
Project Final Report (including no cost extension)
SC Program Announcement Title and Number: Lab 07-23
FAST-OS II: Operating Systems and Runtime Systems at Extreme Scale

 Terry Jones, ORNL, Lead Principal Investigator
 Laxmikant Kalé, UIUC, Co-Principal Investigator
 José Moreira, IBM, Co-Principal Investigator

	

	

	
 	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Program office: Office of Advanced Scientific Computing Research
Program Manager: Dr. Lucy Nowell

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

2

	

	

	

	

	

Table	
 of	
 Contents	

	

Executive Summary	
 ...	
 3	

Key Findings	
 ...	
 3	

1. Project Abstract	
 ...	
 4	

2. Background and Motivation	
 ...	
 5	

3. Research Review	
 ..	
 6	

3.1	
 Kernel & Kernel Support Advances (Colony lead: ORNL)	
 ..	
 6	

3.2	
 Fault Tolerance Advances (Colony lead: Univ. of Illinois)	
 ..	
 11	

3.3	
 Scalable Load Balancing (Colony lead: Univ. of Illinois)	
 ..	
 15	

3.4	
 Task Mapping (Colony lead: Univ. of Illinois)	
 ..	
 19	

3.5	
 Scalable membership, monitoring, & communication services (Colony lead: IBM Research)	
 	
 20	

4. Funds / Costs Review	
 ..	
 23	

5. Quantitative Impact & Achievements	
 ...	
 23	

5.1	
 Awards	
 ..	
 24	

5.2	
 Selected Overall Project Highlights	
 ..	
 24	

5.3	
 Publications	
 ..	
 25	

5.4	
 Talks	
 ..	
 29	

5.5	
 Software Products	
 ..	
 32	

6. Feedback, Recommendations, and Project Experiences	
 ...	
 32	

7. References	
 ..	
 33	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

3

Executive Summary
HPC Colony II has been a 36-month project focused on providing portable performance for

leadership class machines—a task made difficult by the emerging variety of more complex computer
architectures. The project attempts to move the burden of portable performance to adaptive system
software, thereby allowing domain scientists to concentrate on their field rather than the fine details of
a new leadership class machine.

To accomplish our goals, we focused on adding intelligence into the system software stack. Our
revised components include: new techniques to address OS jitter; new techniques to dynamically address
load imbalances; new techniques to map resources according to architectural subtleties and application
dynamic behavior; new techniques to dramatically improve the performance of checkpoint-restart; and
new techniques to address membership service issues at scale.

Key Findings
⇒ The technique of Coordinated Scheduling has been shown to be an effective strategy

for removing negative consequences of OS Jitter. Results from ORNL’s Jaguar machine
demonstrate that coordinated scheduling can give similar performance to core-specialization
while improving overall efficiency through consuming less nodes

⇒ The study has identified that double in-memory checkpoint restart strategies are able to
effectively handle small node-count faults and incur small overhead in the non-fault
case. This approach was scaled up to 32 thousand cores on a BG/P machine with a molecular
dynamics benchmark.

⇒ A dynamic load-balancing framework leverages the ability of a runtime system to adaptively
react to changes in the system and keep making progress in the application at a fast rate. We
explored two different scenarios where the conditions of the system suddenly
change. The first scenario consists in having node failures. The runtime system can efficiently
reconstruct the lost tasks and recover the work lost. However, the load-balancing framework
dramatically reduces the memory overhead of fast recovery techniques. The second
scenario includes thermal variations in different portions of a cluster. The runtime system
reacts to this situation by modifying the frequency of hot cores and moving tasks away from
them. The load-balancing framework ensures the work is evenly distributed across the
system considering the difference in frequency. With this approach, it is possible to reduce
the cooling costs of supercomputing facilities by managing the temperature of individual
processors.

⇒ Task mapping proved to be a fundamental piece in improving the performance of scientific
applications. Using the topology of a cluster, it is possible to have the load balancing
framework deciding the map of tasks to nodes to avoid network congestion and to reduce
communication costs.

⇒ The research has revealed that a membership service based on an overlay network peer-to-
peer technology can efficiently support 1 million nodes. This enables the implementation of a
new class of resiliency-aware runtime on large scale HPC systems.

⇒ In addition, the research demonstrated that group communication services, such as publish
subscribe, can be made scalable enough to support 1 million nodes. Scalable publish
subscribe provide the flexible and dynamic communication channels that can be used for
runtime load balancing and fine grained monitoring.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

4

1. Project Abstract

Motivation & Goals

HPC Colony II seeks to provide portable performance for leadership class machines. Our
strategy is based on adaptive system software that aims to make the intelligent decisions
necessary to allow domain scientists to safely focus on their task at hand and allow the system
software stack to adapt their application to the underlying architecture.

Team

Terry Jones1, Laxmikant Kalé2, Eliezer Dekel3, Benjamin Mandler3, Celso Mendes2, Xiang Ni2
Esteban Meneses2, Harshitha Menon2, José Moreira3, Yoav Tock3, Lukasz Wesolowski2, Yanhua Sun2

1Oak Ridge National Lab
Mailstop 5164

Oak Ridge, TN 37831

2University of Illinois
201 N. Goodwin Avenue

Urbana, IL 61801

3International Business Machines
1101 Kitchawan Rd

Yorktown Heights NY 10598

Budget

 Year 1 Year 2 Year 3 Total
ORNL $187,000 $187,000 $187,000 $561,000
IBM $163,000 $163,000 $163,000 $489,000
UIUC $250,000 $250,000 $250,000 $750,000

Totals $600,000 $600,000 $600,000 $1,800,000

Principal Investigators

Lead Principal Investigator
Terry Jones
Oak Ridge National Lab
PO Box 2008 / Mailstop 6164
Oak Ridge, TN 37831
Tel: 865-241-5764
Email: trj@ornl.gov

Co-Principal Investigator
Laxmikant Kalé
Univ. of Illinois at Urbana-Champaign
201 N. Goodwin Avenue
Urbana, IL 61801
Tel: 217-244-0094
Email: kale@cs.uiuc.edu

Co-Principal Investigator
José Moreira
International Business Machines
1101 Kitchawan Rd
Yorktown Heights NY 10598
Tel: 914-945-1709
Email: jmoreira@us.ibm.com

Funding Period

Funding Period: Sept 15, 2009 – Sept 31, 2013 (includes 12 month no-cost extension)

Impact Statistics

Publications: 36 proceeding articles / 5 journal articles / 2 book chapters / 1 dissertation / 5 other

Software Products Impacted: 4 1

Academic Support: 4 undergrads / 7 grad students / 1 doctorate awarded / 2 post docs supported

Product Awards: 1 (winner of productivity & performance category, HPC Challenge 2011)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 Charm++ 6.5.0, OpenMPI 1.4.4, Linux 2.6.16.60, SpiderCastCPP 1.0	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

5

	

2. Background and Motivation

HPC Colony II is a 36-month project focused on providing portable performance for
leadership class machines—a task made difficult by the emerging variety of more complex computer
architectures. The project attempts to move the burden of portable performance to system software,
thereby allowing domain scientists to concentrate on their field rather than the fine details of a new
leadership class machine. An overview matrix is provided in Table 1.

	

Table 1: Overview Matrix for Colony II

Performed as a collaboration of three organizations (Oak Ridge National Laboratory, IBM

Corporation, and the University of Illinois at Urbana-Champaign), the HPC Colony II Project received
primary funding through the DOE Office of Advanced Scientific Computing Research (DOE/ASCR). In
addition, 50% matching funds were provided by IBM Corporation for their involvement, and additional
support was provided by Oak Ridge National Laboratory and the University of Illinois at Urbana-
Champaign.

Our strategy is based on adaptive technology that aims to make the intelligent decisions necessary to
allow domain scientists to safely focus on their task at hand and allow the system software stack to adapt
their application to the underlying architecture. The growing complexity and diversity of leadership class
computer architectures demands a low entry barrier when domain scientists migrate their application
codes to new machines. Similarly, efficient performance on diverse machines is an increasingly
important issue. The requirement, therefore, is to modify the familiar system software stack to provide an
HPC stack that presents a minimal barrier to BOTH portability AND performance.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

6

To help realize our project goal of portable performance, the HPC Colony II project is focused
on six interrelated topic areas which utilize adaptive technology to make portable scalability much more
feasible. Our six topic areas are:

o Reduce performance consequences from fault tolerance
o Provide scalable membership, monitoring, & communication services
o Investigate innovative ways to provide dynamic load balancing
o Improve the resource management interface between center batch scheduling & on-node

system software
o Enable broad application sets on most capable machines
o Enable Linux kernel advances for extreme scale systems

These areas are addressed through a combination of system software strategies. We modify the most

familiar and popular operating system in the HPC market space, Linux, to be suitable for extreme node
counts. We establish an adaptable runtime system that is able to address the critical issues of fault
tolerance and load balancing. Finally, we establish a high-performance open-source membership service
that removes the necessity of repeating this critical functionality in multiple places (file systems, job
schedulers, sys admin tools, …) as is standard practice today.

The Colony kernel is a modified version of the Linux which runs on Cray’s largest machines. Unlike
typical Linux, the Colony kernel is able to provide the familiar interfaces of Linux without the
problematic scaling issues of OS jitter. [OS Jitter is explained below.]

Charm++ is an adaptive runtime system -- a runtime library to let C++ objects communicate with
each other efficiently. Charm++ is a way of writing a program (a programming model). Charm++ is not a
programming language in and of itself. Instead, Charm++ uses the C++ programming language as it's
base language. Charm++ adds additional functionality and structure on top of C++ that allows the
programmer to solve the problem at hand. With processor virtualization, the user divides the problem into
a large number of objects without considering the actual number of physical processors. Each object is
called a virtual processor. The user views the program as a set of virtual processors that interact with each
other. The task of mapping virtual processors to physical processors is left to the Charm++ runtime
system. Charm++ organizes the virtual processors as collections of C++ objects that interact via
asynchronous method invocations.

Our membership services software is called SpiderCast. Developed by IBM Research, SpiderCast
provides best in class performance while permitting the extreme scales envisioned for Exascale machines.

3. Research Review
	

3.1 Kernel & Kernel Support Advances (Colony lead: ORNL)
	

Linux is desirable because it is utilized at many universities, it provides a rich set of tools that have
been developed over the years, and it offers a great deal of functionality through its expansive API.
However, Linux has been shown to introduce performance issues due to OS jitter or noise [Hoefler10,
Jones03, Nataraj07].

