
Page 1 of 17

In-Situ Statistical Analysis of Autotune Simulation Data using
Graphical Processing Units

Niloo Ranjan

Jibonananda Sanyal

Joshua New

Page 2 of 17

Table of Contents

In-Situ Statistical Analysis of Autotune Simulation Data using Graphical Processing
Units ... 1

ABSTRACT .. 3

I. INTRODUCTION ... 4
A. Graphical Processing Units (GPUs) .. 5
B. CUDA ... 6
C. GPU Accelerated Libraries .. 7

1. Thrust ... 7
2. CUDPP .. 7
3. CUBLAS .. 7
4. MAGMA .. 8

II. METHOD ... 9

III. RESULTS .. 11

IV. CONCLUSION .. 14

ACKNOWLEDGEMENTS .. 15

REFERENCES .. 15

Figures and Tables
 Figure 1. Simulation Workflow with In-situ Statistical analysis of output simulation data….. 5
 Figure 2. Architecture of CPU and GPU…………………………………………………………………………6
 Figure 3. Time for simulation run with GPU statistical analysis………………............................11
 Figure 4. GPU Statistical Analysis Time Division…………………………………….............................12
 Figure 5. GPU time division for four data types…………………………………………………………..13
 Figure 6. GPU Performance Metrics for Statistical Summary Generation……………………..14
 Table 1. GPU Accelerated Libraries comparison……………………………………………………….....9

Page 3 of 17

ABSTRACT

Developing accurate building energy simulation models to assist energy efficiency at

speed and scale is one of the research goals of the Whole-Building and Community Integration

group, which is a part of Building Technologies Research and Integration Center (BTRIC) at

Oak Ridge National Laboratory (ORNL). The aim of the Autotune project is to speed up the

automated calibration of building energy models to match measured utility or sensor data. The

workflow of this project takes input parameters and runs EnergyPlus simulations on Oak Ridge

Leadership Computing Facility’s (OLCF) computing resources such as Titan, the world’s second

fastest supercomputer. Multiple simulations run in parallel on nodes having 16 processors each

and a Graphics Processing Unit (GPU). Each node produces a 5.7 GB output file comprising 256

files from 64 simulations. Four types of output data covering monthly, daily, hourly, and 15-

minute time steps for each annual simulation is produced. A total of 270TB+ of data has been

produced. In this project, the simulation data is statistically analyzed in-situ using GPUs while

annual simulations are being computed on the traditional processors. Titan, with its recent

addition of 18,688 Compute Unified Device Architecture (CUDA) capable NVIDIA GPUs, has

greatly extended its capability for massively parallel data processing. CUDA is used along with

C/MPI to calculate statistical metrics such as sum, mean, variance, and standard deviation

leveraging GPU acceleration. The workflow developed in this project produces statistical

summaries of the data which reduces by multiple orders of magnitude the time and amount of

data that needs to be stored. These statistical capabilities are anticipated to be useful for

sensitivity analysis of EnergyPlus simulations.

Page 4 of 17

I. INTRODUCTION

Automated calibrated building energy models are important for making energy efficient

residential and commercial buildings. The purpose of the Autotune project is to quickly modify

the automated building models to match measured usage data such as utility bills, sub-meter, and

sensor data. The workflow of this project takes input parameters and runs many EnergyPlus

simulations on supercomputers. This robust and automated Autotune approach significantly

reduces the cost of building energy models1, 2,5,12. By leveraging Titan’s new NVIDIA Kepler

K20 GPU on each node, the capability for massively parallel data processing10 is leveraged to

process sensitivity data while in memory and reduce the amount of data that must be written to

disk.

Page 5 of 17

Figure 1. Simulation Workflow with In-situ Statistical analysis of output simulation data

The size of the output data reduces from ~6 GB to ~100 MB with the Statistical summary of

all one data type. This workflow shows the simulation process running on one node. Currently,

the simulations are running on 8,192 nodes and has potential to run on 16,384 nodes.

