilities of outcomes should 
sum up to unity.  The option with the highest expected value (EV) should be selected. 

Usually a multi-attribute utility function is employed to aggregate partial performances for multiple 
criteria. For example, if there were three criteria (𝐶!, 𝐶! and 𝐶!) for assessing the performances of the two 
options represented in Fig. 5, each kth criterion would have an 𝑥!  attribute measuring option performance, 
an associated 𝑢! partial utility function, and a 𝑊! weight, as illustrated in Fig. 6. If an 𝐴!!! option were 
implemented, there would be three outcomes from each branch of the jth event node 𝑜!,!,!. Partial utility 
functions, 𝑈!, would convert partial performances into partial utility and an overall utility function could 
be calculated. The option with the highest expected utility should be selected. 
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Table 1 lists a sequence of steps that comprise multi-attribute decision-making. This multi-attribute utility 
method of comparing alternatives is adaptable and entirely useful as a decision-making engine for 
supervisory control. Note that this method has close similarities to the weighted method of Kepner-
Tregoe except that for the multi-attribute formulation the utility functions may be nonlinearly represented 
and a probability of occurrence is included. 

 
Fig. 5. Traditional decision analysis with decision trees. 

 
Fig. 6. Traditional decision analysis with a multi-attribute utility function. 
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Table 1.  Logical steps to making a decision 

Step Task 

1 Identify options 
2 Identify possible outcomes of each option 
3 Identify attributes with which to evaluate outcomes 
4 Score each outcome on each attribute 
5 Weight attributes 
6 Aggregate scores and weights into utilities (MAU) 
7 Identify events that determine which outcome will follow choice of an option 
8 For each event, specify a prior distribution 
9 Identify information that might modify the probabilities in Step 8 

10 If information is free or cheap, buy it (Max SEU) 
11 If information costs, find out how much 
12 Determine the conditional gain from information purchase 
13 Aggregate cost of information and gain from having it (Max SEU) 
14 Decide whether to the buy the information (Max SEU + Bayes) 
15 If information is bought, update prior probabilities (Bayes) 
16 Back to Step 11: Iterate until no new information is bought (Max SEU) 
17 Assemble the numbers output at Steps 6 and 15 
18 Calculate expected utilities (Max SEU) 
19 Choose the option with the highest expected utility (Max SEU) 

MAU: Multi-attribute utility; Max SEU: Maximum subjectively expected utility 
 

2.2.6 Analytical Hierarchy Process 

Analytic Hierarchy Process (AHP) is a method to select a preferred alternative by comparing pairs based 
on performance against criteria [2-14]. The justification for the pair-wise comparison is that humans (and 
groups of individuals) are better suited at making relative judgments between only a few items (two being 
optimal) rather than making absolute judgments involving many items. The hierarchical process 
comprises a systematic procedure that divides a problem into smaller constituent parts until a level is 
reached that permits pair-wise comparison judgments.  Results of the judgments are converted to 
quantitative scores that drive a weighted comparison matrix. Each normalized alternative score is 
multiplied by a corresponding normalized criterion weight; the results are summed for all alternatives to 
identify the preferred alternative, which will have the highest total score. 

Typically, the pair-wise comparisons are made using a nine-point scale (see Table 2). The AHP steps are 
organized as shown in Table 3 [2-15]. The structure can be predetermined and made implementable by a 
computation system rather than a human. 
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Table 2.  Example pair-wise scaling for Analytic Hierarchy Process 

Numerical Value Qualitative Value 
1 Equal importance or preference 

3 Moderate importance or preference of one over another 

5 Strong or essential importance or preference 

7 Very strong or demonstrated importance or preference 

9 Extreme importance or preference 
 

Table 3.  Analytic Hierarchy Process procedure 

Step Procedure 
1 Define problem and determine type of knowledge required 

2 Structure the decision hierarchy starting at the top with the decision goal, next structure broad perspective 
objectives through intermediate levels to the lowest level 

3 Construct pairwise comparison matrices. (Each upper level element is used to compare the elements in 
the level immediately below it.) 

4 Priorities obtained from the comparisons are employed to weigh the priorities in the level immediately 
below—this is performed for every element. For each element in the level below add its weighed values 
to obtain its overall or global priority. This process of weighing and adding is continued until the final 
priorities of the alternatives in the bottom most level are obtained. 

 

However, a limitation of the AHP approach is the use of pair-wise comparisons, which is also its benefit 
at least to human decision-making. The limitation is that extra effort is required to sub-divide the problem 
space into a hierarchy that leads to comparison pairs at the bottom. For a software-based system, in which 
the biases and limitations of human decision-making are not pertinent, more efficient methods than pair-
wise comparisons can be employed. As an example, a larger collection of alternatives can be 
simultaneously compared using weighted functions as in the Kepner-Tregoe method or other variants of 
utility theory. AHP is also less flexible than either Kepner-Tregoe or Multi-Attribute Utility Theory 
because of the expanding size of AHP matrices especially as newly discovered alternatives or criteria 
must be considered. A possible selection anomaly arises from the pair-wise method because its relative 
measurement offers no guide to the outcome of manipulations based on combining different 
measurements from a standard scale (e.g., cost in dollars). For a software based inference engine, the 
AHP approach may not offer any special benefits over other decision-making approaches. 

2.2.7 Probabilistic Risk Analysis 

However, rather than evaluating risk as an abstract or independent activity, the Supervisory Control 
System can employ probabilistic techniques coupled with decision-making modules to determine which 
control action has the greatest likelihood of averting a challenge to a safety system. Thus, similar to a 
risk-informed approach, the Supervisory Control System poses the following questions: 

• What component failure/fault or plant transient caused a change in plant variables of concern? 

• What recovery actions are available to prevent a challenge to a safety system given the current status 
of the plant, taking into consideration diagnostic/prognostic monitoring (i.e., likely future 
challenges)? 

• Which recovery action is most likely to prevent a challenge to a safety system? 
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Decision modules, based on this risk-informed approach, can dynamically provide plant control on a real-
time basis for actual plant configurations. This benefit is available because the Supervisory Control 
System estimates the likelihood of challenging a safety system given a component failure/fault or plant 
transient. 

The purpose of probabilistically informed decision-making is to provide information to the Supervisory 
Control System decision-making module to determine the best response based on unit, module, and plant 
needs. Probabilistically informed decision-making (like risk-informed decision-making) can add value to 
almost any situation. The possibility for one or more outcomes distinguishes probabilistically informed 
decision-making from more traditional decision-making. 

Most decisions require more information than solely about risk. Such additional information includes: 

• how far is the variable(s) of interest from the preferred setpoint corridor (magnitude of correction), 
and 

• how fast a correction must be made (speed of correction).5 

Many different probabilistic methods and tools are available. Choosing the appropriate method and using 
it effectively is important to successful implementation. Several factors are considered in selection of an 
appropriate tool. First, the Supervisory Control System will manage prevention of incidents through the 
ICS and its diagnostics/prognostics decision modules. Second, the response-related decision modules for 
the Supervisory Control System require real-time response to equipment failures and faults. 

Licensing of nuclear power plants has been based on a deterministic approach and the principles of 
defense-in-depth. More recently, risk-informed insights are being used to complement the deterministic 
evaluations. The PRA methodology used to identify risk-informed insights in the nuclear arena is based 
on the FT/ET analysis techniques.  

A deterministic approach asks the following questions: 

• What can go wrong? 
• What are the consequences? 

A probabilistically-informed approach adds the following question in addition to the two questions listed 
above: 

• How likely is it that something will go wrong? 

Event trees (ETs) are used to logically develop the possible outcomes of an initiating event (IE) and use 
decision trees to create the models. The initiating events for the ETs are the occurrence of a failure with 
the potential to produce an undesired consequence. For the supervisory control system, the initiating 
events are plant parameters such as temperature and pressure that exceed allowable values set to ensure 
that set points for safety-related instrumentation are initially within and remain within the technical 
specification limits. The consequences of exceeding set-point values can result in a reactor trip, power 
reduction, or challenges to safety systems. Typical set points of interest for the RPS (and thus the IEs for 
the ETs), include: 
                                                        
5 For example, changing pump speed on the secondary side will have a small, slow effect on changing the coolant temperature on 
the primary side. Similarly, changing the position of the control rods will have a large, rapid effect on changing the coolant 
temperature on the primary side. Thus, magnitude and speed can be important if the parameter of interest is close to, or moving 
rapidly toward, a reactor trip setpoint. 
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• reactor power, 
• coolant flow rate, 
• power-to-flow ratio, 
• reactor outlet temperature, 
• coolant level, and 
• turbine status. 

The branch points in the ET represent (usually) two potential outcomes when a line of assurance is 
challenged (i.e., a protective system or human action that may respond to the IE). Physical phenomena 
may also be represented as branch points.  

Fault trees (FTs) linked to each branch of an ET model how logical relationships between equipment 
failures, human errors, and external events can combine to cause specific accidents. Fault Trees within the 
supervisory control system can reflect real-time plant status by indicating equipment out of service, 
equipment failures, probability of equipment failing, and human errors. 

The accident sequences or scenarios are specific pathways through the ET from the IE to an undesired 
consequence. For the supervisory control system, the undesired consequences are challenges to safety 
systems, reactor trip, or power reduction. However, the ETs also show those sequences that, if followed, 
would lead to continued operation. Thus, the linked ET/FT model helps to identify not only key 
contributors to the event of interest, but also actions that can be taken to prevent challenges to safety 
systems. 

A “risk-informed” approach represents a philosophy whereby risk insights are considered together with 
other factors to establish requirements that better focus attention on design and operational issues 
commensurate with their importance to health and safety. A “risk-informed” approach enhances the 
traditional approach by: (a) allowing explicit consideration of a broader set of potential challenges to 
safety, (b) providing a logical means for prioritizing these challenges based on risk significance, operating 
experience, and/or engineering judgment, (c) facilitating consideration of a broader set of resources to 
defend against these challenges, (d) explicitly identifying and quantifying sources of uncertainty in the 
analysis, and (e) leading to better decision-making by providing a means to test the sensitivity of the 
results to key assumptions. 

The use of a probabilistically informed approach in a supervisory control system allows probabilistic 
insights to be coupled with other factors of concern such as magnitude from nominal set point, speed of 
parameter adjustment needed, etc. For example, a high outlet temperature from the reactor core can be 
lowered by decreasing power, reducing the coolant inlet temperature, or increasing secondary side flow 
rate. Each of these can be adjusted using plant controls. Inserting the control rods and increasing coolant 
flow are means to reduce core thermal power. Each control option has a different probability of success 
and can be linked to magnitude, speed, and other metrics of interest. That is, inserting the control rods 
will have a large, rapid effect on the output temperature while changing pump speed on a feedwater pump 
will have a small, slow effect. 

A decision tree, like an event tree, is a decision support tool that uses a tree-like graph or model of 
decisions and their possible consequences. Both decision and event trees are tools that are available to the 
decision maker, however, event trees allow the use of underlying fault trees to capture structure, system, 
and component failures and human errors. 

Decision trees (and event trees) have several benefits such as the following: 

• Are simple to understand and interpret 
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• Have value even with little hard data. Important insights can be generated based on experts describing 
a situation (its alternatives, probabilities, and costs) and their preferences for outcomes 

• Possible scenarios can be added 

• Worst, best and expected values can be determined for different scenarios 

• Can be combined with other decision techniques. 

A disadvantage of decision trees/event trees is that calculations can get very complex, particularly if many 
values are uncertain and/or if many outcomes are linked. 

2.2.8 Discrete Event Systems 

Many man-made devices and systems and some natural systems demonstrate only discrete values or 
outcomes. Man-made systems are governed by operational rules designed by humans. For example, man-
made systems are often considered to be either on or off, enabled or disabled, running or stopped and so 
forth. These types of systems are best described as discrete event systems. Such discrete event systems are 
not easily analyzed and designed using conventional mathematics and engineering from time-driven 
processes (as represented by differential equations).  Examples include transportation traffic systems, 
computer systems such as interrupts, communication systems, manufacturing processes, games, queuing 
systems and many man-made systems. 

Discrete event dynamic systems (DEDS) or discrete event systems (DES) satisfy the properties (1) that 
state-space is a discrete set and (2) the state-transition mechanism is event-driven. Time in such systems 
is not the appropriate independent variable. Conventional differential equation approaches such as 
modern control theory do not apply to DES. They are described as [2-16]: 

A class of dynamic systems characterized as synchronous or asynchronous occurrences 
of various discrete-valued events. Values are described by discrete values and transitions 
only occur at discrete points in time. Events are considered to occur instantaneously with 
some transition of one discrete value to another discrete value. These may be considered 
as time-driven or synchronous systems or event-drive or asynchronous systems. 

Alternatively, a formal description of this class of systems can be defined as [2-17]: 

A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its state 
evolution depends entirely on the occurrence of asynchronous discrete events over time. 

Modeling of DES behavior can include untimed, time or stochastic approaches. Automata and Petri Net 
formulations are traditional methods used for modeling DES behavior also using a state-transition 
structure. 

Systems that combine DES with other dynamics such as time-driven (continuous-time or discrete-time) 
are called hybrid systems. Hybrid systems are widely demonstrated in many industries that combine 
process control with control logic in the hardware and software used to operate processes and machinery. 
The control logic may interact with a human operator, determine the proper operating mode, determine 
sequence steps, and also interact with the process control. Specific examples would include processing 
and containerizing food products. The empty containers go through a queuing process, which is an event-
based system, and are filled using a time-driven process control system. 
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DES can be modeled and studied at three levels of abstraction: languages, timed languages, and stochastic 
timed languages. The term language is utilized due to ability to describe a set of events as an alphabet and 
the finite sequences of events as words or as combination of alphabet combinations. The language 
approach describes the logical behavior and all possible set combinations. Timed languages imply a 
deterministic behavior with a defined sequence of events with timing information. Stochastic timed 
languages include timed language information and additional statistical information, which makes it the 
most detailed language description type. 

