
	

1	

	

ALCC Final Report

PROJECT: HPC Colony II

LEAD PI: Terry Jones <trj@ornl.gov>
	

	

	

	

	

Project Abstract
	

HPC Colony II has been a 36-month project focused on providing portable performance
for leadership class machines—a task made difficult by the emerging variety of more complex
computer architectures. The project investigated moving the burden of portable performance to
adaptive system software, thereby allowing domain scientists to concentrate on their field
rather than the fine details of a new leadership class machine.

To accomplish our goals, we focused on adding intelligence into the system software stack.
Our revised components include: new techniques to address OS jitter; new techniques to
dynamically address load imbalances; new techniques to map resources according to architectural
subtleties and application dynamic behavior; new techniques to dramatically improve the
performance of checkpoint-restart; and new techniques to address membership service issues at
scale.

In keeping with these goals, our ALCC objectives focused on demonstrating new levels of
portability and performance/scalability on experiments consisting of extreme core counts. All
Colony2 methodologies are designed to scale up to at least one million cores, and the unique
resources made available through the ALCC program provided a matchless tool to test our designs.

Our	
 primary	
 experiment	
 platform	
 was	
 Oak	
 Ridge’s	
 Cray	
 XK6/XK7	
 machine.	
 The	
 Oak	
 Ridge	

machine	
 offers	
 very	
 large	
 core	
 counts	
 which	
 is	
 a	
 critical	
 component	
 to	
 our	
 testing.	
 Our	

secondary	
 resource	
 was	
 Argonne’s	
 160K	
 core	
 BlueGene/P	
 machine;	
 the	
 remaining	
 portion	
 of	

our	
 allocation	
 was	
 consumed	
 on	
 it.	
 The	
 BGP	
 features	
 multiple	
 communication	
 topologies	

(which	
 is	
 an	
 important	
 component	
 to	
 our	
 load-­‐balancing	
 testing)	
 and	
 was	
 used	
 for	
 both	

scalability/production	
 runs,	
 and	
 for	
 preparation/development	
 runs.	
 	

Award Details

Duration: 1 year
OLCF processor hours: 3 million
OLCF Amount remaining: 0
ALCF processor hours: 3 million
ALCF Amount remaining: 0

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

2

Research Results

Performance of Optimized Message-Logging Protocol
Area: Fault Tolerance

The goal of this topic area is to measure the performance improvement of an optimized message-
logging protocol. A major source of performance penalization of most message-logging protocols
is the use of determinants. These bits of information are necessary to provide a correct recovery
from a failure. During normal execution, the message-logging protocol creates, stores and sends
determinants. The combine cost of all those operations varies from application to application, but
it may be as high as 20% in some situations. Therefore, a strategy that avoids determinants is
desirable to keep message-logging as an alternative to provide fault tolerance in the future. A new
strategy that avoids the use of determinants uses high-level information from the programming
language. In some cases, it is possible to avoid the creation of determinants altogether, removing
a high percentage of the performance penalization of message-logging.

Figure 2: Causal versus Fast message-logging strategies for three applications.

The experiments run on Intrepid revealed that the new protocol reduces the performance
overhead by a big margin, compared to a traditional message-logging protocol. A collection of
three iterative stencil programs were used in the experiments (Jacobi3D, Wave2D and LULESH).
These programs differ in the amount of computation per iteration and the communication pattern.
The optimized protocol reduced the performance overhead in these applications more than 50%,
66%, 75%, respectively, compared to a traditional message-logging protocol. After that reduction,
the performance overhead of the protocol is lower than 4% for all the applications examined.

Figure 3: Recovery speedups made possible by parallel recovery.

Additionally, this new protocol was extended with the parallel recovery strategy of Charm++ to
accelerate recovery by a factor of 10, 5, and 6 in Jacobi3D, Wave2D, and LULESH, respectively.
Overall, the new strategy has a low overhead and provides a competitive strategy to provide
resilience at exascale.

