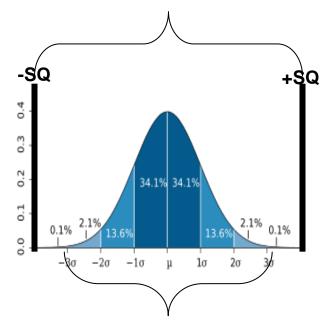


Module 12

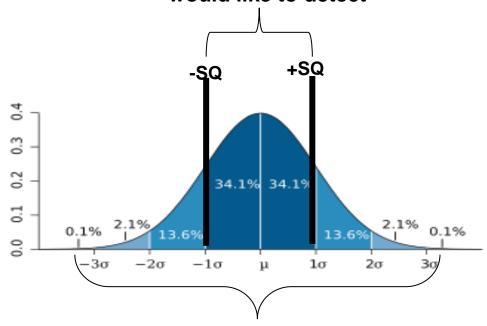
Throughput and Material
Unaccounted For (MUF) or Inventory
Difference (ID) Evaluations

Learning Objectives


- Discuss the affect of throughput on the detection capability of the Materials Accounting elements.
- Discuss different regulatory requirements in the area of MUF/ID evaluation
- Identify regulations and approaches that address and manage detection capability at higher throughputs
- Discuss application to hypothetical facility bulk process

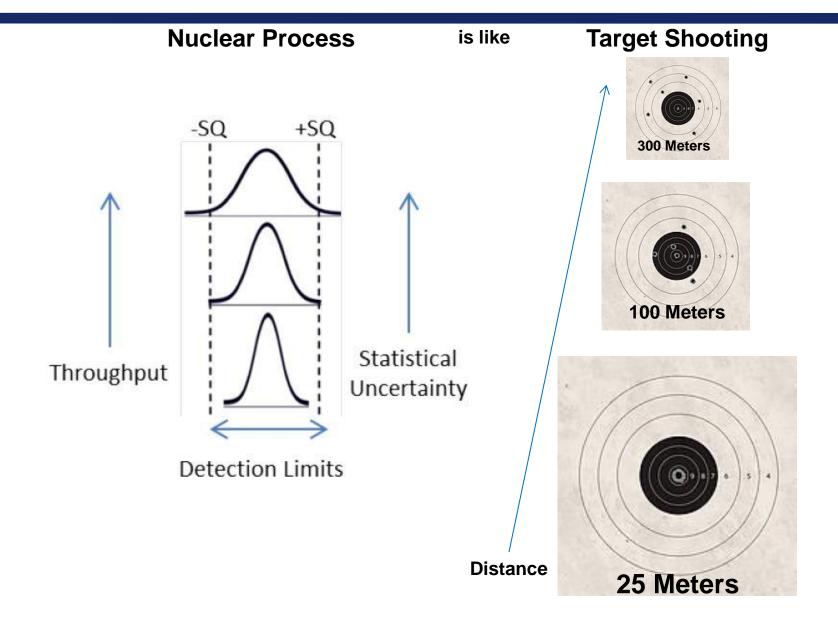
Process Capability Considers Process Variability Relative to Detection Goals to Determine if the Process is "Capable"

Very Capable


Safeguards Limits or what we would like to detect

Due to process uncertainty what we can detect.

Not Very Capable


Safeguards Limits or what we would like to detect

Due to process uncertainty what we can detect.

As throughput increases, the ability to detect decreases (i.e., less capable) due to statistical uncertainty.

Operating Facility Reference Throughputs

The next 3 slides are references for the design capacities of some of the currently operating facilities in the world. The types of facilities covered are:

- LEU Conversion and Fuel Fabrication
- Mix Oxide Fuel Fabrication
- Spent Fuel Reprocessing

World Mixed Oxide Fabrication Capacity (tonnes/year)

Country	Facility	Product	Capacity	
Belgium	BN/Dessel	LWR FRs	40	
Deigium	FBFC Int'l	LWR FAs	120-200*	
	CFCa	FBR FAs	10	
France	CFCa	PWR FRs	40	
	MELOX	PWR FAs	100	
India	Tarapur	BWR FAs	18	
Japan	PFFF	ATR FAs	10	
	PFPF	FBR FAs	5	
Russian	Paket	FBR FAs	0.3	
Federation	ERC	FBR FAs	1	
UK	MDF	PWR FAs	8	
* 120 tonnes/yr(BWR only); 200 tonnes/yr (PWR only)				

Reference: IAEA. *Technical Reports Series No. 45 - Status and Advances in MOX Fuel Technology.* Report, Vienna: IAEA, 2003.