HPC Colony solves the performance problem by providing effective global time synchronization in
software together with an advanced kernel scheduler that is able to optimize global machine performance.
This is accomplished by modifying the Linux kernel to have parallel awareness of other nodes in the
supercomputer. This allows us to perform coordinated scheduling: the machine is managed for parallel
throughput with a global perspective instead of the typical local node perspective.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

7

HPC Colony II developed the first co-scheduling Linux kernel designed for High Performance
Computing. Results were obtained on ORNL’s XT5/XK6 system2; first with the normal scheduling Linux
2.6.16.60 operating system, then with the coordinated scheduling Linux 2.6.16.60 operating system
described above. Results for normal Linux scheduling showed noticeable variability from test to test at
scales of 10K cores. This was expected and coincides well with results obtained from Hoefler et al.
[Hoefler10] and Sottile et al. [Sottile04], as well as our previous work. Performance measurements were
then obtained using the coordinated-scheduling policy and modified operating system. It was immediately
clear for this workload that the coordinated scheduling provided a significant performance improvement,
both in terms of average execution time and in terms of variability between runs. Finally, an additional set
of performance numbers with the normal operating system were measured. The last set of normal
operating system results closely matched the set of results obtained before the co-scheduled kernel results
taken in the middle.

Just as the hardware of supercomputers has evolved over time, the applications that use them have
also evolved. Today, parallel programs are frequently implemented in the Bulk-Synchronous Single-
Program-Multiple-Data (SPMD) programming model. For this programming model, computation
consists of one or more cycles or timesteps. Each cycle may contain one or more synchronizing collective
operations – an operation in which a set of processes (frequently every process) participates and no single
process can continue until every process in the set has participated. Examples of synchronizing collective
operations from the Message Passing Interface (MPI) interface are MPI_Barrier, MPI_Allreduce, and
MPI_Allgather [MPI-Forum]. For example, a parallel application designed to simulate climate may use
the MPI_Allreduce operation to find the maximum pressure present in an array distributed over all nodes;
note that the overall maximum pressure cannot be determined until every node has contributed its
maximum. Synchronizing collective operations pose serious challenges to scalability since a single
instance of a laggard process will block progress for every other process.

Synchronizing collectives are common in parallel applications. Even though today’s most prevalent
operating systems, including Linux, do not include synchronizing collectives -- operating systems may
determine the scalability of a parallel application running in user-space if the parallel application contains
synchronizing collectives. The scalability of an operating system is referring to the operating system’s
ability to support a parallel application without introducing scaling issues for the parallel application.
Adverse performance associated with synchronizing collectives would seem to restrict their usage, but
unfortunately synchronizing collective operations are required for a large class of parallel algorithms. [6]

Operating systems impact synchronizing collectives in the following way. A cascading effect results
when one laggard process impedes the progress of every other process. The cascading effect has
significant operating system implications and proves especially detrimental in an HPC context: while
operating systems may be considered very efficient in a serial context, even minimal system and/or daemon
activity proves disastrous due to the cascading effect in the large processor count parallel environment
common in HPC centers. When interruptions occur on a subset of the computer nodes used for a parallel
application during a synchronizing collective (e.g. an interruption for operating system activity such as a file
system buffer flush or even a TLB miss), the degree of overlap is a key component in determining the
performance impact of the interruption event on the synchronizing collective operation.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 During the course of our project, the Jaguar Cray XT5 machine has been upgraded to the Titan Cray XK6 machine.
More information on Jaguar and Titan’s architecture is available at the NCCS website: http://www.nccs.gov

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

8

Figure 1 graphically portrays two

separate runs of an eight-way parallel
application with time as the x-axis. In the
top instance, system activity (denoted as
dark-green rectangles) occurs at purely
random times. As a result, operations that
require all eight processors to make
progress are able to go forward only when
grey-marble is present across all eight
processors vertically (at one point in time).
The beige-sand rectangles show those
periods in time when the application is
running across all 8 processors. In the
bottom portrayal of Figure 1, the same
amount of system activity occurs (there is
the same total amount of dark-green) but it
is largely overlapped. This means much
more time is available for parallel activities
requiring all processors, as shown by the
larger green rectangles.

For clusters comprised of nodes with
more than one core, both inter- and intra-
node overlap is an issue. Notice that if the
eight cores in Figure 1 are spread across
two 4-core nodes, it is desirable to ensure
overlap between nodes as well as on-node.
The bottom run shows very good on-node
overlap of operating system interference,
but does not fully achieve cross-node
overlap of operating system interference.

The Colony Linux kernel achieves high scalability through coordinated scheduling techniques and
other strategies aimed at reducing operating system overhead. Coordinated scheduling (also referred to as
parallel aware scheduling) seeks to reduce the impact of operating system noise. This is accomplished by
increasing the overlap of interruption activity (e.g., increasing the overlap of ‘grey-marble activity’ in
Figure 1).

Colony establishes two alternating intervals for activity across the entire parallel computer. During the
longer interval, the parallel application is scheduled (e.g., the ‘grey-marble activity’ in Figure 1). This is
accomplished by modifying the Linux scheduler to favor the parallel application with a high scheduler
priority. During a shorter interval, other necessary activities such as health-monitoring daemons, parallel file
system daemons, and so on, are scheduled (e.g., the ‘dark-green activity’ in Figure 1). During this period,
the normal Linux algorithms are used allowing delayed operating system activities to make progress. In
this way, the federated cores are said to be co-scheduled and interfering interruptions from daemon
activity are minimized.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

9

Figure 2 at right compares the new technique
of coordinated scheduling with a normal
(unmodified) environment, an environment that
utilizes core-specialization, and an environment
that uses core-specialization + processor pinning
at 30,000 cores. The Y-axis is time to solution
(smaller is better). Coordinated scheduling gave a
2.87x improvement over a normal (unmodified)
environment. It also gave better performance than
core-specialization despite using much fewer
nodes (core specialization reserves one core per
node to handle OS jitter). Coordinated scheduling
was also able to outperform the alternate
technique of core specialization while providing
higher machine utilization.

The left half of Figure 3 below depicts the
normal Linux results while the right half of Figure
3 depicts the co-scheduled results. As described
earlier, the benchmark employed for this testing
results in a single number corresponding to a unit
of execution time, the lower the better. The graphs
indicate shorter durations (better performance) for the co-scheduled kernel.

The best observed time from all experiments was 0.44. The average execution time for the co-
scheduled kernel was 0.56, which compares to 1.60 with the Normal Scheduled kernel. An improvement
of 285%. Moreover, the variability was much improved with the co-scheduled kernel. The standard
deviation for the Normal Scheduled samples was 5.32; this compares to 0.20 for the co-scheduled kernel.

With a standard deviation larger than the average, it is clear that the samples do not follow a Gaussian
distribution. In fact, the distribution of samples for the co-scheduled kernel has a very prominent peak
near the average measurement, and a short tail of longer times. However, the distribution for the Normal
Scheduled kernel has a much broader peak and a very long tail of outlier samples with much longer times.
These results can be seen in Figure 4. In the left histogram, the worse performing outliers are circled in
red, and the two most are off the charts at 8.88 and 60.77. This variability is in stark contrast to the co-
scheduled results in the right histogram of Figure 4.

	

Figure 3. Coordinated and uncoordinated schedulings. The above figure portrays histogram bins in a
pie-chart to provide an indication of the relative timing of runs. The top chart gives results without
scheduling, and bottom chart gives results for coordinated scheduling.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

10

	

Figure 4. Coordinated and uncoordinated schedulings. The above figure portrays a histogram of runs
with and without coordinated scheduling. The lower histogram includes coordinated scheduling.

In context, the 285% speedup is good news for that class of applications impacted by synchronizing
collectives, but it should be noted that overall application performance will depend upon many factors
beyond synchronizing collective performance. Yet the 30% overall application slowdown reported by
Nataraj et al. [Nataraj07] and Ferreira et al. [Ferreira08] indicates a significant amount of speedup may be
realized by an entire application when noise effects are minimized.

To achieve this significant performance increases for such bulk-synchronous applications, the
coordinated scheduling mechanism in the kernel requires a globally synchronized clock. A second topic
area of our work was to investigate coordinated scheduling for machines without hardware support for
global synchronized clock (e.g. Cray XT5, XK6, and XK7 architectures). We developed an improved
software-based clock synchronization scheme that provides high precision time agreement among
distributed memory nodes. The technique is designed to minimize variance from a reference chimer
during runtime and with minimal time-request latency. Our scheme permits initial unbounded variations
in time and corrects both slow and fast chimers (clock skew). An implementation developed within the
context of the MPI message passing interface was designed, and time coordination measurements are
presented below. To investigate our design, we began by measuring how nine nodes vary from a reference
source when only NTP is employed. Figure 5 presents data for uncorrected variance and variance
corrected with a linear fit.

Figure 5: Time coordination without Synchronization Improvements

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

11

Given that the mean time variance for even a small set of nodes can reach 20.0 milliseconds under
standard Network Time Protocol (NTP), the Colony project designed a new software-based
synchronization protocol suitable for high performance computing environments. Several	
 studies	
 have	

sought	
 to	
 quantify	
 the	
 magnitude	
 of	
 scalability	
 issues	
 associated	
 with	
 operating	
 system	
 noise3	
 4	
 .	
 	
 For	

example,	
 the	
 Tau	
 team	
 at	
 the	
 University	
 of	
 Oregon	
 has	
 reported	
 23%	
 to	
 32%	
 increase	
 in	
 runtime	
 for	

parallel	
 applications	
 running	
 at	
 1024	
 nodes	
 and	
 1.6%	
 operating	
 system	
 noise.	
 More	
 recently,	
 Ferreira	
 et	

al.	
 confirmed	
 that	
 a	
 1000	
 Hz	
 25µs	
 noise	
 interference	
 (an	
 amount	
 measured	
 on	
 a	
 large-­‐scale	
 commodity	

Linux	
 cluster)	
 can	
 cause	
 a	
 30%	
 slowdown	
 in	
 application	
 performance	
 on	
 ten	
 thousand	
 nodes.	
 By	
 tightly	

synchronizing	
 the	
 clocks	
 on	
 the	
 compute	
 nodes,	
 it	
 is	
 possible	
 to	
 extend	
 the	
 system	
 software	
 to	
 support	

co-­‐scheduling	
 (an	
 effective	
 technique	
 to	
 reduce	
 the	
 effects	
 of	
 noise	
 on	
 a	
 parallel	
 computation).	
 	

With our ALCC allocation, the Colony team investigated a new point-to-point synchronization
protocol (our previous methods required collective operations). Figure 6 shows a histogram of results for
the new synchronization protocol on 20,480 Titan processors.

Figure 6: Time synchronization with Coordination improvements after 5 minutes. These

figures represent the variance for synchronizing up to 20,480 nodes.