Modeling of DES is commonly performed using an automata approach or a petri net approach. These 
approaches use a state-transition structure to describe the possible events in each state of the system. 
These two approaches differ in how they represent state information. An automaton is a device that is 
capable of representing a language according to well-defined rules and is commonly represented using a 
state-transition diagram with a defined set of states, initial states, events, and state-transition functions. 

An example untimed sequence or language is 𝑒!, 𝑒!, 𝑒!, 𝑒!  describing a specific sequence based on 
the system behavior or logic. An example timed sequence or timed language is 
𝑒!, 𝑡! , 𝑒!, 𝑡!    𝑒!, 𝑡!    𝑒!, 𝑡!  where event 𝑒! occurs at time 𝑡 = 𝑡!. 

The choice of one of the three levels of abstraction (languages, timed languages, and stochastic timed 
languages) depends on the system and the objectives of the analysis. If the analysis is interested in the 
logical behavior as the precise ordering of events or what states are valid or invalid, etc. the simple 
language approach is appropriate. In control system applications a set of paths may need to be determined 
to achieve a desired state or set of stats. The language approach can be used to pre-determine the desired 
set of paths in the logical behavior to achieve such desired states. 

In some applications the timed language approach can be important to understand the timing of events, 
event transitions, and event paths. This approach can answer questions such as: “How soon can a 
particular state are reached given the current state?” or “Given a particular state, how soon can an 
undesirable state be reached?” The timed automata approach requires specific logical and timing 
information from a timed language description to answer questions about response time or throughput 
time. In other applications, the stochastic behavior must be included using probabilistic models in the 
stochastic timed languages abstraction. The language-based approach to discrete event modeling and 
analysis offers many benefits for understanding DES. A summary of the level of abstraction is shown in 
Table 4. 

Table 4.  Summary of DES language abstraction types.  

Language	
  Abstraction	
   Behavioral	
  Aspect	
  

Language	
   • Logical relationships 
• Possible states 
• Conditions or events to cause state transitions 
• Path to reach a desired or undesired state 

Timed	
  Language	
   • Time duration of a given state 
• Time to reach a desirable or undesirable state 

Stochastic	
  Timed	
  
Language	
  

• Probability of a given state 
• Probability of a path to a desirable or undesirable state 

Operations can be performed on these language sets using typical set operations such as union, 
intersection, difference, and complement. Other operations include concatenation, pre-fix closure, kleene 
closure, and post-language [2-17]. Projection operations are also performed on language sets. 
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A state transition automaton with internal states and outputs is called a Moore automaton (or Moore 
machine). A state transition automaton with internal states, inputs, and outputs is called a Mealy 
automaton (or Mealy machine). These automatons, which are well described in the literature, can be 
represented as an event set, 𝐸 = 𝑎, 𝑏,𝑔 , and a state set, 𝑋 = 𝑥, 𝑦, 𝑧 . 

An automaton that reaches a state, which will not permit any further events to execute is called a deadlock 
condition. This condition is also describing as a “blocked” condition because the system will enter the 
deadlock state without completing the task at hand. If a system contains a set of states with a local 
sequence or cycle but do not have a transition to exit the local sequence that situation is described as a 
livelock condition. In a livelock condition, the system is not deadlocked but is cycling between states and 
cannot exit the particular cycle. These potential locked conditions lead to the topic of safety properties, 
which deal with the subject of reachability of undesirable states and means to avoid blocked or livelock 
conditions. 

An automaton can include non-deterministic behavior also. A nondeterministic automaton may 
demonstrate that for some conditions the state transition may have multiple outcomes. The primary source 
of non-determinism in a physical DES is limited sensory information, which will result in unobservable 
events that drive varying state transition outcomes [2-16 and 2-17]. 

A Petri net is a tool that treats manipulation of events according to specific rules. Often Petri net systems 
are conveniently described graphically as Petri net graphs (Fig. 7). An automaton can always be 
represented as a Petri net system. A Petri net system is defined by its graph or structure, the initial state, 
the set of marked states, and a state transition function.  The graph contains places, transitions, and 
relationships to describe the system behavior. The state transition mechanism in Petri nets is provided 
when a transition condition is enabled and results in changing the state of the Petri net [2-17]. 

 
Fig. 7. An example Petri Net state transition diagram. 
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3. AUTONOMOUS DECISION-MAKING FRAMEWORK 
FOR SUPERVISORY CONTROL 

Automation refers to the use of computing resources to make decisions, and implement a structured 
decision-making process without limited or no human intervention. The overriding goal of automation is 
to replace or supplement human decision-makers with reconfigurable decision-making modules that can 
perform a given set of tasks reliably. 

The concept of automated decision-making is deceptively simple and intriguingly complex. From a 
narrow perspective, a decision is a choice among defined alternative courses of action. From a broader 
perspective, a decision involves the process of gathering and evaluating information about a situation; 
identifying a need for a decision; identifying or defining relevant alternative courses of action; choosing 
the best, the most appropriate or the optimum action; and then applying the solution and choice in the 
situation [3-1]. 

Generation of consistent decisions requires that a structured, coherent process be defined, which 
immediately leads to a decision-making framework. 

This section introduces a generalized framework for autonomous decision-making that can be adopted 
and tailored to specific requirements for various applications. A specific implementation of this general 
framework is then provided for the proposed supervisory control system. This implementation is 
consistent with the overall system architecture defined in Ref. 3-2. Furthermore, this section introduces 
key performance indicators to assess the status or condition of the supervisory control system. 

3.1 A GENERALIZED FRAMEWORK FOR AUTONOMOUS DECISION-MAKING 

Decision-making is the process of identifying and choosing alternatives based on an agreed-upon set of 
metrics and preferences of the decision maker. Indirectly implied in decision-making is that there are 
alternative options to be considered. Each option offers a different approach or path to move from a given 
state or condition to a desired state or condition. 

Ultimately, the objective of a decision-making process is to consider uncertainties, evaluate options, and 
finally assess potential consequences of a particular decision. Hence, it is quite possible that evaluation 
and assessment steps require consideration of multiple attributes of a system, components or elements of 
a system, or their future states, especially for large-scale complex systems, such as a nuclear power plant. 

Baker et al. [3-3] suggested that a decision process involves eight logical steps: 

1. Define problem, 
2. Determine requirements, 
3. Establish goals, 
4. Identify alternatives, 
5. Develop evaluation criteria, 
6. Select a decision-making tool, 
7. Select a preferred alternative, and 
8. Validate solution. 

While there are minor differences in the literature about the necessary and sufficient steps for decision-
making, the decision-making process for the supervisory control system is based on three fundamental 
elements: 
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1. Identification—Identify decision alternatives 

2. Evaluation—Evaluate alternative decisions 

3. Resolution—Generate a single solution or a single trajectory, i.e., a collection of steps to finalize an 
action. 

These elements, as illustrated in Fig. 8, define the generalized autonomous decision-making framework. 

Contrasting with the steps identified in Ref. 3-3, the latter assumes that key steps, such as defining the 
problem, determining the requirements or developing evaluation criteria, are accomplished a priori, and 
are known parameters to the decision-making process. 

 
Fig. 8. Elements of decision-making considered within the Generalized Framework for Autonomous 

Decision-Making. 

The steps shown in Fig. 8 offers a generalized framework within which various decision-making methods 
can be implemented, and which can be applied for a variety of engineering problems. 

3.2 PROPOSED AUTONOMOUS DECISION-MAKING FRAMEWORK FOR SUPERVISORY 
CONTROL 

The generalized framework provides a conceptual structure that only includes abstract rules, elements, 
and relationships between them. Adoption of this framework for application to a supervisory control 
system requires that a specific implementation be created that defines how the individual objectives will 
be accomplished. This section provides a functional definition and some generic specifications for the 
proposed autonomous decision-making framework for a supervisory control system. Details of this 
implementation are given Chapter 5. Functionality of the architecture and its partial implementation are 
demonstrated in Chapter 6. 

It should be noted that a fully specified control system is not within the scope of this work, nor would it 
be possible without detailed specification of entire plant systems. However, this study intends to provide 
clear guidance as to how autonomous decision-making can be accomplished—with consideration of 
applicable rules, regulations, guidance and operating experience. 

3.2.1 High-Level Description of the Supervisory Control System 

The supervisory control system will comply with the following high-level requirements: 

1. The supervisory control system shall be implemented as a non-safety-related system. 

Identify
Decision

Alternatives

Evaluate
Alternative
Decisions

Generate
a Single
Solution
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2. The supervisory control system shall follow all the applicable rules and regulations regarding the 
separation and isolation of safety- and non-safety-related systems. 

3. The supervisory control system shall not perform any safety-related function. 

4. The supervisory control system shall not interfere with the functionality and operation of any safety 
system. 

5. The supervisory control system shall not override operator directives. 

These requirements are enforced to define the domain of operation of the supervisory control system. 
Implementing the supervisory control system as a non-safety-related system avoids undue regulatory 
burden on the vendor and the owner—especially considering the complexity of the system. 

The fundamental assumption that goes into the design of the supervisory control system is that, if the 
supervisory control system fails to act during a transient, the safety system will eventually and 
independently initiate and bring the plant to a nominal or acceptable shutdown state. 

3.2.2 Definition of Terms 

The following terms are used throughout the report. A brief terminology is provided below to avoid 
misinterpretation, and maintain consistency. 

Risk 

In safety analysis, risk is defined as the product of frequency and consequence. However, in the context of 
the proposed supervisory control architecture and the autonomous decision-making framework, risk is 
defined as the probability of challenging a safety system, or probability of safety actuation. 

Controllable Domain 

A supervisory control system is required to support human decision-making under normal operating 
conditions, and make autonomous decisions. All of the possible states that the plant can assume constitute 
the controllable domain. The boundary of the controllable domain is primarily defined by the trip 
setpoints of the reactor protection system or the engineered safeguards features actuation system. 

This domain is illustrated in light blue and orange colors in Fig. 9. 

Challenge Surface 

The surface of the controllable domain is called the challenge surface, beyond which a safety system 
actuation is warranted by the design of the plant. 

The challenge surface is illustrated with the red line in Fig. 9. 

Uncontrollable Domain 

This is the domain outside the challenge surface of the plant state space. 

The uncontrollable domain is illustrated in fading purple color in Fig. 9. 
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Probability of Departure from Controllable Domain 

This metric is an indication of proximity of the plant state to the challenge surface. While there might be 
numerous ways to define this probability metric, it can be simply defined as a distance function between 
the current plant state and the closest point on the challenge surface. The closer the plant gets to the 
surface, the higher the probability of protection system actuation. Higher order moments of the states can 
also be considered, such as the rate of approach. 

 
Fig. 9. Illustration of a conceptual state space formed by 

arbitrary state variables 𝑥! and 𝑥! for supervisory control. 

3.2.3 Proposed Methods and Tools for Autonomous Decision-Making in Supervisory Control 
System 

The proposed architecture for autonomous decision-making implements the general framework using two 
methods: (1) the probabilistic portion is implemented using the probabilistic risk analysis to identify 
decision options, and (2) the deterministic portion is implemented using utility theory to evaluate the 
alternatives identified by the probabilistic portion and to generate a single solution—i.e., the resolution of 
the autonomous decision-making process. This is shown in Fig. 10. The cost function for finding the 
optimal or desired decision is determined by the evaluation metric. Additional constraints, such as 
regulatory rules and operating guidelines, can be enforced in the deterministic evaluation phase. 

Details of the implementation are presented in Chapter 5. 
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Fig. 10. The proposed framework for autonomous decision-making adopted for the supervisory control 

system. 
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4. FUNCTIONAL DESCRIPTION OF SUPERVISORY CONTROL SYSTEM 

An important motivation underlying the need for a supervisory control system for AdvSMRs is to 
increase plant automation level to reduce operator workload. For plants with multiple nuclear reactors 
comprising a single power generation system, the predisposition is to staff the plant at levels based on 
reactor module quantity versus total power output. Staffing at levels based on reactor module quantities 
results in prohibitive operating costs for AdvSMR concepts and does not necessarily improve safety. It is 
conceivable that operator workload could become overwhelming. Therefore, supervisory control research 
for AdvSMR concepts can offer increased levels of automation with improved desired reliability and 
availability, and reduced operating costs. 

The supervisory control system is implemented as a non-safety-related system. It will have minimal 
mono-directional interactions with the reactor protection system. All safety systems, including the reactor 
protection system and the interlock systems, will be completely independent and isolated from the regular 
control and the supervisory control systems. 

4.1 OBJECTIVES 

The main objective of the supervisory control system is to increase the level of automation and to reduce 
the cognitive load on reactor operators by performing routine operator actions executed primarily during 
normal operations, and some actions performed during startup and shutdown. In addition to routine 
operator actions, the supervisory control system will intervene during off-normal conditions such as 
component failures or unexpected transients. The supervisory control system is not intended to replace the 
operator as the key decision node for safety-related actions, nor is it to support or complement protective 
actions performed by reactor protection or engineered safety features actuation systems. This objective 
and how it applies to future nuclear power plant concepts such as the AdvSMR is further defined in detail 
in Ref. 4-1. 

4.2 SUPERVISORY CONTROL SYSTEM ARCHITECTURE 

The proposed supervisory control system architecture from Ref. 4-1 is provided in Fig. 11. The figure 
consists of a hierarchical structure with three layers of abstraction going from organization to 
coordination and execution layer where low-level actions are performed based on the commands or 
directions from higher layers. 

