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ABSTRACT 
 

Developing accurate building energy simulation models to assist energy efficiency at 

speed and scale is one of the research goals of the Whole-Building and Community Integration 

group, which is a part of Building Technologies Research and Integration Center (BTRIC) at 

Oak Ridge National Laboratory (ORNL). The aim of the Autotune project is to speed up the 

automated calibration of building energy models to match measured utility or sensor data.  The 

workflow of this project takes input parameters and runs EnergyPlus simulations on Oak Ridge 

Leadership Computing Facility’s (OLCF) computing resources such as Titan, the world’s second 

fastest supercomputer. Multiple simulations run in parallel on nodes having 16 processors each 

and a Graphics Processing Unit (GPU). Each node produces a 5.7 GB output file comprising 256 

files from 64 simulations. Four types of output data covering monthly, daily, hourly, and 15-

minute time steps for each annual simulation is produced. A total of 270TB+ of data has been 

produced. In this project, the simulation data is statistically analyzed in-situ using GPUs while 

annual simulations are being computed on the traditional processors. Titan, with its recent 

addition of 18,688 Compute Unified Device Architecture (CUDA) capable NVIDIA GPUs, has 

greatly extended its capability for massively parallel data processing. CUDA is used along with 

C/MPI to calculate statistical metrics such as sum, mean, variance, and standard deviation 

leveraging GPU acceleration. The workflow developed in this project produces statistical 

summaries of the data which reduces by multiple orders of magnitude the time and amount of 

data that needs to be stored. These statistical capabilities are anticipated to be useful for 

sensitivity analysis of EnergyPlus simulations.  
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I. INTRODUCTION 
 

Automated calibrated building energy models are important for making energy efficient 

residential and commercial buildings. The purpose of the Autotune project is to quickly modify 

the automated building models to match measured usage data such as utility bills, sub-meter, and 

sensor data. The workflow of this project takes input parameters and runs many EnergyPlus 

simulations on supercomputers. This robust and automated Autotune approach significantly 

reduces the cost of building energy models1, 2,5,12. By leveraging Titan’s new NVIDIA Kepler 

K20 GPU on each node, the capability for massively parallel data processing10 is leveraged to 

process sensitivity data while in memory and reduce the amount of data that must be written to 

disk. 
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Figure 1. Simulation Workflow with In-situ Statistical analysis of output simulation data 

The size of the output data reduces from ~6 GB to ~100 MB with the Statistical summary of 

all one data type. This workflow shows the simulation process running on one node. Currently, 

the simulations are running on 8,192 nodes and has potential to run on 16,384 nodes.    

A. Graphical Processing Units (GPUs) 
 
  GPUs are combinations of thousands of smaller but efficient many-core co-processors 

that have the capability to accelerate high performance computing. General-Purpose computing 

on Graphical Processing Units (GPGPU) allows algorithmic execution via many programming 
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interfaces and can be used to accelerate many scientific and engineering applications. A 

traditional Central Processing Unit (CPU) often executes the serial portion of the program while 

the GPU calculates the parallel part of the application using the principle of same instruction on 

multiple data (SIMD). GPU computing is best for data-parallel computation, such as operations 

on matrices and vectors, where elements of the data set are independent of each other and can be 

computed simultaneously9. 

 

Figure 2. Architecture of CPU and GPU.  CPUs and GPUs have different architectures with 

GPUs containing many cores compared to CPUs. The combination of CPUs and GPUs can 

greatly accelerate an algorithm process9.  

B. CUDA 
 

 CUDA is a general purpose GPU programming model that supports the simultaneous 

CPU and GPU execution of a program. It has support for many programming languages such as 

C/C++, FORTRAN, DirectCompute, and OpenACC. It has Application Programming Interfaces 

(APIs) and libraries for many operations. The libraries include CUBLAS for basic linear algebra 

applications, CUSPARSE for operations on sparse matrix, CUDA math library for basic math 

functions, CURAND for random number generation, and CUFFT for Fast-Fourier transformation 

operations7. 



Page 7 of 17 
 

C. GPU Accelerated Libraries 
 
 Several open sources, high-performance, GPU-accelerated libraries are available for 

general purpose parallel computing and were evaluated in the context of sensitivity analysis for 

simulation data. 

1. Thrust 

Thrust is a Standard Template Library (STL) for GPU programming. It is an open source 

library and also available as a part of NVIDIA cudatoolkit. It supports operating systems such as 

Linux, Windows, Mac OSX. It is interoperable with CUDA C, OpenMP, and Intel’s thread 

building blocks (TBB). It provides the data parallel functions for scan, search, search by key, 

count, merge, reorder, prefix-sum, set, sort, and transform8.  

2. CUDPP 

CUDPP is an open source CUDA data parallel primitive library. It is compatible with 

NVIDIA CUDA 3.0 or better and requires cudatoolkit to be installed. It supports the CentOS 

Linux, Windows 7, and Mac OS X operating systems. It has an interface for the CUDA C/C++ 

programming language and the main algorithms include sort, stream compaction, scan, prefix-

sum, and parallel reduction3.   