3.2 Fault Tolerance Advances (Colony lead: Univ. of Illinois)

During this period, we have improved the various fault tolerance mechanism in Charm++ runtime
system. Both schemes, checkpoint/restart and message logging, are strong candidates to provide resilience
at exascale. As such, our main efforts were invested in evaluating how well each scheme would tackle the
challenges of large-scale systems.

Our double in-memory checkpoint/restart mechanism was tested on larger systems. Checkpoint based
fault tolerance methods are effective approaches at dealing with faults. With these methods, the state of
the entire parallel application is checkpointed to reliable storage. When a fault occurs, the application is
restarted from a recent checkpoint. Leveraging Charm++'s parallel objects for checkpointing, two
variations of checkpointing schemes, a disk-based and a double in-memory checkpointing schemes, are
incorporated in the production distribution of Charm++. One of the unique features of both schemes is
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence of System Noise on Large-Scale Applications by
Simulation. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC'10), Nov.
2010.	

4	
 Terry Jones, Shawn Dawson, Rob Neely, William Tuel, Larry Brenner, Jeff Fier, Robert Blackmore, Pat Caffrey, Brian
Maskell, Paul Tomlinson, and Mark Roberts, Improving the Scalability of Parallel Jobs by adding Parallel Awareness to the
Operating System. Proceedings of Supercomputing 2003, Phoenix, AZ, November 2003.	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

12

that the program can be restarted on smaller number of available processors as a result of failure.
Furthermore, the application will continue to execute on the remaining processors without much
performance penalty after automatic load balancing. In particular, compared to the disk-based method, the
double in-memory checkpointing scheme takes advantage of the fast memory access for checkpointing to
both local memory and remote memory through high speed interconnect.

Recently, we worked on further minimizing the checkpoint and restart overhead by applying more
efficient collectives for barriers. We demonstrated the in-memory checkpointing scheme using MPI on
very large scale supercomputers. One obstacle for demonstrating fault tolerance on MPI applications is
that the queueing system on supercomputers will kill a job when a process fails. Without the support of
the queueing system, we developed a scheme that mimics a failure of a process without actually killing it.
This is implemented as a DieNow() function, which users insert at any place in their program to trigger a
failure. When DieNow() function is called by the program, the process will hang and stop responding to
any communication as if it had died. Charm++ will pick up a spare processor from a pool and restart the
application from the recent checkpoint in memory.

To demonstrate the performance and scalability of the newly optimized double in-memory
checkpointing scheme, we used two benchmarks, which are leanMD (a molecular dynamicbenchmark)
and Jacobi (a 7-point stencil benchmark). In the experiments, we measured the overhead of checkpoint
and restart of these two benchmarks on a BlueGene/L machine. The results are shown in figures 7 and 8.
We could see the checkpoint time scales well in both applications with small and large memory footprint.
In particular, the restart time of leanMD simulating an 1-million atom system only increases from 0.08
seconds on 2K cores to 0.38 seconds on 32K cores.

Figure 7. Time to checkpoint in different applications. Increasing the size of the system does not severely impact the
ability to quickly store the checkpoint in local storage.

Figure 8. The time to restart after a failure is very short. However, the scale of the system poses a challenge.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

13

On another front, we studied a novel mechanism to adapt our message logging scheme to executions
where the communication load per node changes. Recently, we have been investigating another way in
which message logging can be improved by allowing a load balancer to provide crucial information about
the application. With this information, we vastly reduce the memory overhead associated with storing the
messages. We call this approach Dynamic Team-based Message Logging. Nodes are divided into teams
and only messages crossing team boundaries are logged. Teams are, however, dynamic. Depending on the
runtime conditions, the load balancer may change the teams to reflect the change in the load of different
nodes. Figure 9 shows the results of the Team Load Balancer (TeamLB) that attains two goals: i) provides
a good load balance across the computation nodes and, ii) reduces the message logging overhead by
grouping highly connected objects in the same team. Although this load balancer has a small overhead
penalty, it drastically reduces the memory overhead of message logging.

Figure 9. A new load balancer (TeamLB) manages to keep a negligible execution time overhead and
drastically reduce the memory overhead of message logging.

Additionally, we have been exploring another way to scale our fault tolerance approaches. By using
the SMP build of Charm++, where there is a single heavyweight process per node (and multiple threads),
we managed to obtain a scheme that better matches the type of failures in big systems. By inspecting
failure logs that are publicly available, we built a profile of the frequency of failures and the number of
nodes in each failure. Our findings can be summarized in that the probability of more than one node
failing concurrently is very low. Most of the time a failure will only include a single node.

We redesigned both approaches, checkpoint/restart and message logging, to address this characteristic
of failures in supercomputers. Our implementations generated promising preliminary results, but we are
in the process of extending them to include more experiments with more applications.

 0.1

 1

 10

 100

 S
ys

te
m

 1
2

 S
ys

te
m

 1
8

 S
ys

te
m

 1
9

 S
ys

te
m

 2
0

 S
ys

te
m

 2
1

M
PP2

Tsu

ba
m

e

M

er
cu

ry

F
re

q
u

e
n

c
y
 (

%
)

1 node
2 nodes
3 nodes

4 nodes
> 4 nodes

	

Figure 10. The nature of failures in current supercomputers. Most of the time a failure only brings down one node.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

14

Also during this period, we continued our fault tolerance research by investigating a more advanced
form of the message-logging scheme that we had studied initially. The new technique is based on a
variant of the causal message logging protocol that seems to be a promising alternative to provide fault
tolerance in large supercomputers. This study was conducted over three phases: first, we analyzed various
scenarios that make pessimistic (i.e. conservative) message logging compromise the performance in order
to keep consistency in an execution; next, we did a performance comparison of pessimistic and causal
approaches for message logging with different applications; then we conducted a performance evaluation
of the simple causal message logging protocol for applications that scale up to 1024 processors.

In contrast to pessimistic message logging, this new causal approach has low latency overhead,
especially in collective communication operations. Besides, it reduces the number of messages when
more than one thread is running per processor. In our tests, we demonstrated that a simple causal message
logging protocol has a faster recovery and a low performance penalty when compared to
checkpoint/restart.

A major source of performance penalization of most message-logging protocols is the use of
determinants. These bits of information are necessary to provide a correct recovery from a failure. During
normal execution, the message-logging protocol creates, stores and sends determinants. The combine cost
of all those operations varies from application to application, but it may be as high as 20% in some
situations. Therefore, a strategy that avoids determinants is desirable to keep message-logging as an
alternative to provide fault tolerance in the future. A new strategy that avoids the use of determinants uses
high-level information from the programming language. In some cases, it is possible to avoid the creation
of determinants altogether, removing a high percentage of the performance penalization of message-
logging.

Figure 11: Causal versus Fast message-logging strategies for three applications.

The experiments run on Intrepid revealed that the new protocol reduces the performance overhead by
a big margin, compared to a traditional message-logging protocol. A collection of three iterative stencil
programs were used in the experiments (Jacobi3D, Wave2D and LULESH).

These programs differ in the amount of computation per iteration and the communication pattern. The
optimized protocol reduced the performance overhead in these applications more than 50%, 66%, 75%,
respectively, compared to a traditional message-logging protocol. After that reduction, the performance
overhead of the protocol is lower than 4% for all the applications examined.

Figure 12: Recovery speedups made possible by parallel recovery

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

15

Additionally, this new protocol was extended with the parallel recovery strategy of Charm++ to
accelerate recovery by a factor of 10, 5, and 6 in Jacobi3D, Wave2D, and LULESH, respectively. Overall,
the new strategy has a low overhead and provides a competitive strategy to provide resilience at exascale.

	

Figure 13. Effect of a failure on execution of a 7-point stencil.

To better evaluate the new approach when failures occur, we employed a 7-point stencil, and forced
the recovery to happen after an external failure was introduced in the execution. The code executes 200
iterations, and we introduced a failure at iteration 140. Figure 13 shows the performance under the causal
message logging protocol and under checkpoint-restart; a checkpoint was taken at iteration 100. The
figure plots the application progress, in terms of completed iterations, as a function of elapsed time. In the
checkpoint-restart case, the work of a few iterations (i.e. 100 to 140) needs to be redone when the failure
occurs; meanwhile, with causal message-logging, only the failing processor requires its work to be
repeated, and other processors that do not depend on it can proceed. Hence, the interruption is less severe,
and the overall execution is allowed to complete faster than in the checkpoint-restart case. Notice also the
significant energy savings of the causal message logging protocol over checkpoint-restart, as only a few
processors are affected by the occurrence of the failure and its recovery.

In summary, our evaluations so far identified multiple performance problems of pessimistic message
logging and showed that causal message logging has better performance and scalability for all the
programs we ran in our experiments. Full results of these studies were reported in [Meneses2011]. There
are, however, remaining challenges for causal message logging. Specifically, it imposes a higher latency
on communication, which can be a problem for strong scaling and collective operations, and it requires a
modest amount of additional memory to store determinants, when compared to executions without any
fault tolerance provision. As we proceed in our research, we are addressing these issues and exploiting
ways to alleviate them on large scale systems.

3.3 Scalable Load Balancing (Colony lead: Univ. of Illinois)
	

Meeting power requirements of the huge exascale machines of the future is one major challenge
facing the HPC community. As power consumption and power costs rise, the bottom line impact is felt by
everyone involved in parallel research. Members of the Parallel Programming Laboratory (PPL) are
focusing on ways to minimize cooling power for these machines. We propose a technique that uses a
combination of DVFS and temperature aware load balancing to constrain core temperatures as well as
save cooling energy. Our scheme is specifically designed to suit parallel applications that are typically
tightly coupled. Currently, the temperature control comes at the cost of execution time and we are

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

16

working to minimize the timing penalty. We have run experiments with three parallel applications, each
with a different power utilization profiles, run on a 128-core (32-node) cluster with a dedicated air
conditioning unit. As the experiment is running, we calibrate the efficacy of our scheme based on three
metrics: ability to control average core temperatures thereby avoiding hot spot occurrence, timing penalty
minimization, and cooling energy savings. Our preliminary results show cooling energy savings of up to
57% with timing penalty mostly in the range of 2 to 20%.

To demonstrate the effectiveness of our scheme, we use three applications having different utilization
and power profiles. The first is a canonical benchmark, Jacobi2D, that uses 5 point stencil to average
values in a 2D grid using 2D decomposition. The second application, Wave2D, uses a finite differencing
scheme to calculate pressure information over a discretized 2D grid. The third application, Mol3D, is
from molecular dynamics and is a real world application to simulate large bio-molecular systems. The
experiment shows that we were able to reduce the timing penalty associated with DVFS by a great
margin. Using our load balancing strategy, we were able to reduce the timing penalty to 27% for
Jacobi2D. Other than that we also used performance counters in order to relate application characteristics
to temperature control. Looking towards the future, we plan to take the DAG of the application into
account in order to reduce the timing penalty even further. We are also looking for ways to save machine
energy consumption based on the application characteristics.