The master supervisory control system (MSCS) is responsible for coordination of system-level functions, 
that is, power and load allocation between reactor, power conversion, and process heat plants 
(coordination layer). Each local supervisory control system (LSCS) is responsible for functions within its 
assigned system (local supervision layer). LSCS monitors and analyzes processes and events within the 
system, and transmits module-level status information to the MSCS. It also analyzes fault indications 
from diagnostics and prognostics modules, and relays that information to the MSCS as module health 
status. 

In the supervisory control architecture, the level of decision-making and supervision increases as one goes 
up the hierarchy shown in Fig. 11. In contrast, the level of activity and time urgency increases as one goes 
down the hierarchy as illustrated in Fig. 12. 

In this report, real time is defined as being contemporaneous with the process and event control. 
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Fig. 12. Time urgency and functional proximity to process devices for RTEL, LSCS and MSCS. 

Sensors, actuators, and controllers are at the real-time execution layer (RTEL) within their functional 
domain. Control elements may be as simple as proportional-integral-derivative (PID) controllers or may 
employ more sophisticated control algorithms such as model-predictive control, which is a design 
decision. The controllers are governed by the LSCS, including online adjustment of performance 
parameters. 

To be useful, the supervisory control system must have options to be considered and evaluated on a real-
time basis. Current practice is to have decision choices to be determined a priori and the decisions made 
using a “look-up” table. As the number of components increases, the use of such decision tables becomes 
intractable. For example, a system with 1000 components would require that all 1000 state changes be 
evaluated; combinations of two state changes, which provide that ability to track maintenance issues, 
require that 449,500 combinations of state changes be evaluated. The supervisory control system 
overcomes this insurmountable problem of a priori decision-making tables by using probabilistic risk 
assessment (PRA) techniques that can be updated to reflect actual operating conditions on a real-time 
basis. It should be noted that “risk” in this project scope is not the same as in the conventional PRA 
applications, where risk implies a potential release of radioactive material. For the supervisory control 
system application, the analogous risk metric is safety system actuation, where it is assumed that once 
actuated it will bring the plant to a safe state. While the underlying mathematics is the same for both 
applications, implications are significantly different. 

The functional architecture of the supervisory control system and the proposed implementation of the 
autonomous decision-making framework are shown in Fig. 13. 
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4.3 FUNCTIONAL REQUIREMENTS FOR SUPERVISORY CONTROL 

Functional requirements of a supervisory controller for multi-modular AdvSMRs are derived from a 
number of high-level rules and objectives to fulfill a multitude of requirements including safety, 
reliability, availability, maintainability, and performance with varying priority and weight. In a nuclear 
reactor and plant design, safety requirements always take precedence. The list of requirements can be 
expanded based on input from stakeholders. As stated earlier, the principal objective of incorporating a 
supervisory controller is to render the SMR business plan economically viable. 

The set of functional requirements for the supervisory control system (high-level) as well as its individual 
modules was presented in Ref. 4-2. A summary list of requirements is provided in Appendix A. 

4.4 REFERENCES 

4-1.  S. Cetiner, D. Cole, D. Fugate, R. Kisner, M. Kristufek, A. Melin, M. Muhlheim, N. Rao, R. Wood, 
Definition of Architectural Structure for Supervisory Control System of Advanced Small Modular 
Reactors, SMR/ICHMI/ORNL/TR-2013/04, August 2013.	
  

4-2.  S. Cetiner, D. Fugate, R. Kisner, M. Muhlheim, Revised Functional Description of Supervisory 
Control for Advanced Small Modular Reactor, ORNL/LTR-2014/213 (SMR/ICHMI/ORNL/TR-
2014/04), Oak Ridge National Laboratory, Oak Ridge, TN, June 2014.	
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5. IMPLEMENTATION OF AUTOMATED DECISION-MAKING 

Decision-making is as a process that generates a resulting decision based on collecting information, 
evaluating the available alternatives, and selecting the preferred alternative. Every decision-making 
process produces a final choice. The output of the decision-making process is generally an instruction that 
will be executed and turned into an action. 

Based on plant operating status, component health, and equipment failures, the decision-making 
capabilities for the supervisory control system will use probabilistic analyses to identify a set of control 
options that, if taken, should prevent the actuation of the protection system. To determine the preferred 
option to be taken, the supervisory control system assesses each of the probabilistically determined 
operational alternatives against a set of deterministic criteria. Once the control option is selected, the 
supervisory control system transmits the necessary information to the controller of the component of 
interest for actuation and informs the operator of action taken or requests permission to take action. 

5.1 PROBABILISTIC PORTION 

There are many different methods and tools that can be used to perform probabilistic assessments; 
however, choosing the appropriate method is key to any successful program. The first step is to identify 
the functional requirements of the probabilistic method. After the requirements are identified, the 
analytical method and tools can be selected and any necessary automation tools developed. The 
completion of this stage signifies the transition from a theoretical problem to an application of the 
technology developed. 

5.1.1 Functionality 

To meet the objectives for the supervisory control system, the following requirements of the probabilistic 
tools will allow winnowing the selection of probabilistic techniques to be considered. Specifically, the 
probabilistic techniques must be able to 

• address all component states (i.e., failed, out of service, degraded, operating), 

• recognize changes in status for one or more components (up to all components) simultaneously, 

• recognize changes in component status on a real-time basis (e.g., working to failed), 

• recognize a change in probability of failure (e.g., 𝑝   =   𝜆𝑡 to 𝑝   =   1.0), and 

• calculate different metrics of interest [i.e., measure the appropriate metric for the type of analysis 
being performed, such as core damage frequency (CDF), challenge to safety system setting, etc.]. 

Section 2 provides a review of the methods used in different applications of decision-making modules. 
Because linked FT/ET probabilistic analysis techniques can be used to evaluate the change of state for a 
component to be assessed (e.g., working to failed) but also allow combinations of component states to be 
evaluated simultaneously (e.g., component A fails, component B out of service or OOS), this technique 
was chosen for the decision module to be implemented in the supervisory control system. 

Fault tree analysis (FTA) is an analysis technique that allows an analyst to systematically examine 
combinations of failures that are required to achieve an event defined as the “top event.” (It appears at the 
top of the Fault Tree.) A top event may be any event to be investigated, such as loss of power or system 
failure. An FTA provides all the combinations of conditions that can bring about the top event and models 
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logical relationships between combinations of equipment failures and human errors. When incorporated 
within the supervisory control system, the FT models must be able to account for normal operation, 
component failures, degraded components, and components being out of service. Thus, the current status 
of components and their failure probabilities (𝑝   =   𝜆𝑡 or 𝑝 = 1.0)6 must be captured by the supervisory 
control system and must be able to be modified to reflect their operating status (i.e., from working to 
failed) on a real-time basis. The FT must also be able to reflect the degraded status of components, aging 
effects, or uncertainties in passive systems (𝑝   =   𝜆!𝑡).7 

Event tree analysis (ETA) is a technique that logically develops the possible outcomes of an IE and 
provides a systematic framework to identify and qualitatively or quantitatively evaluate accident 
sequences. ETA is particularly useful for quantifying the frequencies of accident sequences where many 
events can affect the potential outcome of an accident. An ET begins with an initiating event followed by 
success or failure for important events that determine the accident sequence. Each path through the ET is 
an accident sequence. The accident sequences appear at the right side of the ET. The ET is quantified by a 
rate for the IE and success/failure probabilities for the various branches. In many probabilistic analyses, 
FTs are linked to ETs. Fault Tree Analysis can be used to quantify the probabilities for the ET branch 
points. Multiplying the initiator rates and branch probabilities together results in a rate for each accident 
sequence [5-1].  

In most ETs, the success path is upward and the failure path is downward at each ET branch point. 
Although modeled the same in conventional ET models, the supervisory control system is focused on the 
success paths of the ETs. Contributors to the path (or sequence) of avoiding an accident include elements 
such as the successful implementation of changing the status of a component (e.g., pump started, valve 
opened) such that, in terms of the supervisory control system, operation continues.  

For example, for a licensing basis event, the IE could be LOOP and following the failure paths in the last 
ET branch with CDF as the risk metric. For a supervisory control system, the IE could be “temperature 
too high” and following the success paths in the last ET branch with “trip avoidance” as the risk metric. 

Within the control space, after an alarm or alert occurs, the operators acknowledge the alarm/alert and, 
based on procedures, take some action. The timescale for action by the supervisory control system must 
be comparable to that for operators. This timescale is referred to here as a “real-time” requirement.8 
Because of this real-time requirement, decision tables based on FT/ET analyses were evaluated as a 
method to probabilistically inform the supervisory control system.  

Incorporating probabilistic analyses into a control system through the use of decision tables9 is not new or 
unique. However, the use of decision tables requires that the probabilistic analyses be performed a priori 

                                                        
6 𝜆 is a component’s failure rate (1/hr). 
7 𝜆′ is a modified failure rate based on a components degraded status, aging effects, etc. (1/hr). 
8 The timescale for operator actions is less than the transit time of coolant in a primary cooling system. 
9 Decision tables require the actions for each of the conditions identified to be determined a priori. For example, the decision 
table for a printer troubleshooter shown below shows that if the printer does not print AND a red light is not flashing AND the 
printer is recognized (column 4 under Rules), the printer should be checked for a paper jam. Note that each condition must be 
evaluated individually to identify the actions to be taken. One benefit of using decision tables is that once the table is completed, 
any actions to be taken by the system can be implemented in real time. 
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and the results input into a decision table (aka “look-up” table). For example, a new EDG control system 
used risk-informed decision-making during the design process [5-2]. Probabilistic assessments were used 
to identify potentially critical situations and access the control system's response, allowing adjustments to 
the control logic to be made. These analyses were run repeatedly as the system and software was 
developed. Through the use of decision tables, the results from the probabilistic assessments for the EDG 
control system were accessed on a real-time basis; however, the probabilistic assessments themselves are 
fixed (i.e., static). 

Decision tables are commonly used for real-time applications; however, for the use of decision tables to 
be practical, the number of possible combinations of component states must be realistic. Problematic in 
the use of decision tables is that all possible conditions (i.e., component failures) must be determined a 
priori. If only single-event failures are considered, the typically small number of actions (i.e., effects) can 
be identified and evaluated. However, combinations of equipment conditions, such as out of service for 
maintenance, failed state, degraded state, etc., should be included to more accurately reflect 
system/component status and operating conditions. The problem of more accurately accounting for the 
operating status of equipment is that the number of component combinations increases exponentially, as 
shown by the formula 

𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !

   

 
where 𝑛 is the number of components and 𝑘 is the number of possible combinations of those components. 

As an example of the difficulty in using a decision table, consider that the AP600 PRA modeled 
1341component failures. This translates into 1341 conditions with each condition requiring an action to 
be predetermined. Modeling components out of service, in degraded states, etc., and then assessing the 
actions to be taken given a component failure makes the use of a decision table impractical. For the 
AP600 PRA, a single component failure with one component out of service for maintenance would 
require ~900,000 rules in the decision table, each of which must be individually evaluated [i.e., 
!"#!
!   possible combinations]. Incorporating the plant status (e.g., shutdown, refueling, low power to full 

power and selected power levels in between), which must also be assessed a priori, into a decision table is 
a direct multiplier for the number of 𝑛𝑘 combinations. Thus, although decision tables are typically used 
in control systems, the accurate knowledge of the system configuration precludes their use. 

The linked FT/ET models can provide the accurate knowledge of the system configuration. However, 
because of the real-time requirement of the supervisory control system, the probabilistic analysis using 
coupled FT/ET must be able to be properly reconfigured to reflect changes in component states 

                                                                                                                                                                                   
 

Printer troubleshooter 
  Rules 

Conditions Printer does not print Y Y Y Y N N N N 
A red light is flashing Y Y N N Y Y N N 
Printer is unrecognized Y N Y N Y N Y N 

Actions Check the power cable   X      
Check the printer-computer cable X  X      
Ensure printer software is installed X  X  X  X  
Check/replace ink X X   X X   
Check for paper jam  X  X     

Decision table, from Wikipedia, http://en.wikipedia.org/wiki/Decision_table 
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automatically and in real time. That is, the functionality of implementing a probabilistic analysis tool into 
a supervisory control system is that all input, calculations, and output must be automatic and autonomous. 
Thus, the application of the probabilistic models into the supervisory control system requires a direct link 
between the supervisory control system and the probabilistic models. If this communication pathway can 
be established, linked FT/ET models will meet the functional requirements of the supervisory control 
system. Thus, although probabilistic assessments are typically static evaluations used to provide a priori 
results, a real-time assessment capability would provide analysis capabilities and insights not previously 
available. 

The supervisory control system as configured using FT/ET models uses the power derived from the 
probabilistic tools to determine the likelihood of success for various control options for the current plant 
configuration. The results from the probabilistic evaluation are populated in a relational database and the 
supervisory control system reads the results to identify the control options. 

5.1.2 Application 

After determining that the linked FT/ET methodology with the results available though a relational 
database was the appropriate tool for meeting the functional requirements, the next step was to select a 
software package that would present the ability to access the code and probabilistic models through its 
dynamic link library (dll). Reliability Workbench (RWB) is a suite of reliability, safety, and 
maintainability software developed by Isograph that was chosen as the probabilistic tool to be used [5-3]. 
The use of the dll allows all of the model parameters, FT and ET topologies, and PRA-related analysis 
functions to be available without having to open the RWB application. That is, all modeling data can be 
accessed and changed through a relational database. This results in reducing the overhead associated with 
the amount of time required for the supervisory control system to identify and choose operational 
alternatives. 

The RWB software package is verified and validated and is compliant with ISO 61508, “Safety 
Instrumented Systems” standard. This aspect of the software package gives confidence and assurance 
about the results of the reliability analysis, as it is a tool commonly used by industries that deal with 
safety-critical systems. 