Publication Plan: these results were incorporated into the PhD thesis of Esteban Meneses and are
publicly available through the library system of the University of Illinois.

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

3

Improved Clock Synchronization Protocol
Area: Coordinated Kernel Scheduling

A second topic area of our work was to investigate coordinated scheduling for machines without
hardware support for global synchronized clock (e.g. Cray XT5, XK6, and XK7 architectures).
We developed an improved software-based clock synchronization scheme that provides high
precision time agreement among distributed memory nodes. The technique is designed to
minimize variance from a reference chimer during runtime and with minimal time-request
latency. Our scheme permits initial unbounded variations in time and corrects both slow and fast
chimers (clock skew). An implementation developed within the context of the MPI message
passing interface was designed, and time coordination measurements are presented below. To
investigate our design, we began by measuring how nine nodes vary from a reference source
when only NTP is employed. Figure 4 presents data for uncorrected variance and variance
corrected with a linear fit.

Figure 4: Time coordination without Synchronization Improvements

Given that the mean time variance for even a small set of nodes can reach 20.0 milliseconds
under standard Network Time Protocol (NTP), the Colony project designed a new software-based
synchronization protocol suitable for high performance computing environments. Several	
 studies	

have	
 sought	
 to	
 quantify	
 the	
 magnitude	
 of	
 scalability	
 issues	
 associated	
 with	
 operating	
 system	

noise1	
 2	
 .	
 	
 For	
 example,	
 the	
 Tau	
 team	
 at	
 the	
 University	
 of	
 Oregon	
 has	
 reported	
 23%	
 to	
 32%	

increase	
 in	
 runtime	
 for	
 parallel	
 applications	
 running	
 at	
 1024	
 nodes	
 and	
 1.6%	
 operating	
 system	

noise.	
 More	
 recently,	
 Ferreira	
 et	
 al.	
 confirmed	
 that	
 a	
 1000	
 Hz	
 25µs	
 noise	
 interference	
 (an	

amount	
 measured	
 on	
 a	
 large-­‐scale	
 commodity	
 Linux	
 cluster)	
 can	
 cause	
 a	
 30%	
 slowdown	
 in	

application	
 performance	
 on	
 ten	
 thousand	
 nodes.	
 By	
 tightly	
 synchronizing	
 the	
 clocks	
 on	
 the	

compute	
 nodes,	
 it	
 is	
 possible	
 to	
 extend	
 the	
 system	
 software	
 to	
 support	
 co-­‐scheduling	
 (an	

effective	
 technique	
 to	
 reduce	
 the	
 effects	
 of	
 noise	
 on	
 a	
 parallel	
 computation).	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence of System Noise on Large-Scale
Applications by Simulation. In International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'10), Nov. 2010.	

2	
 Terry Jones, Shawn Dawson, Rob Neely, William Tuel, Larry Brenner, Jeff Fier, Robert Blackmore, Pat Caffrey,
Brian Maskell, Paul Tomlinson, and Mark Roberts, Improving the Scalability of Parallel Jobs by adding Parallel
Awareness to the Operating System. Proceedings of Supercomputing 2003, Phoenix, AZ, November 2003.	

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

4

With our ALCC allocation, the Colony team investigated a new point-to-point synchronization
protocol (our previous methods required collective operations). Figure 5 shows a histogram of
results for the new synchronization protocol on 20,480 Titan processors.

Figure 5: Time synchronization with Coordination improvements after 5 minutes.

These figures represent the variance for synchronizing up to 20,480 nodes.

Publication Plan: these results are currently being written for publication, the venue is tbd.

Performance Evaluation of Meta Balancer
Area: Load Balance

Performance of an application is affected by load imbalance. Therefore load balancing is required
to scale an application but performing load balancing incurs a cost. If the cost of load balancing is
more than the benefit obtained from load balancing, it degrades the performance further. Meta-
Balancer framework, implemented in Charm++, automatically identifies a load balancing period
based on the application characteristics and cost of load balancing. Meta-Balancer has been
previously shown to perform well up to 4096 cores on Jaguar. In this project we show the benefits
of Meta-Balancer on up to 131,072 cores of Intrepid, BlueGene/P.