	

Figure 14. Reduction in energy consumption by controlling the temperature of different cores in the machine.

	

If the cost of load balancing is more than the benefit obtained from load balancing, it degrades the

performance further. Meta-Balancer framework, implemented in Charm++, automatically identifies a load
balancing period based on the application characteristics and cost of load balancing. Meta-Balancer has
been previously shown to perform well up to 4096 cores on Jaguar. In this project we show the benefits of
Meta-Balancer on up to 131,072 cores of Intrepid, BlueGene/P.

 10

 100

 1000

 10000

2k 4k 8k 16k 32k 64k 128k

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Performance on Intrepid (2.8 million atoms)

No LB
Periodic LB

Meta LB

Figure 15: New Smart Runtime System Load Balancer

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

17

The performance of Meta-Balancer was evaluated on LeanMD benchmark and the results are plotted
in Figure 1 above. LeanMD is a molecular dynamics simulation program written in Charm++. It simulates
the behavior of atoms based on the Lennard-Jones potential. Load imbalance in LeanMD is due to the
variation in number of atoms per cell as well as the slow migration of atoms. LeanMD was run for a
system of 2.8 million atoms for 2000 iterations from 2048 to 131072 cores. The load balancing strategies
used were GreedyLB for runs till 8k cores and HybridLB for larger runs. The HybridLB is a hierarchical
strategy which uses GreedyLB and RefineLB strategies.	
 We experimented with a range of hand tuned
load balancing period. We find that if load balancing is done frequently, then the overhead of load
balancing is more than the benefit but if load balancing is performed infrequently, then the performance is
affected by load imbalance. Meta-Balancer is able to automatically identify optimal load balancing period
without any input from the user. It is also able to scale to 131072 cores without any performance
bottleneck.

HPC-Colony yielded significant research results on dynamic load-balancing techniques. First, we
consolidated our studies of applying a hierarchical load-balancing scheme that we had developed in the
previous year; those studies were reported in [Zheng2010]. Using this hierarchical load balancer more
recently, combined with optimizations added to the SMP version of Charm++, we were able to scale the
NAMD molecular simulator to the entire extent of Jaguar, a Cray XT5 at ORNL, running on 224,000
processors. Part of the obtained results, which we reported in [Mei2011], is shown in Figure 16, corre-
sponding to NAMD’s performance under different configurations on Jaguar with a 100 million-atom
data-set. As shown, scaling is excellent for the no-cutoff case.

	

Figure 16: Scaling of NAMD on ORNL’s Jaguar
under different configurations

	

Figure 17: Further performance improvements achieved in
NAMD scaling through Charm++ runtime optimizations. Full
Titan machine performance improved from 26ms to 13ms.

More recently, further improvements were obtained through novel techniques exploiting new features

in the Cray Gemini interconnect available with XK6 version of Titan. The Jaguar machine was upgraded
from an XT5 system has 2.6 Ghz six-core AMD Opteron nodes (total 224,256 cores) to an XK6 system
with 2.1Ghz sixteen-core interlagos nodes (total 298,992 cores) and GPUs. As portrayed in Figure 17 and
reported in a pending paper, our Titan optimized runtime system was able Performance for a 100M atom
NAMD run (PME every 4 steps) improved from a 26 milliseconds per step runtime over last year’s MPI
over SeaStar+ numbers, to a 13 milliseconds per step runtime with the new software and hardware
[Yanhua12].

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

18

The areas of weather and climate prediction pose a hard challenge for the efficient use of large
systems. One of the major factors limiting performance of forecasting models in current machines is load
imbalance. Besides the static causes of such imbalance, such as topography, there are dynamic factors that
may affect a weather simulation, like the movement of clouds and of thunderstorms. Due to that
imbalance, scalability of those models suffers when they are executed on a large number of processors.

We investigated the use of our Adaptive MPI (AMPI), an implementation of the MPI standard based
on Charm++, on BRAMS, an existing production-level weather forecasting model. BRAMS is written in
Fortran90 and uses MPI for parallelization. As an example, Figure 14 shows the result of a real BRAMS
forecast and the corresponding load observed on the 64 processors executing that forecast. The color
coding scheme represents rain intensity, in the forecast, and processor load, in the grid of processors. As
one can see, there is a big and clear correlation between more rain and higher computational load.

We conducted several tests with BRAMS on Kraken, a Cray XT5 at ORNL. In those tests, we
assessed the effects of virtualization and of load balancing on BRAMS executions. Our first observation
was that simple AMPI virtualization already improved BRAMS performance. This was due to a
combination of (a) better overlap between computation and communication, and (b) better cache
utilization, since the over-decomposition of AMPI produces sub-domains that more naturally fit the sizes
of the machine’s caches (we measured such cache improvements and reported results in
[Rodrigues2010]).

Figure 18. Results of a BRAMS weather forecasting and corresponding load on the 64 used processors.

Next, we applied several load balancers to BRAMS. Besides testing various load balancers already
available in Charm++, we also developed a new balancer based on the distribution of sub-domains to
processors according to a space-filling curve defined by to a Hilbert function. This distribution seems to
be very appropriate for the two-dimensional domain decomposition employed by BRAMS, and preserves
some of the locality of communication across sub-domains, even when some of those sub-domains
migrate across processors due to load balancing. As a brief sample of our obtained results, Figure 19
shows the original processor utilization in BRAMS before any virtualization was applied, and the
resulting utilization obtained with a virtualization factor of eight (i.e. AMPI divides each original domain
into eight sub-domains) and the Hilbert load balancer. There is a much higher utilization, and we
observed a reduction of more than 30% in the total execution time.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

19

Figure 19. Processor utilization in BRAMS: pre-virtualization (left) and after virtualization and load-balance (right).

The more recent work in this area has focused on attempts to provide more automation to the entire

optimization process via load balancing, such as finding automatically the best load balancing period,
based on balancing costs and imbalance penalties. Our studies indicated that, for codes with a large
memory footprint such as BRAMS, assessing the degree of imbalance is relatively cheap compared to
actually migrating sub-domains across processors. Hence, one can exploit techniques that monitor the
degree of imbalance closely, and only allow migrations that would produce performance gains higher
than the penalties associated to the current imbalance.

The present grant also partly funded preliminary work on power-aware load-balancing techniques. It
is now well known that increasing the number of cores and clock speeds on a smaller chip area implies
more heat dissipation and an increased heat density. This increased heat, in turn, leads to higher cooling
costs and the possible occurrence of hot spots. Effective use of dynamic voltage and frequency scaling
(DVFS) can help to alleviate this problem. However, there is an associated execution time penalty, which
can get amplified in parallel applications. In high performance computing, applications are typically
tightly coupled and even a single overloaded core can adversely affect the execution time of the entire
application. We have started to investigate a temperature-aware load-balancing scheme that uses DVFS to
keep core temperatures below a user-defined threshold, with minimal timing penalties. While doing so, it
also reduces the possibility of hot spots. We tested our scheme with three parallel applications having
different energy consumption profiles.

Results from our initial experiments show that it is
possible to save up to 14% in execution time and 12%
in machine energy consumption as compared to
frequency scaling without using load balancing. As an
example, Figure 16 shows the measured execution time
of a Jacobi-2D code on 128 processors, as a function of
the temperature set for the machine room’s air
conditioner. When our temperature-aware load balancer
(TempLDB) is used, the effects of a slowdown due to
pure DFVS are not as strong, resulting in better overall
performance. In other tests, we are also able to bound the
average temperature of all the cores and reduce the
temperature deviation amongst the cores by a factor of
three. A full description of our initial results in this area
was reported in [Sarood2011].

Figure 20. Effects of temperature-aware load balancing on Jacobi-2D
execution with 128 cores under DVFS

3.4 Task Mapping (Colony lead: Univ. of Illinois)
	

The third focus of our adaptive runtime system work was the problem of task mapping on large
parallel machines. Network contention has a significantly adverse effect on the performance of parallel
applications with increasing size of parallel machines. Machines of the current petascale era are forcing
application developers to map tasks intelligently to job partitions to achieve the best performance

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

20

possible. We have developed a framework for automated mapping of parallel applications with regular
communication graphs to two and three dimensional mesh and torus networks. This framework can save
much effort on the part of application developers to generate mappings for their individual applications.

One component of our framework is a process topology analyzer to find regular patterns and, when
found, to determine the dimensions of the communication graphs of applications. The other component is
a suite of heuristic techniques for mapping 2D object grids to 2D and 3D processor meshes. The
framework chooses the best heuristic from the suite for a given object grid and processor mesh pair based
on the hop-bytes metric. We obtained performance improvements using the framework, for a 2D Stencil
benchmark in MPI and for the Weather Research and Forecasting model (WRF) running on the IBM Blue
Gene/P.

For WRF, some of our results are shown in Figure 21; on 1,024 nodes, the average hops per byte
reduced by 63% and the communication time (not shown in the figure) reduced by 11%. We measured an
overall performance improvement of 17% for the application. At 4,096 nodes, there is a reduction in total
execution time by 5%. Such performance improvements can be quite significant for the overall
completion time of long running simulations. We also compared our algorithms with others discussed in
the literature, as described with the full results of this study in [Bhatele2010].

Figure 21. Results from topology-aware mapping of the WRF model on Blue Gene/P

3.5 Scalable membership, monitoring, & communication services (Colony lead: IBM Research)

Membership services enable the discovery of active groups
of processes as well as failed nodes and processes, thus
facilitating fault tolerant implementations [Renesse98,
Ganesh03, Allavena05, Varma06]. Attribute replication
services allow each node to declare runtime attributes on itself,
which facilitates easy integration of cluster services and a
distributed mechanism for service location and discovery.
Monitoring services enable the collection and aggregation of
statistics from nodes and processes thus supporting the
implementation of dynamic load balancing schemes
[Renesse03]. Group communication services provide groups of
processes with the means to efficiently communicate using
topic-based publish/subscribe, which greatly helps developing
clustered applications [Chockler01, Eugster03, Chockler07].
Finally, a DHT (distributed hash table) provides services for
storing and looking up key-value pairs in a distributed manner
[Stoica01, Cass10].

	

Figure 22: The SpiderCast hierarchical topology
and its mappings to Blue Gene/P.	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

21

The hierarchical membership service we designed and implemented in SpiderCast is targeted to
support a million nodes. This is the expected number of sockets in future large scale systems, and is more
than enough to support current large scale systems. We employ a flexible two-layer hierarchical topology,
comprised of base zones federated by a management zone, which forms a zone of its own. Each zone
efficiently supports approximately 1000-2000 members (see Fig. 22). Our design aspires to quickly
identify membership changes in a scalable environment with minimal overall system disruption, thus
enabling efficient exascale size deployments. Furthermore, our design maps nicely to the Blue Gene/P
architecture.