By communication to the PRA model through the dll, the supervisory control system will be able to 
account for potentially rapidly changing plant conditions during transients or accidents. Specifically, the 
requirements of the Supervisory Control System, as shown in Fig. 14, are to 

1. recognize the change in state of a component (e.g., working or failed), (ITEM 1) 
2. transmit the change of state to the RWB model (ITEMS 2, 3), 
3. automatically adjust and execute the RWB models to reflect these changes, and 
4. receive the analysis results from the RWB model (ITEM 4). 

After the updated analysis results are transmitted back to the supervisory control system, the supervisory 
control system, through the use of a relational database, will 

• automatically and autonomously identify operational alternatives ranked by the probability of 
successfully avoiding the actuation of a safety system setpoint, 

• if more than one option is identified, select the preferred option based on deterministic criteria, 

• transmit an actuation signal to the component of interest, and 

• inform the operator of action taken or request permission to take action. 
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Fig. 14. Graphical representation of the probabilistically informed 

decision-making process. 

Because the linked FT/ET calculates the metrics of interest after a (any) component fails, the number of 
degraded components or components out of service has no effect on the ability to calculate the metrics of 
interest. This is because the linked FT/ET avoids the use of a priori decision tables and the limitations 
associated with them. A component failure (or injected fault) is recognized by the control application 
program. This failure information is transmitted to the probabilistic model from the supervisory control 
system. Once the failure occurs, no user interface is required and the results from the probabilistic 
assessment are transmitted back to the supervisory control system. 

Because the results from the FT/ET models are written to a relational database, the supervisory control 
system reads a self-generated results table that is created in real time. Thus, any change in system 
configuration or operating status is accurately modeled. 

In summary, capabilities of real-time decision-making using linked FT/ET methodology with the results 
available through a relational database include the ability to 

• identify multiple component failures/faults/outages simultaneously, 

Supervisory 
Control 
System 

Fault 

1 

3 

2 

4 
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• identify component failures on a real-­‐time basis, 
• identify problems for which a priori patterns (or models) have not been constructed, and 
• change or modify a decision based on newly evolving conditions. 

5.2 DETERMINISTIC PORTION 

Plant operating procedures (OPs) are essentially rule-based decision modules executed by human 
operators. A rule-based model 

• identifies the system state, 
• associates the state with a task, and 
• accesses stored rules to perform the task. 

Operational limits and conditions (OLCs) are developed to ensure that the plant is operated in accordance 
with plant design assumptions and intent. OLCs also include actions to be taken and limitations to be 
observed by the operating personnel [2-9], or in this case, the supervisory control system. 

Operating procedures are developed for normal operation to ensure that the plant is operated within the 
OLCs and to provide instructions for the safe conduct of all modes of normal operation, such as starting 
up, power production, shutting down, shutdown, load changes, process monitoring, and fuel handling.  

Any action taken by the Supervisory Control System must not diverge from the established OPs and 
cannot compromise established OLCs. 

Other deterministic criteria may be beneficial when coupled to decision-making options identified 
probabilistically. That is, a probabilistic selection (risk based) may not be the optimal or desired choice 
(risk informed). For example, a high outlet temperature from the reactor core can be lowered by 
decreasing power, reducing the coolant inlet temperature, or increasing secondary side flow rate. Each of 
these can be adjusted using plant controls. Inserting the control rods and increasing coolant flow are a 
means to reduce core thermal power. Each control option has a different probability of success and can be 
linked to magnitude, speed, and other metrics of interest. That is, inserting the control rods will have a 
large, rapid effect on the output temperature while changing pump speed on a feedwater pump will have a 
small, slow effect. 

5.3 REFERENCES 

5-1. Nuclear Engineering Department, Rocky Flats Environmental Technology Site, Nuclear Safety 
Technical Report, Safety Analysis and Risk Assessment Handbook, RFP-5098, April 22, 1997. 

5-2. American Nuclear Society, “Updating Plant EDGs with Intelligent Digital Control Systems,” 
Nuclear News, LaGrange Park, IL, July 2012. 

5-3. Isograph, Reliability Workbench, http://www.isograph.com/software/reliability-workbench/ 
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6. DEMONSTRATION OF AUTOMATED DECISION-MAKING 

The requirements for the supervisory control system are to use probabilistic information directly during 
operations on a faster than real-time basis. Translating the requirements into a working model requires a 
communication pathway between the supervisory control system and the probabilistic models. The 
sample problem provided in this chapter demonstrates the ability to develop the real-time probabilistic 
decision-making portion of the supervisory control system. 

If more than one option is cited by the probabilistic models, the supervisory control system ranks the 
operating based on the likelihood of successfully avoiding a trip setpoint. Deterministic criteria applied to 
the operational alternatives based on the probabilistic results determine the option to be given by, and thus 
commanded by, the supervisory control system. 

The task control and data exchange protocols developed for the supervisory control system allow the 
probabilistic models to  

• reflect the change of state in any component, 
• reconfigure the probabilistic models to reflect the change, 
• execute the probabilistic tools, and 
• transmit the results to the supervisory control system. 

After the updated analysis results are transmitted back to the supervisory control system, the supervisory 
control system will 

• automatically and autonomously identify operational alternatives ranked by probability of 
successfully avoiding the actuation of a safety system setpoint, 

• if more than one option is identified, select the preferred option based on deterministic criteria, 

• transmit an actuation signal to the component of interest, and 

• inform the operator of action taken or request permission to take action. 

The program recognizes and implements any change of state and executes the models both automatically 
and autonomously without any operator input. 

This report documents the development of the basic communication capability to exchange data with the 
probabilistic model using RWB. The difficulty in developing the communication pathways is that the 
models need to recognize the change in state of a component, transmit that change to the models, 
automatically adjust and execute the models with the change of state, and transmit the updated results to a 
user interface. All of these operations must occur without operator interface or direction. That is, the 
programming has to autonomously recognize and implement any change of state and execute the 
probabilistic models.  

To create a probabilistic tool that would recognize failures and evaluate the consequences of those 
failures in real time, a simple PT/ET model was created to develop and demonstrate the software code to 
implement the communication capabilities between the dll and RWB. A program, written in C#, 
successfully communicates faults to the probabilistic model through the dll. The dll provides access to the 
internal data, model structure, and the built-in methods and functions that the RWB application uses 
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internally to perform its model modifications and reliability calculations. The code is able to create new 
gates in the fault trees, create new failure events, and is able to link the events to the gates. 

The communication pathway for injecting a fault (i.e., failing a component) to the probabilistic models 
was successfully completed; a program, written in C#, successfully communicates faults to the 
probabilistic model through the dll. Just as important, the communication pathway transmitting the results 
of the probabilistic models that reflect the failure back to the supervisory control system was also 
successful. 

6.1 PROBABILISTIC PORTION OF DECISION-MAKING 

The communication pathways for injecting a fault, instructing RWB to recalculate the metrics of interest, 
and transmitting the results back to the supervisory control system were successfully completed. This 
meets the “automatic” requirement for the supervisory control system. To meet the “autonomous” 
requirement, the supervisory control system must be capable of making a decision based on current plant 
configuration coupled with a system or component failure. Besides being faster than real time, the 
corrective action options must be determined automatically and autonomously. That is, once a fault or 
failure is detected, the supervisory control system must determine what has failed and identify the control 
options to maintain the plant within the control boundaries. Because the supervisory control system is not 
based on a priori decisions and it is not executing the reliability software, the supervisory control system 
must “reconstruct” the event tree, map the failure to the appropriate event tree branch, then “deconstruct” 
the event tree to identify the control options at the component level (Fig. 15). 

 
Fig. 15. Sequence to identify probabilistically ranked control options. 

The proof-of-concept example models a simple system with a bypass valve arrangement, as shown in 
Fig. 16. With the system in operation, Valve A is open and bypass Valve B is closed and in the bypass 
position.10 

                                                        
10 Because actual system conditions can be accounted for, Valve B could be out of service for maintenance. The probabilistic 
model would recognize this and identify a different control option. 
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Fig. 16. Proof-of-concept system model. 

The flow of information is for the fault to be recognized, rank control options and transmit them to the 
supervisory control system, which then evaluates the probabilistic options coupled with a set of 
deterministic criteria and takes action. To select options, the control system must know what failed, where 
this failure maps to the ET, and then, based on this, identify possible success paths. The supervisory 
control system must be able to automatically and autonomously identify these success paths for any 
possible component failure. This process is shown in Fig. 17. 

 
Fig. 17. Communication flow path for supervisory control system. 
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6.1.1.1 Reconfigure and Execute Probabilistic Models 

For the example problem, Valve A fails. The first step in identifying control options is for the supervisory 
control system to recognize Valve A failed and to modify the probabilistic model to reflect the failure 
(item 1 in Fig. 17). In this example, a fault is injected to simulate the failure of Valve A. The supervisory 
control system recognizes that Valve A is no longer operable and is in the failed state. The supervisory 
control system changes the status of VALVE A in the FT model from operating (VALVE A FAILS, 
𝜆   =   3.0×10!!) to failed (VALVE A FAILED STATE, 𝜆   =   1.0), as illustrated in Fig. 18. The 
supervisory control system executes the probabilistic analysis with the current plant configuration models 
and stores the results in a relational database. 

 
Fig. 18. Component failure is communicated to the probabilistic model. 

6.1.2 Reconstruction of ET from Component Failure 

In reconstructing the probabilistic model from the data, the supervisory control system must recognize 
that the fault VALVE A FAILED STATE is input into Gate “VALVE A” in the FT (Fig. 18). That is, the 
supervisory control system maps the basic event to the gate.11 The other basic event into Gate VALVE A 
shows that the valve is not out of service (OOS) for maintenance (i.e., VALVE A AVAIL). 

After the fault has been properly mapped to the FT, the FT must be mapped to the ET. In this example, 
the supervisory control system recognizes that the Gate “VALVE A” is in ET Branch 3 (Fig. 19).12 Thus 
the supervisory control system “knows” that the component VALVE A failed and it is in the failure part 
of ET Branch 3, “Feedwater valve open.” 

                                                        
11 PRACoupling_GateInputs maps the “ObjectType” (i.e., basic event) to “Gate.” 
12 PRACoupling_ETColumns maps the “gate” to “SubIndex” or ET Branch. The SubIndex column also tells the supervisory 
control system that there are five ET branches after the initiating event. 
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Fig. 19. Mapping of FT to ET. 

The next step in the reconstruction process is to actually reconstruct the ET in order to identify and 
quantify the success paths. Beginning with the IE, the supervisory control system reconstructs the ET.13 
For our example, the branch ID of interest is EB44, which is the failure branch of ET Branch 3 (Fig. 20). 

 
Fig. 20. Reconfigured ET. 

                                                        
13 The supervisory control system, using InputBranch identifiers, Id, Column, and Type (i.e., success, failure, or null 
branch), in PRACoupling_ETBranches. 
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6.1.3 Deconstruction of ET to Corrective Action 

Similar to how the supervisory control system reconstructed the ET with the fault properly accounted for 
in the FT, the supervisory control system must now deconstruct the ET to identify options for system 
control. 

To determine the options associated with the failure of Valve A, the supervisory control system moves its 
pointer from ET Branch 3 to ET Branch 4 (Fig. 20).14 ET Branch 4 maps to FT gate “VALVE B” and 
basic events “VALVE B FAILS” and “VALVE B AVAIL.” That is, the supervisory control system maps 
basic events VALVE B FAILS (𝜆   =   3.0×10!!) and VALVE B AVAIL (𝜆   =   0.0; i.e., not OOS) as 
inputs to gate VALVE B (Fig. 21). 

 
Fig. 21. Deconstruction of ET Branch 4 to Gate VALVE B. 

Because the FT models failures and the supervisory control system needs to identify success paths, the 
supervisory control must convert the failure space into success space and interpret VALVE B FAILS as 
the option “Open Valve B.” This is success path EB52 in ET branch 4 on Fig. 20. 

The supervisory control system has automatically and autonomously determined ET branch sequence 
EB44-EB52-EB62 (Fig. 20) is the chosen control option with essentially a 1.0 probability of success. 
Thus, the supervisory control system has successfully recognized both automatically and autonomously 
the existence of a fault, evaluated the operational alternatives available, and probabilistically ranked those 
alternatives. 

                                                        
14 Deconstructing the ET using PRACoupling_ETColumns SubIndex, ET Branch 4 is associated with Gate “VALVE B”. From 
PRACoupling_GateInputs, ObjectType maps pseudo events 4 and 5 as inputs to gate VALVE B. 
PRACoupling_FTETPseudoEvents maps OriginObjectIndex 4 and 5 to VALVE B FAILS and VALVE B AVAIL, respectively. 
The Frequency column maps the failure rates to the components. 
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6.2 DETERMINISTIC PORTION OF DECISION-MAKING 

Nuclear power plants cannot operate outside known and understood safety limits, which places 
restrictions on the creation of new (not previously reviewed) action steps, nor can plants be allowed to 
operate outside certified regulatory limits. Any decision-making process, then, must recognize that limits 
for specific plant parameters are clearly set and should include operational limits that affect economy and 
availability. 

All data are known beforehand for a deterministic analysis—such an analysis is prefaced by knowing 
what is going to happen next with little or no uncertainty. However, for real systems, there is always the 
possibility of not achieving the design objective, that is, to ensure that the system performs satisfactorily 
within a specified time period. Thus, system and equipment designs rely on safety margins to reduce the 
risk of adverse performance. The weakness of deterministic decision-making is that it cannot inherently 
account for the stochastic nature of system behavior, or of component failures. 