A. Graphical Processing Units (GPUs)

 GPUs are combinations of thousands of smaller but efficient many-core co-processors

that have the capability to accelerate high performance computing. General-Purpose computing

on Graphical Processing Units (GPGPU) allows algorithmic execution via many programming

Page 6 of 17

interfaces and can be used to accelerate many scientific and engineering applications. A

traditional Central Processing Unit (CPU) often executes the serial portion of the program while

the GPU calculates the parallel part of the application using the principle of same instruction on

multiple data (SIMD). GPU computing is best for data-parallel computation, such as operations

on matrices and vectors, where elements of the data set are independent of each other and can be

computed simultaneously9.

Figure 2. Architecture of CPU and GPU. CPUs and GPUs have different architectures with

GPUs containing many cores compared to CPUs. The combination of CPUs and GPUs can

greatly accelerate an algorithm process9.

B. CUDA

 CUDA is a general purpose GPU programming model that supports the simultaneous

CPU and GPU execution of a program. It has support for many programming languages such as

C/C++, FORTRAN, DirectCompute, and OpenACC. It has Application Programming Interfaces

(APIs) and libraries for many operations. The libraries include CUBLAS for basic linear algebra

applications, CUSPARSE for operations on sparse matrix, CUDA math library for basic math

functions, CURAND for random number generation, and CUFFT for Fast-Fourier transformation

operations7.

Page 7 of 17

C. GPU Accelerated Libraries

 Several open sources, high-performance, GPU-accelerated libraries are available for

general purpose parallel computing and were evaluated in the context of sensitivity analysis for

simulation data.

1. Thrust

Thrust is a Standard Template Library (STL) for GPU programming. It is an open source

library and also available as a part of NVIDIA cudatoolkit. It supports operating systems such as

Linux, Windows, Mac OSX. It is interoperable with CUDA C, OpenMP, and Intel’s thread

building blocks (TBB). It provides the data parallel functions for scan, search, search by key,

count, merge, reorder, prefix-sum, set, sort, and transform8.

2. CUDPP

CUDPP is an open source CUDA data parallel primitive library. It is compatible with

NVIDIA CUDA 3.0 or better and requires cudatoolkit to be installed. It supports the CentOS

Linux, Windows 7, and Mac OS X operating systems. It has an interface for the CUDA C/C++

programming language and the main algorithms include sort, stream compaction, scan, prefix-

sum, and parallel reduction3.

3. CUBLAS

CUBLAS is a library of CUDA basic linear algebra subroutines. It is a part of NVIDIA

cudatoolkit and works with NVIDIA CUDA 4.0 or later. It supports Linux, Windows, and Mac

OS X operating systems. It has an interface for the CUDA C/C++ programming language. It has

all 152 standard basic linear algebra subroutines (BLAS). These routines include 3 levels of

BLAS operations: level-1 is called BLAS1 and has functions for scalar and vector operations,

Page 8 of 17

BLAS2 perform matrix-vector operations, and BLAS3 performs matrix-matrix operations. All

three levels of functions perform min, max, sum, copy, dot product, norm (Euclidean norm of the

vector), scal, swap, multiplication, and rank calculation operations6.

4. MAGMA

MAGMA is a library for matrix algebra on GPU and multicore architectures. It is an

ongoing open source project managed by University of Tennessee (UT). The newest version, as

of the time of this writing, is MAGMA 1.4 Beta 2, which was released in June 2013. It works

with NVIDIA GPUs and supports operating system platforms such as Linux, Windows, and Mac

OS X. Its programming interface includes CUDA C/C++, Fortran, Matlab, Python, and OpenCl.

MAGMA includes a CPU and GPU interface for BLAS routines. The CPU interface takes input

and produce result in CPU memory, and GPU interface takes input and produce result in GPU

memory. It has 80+ hybrid algorithms and total of 320+ routines for basic linear algebra

routines13.