In order to test our implementation, we conducted large scale testing of the membership and
hierarchical membership components on the Blue Gene/P platform in the IBM Watson Research Center.
This set of experiments was presented in a poster at SC'11 [Tock11]. The tests emulated the workload of
up to 2M nodes (as the Watson-based system has only 4 racks). We demonstrated that the relevant
performance metrics of the membership service permit efficient support for 1M nodes, as planned.

Figure 23 presents the boot time of a single base zone as a function of the number of nodes. results
indicate that a 2048 base zone boots in ~5.5 seconds. Figure 23 also presents the boot time of a
hierarchical system with the full number of management nodes (management layer), connected to stub
(small) base-zones. The stub base-zone simulate the same load exhibited by a full (2048) zone. The
results indicated that a management zone with 1024 base-zones boots in ~9.7 seconds. Using these two
measurements we can project the worse case boot time of a full system, shown in Figure 20. Results
indicate that a 1M node system (512 base zones of 2048 nodes each) would have a stable view in ~10
seconds from boot.

Figure 23. The boot time of a single base zone, as a
function the number of nodes (blue); and the boot time of
a hierarchical system with a variable number of stub base
zones (green).

Figure 24. The projected boot time of a full system, as a
function of total size, up to 2M nodes. Each curve represents a
given base zone size. The arrows indicate the optimal setup in
terms of management-zone and base-zone sizes.

Figure 24 presents the time it takes for a node to join and leave the overlay. Leave time include failure
detection. The upper 3 curves present the join time of a variable number of concurrent processes. The
middle 3 curves present the leave time of a variable number of concurrent processes. The bottom 3 curves
present the leave time of a variable number of concurrent processes, as measured by a High Priority Monitor
(HPM). These results indicate that a failure in a 1M node system would be detected and communicated to
all nodes in about 800ms (400ms x2), and to the HPM in ~60ms (30ms x2).

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

22

	

Figure 25. Join and leave time, as a function of zone size.

These results indicate that the discovery functions (Fig.23-24) and failure detection functions (Fig. 25) of
the hierarchical membership service work according to plan. A more detailed version was published at
EuroPar’13 [Tock13].	

Publish-Subscribe group communication

The light-weight topic-based publish/subscribe messaging service provides dynamic groups of processes
with the means to communicate with each other in order to achieve a common goal. Example use cases
are runtime control over processes groups; load balancing forward path; replication, and so on.

In order to implement the pub/sub service we implemented a randomized structured overlay topology,
based on the Symphony protocol [Manku03]. This topology provides an overlay which supports O(LogN)
routing from every node to very node like Chord [Stoica01], but has a simpler, more robust protocol, with
better resistance to node churn.

On top of the structured overlay topology we implemented two routing
protocols. First is an efficient O(N) broadcast algorithm based on
[ElAnsary03]; and second is a novel pub/sub routing algorithm that we
developed. Our novel algorithm routes messages to nodes interested in a
certain topic, while minimizing the number of non-interested nodes that
are required to perform routing.

A building block in the pub/sub routing scheme is "interest aware
membership", a mechanism that maintains the topic subscriptions on each
node. Interest aware membership was implemented on top of the attribute
service [TR1]. The last tier implements the pub/sub API and provides end-
to-end quality of service and reliability.

Subscriber	

Publisher	

Red	
 topic	

Green	
 topic	

Pub/Sub	
 message	
 flow	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

23

Distributed hash table (DHT) implementation

In the current funding period we implemented a simplified form of
a Distributed Hash Table (DHT), a key-value in-memory storage
system. Our Pub/Sub design [TR2] calls for an internal use of the
DHT, in order to facilitate the maintenance of large scale topic
membership. We implemented a one-hop DHT in each zone that
supports the full scale of get/put/delete variations with versioning.
Our implementation does not currently provide replication, since in
our internal use we do not need such s service. The DHT API is also
exposed to the users of each zone.

The DHT implementation allows each node in a zone to be defined
as a DHT server (that stores data), a DHT client (that operates on
data), or both. This allows the user to dynamically change the
amount of in-memory storage allocated in each zone. The DHT
protocol supports the orderly addition and removal of DHT servers
without the loss of data.

4. Funds / Costs Review

ORNL: Burn rates proceeded as planned; ORNL continued their involvement during the UIUC no
cost extension.

IBM: Burn rates proceeded as planned; IBM continued their involvement during the UIUC no cost
extension.

UIUC: UIUC requested and received approval for a no-cost extension. The Parallel Programming
Laboratory (which is conducting the HPC Colony II research at UIUC) has been impacted by the
recent Blue Waters announcement at UIUC/NCSA. The extension allows us to complete the planned
Colony work and assume new work associated with Blue Waters with available staffing. While the
UIUC work is being extended, there is benefit from Blue Waters in that an additional environment
will be utilized for research with ideas developed under Colony.

5. Quantitative Impact & Achievements

The aforementioned loss of UIUC personnel to the Blue Waters project was the lone deviation to
Colony II’s plans. This resulted in a no-cost extension and all original investigation areas were explored.
We maintained bi-weekly teleconferences with our project collaborators from UIUC and IBM, and had
face-to-face team meetings at the Supercomputing conferences in November, and at the annual Charm++
Workshop in Urbana, IL, in April. Finally, a project website is maintained at http://www.hpc-colony.org

DHT	
 	

Servers	

DHT	
 	

Client	

get	
 <key>	

<value>	

DHT	
 	

Servers	

DHT	
 	

Client	

get	
 <key>	

<value>	

Dynamic	
 storage	
 elasticity	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

24

5.1 Awards

a. Winner of HPC Challenge Award at SC’ 2011	

b. IEEE Computer Society Sidney Fernbach Award: Laxmikant Kale	

5.2 Selected Overall Project Highlights
	

a. ORNL is undertaking a post-project activity to pursue getting coordinated-scheduling advances
adopted by HPC vendors. In addition, IBM is evaluating SpiderCast advances for possible HPC
products.

b. ORNL is undertaking a post-project activity to pursue getting coordinated-scheduling advances
adopted by HPC vendors. In addition, IBM is evaluating SpiderCast advances for possible HPC
products.

c. The Parallel Programming Laboratory won the first place in the 2011 HPC Challenge contest at
Supercomputing Conference for its parallel programming framework Charm++. The award
recognizes Charm++ as the best performing system in the class 2 (productivity and performance)
category of the contest.

b. Coordinated scheduling has produced compelling results. At 30,000 cores, coordinated
scheduling achieved a 2.83x speedup over the normal Linux parallel-oblivious scheduling
baseline. Moreover, coordinated scheduling was also able to outperform the alternate technique of
core specialization (which reserves one core on each node to deal with OS interfering activities)
while providing higher machine utilization. A	
 bulk-­‐synchronous-­‐parallel	
 benchmark	

improved	
 285%	
 in	
 execution	
 time	
 performance	
 under	
 the	
 new	
 kernel.

c. Recent developments in Charm++ fault tolerance infrastructure permits to run Charm++
programs on top of an MPI library and simulate rank failures. This mechanism exports a function
to the user to kill a rank. Using this technique, new fault tolerance methods and algorithms can be
developed on top of Charm++. The approach scales up to 32K cores on BG/P and provides an
almost-negligible restart time.

d. A recent (April 2012) full-machine Jaguar test of a new Charm++ implementation provided
impressive performance gains over an earlier version. The new version features a new network
layer implementation designed for Cray’s Gemini interconnect. Performance for a 100M atom
NAMD run (PME every 4 steps) improved from a 26 milliseconds per step runtime over last
year’s MPI over SeaStar+ numbers, to a 13 milliseconds per step runtime with the new software
and hardware.

e. We conducted research on scalable membership, attribute, monitoring and communication
services that will enable sophisticated applications and general purpose cluster computing on
high-performance computing systems with a very large numbers of processors. The SpiderCast
system, that provides these services, is based on overlay and peer-to-peer technologies.
SpiderCast will, on the one hand, utilize the unique architecture and networking features of Blue
Gene/P [BGP08] to achieve top performance, and on the other hand, will develop broad scalable
technologies for systems with hundreds of thousands of processors, which can be deployed on
general cluster systems. Large scale experiments were conducted on the Blue Gene/P platform in
the IBM Watson Research Center.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

25

f. Developed a new power aware load balancing strategy which has shown improvements for both
execution time and power consumption. The new scheme takes advantage of dynamic voltage and
frequency scaling (DVFS) hardware capabilities.

g. We completed the initial implementation of a multi-zone scalable membership service as well as
the low level design of the new Distributed Hash Table to be used for key-value pairs within
SpiderCast.

h. Our new adaptive task mapping strategies show improvements for the Weather Research and
Forecasting (WRF) model. For 1,024 nodes, the average hops per byte reduced by 63% and the
communication time reduced by 11%..

i. Developed new causal-based message logging scheme with improved performance and
scalability.

j. We also completed the design and implementation of a new dynamic load-balancing technique.
Results for the BRAMS weather forecasting model show much higher machine utilization and
reduction of more than 30% in execution time.

5.3 Publications
	

	

• Becker, Aaron, Zheng, Gengbin & Kále, Laxmikant. Load Balancing, Distributed Memory.
Encyclopedia of Parallel Computing. 2011. Springer. New York, NY. pp 1043-1051.

• Bickson, Danny, Hoch, Ezra N., Naaman, Nir, & Tock, Yoav. A Hybrid Multicast-Unicast
Infrastructure for Efficient Publish-Subscribe in Enterprise Networks. In SYSTOR 2010, The 3rd
Annual Haifa Experimental Systems Conference. Haifa, Israel.

• Bhatele, Abhinav, Bohm, Eric, & Kále, Laxmikant. Optimizing communication for Charm++
applications by reducing network contention. Concurrency and Computation: Practice and
Experience, Volume 23, Issue 2. Feb. 2011. pp. 211-222.

• Bhatele, Abhinav, Gupta, Gagan, Kále, Laxmikant, & Chung, I-Hsin. Automated Mapping of
Regular Communication Graphs on Mesh Interconnects. In Proceedings of International
Conference on High Performance Computing (HiPC), 2010. Dec. 2010. pp. 1-10

• Bhatele, Abhinav, Jain, Nikhil, Gropp, William, & Kále, Laxmikant. Avoiding hot-spots on tow-
level direct networks. Proceedings of the ACM/IEEE Supercomputing Conference 2011 (SC’11).
Nov. 2011. Seattle, WA.