The decision-module is probabilistically informed rather than probabilistically based decision because the 
supervisory control system cannot violate the licensing basis or exceed protection system settings. These 
are rule-based decisions. However, within this rule-based construct, the supervisory control system can 
use both probabilistic and deterministic decisions. For example, a probabilistic decision can be coupled to 
the magnitude and speed of actions to be taken. 

For an example of probabilistically informed vs. probabilistically based decision, consider an example of 
lowering the outlet temperature of the reactor core by 

• decreasing reactor power, 
• reducing the coolant inlet temperature, or 
• increasing secondary side flow rate. 

Each of these can be adjusted using plant controls. Inserting the control rods, increasing coolant flow, 
etc., are means to reduce core thermal power. Each control option has a different probability of 
successfully maintaining the reactor coolant outlet temperature below the trip setpoint. Each control 
option is based on current plant conditions and/or deterministically identified parameters or criteria that 
are dependent on reactor power level, distance from the trip setpoint (magnitude), response time 
necessary to stop the parameter of interest from reaching the trip setpoint (speed), etc. For example, 
inserting the control rods may have a large, rapid effect on the output temperature while changing pump 
speed on a feedwater pump may have a small, slow effect. A strictly probabilistically based approach may 
select “inserting the control rods” as the most likely option for avoiding the trip setpoint limits. A 
probabilistically informed approach may have “changing pump speed” and “inserting the control rods” as 
both options for success but select the “changing pump speed” as the best option because it has a 
deterministic rule of “maintaining MWe to the grid” if possible. 

As discussed previously, because the example used to develop the capabilities of the supervisory control 
system did not have control options, deterministic criteria were not incorporated. At present, utility theory 
is the method of choice to implement the weighting of the probabilistic options. This option is under 
development and has not been incorporated into the supervisory control system at present. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

The communication pathways to the supervisory control system from the component (i.e., fault) and the 
probabilistic model were successfully developed and tested. These communication pathways are 
independent of what component failed and the probabilistic model and are applicable for complicated 
models as well as the example problem used in the previous section. That is, the communication pathways 
work for any failure in any model. 

The supervisory control system, after successfully accessing the data for the revised and updated 
probabilistic model, was able to automatically and autonomously reconstruct/deconstruct the FTs and ETs 
to identify the appropriate action to maintain operations through the use of self-generating lookup tables. 
This demonstration problem shows that the methodology is viable for recognizing any component failure, 
even with a changing system configuration. More importantly, the demonstration shows that actual 
system configurations can be reflected in the probabilistic models because combinations of failures are no 
longer a limiting factor in being able to solve the problem. 

The supervisory control system is a system that combines the computational power of probabilistic 
analyses and quick-access results tables stored in a relational database. The supervisory control system 
uses power derived from the probabilistic tools to determine the likelihood of success for various control 
options for the current plant configuration. By populating a relational database with the results, the 
supervisory control system uses look-up tables to manipulate the data to identify the control options. 

Another feature incorporated into the supervisory control system is the real-time probabilistic generation 
of control system options. Any change in system configuration or operating status is accurately modeled, 
with any number of combinations of equipment out of service or in test mode reflected. 

The sample problem used in developing the communication links and computational capabilities of the 
supervisory control system shows the successful merging of the system layout, structure, and capabilities 
that were specified in previous milestone reports. 

7.2 FUTURE EFFORTS 

Future work will build-out the capabilities to address more complex problems including components that 
were out of service, degraded states, prognostics and diagnostics, and of course, multiple reactors in a 
module. 

Future efforts in the development of the supervisory control system will involve programming the 
supervisory control system to recognize more complex systems with several control options given a 
component failure. With multiple options, the programming must allow the control system to select an 
optimal control decision. In addition, the programming must be expanded to allow the system to 
differentiate between options if a component is out of service in one of the options or placed back into 
service with no operational change required. 

As part of increasing the capabilities of the supervisory control system, the following tasks need to be 
completed: 

• Evaluate the options for the supervisory control system to recognize equipment out of service, 
especially if this occurs in a success path. 
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• Develop the ability of the supervisory control system to “learn” when a component is placed back in 
to service, which does not generate a fault and may or may not require control options to be 
identified. 

• Develop and test a problem with multiple control options identified through the probabilistic models. 
• Incorporate the deterministic capabilities into the supervisory control system. 
• Incorporate the use of multi-physics models to provide a time-dependent assessment of the approach 

to trip setpoints that can then be used as input to the deterministic models. 
• Develop a problem with multiple ETs and test the supervisory control systems ability to properly 

reconstruct/deconstruct the FT/ET models. 
• With the use of multi-physics models, evaluate the ability to differentiate different options base on 

power level. 
• Assess the computational time for performing the probabilistic analyses and the time associated with 

data manipulation for the reconstruction/deconstruction process 
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APPENDIX A. FUNCTIONAL REQUIREMENTS FOR SUPERVISORY CONTROL 

The functional layer structure was based on the IEEE/ANS 830, “Guide for Software Requirements 
Descriptions,” with extensions that ORNL identified based on physical system descriptions. The 
functional layers are as follows: 

1. Objective 
2. Functions 
3. Variables 
4. Interfaces 
5. Inputs 
6. Outputs 
7. Performance Measures 
8. Limiting Conditions 
9. Trigger Conditions 

The proposed supervisory control system concept expands the functional responsibility and level of 
automation for the control system, and in no way is it intended to support or augment the functions to be 
performed by the protection system. 

Because a conceptual design baseline has not yet been identified, it is not possible to finalize the in-depth 
requirements for the supervisory control system. Requirements provided in this chapter are generic in 
nature and are expected remain valid as the requirements matrix evolves. 
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A.1 FUNCTIONAL REQUIREMENTS FOR MASTER SUPERVISORY CONTROL SYSTEM 

The high-level functional requirements of the master supervisory control system (MSCS) are given in 
Table A.1. 

Table A.1.  List of high-level functional requirements for master supervisory control system 

Objective Supervise and coordinate operations of individual reactor modules, associated power 
conversion systems, and allocation of steam (or another fluid medium) for customers. 

Functions 1. Supervise and coordinate operation of individual reactor modules, associated 
power conversion trains, and the system interfaces to the process heat plant. 

2. Monitor, process, and analyze the health status of critical SSCs through 
associated diagnostic and prognostic calculation modules of local control 
systems. 

3. Keep limits and maintain plant stability by mitigating propagation of unexpected 
transients between reactor modules. 

4. Develop operations, maintenance, and refueling strategies, or modify existing 
strategies, based on information related to the health status of critical SSCs. 

Variables The MSCS shall (if necessary) have access to information (i.e., processed data) 
regarding the condition and status of all sensory signals. 

Interfaces 1. Provide input capabilities for operator directives (operator terminals). 
2. Provide bi-directional communications link with local supervisory control 

systems at each reactor modules. 
3. Provide bi-directional communications link with balance-of-plant systems. 
4. Provide bi-directional communications link with the interface control system for 

the process heat plant. 
5. Provide direct communications link with diagnostics and prognostics modules for 

random inquiry of the health status of critical SSCs. 
6. Provide capability to bypass the LSCS for direct access to the local control 

system under such circumstances that any of the SSCs are not responsive. 
Inputs 1. Accept plant control directives from reactor operators. 

2. Accept load demand input from the grid central dispatch. 
3. Accept load demand input from the process heat plant. 

Outputs 1. Generate high-level instructions for LSCSs. 
2. Generate permission requests for actions that require operator concurrence. 
3. Generate a detailed report for supervisory actions. 

Performance Measures These metrics will be determined later. 
Limiting Conditions These metrics will be determined later. 
Trigger Conditions These metrics will be determined later. 
 

A.2 FUNCTIONAL REQUIREMENTS FOR LOCAL SUPERVISORY CONTROL SYSTEM 

This section provides the high-level functional requirements of the local supervisory control system 
(LSCS) and the definition and the requirements for the functional modules. 

A.2.1 Top-Level Requirements 

The high-level functional requirements of the LSCS are given in Table A.2. 
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Table A.2.  List of high-level functional requirements for master supervisory control system 

Objective Monitor and analyze processes in the system, transmit module-level status 
information to the MSCS, and direct the RTEL that performs the real-time control 
functions. The LSCS uses various signal processing and control theory approaches to 
process input measurements and information from the MSCS and to determine viable 
options for the next decision-making step in the control of the system. To achieve this 
objective, clear requirements for the LSCS must be articulated. 

Functions 1. Process the input data to enable decision-making: 
• State estimation 
• Diagnostics 
• Prognostics 

2. Utilize methods to generate sets of decision options for consideration: 
• State analysis and determine options 

3. Select a prime candidate solution from the generated sets of solutions: 
• Decision analysis 

4. Validate and verify that prime candidate solution with analytical tools: 
• Validation and verification 

5. Generate control actions from the prime candidate solution for the RTEL: 
• Control actions 

Variables To be determined 

Interfaces • MSCS coordination, direction, and guidance to the LSCS for reactor 
modules, power conversion systems, process heat, and other systems 

• Subordinate RTEL modules 

Inputs • Local system measurement inputs and control outputs 

• Information from the MSCS for desired future state based on the MSCS 
coordination functions 

• Information from the human operator for the specific systems 

Outputs The LSCS performs decision-making tasks to direct the system real-time controllers 
in the execution layer. The outcome of the decision-making tasks is updated guidance 
for control action to the RTEL modules. 

Performance Measures • Information that is provided to the MSCS will facilitate plant-level evaluation of 
meeting the desired performance and outcome. 

• The LSCS will examine the current state and the desired state to determine steady 
state and transient metrics such as an error in the system performance versus the 
desired values. 

Limiting Conditions The decision-making process includes a physics-based assessment component that 
provides insight into the limit margin for the current state and future decision state 
options. This limit margin includes operating limits, engineering limits, and 
component limits. 

Trigger Conditions Component failures or degradation will trigger various responses from the RTEL and 
the LSCS layer. The LSCS will examine the failure or degradation event and 
determine the proper next steps by the robust decision-making process. These steps 
are considered near real-time to complement and guide the RTEL. 
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A.2.2 Plant State Estimation Module 

Table A.3.  List of functional requirements of the plant state estimation module 

Objective Process input information from the LSCS and the MSCS to generate estimates of the 
system state including non-measured values. This includes declaration of subsystem 
failures by basic failure detection information. Failed sensors may be substituted by 
synthesized values using state estimation, models, and correlation techniques. 

Functions 1. Generate a state estimate of the system based input information, local input 
measurements, and local output commands.  

2. Examine measurements (inputs, outputs) and estimated states to determine if a 
component, subsystem, or system has failed (failure declaration). 

3. Examine measurements (inputs, outputs) and estimated states to determine if a 
sensor or measurement device is experiencing drift (shifting error behavior) or a 
change in its noise characteristic. 

4. Examine input and output measurements and provide an estimate of a measured 
state if the measurement experiences measurement failure (synthesis). 

Variables To be determined 
Interfaces • The plant state estimator interfaces with the LSCS input data and the LSCS status 

analysis and determines options functions. 
Inputs 1. Local system measurement inputs and control outputs 

2. Information from the MSCS for desired future state based on the MSCS 
coordination functions 

Outputs 1. Status of subsystems and components based on current state and conditions 

2. Failure declaration of a subsystem or component 
3. Additional algorithm to determine sensor drift and noise (process and sensor)  

4. Diagnostic information for diagnostics and prognostics functions 

Performance Measures The effectiveness of applying Kalman filtering state estimation is based on how well 
the process noise characteristic is understood. The filter output residuals can provide 
an indication of the effectives of the filtering (filter gain, noise description, etc.) and 
the system model that is the basis for the filter design. 

Limiting Conditions Some operating modes and conditions may not be modeled at a sufficient level of 
detail to facilitate state estimation functions. These operating modes and conditions 
will rely on traditional monitoring and control approaches. 

Trigger Conditions Component failures or degradation will trigger various responses from the RTEL and 
the LSCS layer. The LSCS will examine the failure or degradation event and 
determine proper next steps by the robust decision-making process. These steps are 
considered near real-time to complement and guide the RTEL. 
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A.2.3 Diagnostics and Prognostics Module 

The Diagnostics and Prognostics Module (DPM) includes two functional blocks: diagnostics block and 
prognostics block. 

This diagnostic block consists of on-line monitoring (OLM) of measurements, states, and synthesized 
parameters to determine if the system behavior does not comply with the expected behavior. If the 
noncompliance is identified, then algorithms and models will provide estimates about the potential root 
causes of noncompliance (Table A.4). 

Table A.4.  List of functional requirements for the diagnostics module 

Objective The diagnostics block processes input information from the MSCS and LSCS state 
estimation information to determine the nature and cause of a current event or 
condition, to detect current faults, and to determine the current state of health. This 
diagnostic information can provide guidance for short-term and long-term decision-
making. 

Functions 1. Use dynamic models of components and subsystems with input data to identify 
unexpected behavior and to identify possible root cases. 

2. Use look-up tables to examine combinations of events, and to determine the 
likely root cause and associated diagnostic information. 

3. Use methods to properly characterize and summarize the current continuous and 
discrete states versus the desired state combinations in a manner that indicates 
potential degradation modes. 

Variables To be determined 
Interfaces The diagnostic block interfaces with the Data Acquisition Module, Plant State 

Estimation Module, and the Decision-Making Module. 
Inputs The diagnostic block receives input measurements, feedback measurements, control 

output data, etc., to estimate the current system state of health. 
Outputs The diagnostic block provides information regarding the indication or failure 

declaration of a subsystem or component with some degree of confidence. 
Performance Measures The effectiveness of the diagnostic block is the degree to which the generated 

information is accurate, timely, and useful for the other systems. Non-detected 
failures and improperly diagnosed events are to be minimized. 

Limiting Conditions Some operating modes and conditions may not be modeled at a sufficient level of 
detail to facilitate diagnostic functions. These operating modes and conditions will 
rely on traditional monitoring and control approaches. 