Major Current Commercial LWR Spent Fuel Reprocessing Capacity

Country	Facility	Capacity (tonnes HM/yr)
France	LaHague	1700
UK	Sellafield (THORP)	900
Russia	Mayak	400
Jonan	Tokai	90
Japan	Rokkasho	800

Reference: http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Fuel-Recycling/Processing-of-Used-Nuclear-Fuel/#.UhEOBtLYiBQ

World LWR Fuel Fabrication Capacity (tonnes/year)

Country	Company	Location	Pelletizing	
Belgium	AREVA NP-FBFC	Dessel	700	
Brazil	INB	Resende	160	
China	CNNC	Yibin	400	
France	AREVA NP-FBFC	Romans	1400	
Germany	AREVA NP-ANF	Lingen	650	
India	DAE Nuclear Fuel Complex Hyderabad		48	
Japan	NFI (PWR)	Kumatori	360	
	NFI (BWR)	Tokai-Mura	250	
	Mitsubishi Nuclear Fuel	Tokai-Mura	440	
	GNF-J	Kurihama	750	
Kazakhstan	Ulba	Ust Kamenogorsk	2000	
Korea	KNFC	Daejeon	600	
Russia	TVEL-MSZ*	Elektrostal	1200	
	TVEL-NCCP	Novosibirsk	200	
Spain	ENUSA	Juzbado	300	
Sweden	Westinghouse AB	Västeras	600	
UK	Westinghouse**	Springfields	600	
USA	AREVA Inc	Richland	1200	
	Global NF	Wilmington	1200	
	Westinghouse	Columbia	1500	
*Includes approx. 220 tHM for RBMK reactors				
** Includes approx. 200 tHM for AGR reactors				

Reference: http://world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Fuel-Fabrication/#.UhEMtdLYiBQ

Regulatory Requirements for MUF (ID) Limits

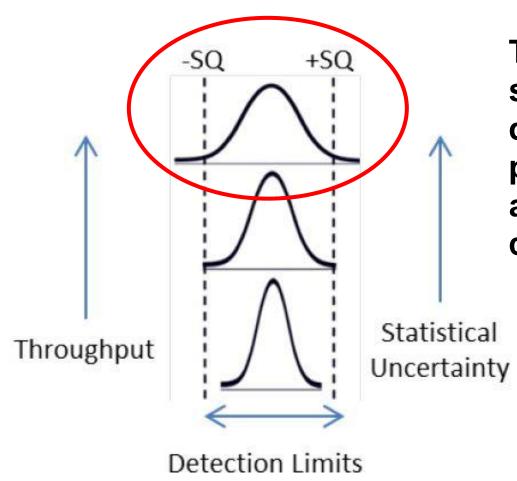
Russia and US:

	US NRC	Russia	DOE
SEID	0.1% active		1% active inventory
Exceeding	inventory		half a Cat. II quantity
ID Exceeding	3x SEID AND	3x SEID	
	0.2kg Pu; 0.2kg	3kg Pu/U233	
	U233; or 0.3kg	8kg U235	
	U235 in HEU	¹ 2% Industrial	
		¹ 3% R&D	
	¹ total quantity of NM that was converted and underwent		
	accounting measurements during the material balance period		

China:

Type of Facility	σ(ID)(%)
Uenrichment	0.2
Uprocessing	0.3
Pu processing	0.5
U post-processing	0.8
Pu post-processing	1

Note: Regulatory References - Next viewgraph


Regulatory References:

- NRC: 10 CFR Part 74 Material Control and Accounting of Special Nuclear Material (10 CFR Part 74.53 Process Monitoring) Washington DC: Nuclear Regulatory Commission
- U. S. Department of Energy Regulations
 - US DOE Order DOE O 474.2 Nuclear Material Control and Accountability June 27, 2011
 - U.S. DOE Standard DOE-STD-1194-2011 Chg 3 Nuclear Materials Control and Accountability
 Oct 2013
- Russian Regulations
 - Federal Rules and Regulations Regarding the Use of Atomic Energy- NP-030-12 -, "Basic Nuclear Material Control and Accounting Rules" Adopted by the Federal Environmental, Industrial, and Nuclear Regulatory Authority Order No 255, Dated 17 April 2012.
- Chinese Regulations
 - Nuclear Safety Guide HAD 501/01 Nuclear Material Accountancy of LEU Conversion and Fuel Fabrication Facilities – Approved and Released by the Chinese National Nuclear Safety Administration September 1, 2008.
 - Nuclear Safety Guide HAF 501/01 Rules for Implementation of the Regulations on Nuclear Materials Control of the People's Republic of China - Released by National Nuclear Safety Administration, Ministry of Energy, and Commission of Science Technology and Industry for National Defense on September 25, 1990

What happens when limits set at a percent of throughput exceed a significant quantity?

The ability to detect significant losses can decrease to the point or practically non-existent at "normal" operating capacities.

Approaches and Regulations that Manage Uncertainty and Throughput

"Process Monitoring is an extended form of containment and surveillance especially supporting near-real-time materials accountancy that makes the best use of information mainly acquired by facility operators in order to detect unusual (anomalous, abnormal) conditions (activities, movements, situations) that might be indicative of diversions".

IAEA. STR-235 Current Status Of Process Monitoring for IAEA Safeguards. Report, Vienna: IAEA, 1987.

"In some plants, where production can be stopped on a regular basis, the safeguards approach is based on a monthly **Short Inventory Verification (SIV)**. The operator then ensures that the majority of the material is moved into measurable locations, thus reducing in-process inventory to holdup and hidden inventory. In continuously operating plants, a safeguards approach based on frequent inventory verification of a running process has been adopted by Euratom.

ESARDA, Bulletin, No. 31, Control of Nuclear Material Holdup in MOX Fuel Fabrication Plants in Europe, ISPRA, Italy April 2002

Better Definition of Process Monitoring

"Process Monitoring is a methodology to ensure that special nuclear material (SNM) is in its authorized location and when effectively implemented, it is a useful tool to detect anomalous process conditions and indicate losses of SNM well before the scheduled physical inventory."

U.S. DOE Standard – DOE-STD-1194-2011 Change 3 – Nuclear Materials Control and Accountability, Paragraph 6.2.4.5– Oct 2013

NRC Process Monitoring Regulations

Unit Process Detection Capability - For each unit process, a licensee shall establish a production quality control program capable of monitoring the status of material in process. The program shall include:

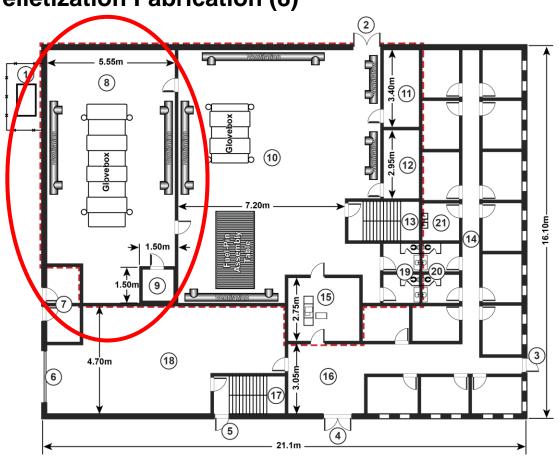
Industrial Operations

- (1) A statistical test that has at least a 95 percent power of detecting an **abrupt loss of five** *formula kilograms* **within three working days** of a loss of Category IA material from any accessible process location and within seven calendar days of a loss of Category IB material from any accessible process location;
- (2) A quality control test whereby process differences greater than three times the estimated standard deviation of the process difference estimator **AND** 25 grams of Strategic Special Nuclear Material (SSNM) are investigated;
- (3) A trend analysis for monitoring and evaluating sequences of material control test results from each unit process to determine if they indicate a pattern of losses or gains that are of safeguards significance.