• Chockler, Gregory, Girdzijauskas, Sarunas, Melamed, Roie, Tock, Yoav, & Vigfusson, Ymir.
Magnet: Practical Subscription Clustering for Internet-Scale Publish/Subscribe. In DEBS 2010,
4th ACM International Conference on Distributed Event Based Systems.

• Jones, Terry. Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism. International
Journal of High Performance Computing Applications (IJHPCA). Vol. 26, Issue 2, May 2012.

• Jones, Terry. Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications. In 1st
International Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2011). May-
2011. Tucson, AZ.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

26

• Jones, Terry, Kirby, Michael, Ladd, Joshua, Dreisigmeyer, David, & Thompson, Joshua. Accurate
Fault Prediction of BlueGene/P RAS Logs Via Geometric Reduction. In 1st International Workshop
on Fault-Tolerance for HPC at Extreme Scale (FTXS 2010). Jun-2010. Chicago, IL.

• Jones, Terry, & Koenig, Gregory. A Clock Synchronization Strategy for Minimizing Clock
Variance at Runtime in High-end Computing Environments. In Proceedings of 22nd International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). Itaipava,
Brazil.

• Jones, Terry, & Koenig, Gregory. Clock Synchronization in High-end Computing Environments:
A Strategy for Minimizing Clock Variance at Runtime. Concurrency and Computation: Practice and
Experience. Journal of Concurrency and Computation: Practice and Experience (J CCPE), Vol. 25,
Issue 6, DOI: 10.1002/cpe.2868, pages 881-897, April 25, 2013.

• Jones, Terry, & Koenig, Gregory. Providing Runtime Clock Synchronization With Minimal Node-
to-Node Time Deviation on XT4s and XT5s. CUG 2011. May-2011. Fairbanks, AK.

• Jones, Terry, Tauferner, Andrew, & Inglett, Todd. Linux OS Jitter Measurements at Large Node
Counts using a BlueGene/L. technical report ORNL-TM2009-303. Jan-2010. Oak Ridge, TN.

• Kále, Laxmikant. Charm++. Encyclopedia of Parallel Computing. 2011. Springer. New York, NY.
pp. 256-264

• Langer, Akhil, Venkataraman, Ramprasad, & Kále, Laxmikant. Scalable Algorithms for
Constructing Balanced Spanning Trees on System-ranked Process Groups. In 19th European MPI
Users' Group Meeting (EuroMPI 2012), Vienna, Austria, September 23-26, 2012.

• Lifflander, Jonathan, Miller, Phil, Venkataraman, Ramprasad, Arya, Anshu, Jones, Terry & Kále,
Laxmikant. Exploring Partial Synchrony in an Asynchronous Environment Using Dense {LU}.
UIUC Technical Report PPL-11-34. Aug-2010. Champaign, IL.

• Lifflander, Jonathan, Miller, Phil, Ramprasad Venkataraman, Anshu Arya, Terry Jones & Kále,
Laxmikant. Mapping Dense LU Factorization on Multicore Supercomputer Nodes. In Proceedings
of 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS). May-2012.
Shanghai, China.

• Mei, Chao, Sun, Yanhua, Zheng, Gengbin, Bohm, Eric J., Kále, Laxmikant V., Phillips, James C.,
& Harrison, Chris. Enabling and Scaling Biomolecular Simulations of 100 Million Atoms on
Petascale Machines with a Multicore-optimized Message-driven Runtime. Proceedings of the
ACM/IEEE Supercomputing Conference 2011 (SC’11). Nov. 2011. Seattle, WA. pp. 1-11

• Mendes, Celso L., Kále, Laxmikant, Rodrigues, Eduardo R., & Panetta, Jairo. Adaptive and
Dynamic Load Balancing for Weather Forecasting Models. In Annual meeting of the Cray Users
Group (CUG) 2012. May 2012. Stuttgart, Germany.

• Meneses, Esteban. Scalable Message-Logging Techniques for Effective Fault Tolerance in HPC
Applications. PhD diss., University of Illinois at Urbana-Champaign, 2013.

• Meneses, Esteban, Bronevetsky, Greg, & Kále, Laxmikant. Dynamic Load Balance for Optimized
Message Logging in Fault Tolerant HPC Applications. In International Conference on Cluster
Computing (Cluster10). Sep-2010. Austin, TX. pp. 281-289

• Meneses, Esteban, Bronevetsky, Greg, & Kále, Laxmikant. Evaluation of Simple Causal Message
Logging for Large-Scale Fault Tolerant HPC Systems. 25th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2011). May-2011. Anchorage, AK. pp. 1533-1540

• Meneses, Esteban, Mendes, Celso L., & Kále, Laxmikant. Team-based Message Logging: Preliminary
Results proceeding article. In 3rd Workshop on Resiliency in High Performance Computing (Resilience) in
Clusters, Clouds, and Grids (CCGRID 2010). May-2010. Melbourne, Victoria, Australia. pp. 697-702

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

27

• Meneses, Esteban, Ni, Xiang, & Kále, Laxmikant. A Message-Logging Protocol for Multicore
Systems. In Proceedings of the 2nd Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS
2012). Jun-2012. Boston, MA.

• Meneses, Esteban, Ni, Xiang, & Kále, Laxmikant. Design and Analysis of a Message Logging
Protocol for Fault Tolerant Multicore Systems. UIUC Technical Report PPL-11-30. Jul-2010.
Champaign, IL.

• Meneses, Esteban, Sarood, Osman, & Kále, Laxmikant. Accessing Energy Efficiency of Fault
Tolerance Protocols for HPC Systems. In Proceedings of 24nd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). Oct. 2012. New York City,
NY.

• Menon, Harshitha, Acun, Bilge, Garcia, Simon, Sarood, Osman, & Kále, Laxmikant. Thermal
Aware Automated Load Balancing for HPC Applications. In Cluster Computing (CLUSTER), 2013
IEEE International Conference on. IEEE, 2013.

• Menon, Harshitha, Jan, Nikhil, Zheng, Gengbin, & Kále, Laxmikant. Automated Load Balancing
Invocation based on Application Characteristics. In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on. IEEE, 2012.

• Menon, Harshitha, & Kále, Laxmikant. A Distributed and Dynamic Load Balancer for Iterative
Applications. In Proceedings of 2013 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’13). Nov. 2013. Denver, CO.

• Ni, Xiang, Meneses, Esteban, & Kále, Laxmikant. ACR: Automatic Checkpoint/Restart for Soft and
Hard Error Protection. In Proceedings of 2013 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’13). Nov. 2013. Denver, CO.

• Ni, Xiang, Meneses, Esteban, & Kále, Laxmikant. Hiding Checkpoint Overhead in HPC
Applications with a Semi-Blocking Algorithm. In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, pp. 364-372. IEEE, 2012.

• Rodrigues, Eduardo R., Navaux, Philippe O.A., Panetta, Jairo, Mendes, Celso L., & Kále,
Laxmikant. Optimizing an MPI Weather Forecasting Model via Processor Virtualization. In
Proceedings of International Conference on High Performance Computing (HiPC). Dec-2010

• Rodrigues, Eduardo R., Navaux, Philippe O.A., Panetta, Jairo, Fazenda, Alvaro, Mendes, Celso L.,
& Kále, Laxmikant. A Comparative Analysis of Load Balancing Algorithms Applied to a Weather
Forecast Model. In Proceedings of 22nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). Oct. 2010. Itaipava, Brazil. pp. 71 - 78

• Sarood, Osman, Gupta, Abishek, & Kále, Laxmikant. Temperature Aware Load Balancing for
Parallel Applications: Preliminary Work. Proceedings of High Performance Power Aware
Computing (HPPAC), in IEEE International Parallel and Distributed Processing Symposium 2011.
May-2011. pp. 796 - 803

• Sarood, Osman, Meneses, Esteban, & Kále, Laxmikant. A ‘Cool’ Way of Improving the Reliability
of HPC Machines. In Proceedings of 2013 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’13). Nov. 2013. Denver, CO.

• Sarood, Osman, & Kále, Laxmikant. A ‘Cool’ Load Balancer for Parallel Applications. In
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11). Nov. 2011. Seattle, WA.

• Solomonik, Edgar, Bhatele, Abhinav, & Demmel, James. Improving communication performance
in dense linear algebra via topology aware collectives. Proceedings of the ACM/IEEE
Supercomputing Conference 2011 (SC’11). Nov. 2011. Seattle, WA.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

28

• Sun, Yanhua, Zheng, Gengbin, Mei, Chao, Bohm, Eric J., Kále, Laxmikant, Philips, James C., &
Jones, Terry. Optimizing Fine-grained Communication in a Biomolecular Simulation Application
On Hybrid Cray XK6 System. In Proceedings of 2012 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’12). Nov. 2012. Salt Lake City, UT.

• Sun, Yanhua, Zheng, Gengbin, Kále, Laxmikant, Jones, Terry R., & Olson, Ryan. A uGNI-based
Asynchronous Message-driven Runtime System for Cray Supercomputers with Gemini Interconnect.
In Proceedings of 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2012). May-2012. Shanghai, China.

• Tock, Y., Mandler, B., Moreira, J., & Jones, T. Poster: Scalable Infrastructure to Support
Supercomputer Resiliency-Aware Applications and Load Balancing. In companion to International
Conference for High Performance Computing, Networking, Storage and Analysis (Poster, SC’11). Nov-
2011. Seattle, WA.

• Tock, Yoav, & Mandler, Benjamin. SpiderCast: Distributed Membership and Messaging for HPC
Platforms: An Architectural Overview and High Level Design. IBM Technical Report IBM-IL-
YT2010-1. Jan-2010. Haifa, Israel.

• Tock, Yoav, Mandler, Benjamin, & Laventman, Gennady. SpiderCast: Distributed Membership
and Messaging for HPC Platforms: Publish-Subscribe and DHT Services High Level Design. IBM
Technical Report IBM-IL-YT2010-2. May-2010. Haifa, Israel.

• Tock, Yoav, Mandler, Benjamin, Moreira, José, and Jones, Terry. Design and Implementation of a
Scalable Membership Service for Supercomputer Resiliency-Aware Applications. Lecture Notes in
Computer Science Volume 8097, 2013, pp. 354-366. DOI http://10.1007/978-3-642-40047-6 37. Print
ISBN 978-3-642-40046-9.

• Tock, Yoav, Mandler, Benjamin, Moreira, José, and Jones, Terry. Design and Implementation of a
Scalable Membership Service for Supercomputer Resiliency-Aware Applications. Euro-Par 2013
Parallel Processing: 19th International Euro-Par Conference, Aachen, Germany, August 26-30, 2013:
Proceedings. Springer, 2013.