Figure 6: New Smart Runtime System Load Balancer

 10

 100

 1000

 10000

2k 4k 8k 16k 32k 64k 128k

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Performance on Intrepid (2.8 million atoms)

No LB
Periodic LB

Meta LB

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

5

The performance of Meta-Balancer was evaluated on LeanMD benchmark and the results are
plotted in Figure 1 above. LeanMD is a molecular dynamics simulation program written in
Charm++. It simulates the behavior of atoms based on the Lennard-Jones potential. Load
imbalance in LeanMD is due to the variation in number of atoms per cell as well as the slow
migration of atoms. LeanMD was run for a system of 2.8 million atoms for 2000 iterations from
2048 to 131072 cores. The load balancing strategies used were GreedyLB for runs till 8k cores
and HybridLB for larger runs. The HybridLB is a hierarchical strategy which uses GreedyLB and
RefineLB strategies.	
 We experimented with a range of hand tuned load balancing period. We find
that if load balancing is done frequently, then the overhead of load balancing is more than the
benefit but if load balancing is performed infrequently, then the performance is affected by load
imbalance. Meta-Balancer is able to automatically identify optimal load balancing period without
any input from the user. It is also able to scale to 131072 cores without any performance
bottleneck.

Publication Plan: We are planning to submit this work to either JPDC or ACM TOPC journal.

Other Colony2 ALCC Highlights:

a. HPC Colony members are undertaking a post-project activity to pursue getting
coordinated-scheduling advances adopted by HPC vendors. In addition, IBM is
evaluating SpiderCast advances for possible HPC products.

b. Recent developments in Charm++ fault tolerance infrastructure permits to run
Charm++ programs on top of an MPI library and simulate rank failures. This
mechanism exports a function to the user to kill a rank. Using this technique, new
fault tolerance methods and algorithms can be developed on top of Charm++. The
approach scales up to 32K cores on BG/P and provides an almost-negligible restart
time.

c. An April full-machine Jaguar test of a new Charm++ implementation provided
impressive performance gains over an earlier version. The new version features a
new network layer implementation designed for Cray’s Gemini interconnect.
Performance for a 100M atom NAMD run (PME every 4 steps) improved from a 26
milliseconds per step runtime over last year’s MPI over SeaStar+ numbers, to a 13
milliseconds per step runtime with the new software and hardware.

d. We conducted research on scalable membership, attribute, monitoring and
communication services that will enable sophisticated applications and general
purpose cluster computing on high-performance computing systems with a very
large numbers of processors. The SpiderCast system, that provides these services, is
based on overlay and peer-to-peer technologies. SpiderCast will, on the one hand,
utilize the unique architecture and networking features of Blue Gene/P [BGP08] to
achieve top performance, and on the other hand, will develop broad scalable
technologies for systems with hundreds of thousands of processors, which can be
deployed on general cluster systems. Large scale experiments were conducted on
the Blue Gene/P platform in the IBM Watson Research Center.

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

6

	

Project Productivity
Primary

Publications –
• Jones, Terry. Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism.

International Journal of High Performance Computing Applications (IJHPCA). Vol.
26, Issue 2, May 2012.

• Jones, Terry, & Koenig, Gregory. Clock Synchronization in High-end Computing
Environments: A Strategy for Minimizing Clock Variance at Runtime.
Concurrency and Computation: Practice and Experience. Journal of Concurrency
and Computation: Practice and Experience (J CCPE), Vol. 25, Issue 6, DOI:
10.1002/cpe.2868, pages 881-897, April 25, 2013.

• Langer, Akhil, Venkataraman, Ramprasad, & Kále, Laxmikant. Scalable
Algorithms for Constructing Balanced Spanning Trees on System-ranked Process
Groups. In 19th European MPI Users' Group Meeting (EuroMPI 2012), Vienna,
Austria, September 23-26, 2012.