Trigger Conditions Component failures or degradation will trigger various responses from the real-time 
executive layer and the LSCS layer. The LSCS will examine the failure or 
degradation event and determine proper next steps by the robust decision-making 
process. These steps are considered near real-time to complement and guide the 
RTEL. 

 

The prognostics block consists of usage and duty cycle tracking functions, life prediction algorithms, and 
long-term monitoring of key parameters that are indicative of component life. This information provides 
an estimate of the future state of health of the system over various time horizons. 

The functional requirements of the prognostics block is given in Table A.5. 
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Table A.5. List of functional requirements for the prognostics module 

Objective The prognostics block processes input information from the MSCS, LSCS state 
estimation, and LSCS diagnostic information to generate a prediction of the time at 
which a system or a component will no longer perform its intended function with 
certainty, which is often described as Remaining Useful Life (RUL). A description of 
the RUL and associated probabilities of failure over various time horizons provides 
component life and performance time horizon information for the LSCS decision-
making processes. 

Functions 1. Usage and cycle tracking process various power plant events to determine the 
proper usage and cycle tracking values for the system and subsystems 

2. Life prediction algorithms include various approaches to estimate component life 
for their intended operating specifications and conditions 

3. Determination of RUL consists of a method to combine the usage and cycle 
tracking information and the life prediction results to generate component, 
system, and subsystem RUL and probability of failure over various time horizons 

Variables To be determined 

Interfaces The prognostics block interfaces with the LSCS input data, state estimation, 
diagnostic functions, and the LSCS Decision-Making Module. 

Inputs The prognostics block receives input data, state estimation information, and 
diagnostic information. 

Outputs The prognostics block generates output data describing the system and subsystem 
RUL and probability of failure for various time horizons, such as 

𝑃!""#$!%&# 𝑡 , 

𝑃!""  ! 𝑡 ,	
  

𝑃!"""  ! 𝑡 . 

Performance Measures The effectiveness of the prognostics block is the degree to which the generated 
information is accurate, timely, and useful for the other systems. Improper RUL and 
probability of failure occurrences are to be minimized. 

Limiting Conditions Some limited operating modes and conditions may not fall within valid regions or 
ranges for the life prediction algorithms and the manufacturer data. These limited 
modes and conditions must occupy a small fraction of the operating duty cycle to 
avoid polluting the RUL and probability of failure results. 

Trigger Conditions Component failures or degradation will trigger various responses from the real-time 
executive layer and the LSCS layer. The LSCS will examine the failure or 
degradation event and determine the proper next steps by the robust decision-making 
process. These steps are considered near real-time to complement and guide the 
RTEL. 

 

A.2.4 Decision-Making Module 

The decision-making module includes two functional blocks: (1) decision-options block, which 
implements the probabilistic portion of decision-making using real-time PRA (Table A.6), and (2) 
decision-analysis block, which implements the deterministic portion of decision-making (Table A.7). 
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Table A.6.  List of functional requirements for the decision-options block 

Objective The decision options block processes input information from the MSCS, LSCS state 
estimation, diagnostic, and prognostic information to generate a set of decision 
options to transition the system from the current state to the desired future state. The 
different features used to generate the set of decision options provide a risk-informed, 
physics-constrained, and regulatory-compliant outcome. This is accomplished with 
four main functions used to generate decision options: dynamic probabilistic risk 
assessment (RT-PRA), physics-based assessment, procedure-based assessment, and a 
navigation function. 

Functions 1. Input data processing is necessary to map the input data from the other functions 
into the proper format for the key decision generation functions.  

2. The RT-PRA function will process an input set that describes the current failure 
status of systems and subsystems, health status, RUL estimations, and 
probabilities of failures. Then the RT-PRA function will update the appropriate 
fault-tree probabilities and generate an updated event tree. The updated event tree 
is used to identify trajectories with acceptable likelihood of success and low 
probability of success. 

3. A navigation function is used to map the desired future state onto the current 
state and to identify decision options to reach the future state based on the plant 
design. 

Variables To be determined 

Interfaces The decision options block interfaces with the LSCS Data Acquisition, Plant State 
Estimation, and Diagnostic and Prognostic modules, and the LSCS decision analysis 
functions. 

Inputs The decision options block receives MSCS input data (desired future state), state 
estimation information, and diagnostic and prognostics information. 

Outputs The decision options block generates an output data set of possible decision options 
for the LSCS decision analysis function to process. 

Performance Measures The effectiveness of the decision options block is the identification of several decision 
options under all operating conditions. 

Limiting Conditions Some limited operating modes and conditions may not fall within valid regions or 
ranges for generating automated decision options. These limited modes and 
conditions must occupy a small fraction of the operating duty cycle and will rely on 
human operator or legacy control approaches. The effectiveness of the RT-PRA 
function is related to the degree to which the systems and subsystems are accurately 
described with event probabilities, event combinations, and the event tree. 

Trigger Conditions Component failures or degradation will trigger various responses from the real-time 
executive layer and the LSCS layer. The LSCS will examine the failure or 
degradation event and determine proper next steps by the robust decision-making 
process. These steps are considered near real-time to complement and guide the 
RTEL. 
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Table A.7.  List of functional requirements for the decision-analysis block 

Objective The decision analysis block examines the set of decision options from the decision 
options block and determines a prime candidate option that provides the best balance 
of a desired likelihood of success, limit margin, and procedure compliance. This is 
accomplished using the utility functions. 

Functions 1. The physics-based assessment function processes an input set that describes the 
current state of the system. This input set is compared to various engineering, 
component, and stability limits in a manner that results in a data set that describes 
the distance or margin from the current state to these limits. 

2. The procedure-based assessment function processes an input set that describes 
the current state of the system and compares this input set to plant procedures. 
This results in a data set that describes the compliance of the current state to the 
intended procedural operation of the plan. 

Variables To be determined 

Interfaces The decision analysis block interfaces with the decision options block and the 
verification module. 

Inputs The decision analysis block receives	
  input	
  data	
  from	
  the	
  decision options block.	
  

Outputs The decision analysis block generates an output dataset prime candidate solution for 
the LSCS Verification Module to process. 

Performance Measures The effectiveness of the decision analysis block is the selection of a prime candidate 
option for all conditions. 

Limiting Conditions Some limited operating modes and conditions may not fall within valid regions or 
ranges for generating automated decision options. These limited modes and 
conditions must occupy a small fraction of the operating duty cycle and will rely on 
human operator or legacy control approaches. 

Trigger Conditions Component failures or degradation will trigger various responses from the real-time 
executive layer and the LSCS layer. The LSCS will examine the failure or 
degradation event and determine proper next steps by the robust decision-making 
process. These steps are considered near real-time to complement and guide the 
RTEL. 
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A.2.5 Verification Module 

Table A.8.  List of functional requirements for the Verification Module 

Objective The Verification Module examines the prime candidate solution from the Decision 
Making Module with dynamic plant model simulation and analysis tools that examine 
the simulation results to verify the desired outcome. Feedback from the results is used 
to improve the DMM function. 

Functions The verification dynamic simulation includes continuous state dynamics and discrete 
state dynamics. The simulation is intended to estimate stability, limit margin, and the 
effect of varying conditions. The time duration of the dynamic model simulation and 
results analysis is based on a time horizon that is appropriate for the desired future 
state time horizon. 

Variables To be determined 
Interfaces The Verification Module interfaces with the LSCS Decision Making Module and the 

Actuation Module. 
Inputs The VM receives input data from the Decision Making Module. 
Outputs The VM generates evaluation results of the prime candidate solution for the control 

action function to process. The evaluation results are also used to provide feedback 
guidance to the DMM function. 

Performance Measures The effectiveness of the VM is the ability to evaluate the prime candidate solution 
with the near real-time update timing requirements. 

Limiting Conditions Some limited operating modes and conditions may not fall within valid regions or 
ranges for generating automated decision options. These limited modes and 
conditions must occupy a small fraction of the operating duty cycle and will rely on 
human operator or legacy control approaches. 

Trigger Conditions Component failures or degradation will trigger various responses from the real-time 
executive layer and the LSCS layer. The LSCS will examine the failure or 
degradation event and determine proper next steps by the robust decision-making 
process. These steps are considered near real-time to complement and guide the 
RTEL. 
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A.2.6 Actuation Module 

Table A.9.  List of functional requirements for the Actuation Module 

Objective The Actuation Module performs a transformation of the prime candidate solution into 
control action commands and guidance for the real-time executive layer. 

Functions The Actuation Module transformation includes continuous state dynamics and 
discrete states. The AM transformation algorithm must be sufficient to update the 
real-time executive layer in a near real-time manner. 

Variables To be determined 
Interfaces The AM interfaces with the LSCS VM and the real-time executive layer. 
Inputs The AM receives	
  input	
  data	
  from	
  the	
  VM function.	
  
Outputs The AM provides continuous and discrete state commands and guidance to the real-

time executive layer. 
Performance Measures The effectiveness of a control action function is the ability to update the real-time 

executive layer with the near real-time update timing requirements. 
Limiting Conditions Some limited operating modes and conditions may not fall within valid regions or 

ranges for generating automated decision options. These limited modes and 
conditions must occupy a small fraction of the operating duty cycle and will rely on 
human operator or legacy control approaches. 

Trigger Conditions Component failures or degradation will trigger various responses from the RTEL and 
the LSCS layer. The LSCS will examine the failure or degradation event and 
determine proper next steps by the robust decision-making process. These steps are 
considered near real-time to complement and guide the RTEL. 

 

A.3 EXAMPLES OF DECISION-MAKING 

The following applications of automated decision-making processes in industry were reviewed: 

• Railway, 
• Engineering, business, and finance, 
• Aerospace industry,  
• Unmanned aerial vehicles, 
• Nuclear power, and 
• Highly autonomous driving. 

A.3.1 Railway 

The control of railways is in many ways analogous to the negotiating a pathway through a state-space 
region during system transition, as illustrated in Fig. 38 in Ref A-1. Hence, there is interest in examining 
railroad supervisory decision-making. The degrees of freedom are more limited for the case of railroads 
(i.e., the tracks and stations are fixed) as contrasted with the parameter space of a nuclear power plant. 
Nevertheless, developments in supervisory decision-making emerging from the rail industry have 
applicability. 

Dispatching large areas in a railway network is a challenging task because of the numerous constraints 
that must be accounted for during the decision-making process. Rail transport differs from road transport 
in that vehicles move over a very restricted topology, which results in strong interaction between vehicles. 
In some ways, railroad operation is similar to nuclear power plant control because there are specific 
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predetermined pathways that must be followed. Two examples of restricted pathways are (1) the 
adherence to detailed and approved procedures, which are administrative pathways, and (2) the fixed 
piping and electrical pathways with their attendant pumps, valves, and circuit breakers. 

Railway dispatching has been historically accomplished by human operators. Algorithmic approaches 
attempted over the last three decades have not completely solved this task—computational complexity 
and simulation accuracy has been inadequate for practical application. Over the last few years, however, 
new dispatching methods including predictive control have emerged that brings a new algorithmic 
approach with practical application. 

Other methods reviewed include Petri nets [A-2], train-timetabling problem (TTP) [A-3], and the use of 
fuzzy logic [A-4], [A-5], [A-6]. 

A.3.2 Engineering, Business and Finance 

Systems engineering is a methodological approach to developing and realizing products, processes, and 
services such that critical considerations in the corresponding project and system lifecycles are optimized. 
Systems engineering uses tools to organize project, product, and service development with a goal to 
maximize workflow efficiencies and satisfaction of project stakeholders and end users. One family of 
tools centers on the Kepner-Tregoe decision analysis method [A-7]. 

The Kepner-Tregoe decision analysis method is typically used by a team of experts to score alternatives 
numerically based on individual judgments. The method as originally conceived imposes a linear 
weighting of objective criteria against which the alternatives are assessed. A total score is determined for 
each alternative by multiplying its score for each criterion by the criterion weight and then summing 
across all criteria. The method generates a quantitative comparison of alternatives. The preferred 
alternative will have the highest total score. Several modifications have been made to the original decision 
analysis method over the years [A-8, A-9]. 

The Kepner-Tregoe decision analysis process is amenable to automation provided that (1) good objective 
criteria can be generated for each decision session, (2) a consistent method of scoring alternatives against 
each objective criterion can be applied, and (3) weightings can be developed that reflect the nature and 
importance of the decision to be made. These three requirements, although achievable by a software 
system, need development to implement effectively. Some research is needed to construct a means to 
make such scoring methods. For example, one significant modification to the Kepner-Tregoe is to change 
the linear relationship between the objective criteria. 

In the area of finance, the need is increasing to automate real-time monitoring to take advantage of time-
sensitive business opportunities and detect fraud in near real-time. Nguyen et al. introduced an enhanced 
business intelligence architecture that covers the complete process to sense, interpret, predict, automate 
and respond to business environments and thereby aims to decrease the reaction time needed for business 
decisions [A-10]. 

A.3.3 Aerospace Industry 

Aerospace control systems perform various decision-making tasks related to operating the vehicle and 
propulsion systems in a desired and safe manner. These tasks must incorporate pilot commands, current 
conditions, the state of the various systems, and other information to determine the appropriate actions for 
the vehicle and propulsion systems. Several examples of legacy and new approaches are introduced in the 
following text. 
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A.3.3.1 Current Commercial Jet Engine Control 

Commercial jet engine control systems maintain fan speed, engine pressure ratio, and control fuel flow to 
regulate aerodynamic thrust. Aerodynamic thrust is not directly measured but can be estimated by the 
measured system states. The control is based on a series of selection logic functions (minimum and 
maximum) that are used to select the appropriate fuel flow and actuation [A-11].  The arrangement of the 
selection logic is chosen for the desired performance, reliability, and safety. The inputs to the selection 
logic are the current state, the desired future state, and the appropriate limits of the system based on 
current conditions and state. The fuel flow selection logic outputs a change in fuel flow, which is 
integrated to produce the actual fuel flow value. This is often described as the “divide and conquer” 
approach which partitions various control functions and operating regimes and addresses each one with 
limited consideration for the complete control system [A-12]. Each of these regimes may be 
approximated with a linearized dynamic model, which enables linear control theory applications. These 
various controllers are “stitched together” with gain schedules and selection logic [A-12]. This is quite 
successful with lower performance aircraft but has serious limitations for higher performance military 
aircraft applications. 