• Vigfusson, Ymir, Abu-Libdeh, Hussam, Balakrishnan, Mahesh, Birman, Ken, Burgess, Robert,
Chockler, Gregory, Li, Haoyuan, & Tock, Yoav. Dr. Multicast: Rx for Data Center
Communication Scalability. EuroSys 2010.

• Yu, Li, Zheng, Ziming, Lan, Zhiling, Jones, Terry, Brandt, Jim, & Gentile, Ann. Filtering log
data: finding the needles in the haystack. In 42nd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012). Jun-2012. Boston, MA.

• Zheng, Gengbin, Bhatele, Abhinav, Meneses, Esteban, & Kále, Laxmikant. Periodic Hierarchical
Load Balancing for Large Supercomputers. In International Journal of High Performance
Computing Applications (IJHPCA). Nov-2011. pp. 371-385

• Zheng, Gengbin, Meneses, Esteban, Bhatele, Abhinav, & Kále, Laxmikant. Hierarchical Load
Balancing for Charm++ Applications on Large Supercomputers. In Proceedings of the Third
International Workshop on Parallel Programming Models and Systems Software for High-End
Computing (P2S2). Sept. 2010. San Diego, CA. pp. 436-444

• Zheng, Gengbin, Ni, Xiang, & Kále, Laxmikant. A Scalable Double In-memory Checkpoint and
Restart Scheme towards Exascale. In Proceedings of the 2nd Workshop on Fault-Tolerance for HPC
at Extreme Scale (FTXS 2012). June-2012. Boston, MA.

• Zheng, Ziming, Lan, Zhiling, Yu, Li, & Jones, Terry. 3-Dimensional Root Cause Diagnosis via Co-
analysis. In Proceedings of 9th International Conference on Autonomic Computing (ICAC). Sep-
2012. San Jose, CA.

	

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

29

	

5.4 Talks
	

◊ Bhatele, Abhinav, “Mapping your Application on Interconnect Topologies: Effort versus Benefits”,
George Michael HPC Fellow Presentation at Supercomputing’10, New Orleans, November 2010.

◊ Bhatele, Abhinav, Gupta, Gagan, Kále, Laxmikant. and Chung, I-Hsin. “Automated Mapping
of Regular Communication Graphs on Mesh Interconnects”. In Proceedings of International
Conference on High Performance Computing (HiPC), 2010. Dec. 2010. pp. 1-10

◊ Bhatele, Abhinav, “Topology Aware Mapping”, University of Illinois (presented by telecom to
the Chinese Academy of Sciences”, December 2010.

◊ Bhatele, Abhinav, “New Developments in the Charm++ Load Balancing Framework and its
Applications”, Charm++ Workshop, Urbana, April 2011.

◊ Bhatele, Abhinav, Jain, Nikhil, Gropp, William, & Kále, Laxmikant. “Avoiding hot-spots on
tow-level direct networks”. Presented at ACM/IEEE Supercomputing Conference 2011 (SC’11).
Nov. 2011. Seattle, WA.

◊ Bickson, Danny, Hoch, Ezra N., Naaman, Nir, & Tock, Yoav. “A Hybrid Multicast-Unicast
Infrastructure for Efficient Publish-Subscribe in Enterprise Networks”. In SYSTOR 2010, The
3rd Annual Haifa Experimental Systems Conference. Haifa, Israel.

◊ Bohm, Eric, “Scaling NAMD into the Petascale and Beyond”, 4th Workshop INRIA-Illinois
Joint Laboratory on Petascale Computing, Urbana, November 2010.

◊ Bohm, Eric, Mei, Chao, Sun, Yanhua & Zheng, Gengbin. “Charm++ Tutorial”, Chinese
Academy of Sciences, Beijing, China, December 2010.

◊ Bohm, Eric, “Charm++ Tutorial”, Charm++ Workshop, Urbana, April 2011.

◊ Chockler, Gregory, Girdzijauskas, Sarunas, Melamed, Roie, Tock, Yoav, & Vigfusson, Ymir.
“Magnet: Practical Subscription Clustering for Internet-Scale Publish/Subscribe”. In DEBS
2010, 4th ACM International Conference on Distributed Event Based Systems.

◊ Jones, Terry. “Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications”. In
1st International Workshop on Runtime and Operating Systems for Supercomputers (ROSS
2011). May-2011. Tucson, AZ.

◊ Jones, Terry, Kirby, Michael, Ladd, Joshua, Dreisigmeyer, David, & Thompson, Joshua.
“Accurate Fault Prediction of BlueGene/P RAS Logs Via Geometric Reduction”. In 1st
International Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS 2010). Jun-2010.
Chicago, IL.

◊ Jones, Terry & Koenig, Gregory. “A Clock Synchronization Strategy for Minimizing Clock
Variance at Runtime in High-end Computing Environments”. In Proceedings of 22nd
International Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD). Itaipava, Brazil.

◊ Jones, Terry & Koenig, Gregory. “Providing Runtime Clock Synchronization With Minimal
Node-to-Node Time Deviation on XT4s and XT5s”. CUG 2011. May-2011. Fairbanks, AK.

◊ Kále, Laxmikant. “State of Charm++”, Charm++ Workshop, Urbana, April 2011.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

30

◊ Langer, Akhil, Venkataraman, Ramprasad, & Kále, Laxmikant. “Scalable Algorithms for
Constructing Balanced Spanning Trees on System-ranked Process Groups”. Presented at 19th
European MPI Users' Group Meeting (EuroMPI 2012), Vienna, Austria, September 23-26, 2012.

◊ Lifflander, Jonathan, Miller, Phil, Venkataraman, Ramprasad, Arya, Anshu, Jones, Terry, &
Kále, Laxmikant. “Mapping Dense LU Factorization on Multicore Supercomputer Nodes”. In
Proceedings of 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS).
May-2012. Shanghai, China.

◊ Mei, Chao, Sun, Yanhua, Zheng, Gengbin, Bohm, Eric J., Kále, Laxmikant, Philips, James C.,
& Harrison, Chris. “Enabling and Scaling Biomolecular Simulations of 100 Million Atoms on
Petascale Machines with a Multicore-optimized Message-driven Runtime”. Proceedings of the
ACM/IEEE Supercomputing Conference 2011 (SC’11). Nov. 2011. Seattle, WA. pp. 1-11

◊ Mendes, Celso L., Kále, Laxmikant, Rodrigues, Eduardo R., & Panetta, Jairo. “Adaptive and
Dynamic Load Balancing for Weather Forecasting Models”. In Annual meeting of the Cray
Users Group (CUG) 2012. May 2012. Stuttgart, Germany.

◊ Mendes, Celso L., & Kále, Laxmikant. “Adaptive MPI”, Blue Waters PRAC Fall Workshop,
Urbana, October 2010.

◊ Meneses, Esteban, “Clustering Parallel Applications to Enhance Message-Logging Protocols”,
4th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing, Urbana, November
2010.

◊ Meneses, Esteban, Bronevetsky, Greg, & Kále, Laxmikant. “Dynamic Load Balance for
Optimized Message Logging in Fault Tolerant HPC Applications”. In International Conference
on Cluster Computing (Cluster10). Sep-2010. Austin, TX. pp. 281-289

◊ Meneses, Esteban, Bronevetsky, Greg, & Kále, Laxmikant. “Evaluation of Simple Causal Message
Logging for Large-Scale Fault Tolerant HPC Systems”. 25th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2011). May-2011. Anchorage, AK. pp. 1533-1540

◊ Meneses, Esteban, Mendes, Celso L., & Kále, Laxmikant. Team-based Message Logging:
Preliminary Results. In 3rd Workshop on Resiliency in High Performance Computing
(Resilience) in Clusters, Clouds, and Grids (CCGRID 2010). May-2010. Melbourne, Victoria,
Australia. pp. 697-702

◊ Meneses, Esteban, & Ni, Xiang. “Fault Tolerance Support for Supercomputers with Multicore
Nodes”, Charm++ Workshop, Urbana, April 2011.

◊ Meneses, Esteban, Ni, Xiang, & Kále, Laxmikant. “A Message-Logging Protocol for Multicore
Systems”. In Proceedings of the 2nd Workshop on Fault-Tolerance for HPC at Extreme Scale
(FTXS 2012). Jun-2012. Boston, MA.

◊ Rodrigues, Eduardo R., Navaux, Philippe O. A., Panetta, Jairo, Mendes, Celso L., & Kále,
Laxmikant. “Optimizing an MPI Weather Forecasting Model via Processor Virtualization”. In
Proceedings of International Conference on High Performance Computing (HiPC). Dec-2010

◊ Rodrigues, Eduardo R., Navaux, Philippe O. A., Panetta, Jairo, Fazenda, Alvaro, Mendes, Celso
L., & Kále, Laxmikant. “A Comparative Analysis of Load Balancing Algorithms Applied to a
Weather Forecast Model”. In Proceedings of 22nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). Oct. 2010. Itaipava, Brazil. pp. 71 - 78

◊ Sarood. Osman, “Temperature-Aware Load Balancing for Parallel Applications”, Charm++
Workshop, Urbana, April 2011.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

31

◊ Sarood, Osman, Gupta, Abishek, & Kále, Laxmikant. “Temperature Aware Load Balancing
for Parallel Applications: Preliminary Work”. Proceedings of High Performance Power Aware
Computing (HPPAC), in IEEE International Parallel and Distributed Processing Symposium
2011. May-2011. pp. 796 - 803

◊ Sarood, Osman & Kále, Laxmikant. “A ‘Cool’ Load Balancer for Parallel Applications”. In
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11). Nov. 2011. Seattle, WA.

◊ Solomonik, Edgar, Bhatele, Abhinav, & Demmel, James. “Improving communication
performance in dense linear algebra via topology aware collectives”. Presented at the
ACM/IEEE Supercomputing Conference 2011 (SC’11). Nov. 2011. Seattle, WA.

◊ Sun, Yanhua, Zheng, Gengbin, Kále, Laxmikant, Jones, Terry R., & Olson, Ryan. “A uGNI-
based Asynchronous Message-driven Runtime System for Cray Supercomputers with Gemini
Interconnect”. In Proceedings of 26th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2012). May-2012. Shanghai, China.

◊ Tock, Yoav, & Mandler, Benjamin. “SpiderCast: Distributed Membership and Messaging for
HPC Platforms: An Architectural Overview and High Level Design”. IBM Technical Report
IBM-IL-YT2010-1. Jan-2010. Haifa, Israel.

◊ Tock, Yoav, Mandler, Benjamin, & Laventman, Gennady. “SpiderCast: Distributed
Membership and Messaging for HPC Platforms: Publish-Subscribe and DHT Services High
Level Design”. IBM Technical Report IBM-IL-YT2010-2. May-2010. Haifa, Israel.