• Lifflander, Jonathan, Miller, Phil, Ramprasad Venkataraman, Anshu Arya, Terry
Jones & Kále, Laxmikant. Mapping Dense LU Factorization on Multicore
Supercomputer Nodes. In Proceedings of 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS). May-2012. Shanghai, China.

• Mendes, Celso L., Kále, Laxmikant, Rodrigues, Eduardo R., & Panetta, Jairo.
Adaptive and Dynamic Load Balancing for Weather Forecasting Models. In
Annual meeting of the Cray Users Group (CUG) 2012. May 2012. Stuttgart,
Germany.

• Meneses, Esteban. Scalable Message-Logging Techniques for Effective Fault
Tolerance in HPC Applications. PhD diss., University of Illinois at Urbana-
Champaign, 2013.

• Meneses, Esteban, Ni, Xiang, & Kále, Laxmikant. A Message-Logging Protocol for
Multicore Systems. In Proceedings of the 2nd Workshop on Fault-Tolerance for HPC
at Extreme Scale (FTXS 2012). Jun-2012. Boston, MA.

• Meneses, Esteban, Sarood, Osman, & Kále, Laxmikant. Accessing Energy
Efficiency of Fault Tolerance Protocols for HPC Systems. In Proceedings of 24nd
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). Oct. 2012. New York City, NY.

• Menon, Harshitha, Acun, Bilge, Garcia, Simon, Sarood, Osman, & Kále,
Laxmikant. Thermal Aware Automated Load Balancing for HPC Applications. In
Cluster Computing (CLUSTER), 2013 IEEE International Conference on. IEEE,
2013.

• Menon, Harshitha, Jan, Nikhil, Zheng, Gengbin, & Kále, Laxmikant. Automated
Load Balancing Invocation based on Application Characteristics. In Cluster
Computing (CLUSTER), 2012 IEEE International Conference on. IEEE, 2012.

• Menon, Harshitha, & Kále, Laxmikant. A Distributed and Dynamic Load Balancer
for Iterative Applications. In Proceedings of 2013 International Conference for High

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

7

Performance Computing, Networking, Storage and Analysis (SC’13). Nov. 2013.
Denver, CO.

• Ni, Xiang, Meneses, Esteban, & Kále, Laxmikant. ACR: Automatic
Checkpoint/Restart for Soft and Hard Error Protection. In Proceedings of 2013
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC’13). Nov. 2013. Denver, CO.

• Ni, Xiang, Meneses, Esteban, & Kále, Laxmikant. Hiding Checkpoint Overhead in
HPC Applications with a Semi-Blocking Algorithm. In Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, pp. 364-372. IEEE,
September, 2012. Beijing, China.

• Sarood, Osman, Meneses, Esteban, & Kále, Laxmikant. A ‘Cool’ Way of Improving
the Reliability of HPC Machines. In Proceedings of 2013 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC’13). Nov.
2013. Denver, CO.

• Sun, Yanhua, Zheng, Gengbin, Mei, Chao, Bohm, Eric J., Kále, Laxmikant, Philips,
James C., & Jones, Terry. Optimizing Fine-grained Communication in a
Biomolecular Simulation Application On Hybrid Cray XK6 System. In Proceedings
of 2012 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’12). Nov. 2012. Salt Lake City, UT.

• Sun, Yanhua, Zheng, Gengbin, Kále, Laxmikant, Jones, Terry R., & Olson, Ryan.
A uGNI-based Asynchronous Message-driven Runtime System for Cray
Supercomputers with Gemini Interconnect. In Proceedings of 26th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2012). May-2012. Shanghai,
China.

• Tock, Yoav, Mandler, Benjamin, Moreira, José, and Jones, Terry. Design and
Implementation of a Scalable Membership Service for Supercomputer Resiliency-
Aware Applications. Lecture Notes in Computer Science Volume 8097, 2013, pp.
354-366. DOI http://10.1007/978-3-642-40047-6 37. Print ISBN 978-3-642-40046-9.