NRC: 10 CFR Part 74 - Material Control and Accounting of Special Nuclear Material (10 CFR Part 74.53 Process Monitoring) Washington DC: Nuclear Regulatory Commission

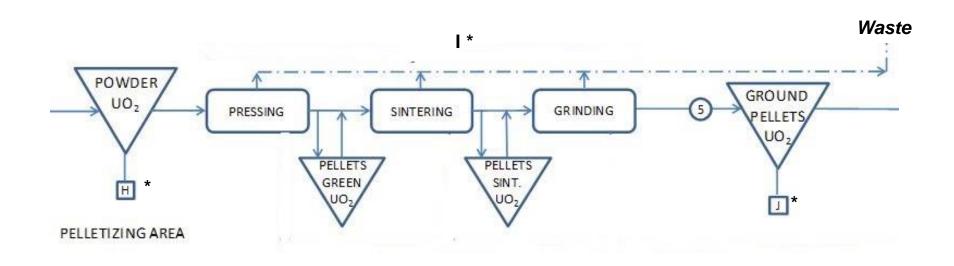
DOE Process Monitoring Regulations

Process monitoring is a methodology to ensure that SNM is in its authorized location and when effectively implemented, it is a useful tool to detect anomalous process conditions and indicate losses of SNM well before the scheduled physical inventory. If this methodology is used, the MC&A Plan shall describe:


- the methodology for division of processes into units for the detecting the loss of control
 of a significant quantity. The units shall be consistent with accessible measurements
 points that result from the process design. There is no limit or restriction on the
 number of units into which a process or facility can be divided.
- the material control tests used for detecting abrupt losses of bulk material from a single process unit, the loss detection capability, and the timeliness of the detection.
- the alarm threshold (critical value), which if exceeded initiates alarm resolution procedures.

U.S. DOE Standard – DOE-STD-1194-2011 Chg 3– Nuclear Materials Control and Accountability, Paragraph 6.2.4.5 – Oct 2013

Hypothetical Facility – Bulk Processing Area



- 1. Site Power Substation
- 2. Fuel Fabrication Transfer Dock
- 3. Administration Area Exit
- 4. Main Facility Entrance
- 5. East Stairwell Exit
- 6. Non-SNM Bay Door
- 7. Chemical/gas Storage Access
- Pelletization and Sintering Area (Vital Area)
- 9. Oxide Vault (Vital Area)
- 10. Fuel Pin Assembly Area (Vital Area)
- 11. Pin Vault (Vital Area)
- 12. Pellet Vault (Vital Area)
- Central Stairwell (Mezzanine and Basement Access) (Vital Area)
- 14. Administration Area
- 15. SNM Fabrication Area ACP (Vital Area)
- 16. Entry Foyer
- 17. East Stairwell (Basement Access Only)
- 18. Non-SNM Area
- 19. Fabrication Area Restrooms (Vital Area)
- 20. Admin Area Restrooms
- 21. Utility Room

Pellet Fabrication Process (8)

- * H KMP for UO2 powder Gravimetric and Mass Spectrometry
 - I KMP for residual holdup NDA Gamma
 - J KMP for sintered pellets scale and item verification.

<Class Discussion on options for application of process monitoring>

Reference: IAEA - Eugene V. Weinstock and Walter R. Kane. STR-150 Detailed Description of an SSAC at the Facility Level for a Low-Enriched Uranium Conversion and Fuel Fabrication facility. Report, Upton, NY: IAEA, 1984 (E. V. IAEA 1984)

Summary

- Discussed the affect of throughput on the detection capability of the Materials Accounting elements.
- Discussed different regulatory requirements in the area of MUF/ID evaluation
- Identified regulations and approaches that address and manage detection capability at higher throughputs
- Discussed options for hypothetical facility

Questions From Audience