◊ Vigfusson, Ymir, Abu-Libdeh, Hussam, Balakrishnan, Mahesh, Birman, Ken, Burgess,
Robert, Chockler, Gregory, Li, Haoyuan & Tock, Yoav. “Dr. Multicast: Rx for Data Center
Communication Scalability”. EuroSys 2010.

◊ Yu, Li, Zheng, Ziming, Lan, Zhiling, Jones, Terry, Brandt, Jim, and Gentile, Ann. “Filtering
log data: finding the needles in the haystack”. In 42nd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012). Jun-2012. Boston, MA.

◊ Zheng, Gengbin, Bhatele, Abhinav, Meneses, Esteban, & Kále, Laxmikant. “Periodic
Hierarchical Load Balancing for Large Supercomputers”. In International Journal of High
Performance Computing Applications (IJHPCA). Nov-2011. pp. 371-385

◊ Zheng, Gengbin, Bhatele, Abhinav, Meneses, Esteban, & Kále, Laxmikant. “Periodic
Hierarchical Load Balancing for Large Supercomputers”. International Journal for High
Performance Computing Applications (IJHPCA).

◊ Zheng, Gengbin, Meneses, Esteban, Bhatele, Abhinav, & Kále, Laxmikant. “Hierarchical Load
Balancing for Charm++ Applications on Large Supercomputers”. In Proceedings of the Third
International Workshop on Parallel Programming Models and Systems Software for High-End
Computing (P2S2). Sept. 2010. San Diego, CA. pp. 436-444

◊ Zheng, Gengbin, Ni, Xiang, & Kále, Laxmikant. “A Scalable Double In-memory Checkpoint
and Restart Scheme towards Exascale”. In Proceedings of the 2nd Workshop on Fault-
Tolerance for HPC at Extreme Scale (FTXS 2012). June-2012. Boston, MA.

◊ Zheng, Ziming, Lan, Zhiling, Yu, Li, & Jones, Terry. “3-Dimensional Root Cause Diagnosis
via Co-analysis”. In Proceedings of 9th International Conference on Autonomic Computing
(ICAC). Sep-2012. San Jose, CA.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

32

5.5 Software Products
	

Software title Current Version Brief Description Date of Last
Release

Hierarchical load balancer
module Charm++ 6.5.0 plug-in 3/13/13
In-memory checkpoint-
auto-restart module Charm++ 6.5.0 enhanced features 3/13/13
Team based load balancer Charm++ 6.5.0 3/13/13
Causal message-logging
module Charm++ 6.5.0 newly created 3/13/13
Hi-Precision Synchronized
Global Clocks OpenMPI 1.4.4 high precision global synchronized clocks 5/20/12
Parallel Coordinated
Scheduling Linux 2.6.32.59

gives Linux kernel parallel awareness for
coordinated scheduling 10/1/13

Spider Cast SpiderCastCPP 1.0

A C++ implementation of a scalable
infrastructure that provides a membership
service and group communication services
for HPC environments. 5/1/12

Table 2: HPC Colony II Software Products

Notes:

 In addition to our on-team involvement with IBM, we are working with Cray to ensure our work
on ORNL’s Titan machine results in a commercially available technology. This work is being
funded by ORNL and includes close involvement with both HPC vendors. A pathforward plan
has been developed to release coordinated scheduling technology for future machines.

 Some parts of this research have been incorporated to the public distribution of the Charm++
software infrastructure, which is available in both source and binary formats. In particular, a new
release of Charm++ (v.6.4.0) was made available recently, through the Charm++ download
website: http://charm.cs.uiuc.edu/software/

 SpiderCast is currently identified by IBM as an internal asset. As such, it is a candidate for
inclusion in some IBM products and/or continued development of advanced features.

6. Feedback, Recommendations, and Project Experiences
	

a) To Future Projects: Work closely with program manager to pave the way for allocations such as
INCITE and ALCC.

b) To Future Projects: The process for acquiring a patent waiver for an industrial partner may
require as much as 6 months. If industrial partners are potentially interested in pursuing a patent,
any legwork involved in pursuing the patent is best started quite early.

c) To Future Projects: Highlights may be requested at any time. Maintain an ongoing activity to
produce viewgraphs in the requested template.

d) To Headquarters: Any reduction in the time or effort involved in the approval-cycle for patent
waivers would be helpful.

e) To headquarters: The earlier potential responders are made aware about upcoming FOAs, the
better. A surprising amount of time is needed for team-building and deciding upon topic niches.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

33

7. References
	

[Allavena05] A. Allavena, A. Demers, and J. E. Hopcroft, "Correctness of a gossip based membership protocol,"

in PODC '05: Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS symposium on
Principles of distributed computing. New York, NY, USA: ACM Press, 2005, pp. 292-301.

[BGP08] IBM-Blue-Gene-Team, "Overview of the IBM Blue Gene/P project," IBM Journal of Research
and Development, vol. 52, no. 1/2, pp. 199-220, 2008.

[Chockler01] G. Chockler, I. Keidar, and R. Vitenberg, "Group communication specifications: a comprehensive
study," ACM Computing Surveys, vol. 33, no. 4, pp. 427-469, 2001.

[Cass10] A. Lakshman and P. Malik, "Cassandra: a decentralized structured storage system," SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, pp. 35-40, Apr. 2010.

[Chockler07] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, "Spidercast: a scalable interest-aware
overlay for topic-based pub/sub communication," in DEBS '07: Proceedings of the 2007 inaugural
international conference on Distributed event-based systems. New York, NY, USA: ACM, 2007,
pp. 14-25.

[Dusseau96] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Efffective distributed scheduling on
parallel workloads. In ACM SIGMETRICS ’96 Conference on the Measurement and Modeling of
Computer Systems, 1996.

[ElAnsary03] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi, "Efficient broadcast in structured P2P
networks," in LNCS (The 2nd International Workshop On Peer-To-Peer Systems), F. Kaashoek
and I. Stoica, Eds., vol. 2735, 2003, pp. 304-314.

[Eugster03] P. TH. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, "The many faces of
publish/subscribe," ACM Comput. Surv., vol. 35, no. 2, pp. 114-131, June 2003.

[Ferreira08] Kurt Ferreira, Ron Brightwell, Patrick Bridges. Characterizing Application Sensitivity to OS
Interference Using Kernel-Level Noise Injection. International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC'08), Austin, TX, November 2008.

[Ganesh03] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer membership management for
gossip-based protocols. IEEE Transactions on Computers, 52(2), February 2003.

[Hoefler10] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence of System Noise on
Large-Scale Applications by Simulation. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC'10), Nov. 2010.

[Howland04] P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value
decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):995–
1006, 2004.

[Jones03] Terry Jones, Shawn Dawson, Rob Neely, William Tuel, Larry Brenner, Jeff Fier, Robert
Blackmore, Pat Caffrey, Brian Maskell, Paul Tomlinson, and Mark Roberts, Improving the
Scalability of Parallel Jobs by adding Parallel Awareness to the Operating System. In	

International	
 Conference	
 for	
 High	
 Performance	
 Computing,	
 Networking,	
 Storage	
 and	

Analysis	
 (SC'03), Phoenix, AZ, November 2003.

[Lakshman10] A. Lakshman and P. Malik, "Cassandra: a decentralized structured storage system," SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, pp. 35-40, Apr. 2010.

[Lee99] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

[Manku03] G. S. Manku, M. Bawa, and P. Raghavan, "Symphony: distributed hashing in a small world," in
Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, ser. USITS'03,
vol. 4. Berkeley, CA, USA: USENIX Association, 2003, pp. 10-23.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

34

[MPI-Forum] MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2. September 4th 2009.
[Nataraj07] A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and P. Beckman. The ghost in the machine:

Observing the effects of kernel operation on parallel application performance. In Proceedings of
SC’07, 2007.

[Oliker07] L. Oliker, A. Canning, J. Carter et al., "Scientific Application Performance on Candidate
PetaScale Platforms," IEEE International Parallel and Distributed Processing Symposium
(IPDPS):1-12, 2007.

[Renesse98] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Proc.
Middleware 98, 1998.

[Renesse03] R. Van Renesse, K. P. Birman, and W. Vogels, "Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data mining," ACM Trans. Comput. Syst.,
vol. 21, no. 2, pp. 164-206, May 2003.

[Sottile04] M. Sottile and R. Minnich. Analysis of microbenchmarks for performance tuning of clusters. In
Proceedings of IEEE Cluster2004 International Conference on Cluster Computing, pages 371–
377, 2004.

[Stoica01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A scalable peer-to-
peer lookup service for internet applications," SIGCOMM Comput. Commun. Rev., vol. 31, no. 4,
pp. 149-160, October 2001.

[Tock10a] Yoav Tock, Benjamin Mandler, “SpiderCast: Distributed Membership and Messaging for HPC
Platforms: An Architectural Overview and High Level Design”. Colony-II technical report,
January 2010.

[Tock10b] Yoav Tock, Benjamin Mandler, Gennady Laventman, “SpiderCast: Distributed Membership and
Messaging for HPC Platforms: Publish-Subscribe and DHT Services High Level Design”. Colony-
II technical report, May 2010.

[Tock11] Y. Tock, B. Mandler, J. Moreira, T. Jones. Scalable Infrastructure to Support Supercomputer
Resiliency-Aware Applications and Load Balancing. SC'11 Poster, International Conference for
High Performance Computing, Networking, Storage and Analysis, November 2011.

[Tock13] Y. Tock, B. Mandler, J. Moreira, T. Jones. Design and Implementation of a Scalable Membership
Service for Supercomputer Resiliency-Aware Runtime. EuroPar’13, August 2013.

[Varma06] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, "Scalable, fault tolerant
membership for mpi tasks on hpc systems," in ICS '06: Proceedings of the 20th annual
international conference on Supercomputing. New York, NY, USA: ACM, 2006, pp. 219-228.

Final Project Report (including no cost extension)	
 	
 November 13, 2013
HPC Colony II (http://www.hpc-colony.org) 	
 version 3

	

	

The	
 submitted	
 project	
 report	
 has	
 been	
 authored	
 by	
 a	
 contractor	
 of	
 the	
 U.S.	
 Government	
 under	
 Contract	
 No.	
 DE-­‐AC05-­‐
00OR22725.	
 Accordingly,	
 the	
 U.S.	
 Government	
 retains	
 a	
 non-­‐exclusive,	
 royalty-­‐free	
 license	
 to	
 publish	
 or	
 reproduce	
 the
published	
 form	
 of	
 this	
 contribution,	
 or	
 allow	
 others	
 to	
 do	
 so,	
 for	
 U.S.	
 Government	
 purposes.	