• Tock, Yoav, Mandler, Benjamin, Moreira, José, and Jones, Terry. Design and
Implementation of a Scalable Membership Service for Supercomputer Resiliency-
Aware Applications. Euro-Par 2013 Parallel Processing: 19th International Euro-Par
Conference, Aachen, Germany, August 26-30, 2013: Proceedings. Springer, 2013.

• Yu, Li, Zheng, Ziming, Lan, Zhiling, Jones, Terry, Brandt, Jim, & Gentile, Ann.
Filtering log data: finding the needles in the haystack. In 42nd IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012). Jun-
2012. Boston, MA.

• Zheng, Gengbin, Ni, Xiang, & Kále, Laxmikant. A Scalable Double In-memory
Checkpoint and Restart Scheme towards Exascale. In Proceedings of the 2nd
Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS 2012). June-2012.
Boston, MA.

• Zheng, Ziming, Lan, Zhiling, Yu, Li, & Jones, Terry. 3-Dimensional Root Cause
Diagnosis via Co-analysis. In Proceedings of 9th International Conference on
Autonomic Computing (ICAC). Sep-2012. San Jose, CA.

	

	

	

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

8

• Presentations –
• Celso L. Mendes, Laxmikant V. Kale, Eduardo R.Rodrigues, Jairo Panetta. Adaptive

and Dynamic Load Balancing for Weather Forecasting Models. In Annual meeting
of the Cray Users Group (CUG) 2012. May 2012. Stuttgart, Germany.

• Esteban Meneses, Xiang Ni and L. V. Kale. A Message-Logging Protocol for
Multicore Systems. In Proceedings of the 2nd Workshop on Fault-Tolerance for HPC
at Extreme Scale (FTXS 2012). Jun-2012. Boston, MA.

• Gengbin Zheng, Xiang Ni and Laxmikant V. Kale. A Scalable Double In-memory
Checkpoint and Restart Scheme towards Exascale. In Proceedings of the 2nd
Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS 2012). June-2012.
Boston, MA.

• Jonathan Lifflander, Phil Miller, Ramprasad Venkataraman, Anshu Arya, Terry Jones
and Laxmikant Kale. Mapping Dense LU Factorization on Multicore Supercomputer
Nodes. In Proceedings of 26th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). May-2012. Shanghai, China.

• Li Yu, Ziming Zheng, Zhiling Lan, Terry Jones, Jim Brandt, and Ann Gentile.
Filtering log data: finding the needles in the haystack. In 42nd IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012). Jun-
2012. Boston, MA.

• Yanhua Sun, Gengbin Zheng, L. V. Kale, Terry R. Jones and Ryan Olson. A uGNI-
based Asynchronous Message-driven Runtime System for Cray Supercomputers with
Gemini Interconnect. In Proceedings of 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2012). May-2012. Shanghai, China.

• Ziming Zheng, Zhiling Lan, Li Yu and Terry Jones. 3-Dimensional Root Cause
Diagnosis via Co-analysis. In Proceedings of 9th International Conference on
Autonomic Computing (ICAC). Sep-2012. San Jose, CA.

• Terry Jones. HPC Colony – Unconstrained Performance at Exascale. Exascale
Research Conference. Oct-2012. Arlington, VA.