A.3.3.2 Current Commercial Jet Engine Health Monitoring 

Commercial jet engine control systems perform various monitoring functions for detection and diagnosis 
of faults, prediction and prognostics for future component faults and determination of engine health. 
These functions and methods are determined by the results of a failure modes effects and criticality 
analysis (FMECA) for the various systems. These results determine what failure modes must be detected 
and diagnosed. 

Sensor and actuator validation is performed using two approaches. The first approach is monitoring the 
electrical integrity of the various subsystems. This monitoring is performed continuously by the electronic 
controls and is often described as continuous built-in-test (CBIT). This includes detection of open 
circuits, short circuits, and improper electrical current. If improper operation has been discovered the 
control system will perform appropriate actions such as selecting redundant systems or altering the 
control laws in consider the failure.  This is described as fault detection and isolation/accommodation 
(FDI or FDA). 

A second approach to sensor and actuator validation is performed by using measurements, algorithms, 
and logic to determine if the subsystem is operating nominally. This validation is performed using simple 
logic, real-time models, and first-order approximations for responses to perform limit checks, rate of 
change checks, and response checks for sensors and actuators. These can direction immediate control 
actions and maintenance actions. In some cases on-board models are used to aid in sensor validation and 
in redundant system voting. 

In addition to subsystem validation, other health related parameters such as engine vibration and the 
lubrication system are monitored to drive maintenance actions. Life cycle counting is also performed to 
direct maintenance inspections and actions for various components. 

A.3.3.3 Jet Engine Control Allocation 

In the field of aerospace vehicle and propulsion control, the concept of control allocation is used to 
perform real-time decision-making and determination of proper solutions based on the state of the system, 
the health of the components, the current conditions, and the desired future states [A-13]. The control 
allocation includes consideration of system constraints, limits, and component failures.  This control 
allocation is achieved with optimization techniques (constrained optimization, matrix inversion) and 
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decision-making logic (logic based on system requirements and FMECA studies). This approach requires 
an over-actuated system with redundant effectors and actuators that enables multiple solutions for a given 
desired state [A-14]. 

The control allocator [A-13] computes control actuation to produce the desired aerodynamic moments in 
roll, pitch, and yaw from the flight controller (Eq. 1). This allows the separation of the design of the flight 
control laws and the design of the control allocator. Selects desired optimized solution such as 
performance, efficiency, stability, etc. In the case of an identified failure, a different solution can be 
chosen to provide the desired response to the flight control laws. 

The control allocation on-line decision-making is determined by techniques such as constrained 
optimization, matrix inversion, or explicit control laws, decision tree logic. The logic is based on system 
requirements and FMECA considerations. The optimization techniques may include direct control 
allocation, daisy chaining, linear programming, etc. The matrix inversion technique does not always 
produce an optimal solution but it usually computationally faster. 

The control allocator solves a system of constrained equations, which is considered a mapping in the 
controlled system. After linearization, the mapping can be rewritten in the standard formulation for a 
constrained linear control allocation problem. 

The control algorithm hierarchy of motion control for over-actuated mechanical systems with a redundant 
set of effectors and actuators commonly includes three levels [A-14]. First, a high-level motion control 
algorithm (linear or nonlinear matrix-based) commands a vector of virtual control efforts (i.e. forces and 
moments) in order to meet the overall motion control objectives. Second, a control allocation algorithm 
(linear or nonlinear matrix-based) coordinates the different effectors such that they together produce the 
desired virtual control efforts, if possible. Third, low-level control algorithms (minor loop closed-loop 
control) may be used to control each individual effector via its actuators. Control allocation offers the 
advantage of a modular design where the high-level motion control algorithm can be designed without 
detailed knowledge about the effectors and actuators. 

Important issues such as input saturation and rate constraints, actuator and effector fault tolerance, and 
meeting secondary objectives such as power efficiency and tear-and-wear minimization are handled 
within the control allocation algorithm. Control allocation is demonstrated in a rapidly growing range of 
applications that have expanded from the aerospace and maritime industries, where control allocation has 
its roots, to automotive, mechatronics, and other industries. Applications consist of two main classes 
based on the use of linear or nonlinear models, respectively. The presence of physical constraints (e.g. 
input saturation and rate constraints), operational constraints and secondary objectives makes 
optimization-based design a powerful approach. The simplest formulations allow explicit solutions to be 
computed using numerical linear algebra in combination with some logic and engineering solutions, while 
the more challenging formulations with nonlinear models or complex constraints and objectives call for 
iterative numerical optimization procedures. 

There is interaction and division of responsibility for the flight controller, control allocator, fault detection 
& isolation and model-based state estimation, supervisor, and the actuation and aircraft. 

The supervisor function provides the actuator constraint information and the appropriate actuator behavior 
mode to the control allocator. The supervisor also provides actuator excitation signals that are used for 
fault detection. The supervisor receives fault detection information and state estimation from the 
FDI/MBSE function and determines the health status of the aircraft, what fault conditions are present, and 
the appropriate actuation behavior mode (control mode) to pursue.  Combinational logic, state machines, 
and numerical maps provide the desired decision-making. 
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The fault detection & isolation and model-based state estimation function examines measurements from 
the aircraft, compares the measurements to actuation commands, and then performs fault detection and 
isolation and model-based state estimation. The estimated state is provided to the flight controller. The 
fault detection and isolation information is provided to the supervisor function. Kalman filtering is 
performed with linear or non-linear approaches to estimate the actuation fault detection state. Real-time 
models provide state estimation of the aircraft based on measurements and control commands. 

The control allocation approach does not rely heavily on the gain scheduling and selection logic used in 
legacy approaches, which enables performance and stability that is appropriate for high performance 
military aircraft [A-12]. This approach has been demonstrated to provide disturbance rejection, 
compliance with system constraints, limits, and component failures.  Control allocation has been applied 
to the F-35 Joint Strike Fighter program to achieve proper flight handling and stability for three aircraft 
and propulsion system variants: conventional takeoff and landing (CTOL), short takeoff and vertical 
landing (STOVL), and carrier variant (CV) [A-15]. 

A.3.3.4 Intelligent Control of Space Shuttle Main Engine (SSME) 

The SSME control system was updated in the 1990s to reflect advanced performance and reliability in 
military jet engine controls. This intelligent control of the SSME is a hierarchy of various control and 
diagnostic functions including life-extending control, real-time identification, and sensor/actuator fault 
tolerance [A-11]. Artificial intelligence, If-Then logic and rule functions based on requirements, and 
onboard real-time models are used for the Engine Level Coordinator function. The intelligent control 
system increased the autonomy of the engine controls by becoming self-diagnostics, self-prognostics, 
self-optimizing, and mission adaptable. The intelligent control hierarchy structure consist of lower levels 
operating in a fast real-time manner with the subsystems which consists of algorithmic tasks with less 
intelligence and upper levels operating on a longer real-time scale with more intelligence. In other words, 
the lower level provides the closed-loop control and basic diagnostics. The upper level evaluates the 
ability to carry out the mission. The upper level communicates status and health to the Propulsion Level 
Control. 

The life-extending control function provides the desired steady state and transient performance with 
reductions in component fatigue due to mechanical, thermal, and other effects [A-11]. This is primarily 
done by adjusting the engine acceleration schedule and control, which accelerates the fan and core to 
provide the desired thrust within the required time. The adjustment of these schedules balances transient 
performance with minimizing component damage. These results in a reduction in the accelerations and 
velocities of actuators, reductions in peak overshoot temperatures in the core. Another aspect of life-
extending control is active clearance control. As the engine components degrade, the control can track the 
degradation and adjust the control action to provide proper engine performance and reliability. 

A.3.4 Unmanned Aerial Vehicles 

As the tasks and roles of unmanned aerial vehicles (UAVs) increases so does the requirements to increase 
their level of autonomy and intelligence. Today's UAVs are employed for intelligence gathering, 
surveillance, reconnaissance missions, fighting wildfires, traffic reports, and border security.  UAVs are 
often asked to perform a task such as detecting and tracking a target of interest in a dynamic and uncertain 
environment. This often includes the processing large quantities of sensory and communicated 
information. In some circumstances, coordination of multiple vehicles requires task management to avoid 
conflict or collisions. Autonomous functions and capabilities for UAVs are typically categorized as 
sensor fusion, communications, path planning, task allocation and scheduling, and cooperation with other 
resources. 
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Decision-making functions for UAVs consists of centralized and decentralized approaches. Centralized 
decision-making consists of a central mission control approach that manages large-scale activities in a 
locale including specific activities for each UAV. This is a traditional remotely directed approach that 
may require a human operator directing the UAV remotely. 

Decentralized decision-making can reduce data communication between a central control and the UAV, 
which can reduce the system communication bandwidth requirements [A-16]. Decentralized approaches 
must provide local UAV situational awareness and task awareness to support the UAV mission. The 
UAV onboard decision-making subsystems consist of sensory processing, path planning, and the 
autopilot. The sensory processing utilizes various sensory inputs to determine state estimates of desired 
targets or parameters of interest. The path planning utilizes information such as GPS locations, 
communication data about other UAVs, and the state estimate of the desired target to determine a desired 
path [A-16, A-17]. The desired path is then executed but the auto pilot control and the low level vehicle 
control system. In [A-18] various classifications of autonomous control levels are presented. Architecture 
was chosen with a task-level model and a decision-process model. The task-level model provides 
autonomy with respect to external commands and sensory data and the decision-process model provides 
lower level autonomy and decision-making. 

Target estimation and tracking is performed using probability maps, Kalman filtering, and rule-based 
intelligence [A-16]. Sensor processing is performed using Kalman filtering and particle filtering 
techniques [A-16, A-17]. The autopilot is the interface between the higher-level decision-making 
capabilities and the air vehicle. The autopilot utilizes models of the vehicle dynamics, state estimates, and 
measurements to properly follow the desired flight path. 

Current research is investigating the potential for UAVs to operate autonomously as independent entities 
or collaboratively with other UAVs. In some military applications it is desirable for a UAV to detect a 
target, determine the value of the target, and decide if a strike on the target is appropriate. In [A-17] a 
rule-based fuzzy reasoning approach is used to process data from various information sources to produce 
appropriate decisions in the presence of uncertainty and measurement noise for target tracking decision-
making. Fuzzy petri nets can be used to construct or design a rule-base fuzzy reasoning approach. The use 
of petri nets provides the ability to visualize the structure of the rule-base and provide a mathematical 
form to express the behavior of the rule-base. These features enable validation of a rule-based system. 

In Ref. A-19, an architecture for decision-making for cooperation of multiple UAVs is presented. In this 
example, some UAVs are directly controlled by a remote human operator, some have operational 
autonomy, and some have decisional autonomy. This architecture includes algorithms for decision-
making. A contract-net protocol handles task allocation for multiple UAVs. A planning scheme is based 
on Hierarchical Task Networks planning. The contract-net uses a market-based approach where a UAV 
member will auction a desired task for all UAVs to bid on. The highest bid UAV receives the tasks and 
must integrate this task into its task planning. Optimization constraints are used to limit bids based on 
minimizing the actual distance of travel and other cost factors.  This results in reducing the total travel 
distance resultant for a set of UAVs for a set of tasks. 

The WITAS project investigated approaches for fully autonomous helicopter vehicles including basic 
research of artificial intelligence, data and knowledge representation, sensor fusion, interaction with 
ground control and operations, and validation strategies [A-20]. In Ref. A-21, a genetic algorithm 
approach is used to process information for target selection in a multiple UAV environment. This 
approach allocates various targets to various UAVs using the target value, target distance, UAV fuel 
consumption, weapons payload, and other information. 
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A.3.5 Nuclear Power 

Since the mid-1980s, risk-informed decision-making has formed the basis for licensee requests to change 
a plant’s licensing basis.15 In implementing risk-informed decision-making, changes to the licensing basis 
(including changes to technical specifications and maintenance activities) are expected to meet the 
following set of key principles: 

1. The proposed change meets the current regulations unless it is explicitly related to a requested 
exemption. 

2. The proposed change is consistent with the defense-in-depth philosophy (i.e., adequate defense-
in-depth is maintained). 

3. The proposed change maintains sufficient safety margins. 

4. When proposed changes result in an increase in core damage frequency (CDF) or risk, the 
increases should be small and consistent with the intent of the NRC Commission’s Safety Goal 
Policy Statement. 

5. The impact of the proposed change should be monitored using performance measurement 
strategies. 

The acceptability of proposed changes is based on the results of traditional engineering evaluations, 
supported by insights (derived from the use of PRA methods) about the risk significance of the proposed 
changes. Any risk-informed decisions and proposed changes to the licensing basis or technical 
specifications must meet current regulations, orders, and license conditions. 

The risk-informed decision-making process in nuclear power plants is static in that all decisions are made 
prior to any changes to the plant status or licensing basis. It is also important to note that these evaluations 
using PRA methods pertain to safety and safety-related structures, systems, and components and measure 
the increase in CDF. However, several key insights—meet current regulations, maintain safety margins, 
use PRA methods to support traditional engineering evaluations—are insights that should be carried 
forward in the development of a supervisory control system. 