3. CUBLAS 
 

CUBLAS is a library of CUDA basic linear algebra subroutines.  It is a part of NVIDIA 

cudatoolkit and works with NVIDIA CUDA 4.0 or later. It supports Linux, Windows, and Mac 

OS X operating systems. It has an interface for the CUDA C/C++ programming language.  It has 

all 152 standard basic linear algebra subroutines (BLAS). These routines include 3 levels of 

BLAS operations: level-1 is called BLAS1 and has functions for scalar and vector operations, 
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BLAS2 perform matrix-vector operations, and BLAS3 performs matrix-matrix operations. All 

three levels of functions perform min, max, sum, copy, dot product, norm (Euclidean norm of the 

vector), scal, swap, multiplication, and rank calculation operations6.  

4. MAGMA 
 

MAGMA is a library for matrix algebra on GPU and multicore architectures. It is an 

ongoing open source project managed by University of Tennessee (UT). The newest version, as 

of the time of this writing, is MAGMA 1.4 Beta 2, which was released in June 2013. It works 

with NVIDIA GPUs and supports operating system platforms such as Linux, Windows, and Mac 

OS X. Its programming interface includes CUDA C/C++, Fortran, Matlab, Python, and OpenCl. 

MAGMA includes a CPU and GPU interface for BLAS routines. The CPU interface takes input 

and produce result in CPU memory, and GPU interface takes input and produce result in GPU 

memory. It has 80+ hybrid algorithms and total of 320+ routines for basic linear algebra 

routines13. 
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Table 1. GPU Accelerated Libraries comparison  

II. METHOD 
 

CUDA and the C programming language were used to write a program that generates a 

statistical summary of simulation output. The statistical summary includes sum, mean, and 

Standard deviation of the 64 *.csv output files each for 4 types of simulation data: Monthly, 

Daily, Hourly, and 15-minute resolution. The EnergyPlus simulation engine runs and stores the 

*.csv files in RAMDisk. The program created for this project then reads one file at a time into a 

matrix. The data is then transferred to the GPU in order to calculate the running sum, mean, 
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number of elements in the data set, and sum of squares of difference between the data and the 

mean. After processing all 64 files of a type, it calculates the variance by dividing the sum of 

squares by the number of elements. The standard deviation is computed by taking the square root 

of the variance. The program then generates output *.csv files with statistical summaries and 

stores compressed files in the output directory provided by the workflow. 

The algorithm used for statistical metrics calculation on GPU is as follow11: 

1. Number of elements =0; 

2. Sum =0; 

3. Mean =0; 

4. M2  =0; 

5. For each new data in the file  

a. Updated sum = sum so far + new data; 

b. Updated number =number so far +1; 

c. Delta = (new data – mean so far); 

d. Updated Mean = mean so far + (new data – mean so far) / updated number; 

e. Updated M2 = M2 so far + delta * ( new data – updated mean); 

6. Variance = M2/(total number); 

7. Standard deviation = sqrt(Variance); 

Inside the GPU function thread working in parallel evaluates each statistical metric for each 

cell.  

We calculated performance metrics such as time, effective bandwidth and computational 

throughput of the GPU function for statistical analysis. The formula used to calculate these GPU 

metrics are: 
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Effective Bandwidth4 = (RB + WB) / (t * 109) 

   where RB  is the  number of bytes read per kernel, and 

     WB is the number of bytes written per kernel 

Computational throughput4 (GFLOP/s) =  

number of floating point operation in the functions * number of elements   /  (GPU 

time in seconds * 109) 

III. RESULTS  
 

 
 
Figure 3. Time for simulation run with GPU statistical analysis  
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It takes ~19 minutes to complete all 64 simulations running on 16 processors in parallel. 

The GPU statistical analysis takes ~6 minutes to generate the statistical summary of 256 

simulation output files using one processor on one node. 

 
 
Figure 4. GPU Statistical Analysis Time Division. As can be seen in Figure 3, the time division 
of 6 minutes shows that it takes GPU analysis program to generate the statistical summary of all 
256 simulation output files. 
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Figure 5. GPU time division for four data types 
 

Figure 4 displays the GPU time division for processing each individual file type. As the 

data size increases more time is spent transferring data from CPU to GPU and from GPU to 

CPU. Therefore, a more efficient way of data storing on GPU such as use of shared memory or 

texture memory would help in reducing the time of the GPU analysis program. 
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Figure 6. GPU Performance Metrics for Statistical Summary Generation. Theoretical 

Maximum Bandwidth = 250 GB/s. Peak Computational Throughput (double precision) = 1.31 

TFlop/s 

IV. CONCLUSION  
 

An accelerated Autotune approach for calibration of building energy model will reduce the 

cost of making energy efficient building. The EnergyPlus simulations workflow is being speedup 

by using Message Parsing Interface (MPI) to run multiple simulations in parallel. The MPI first 

distributes the simulation process on the multiple nodes and then further on all 16 processors on 

each node. The workflow developed in this project for the statistical analysis of uses CUDA C 

GPU programming method to speed up the analysis process. The developed workflow generates 

the statistical summaries of the simulation data. The size of the simulation data produced on one 

that needs to be stored reduced from ~6 GB to ~100 MB. This statistical analysis could be used 

for sensitivity analysis of EnergyPlus simulations.  
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