• Awards
a. winner of HPC Challenge Award at SC’ 2011	

b. IEEE Computer Society Sidney Fernbach Award: Laxmikant Kale	

	

• Software Products

Software title Current Version Brief Description Date of Last
Release

Hierarchical load balancer
module Charm++ 6.5.0 plug-in 3/13/13
In-memory checkpoint
auto-restart module Charm++ 6.5.0 enhanced features 3/13/13
Team based load balancer Charm++ 6.5.0 3/13/13
Causal message-logging
module Charm++ 6.5.0 newly created 3/13/13
Hi-Precision Synch-
ronized Global Clocks OpenMPI 1.4.4

high precision global synchronized
clocks 5/20/12

Parallel Coordinated
Scheduling Linux 2.6.32.59

gives Linux kernel parallel awareness
for coordinated scheduling 5/1/11

Spider Cast SpiderCastCPP 1.0

A C++ scalable implementation that
provides a membership service and
group communication services for
HPC environments. 5/1/12

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

9

Notes:

 In addition to our on-team involvement with IBM, we are working with Cray to ensure
our work on ORNL’s Titan machine results in a commercially available technology. This
work is being funded by ORNL and includes close involvement with both HPC vendors.
A pathforward plan has been developed to release coordinated scheduling technology for
future machines.

 Some parts of this research have been incorporated to the public distribution of the
Charm++ software infrastructure, which is available in both source and binary formats. In
particular, a new release of Charm++ (v.6.5.0) was made available recently, through the
Charm++ download website: http://charm.cs.uiuc.edu/software/

 SpiderCast is currently identified by IBM as an internal asset. As such, it is a candidate
for inclusion in some IBM products and/or continued development of advanced features.

	

Center	
 Feedback	

• Please answer as applicable: Has the support received from the following been beneficial to

your project team? Cite examples if possible
o User Assistance Center

 Utilized for new login ids and early access questions
 All interactions were seen as very favorable from our viewpoint

o Scientific Computing Group
 Due to the nature of our research, we did not interact with the Scientific

Computing Group
o Visualization and Analysis Team

 Due to the nature of our research, we did not interact with the Visualization
and Analysis Team

• Any additional feedback from your project team for the centers?
	

Code	
 Description	
 and	
 Characterization	

Approach	

Much of the computational infrastructure that we develop is written in C++, and is part of
the Charm++ software distribution, available from http://charm.cs.uiuc.edu. Charm++ source
is freely available under a simple free non-commercial-use license. For the applications that
we have utilized (mainly NAMD), the dominant language is also C++, although there are
pieces written in C due to legacy reasons. Some of these applications may benefit from
specialized libraries (e.g. FFT routines), but this is not essential for the tests to be conducted.

Pattern of usage
Our typical pattern of usage on Leadership Computing Facilities is to conduct short runs

on a large number of cores. These runs are repeated extensively, to test different combinations
of settings and parameters, but each individual run typically consists of just a few iterations or
timesteps of the full-scale application. This mode is generally sufficient to assess performance
of critical parts in the application, and to test possible ways to improve performance.
However, since our focus is scalable performance, via automated intelligent runtime, we need
to run the tests and strategies on as large a fraction of the system as is feasible. For these
experiments, we used OLCF’s reservation system to request whole machine access. Weekly
runs allow us time to analyze data, make improvements, and from time to time, design new
strategies, before running experiments again. We believe that such allocations to “sharpen the

Final ALCC Report	
 	
 November 12, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 Allocation Period: FY2012

	

	

	

10

saw” by improving scaling across a wide range of future applications will optimize the usage
of LCF resources in the future. In effect, our allocation will pay for itself through
improvements in efficiency of production runs.

Job Characterization
Our efforts have focused on extending its scalability from 32K to 250K+ cores. Besides

the scaling tests, we will also utilized a portion of our allocation (approximately 25% of the
resource for scaling tests) to prepare and debug our software for the scaling runs. These
preparation/development runs did not need dedicated access to the machine. Scaling tests
were performed on Charm++ and the Colony Linux kernel.

• If possible and useful, please indicate which of the following algorithmic motifs appear in
each of your major production codes.

	

	

Code	

Name	

Dense	

Linear	

Algebra	

Sparse	

Linear	

Algebra	

Monte	

Carlo	

FFTs	
 Particles	
 Structured	

Grids	

Unstructured	

Grids	

AMR	

	
  	
  	
  	
  	
  	
  	
  	
  	

	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