With respect to automated decision-making at nuclear power plants, two examples are provided below. 

Automated decision-making is already in use at nuclear power plants. For example, the integrated control 
system (ICS) at a B&W-designed plant has as its basic requirement the matching of generated electrical 
megawatts with demanded electrical megawatts. The ICS accomplishes this requirement through four 
subassemblies [A-22]: 

• the unit load demand functions as a megawatt electric setpoint generator for the ICS, and can be used 
to adjust reactor power between 15-100%. 

                                                        
15 Risk-informed guidance to support changes to a licensee’s approved licensing basis, including operational programs, includes 
RG 1.174, “An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the 
Licensing Basis,” [A-23] and RG 1.177, “An Approach for Plant-Specific, Risk-Informed Decision-making: Technical 
Specifications”) [A-24]. In addition, before performing maintenance activities, 10 CFR 50.65(a)(4) requires licensee to assess 
and manage the increase in risk that may result from the proposed maintenance activities [A-25]. 
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• the integrated master receives the megawatt setpoint from the unit load demand to control the 
electrical output of the turbine generator. In addition, the integrated master translates the megawatt 
demand into signals for feedwater and reactor control.  

• the feedwater demand converts the megawatt demand signal to a feedwater demand in the integrated 
master, controls the amount of feedwater supplied to the once-through steam generators, and  

• the reactor demand moves the reactor’s control rods in or out in response to the megawatt demand 
signal, and also controls the average reactor coolant system temperature. 

The subsystems operate based on differences between actual and demanded parameters.  

Automated decision-making is also used in other control systems at a nuclear power plant. For example, 
when updating an analog control system with a digital control system [A-26], the new design for the EDG 
I&C system at the Kola nuclear plant incorporated probabilistic analyses and factor in available operating 
experience, research and technological developments into the design. 

The risk-informed decision-making for the new control system was made during the design process—
(static) probabilistic assessments were used to identify potentially critical situations and access the control 
system's response allowing Diakont engineers to make iterative adjustments to the logic and redefining 
responses to various sensors and operating scenarios. These analyses were run repeatedly as the system 
and software was developed. Following production, all failure scenarios were replicated using a test 
fixture to validate performance. 

Similar to a supervisory control system, the new control system for the EDGs used probabilistic 
assessments to access the control system’s responses to potentially critical situations. Unlike the EDG 
control system at Kola however, a supervisory control system will use probabilistic information directly 
during operations on a real-time basis by capturing the information in a rule-based decision module, a 
weighted decision module, or a probabilistic module. Thus, the supervisory control system will use 
probabilistic information to evaluate the operating alternatives based on actual plant conditions (e.g., 
equipment failures, equipment out of service, etc.). 

In addition, the control system at Kola shows the value of continuous diagnostics. According to 
Rosenergoatom, the implementation of continuous diagnostics proved to be the most significant 
contributor to the design. This collective functionality presented a paradigm shift in operating principles 
for an EDG control system—the evolution from a sensitive, reactive system prone to initiating EDG 
shutdown, to a proactive system that maximized EDG uptime and kept EDGs operational. This is an 
important goal of the supervisory control system. 

A.3.6 Highly Autonomous Driving 

The agent-based decision-making paradigm is emerging for driverless vehicles. Agents of many kinds are 
being used more frequently in a variety of fields. Agent-based modeling has developed as a modeling 
algorithm for complex systems composed of interacting and independent units. Agents have behaviors 
that are described by simple rules; agents interact with each other, which produce a system-wide 
behavior. An agent’s intelligence may range from pre-determined roles and responsibilities to a learning 
capability. Agent-based applications are appearing in numerous disciplines—the stock market, molecular 
self-assembly, and biological science. 

The behavior of drivers is often modeled by a two-layered agent architecture: tactical layer and strategic 
layer. The tactical layer orients to short time scale driving. The strategic layer addresses complex 
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problems, such as route choice and decision-making. A particularly difficult task in driving is recognizing 
when it is safe to make a left turn. An incorrect decision can be disastrous. 

Some of the most advanced and exciting applications in automated decision-making appears in 
autonomous driving as recently attempted by several major universities and corporations, such as 
Stanford University, Google Col, and BMW Group. 

A.3.3.5 Stanford University 

Stanley, an autonomous car created by Stanford University’s Stanford Racing Team in cooperation with 
the Volkswagen Electronics Research Laboratory (ERL). 

Both vehicles are equipped with custom-built systems to enable direct actuation of throttle, brakes, 
transmission and steering. Vehicle data is accessed by computer control system through the vehicle’s 
controller area network (CAN) bus interface. 

The autonomous control system is comprised of three top-level functional elements: (1) perception, (2) 
planning, and (3) control. The processing unit used in Stanley, consists of approximately thirty modules 
executed in parallel. 

Both implementations, i.e. Stanley and Junior, the software architecture is modular. The modules run 
asynchronously and transmit data from sensors to actuators in a pipeline fashion, i.e., first-in first-out 
(FIFO). The modular architecture reduces the system reaction time, which is roughly 300 ms. The system 
architecture is broken into six layers [A-27]: 

1. sensor interface, 
2. perception, 
3. control, 
4. vehicle interface, 
5. user interface, and 
6. global services. 

The sensor interface layer comprises a number of software modules concerned with receiving and time-
stamping all sensor data. The layer receives data from each laser sensor at 75 Hz, from the camera at 
approximately 12 Hz, the GPS and GPS compass at 10 Hz, and the vehicle controller area network (CAN) 
bus at 100 Hz. This layer also contains a database server with the course coordinates (RDDF file). 

The perception layer maps sensor data into internal modules. The primary module in this layer is the 
UKF vehicle state estimator, which determines the vehicle’s coordinates, orientation and velocities. Three 
different mapping modules build 2-D environment maps based on lasers, the camera, and the radar 
system. A road finding modules uses the laser-derived maps to find the boundary of a road so that the 
vehicle can center itself laterally. Finally, a surface assessment module extracts parameters of the current 
road for the purpose of determining safe vehicle speeds. 

The control layer is responsible for regulating the steering, throttle, and brake response of the vehicle. A 
key module is the path planner, which sets the trajectory of the vehicle in steering- and velocity-space. 
This trajectory is passed to two closed-loop trajectory tracking controllers, one for the steering control and 
one for brake and throttle control. Both controllers send low-level commands to the actuators that 
faithfully execute the trajectory emitted by the planner. The control layer also features a top-level control 
module, implemented as a simple finite state machine. This level determines the general vehicle mode in 
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response to user commands received through the in-vehicle touch screen or the wireless E-stop, and 
maintains gear state in case backwards motion is required. 

The vehicle interface layer serves as the interface to the robot’s drive-by-wire system. It contains all 
interfaces to the vehicle’s brakes, throttle, and steering wheel. It also features the interface to the vehicle’s 
server, a circuit that regulates the physical power to many of the system components. 

The user interface layer comprises the remote E-stop and a touch-screen module for starting up the 
software. 

The global services layer provides a number of basic services for all software modules. Naming and 
communication services are provided through a special inter-process communication (IPC) toolkit. A 
centralized parameter server maintains a database of all vehicle parameters and updates them in a 
consistent manner. The power server regulates the physical power of individual system components. 
Another module monitors the health of all systems components and restarts individual components when 
necessary. 

Estimation of vehicle’s state is essential precision driving. Inaccuracies in pose estimation can cause the 
vehicle to drive outside the corridor, or build terrain maps that do not reflect the state of the robot’s 
environment, leading to poor driving decisions. Stanley’s vehicle state comprises a total of 15 variables. 

Driving decisions are made using path-planning methods, which generate multiple local trajectory 
options.  These options are then weighed against a number of criteria, such as minimization of the risk of 
collision as well as favoring the road centers over paths closer to the periphery. 

For global path planning, a dynamic programming algorithm—called A*—is employed to search for 
shortest path, which minimizes the expected drive time to target location. The global search typically 
takes about one second to execute and generate an optimal solution. However, unexpected changes in the 
terrain (for Stanley) or traffic complications (for Junior), such as lane changes, require local but discrete 
refinements to the global solution. 

Furthermore, for unstructured navigation, such as driving in parking lots or for parking, Junior utilizes a 
modified version of the A* algorithm, which searches for shortest path relative to the vehicle’s map using 
search trees. 

Junior employs a decision module to minimize risk of getting stuck in unpredictable environments, such 
as urban driving conditions. The decision module is implemented as a finite state machine. While the path 
planner, which can be considered as the global optimizer, works best under normal driving conditions, the 
finite state machine allows for taking into account driving surprises. Following an impasse, the finite state 
machine gradually transitions to increasingly unconstrained driving. 

A.3.3.6 Google Self-Driving Car 

Google’s self-driving car technology, or occasionally referred to as the Google driverless car, is a 
demonstration concept car for autonomous driving. Google’s autonomous vehicle is an improvement on 
Stanley and Junior. 

Originally implemented on a Toyota Prius, Google’s concept vehicle includes a light detection and 
ranging (LIDAR) system, which uses a 64-beam laser. The laser allows the vehicle to generate a detailed 
3D map of the environments. The processor then combines the imagery with high-resolution maps, 
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producing different types of models that allow it to drive itself while avoiding obstacles and respecting 
traffic laws. 

The vehicle also carries other sensors, which include four radars mounted on the front and rear bumpers 
that allow the car to detect obstacles and other vehicles in close proximity to deal with fast traffic on 
freeways; a camera positioned near the rear-view mirror that detects traffic lights; a GPS; an 
accelerometer for inertial measurements; and a wheel encoder that determines the vehicle’s location and 
keep track of its movements. Since details on Google’s technology are not publicly available, we believe 
a review of Stanley’s autonomous control technology gives insight into the specifics. 

Before a test drive, the engineers drive along the route several times to gather data about the environment. 
During the autonomous driving session, the computer compares the environmental data being acquired 
currently to the data previously recorded—an approach proven to be useful to differentiate pedestrians 
from stationary objects like poles and mailboxes. 

Google’s fleet of robotic cars are reported to have driven in excess of 300,000 km, including driving in 
city traffic, busy highways and mountainous roads with only occasional human intervention. 

A.3.3.7 BMW Highly Autonomous Driving 

The BMW Group Research and Technology is currently developing highly automated assistance and 
active safety systems for future car generations, and investigating their market potentials [A-28]. An 
example of this is the Emergency Stop Assistant (ESA), which takes over vehicle control, safely steers the 
vehicle to the side of the road, and stops if the driver suffers a health irregularity, such as an acute 
problem with the cardiovascular system, or perhaps, even a heart attack [A-29, A-30]. In a freeway 
scenario with right-hand traffic, this active safety system is reported to conduct secured automated lane 
change maneuvers to the right to reach the breakdown lane to stop the vehicle. 

Highly Autonomous Driving (HAD) technology advances existing vehicular automation by providing 
additional driving assistance. The information concerning the host vehicle’s environment (road, lanes, and 
objects) is provided online by the vehicle’s sensors and by a high-precision digital map. The raw sensor 
and map data are processed within the subsequent Perception unit. The Object Tracking module fuses the 
data of multiple sensors and generates a global object list with the objects’ attributes [A-31, A-32]. The 
Localization module determines the location of the host vehicle within the digital map. All relevant 
information is forwarded to the Functionality unit. The Driving Strategy module makes decisions 
regarding driving maneuvers. These maneuvers are derived from the general objectives, e.g., ESA or 
HAD, and the traffic situation determined based on the digital image of the host vehicle’s environment. 
The respective maneuvers are realized by the Trajectories and Control module. These maneuvers are 
finally executed by the steering, acceleration, and deceleration actuators. Furthermore, the system 
provides information, such as the current system states, to the driver and occupants via the human–
machine interface (HMI), and further controls host vehicle functionalities, such as the indicators, via the 
vehicle bus. 

Based on traffic conditions, decisions should be made to identify suitable driving maneuvers for the 
vehicle. BMW approach uses a hierarchical hybrid decision-making process, which has a limited number 
of discrete system states that classify various driving maneuvers. This approach combines a finite state 
machine, which handles the deterministic portion, with decision trees, which take into account 
probabilistic aspects of decision-making. 

A lane change (LC) request is executed if the maneuver is desired and feasible. If an LC is desired, but 
not feasible, the lane change gap approach (LCGA) strategy is applied. This approach helps avoid some 
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of the potential problems with probabilistic approaches with direct influence on driving maneuvers, which 
were shown to lead to nondeterministic behavior, or sometimes infringement of traffic rules [A-33, A-34]. 

This combined approach increases robustness of the decision-making process by adding an additional 
feasibility examination of driving requests. While the probabilistic portion takes into account 
environmental and systematic uncertainties and generates a desired driving behavior, the rule-based 
deterministic portion of the decision-making module considers the worst-case conditions, and eliminates 
or avoids unfeasible driving requests. 

The probabilistic portion of the decision-making module is implemented using a modified version of 
utility theory, which evaluates the utility of each lane, i.e. suitability, for the vehicle, and generates LC 
requests on the basis of lane utilities. This approach allows for incorporating uncertainties associated with 
the sensor data as well as the uncertainties in the processed information from the Perception module. 

The utility function consists of multiple factors that evaluate the utility of a lane based on various comfort 
and safety criteria. 

Weights for the utility function are determined based on a number of factors, including but not limited to, 
general traffic characteristics, such as the average longitudinal gap size between objects and the average 
velocity on a lane, or the specific velocities and distances of single objects. For instance, a low average 
gap size decreases the utility of a lane due to disadvantages regarding safety. 

The uncertainties from the sensor data are taken into account in calculation of individual utilities by using 
a normal distribution. At each evaluation cycle, utilities of current and two adjacent lanes—if 
applicable—are calculated, which yields three normally distributed utilities. 
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