Page 9 of 17

Table 1. GPU Accelerated Libraries comparison

II. METHOD

CUDA and the C programming language were used to write a program that generates a

statistical summary of simulation output. The statistical summary includes sum, mean, and

Standard deviation of the 64 *.csv output files each for 4 types of simulation data: Monthly,

Daily, Hourly, and 15-minute resolution. The EnergyPlus simulation engine runs and stores the

*.csv files in RAMDisk. The program created for this project then reads one file at a time into a

matrix. The data is then transferred to the GPU in order to calculate the running sum, mean,

Page 10 of 17

number of elements in the data set, and sum of squares of difference between the data and the

mean. After processing all 64 files of a type, it calculates the variance by dividing the sum of

squares by the number of elements. The standard deviation is computed by taking the square root

of the variance. The program then generates output *.csv files with statistical summaries and

stores compressed files in the output directory provided by the workflow.

The algorithm used for statistical metrics calculation on GPU is as follow11:

1. Number of elements =0;

2. Sum =0;

3. Mean =0;

4. M2 =0;

5. For each new data in the file

a. Updated sum = sum so far + new data;

b. Updated number =number so far +1;

c. Delta = (new data – mean so far);

d. Updated Mean = mean so far + (new data – mean so far) / updated number;

e. Updated M2 = M2 so far + delta * (new data – updated mean);

6. Variance = M2/(total number);

7. Standard deviation = sqrt(Variance);

Inside the GPU function thread working in parallel evaluates each statistical metric for each

cell.

We calculated performance metrics such as time, effective bandwidth and computational

throughput of the GPU function for statistical analysis. The formula used to calculate these GPU

metrics are:

Page 11 of 17

Effective Bandwidth4 = (RB + WB) / (t * 109)

 where RB is the number of bytes read per kernel, and

 WB is the number of bytes written per kernel

Computational throughput4 (GFLOP/s) =

number of floating point operation in the functions * number of elements / (GPU

time in seconds * 109)

III. RESULTS

Figure 3. Time for simulation run with GPU statistical analysis

Page 12 of 17

It takes ~19 minutes to complete all 64 simulations running on 16 processors in parallel.

The GPU statistical analysis takes ~6 minutes to generate the statistical summary of 256

simulation output files using one processor on one node.

Figure 4. GPU Statistical Analysis Time Division. As can be seen in Figure 3, the time division
of 6 minutes shows that it takes GPU analysis program to generate the statistical summary of all
256 simulation output files.

Page 13 of 17

Figure 5. GPU time division for four data types

Figure 4 displays the GPU time division for processing each individual file type. As the

data size increases more time is spent transferring data from CPU to GPU and from GPU to

CPU. Therefore, a more efficient way of data storing on GPU such as use of shared memory or

texture memory would help in reducing the time of the GPU analysis program.

Page 14 of 17

Figure 6. GPU Performance Metrics for Statistical Summary Generation. Theoretical

Maximum Bandwidth = 250 GB/s. Peak Computational Throughput (double precision) = 1.31

TFlop/s

IV. CONCLUSION

An accelerated Autotune approach for calibration of building energy model will reduce the

cost of making energy efficient building. The EnergyPlus simulations workflow is being speedup

by using Message Parsing Interface (MPI) to run multiple simulations in parallel. The MPI first

distributes the simulation process on the multiple nodes and then further on all 16 processors on

each node. The workflow developed in this project for the statistical analysis of uses CUDA C

GPU programming method to speed up the analysis process. The developed workflow generates

the statistical summaries of the simulation data. The size of the simulation data produced on one

that needs to be stored reduced from ~6 GB to ~100 MB. This statistical analysis could be used

for sensitivity analysis of EnergyPlus simulations.

0
20
40
60
80
100
120
140
160
180
200

0
20
40
60
80

100
120
140
160

Ef
fe

ct
iv

e
Ba

nd
w

id
th

 (G
B/

s)
,

Co
m

pu
ta

tio
na

l T
hr

ou
gh

pu
t (

GF
LO

P/
s)

Ti
m

e
(m

ill
is

ec
on

ds
)

Data Size one file (MB)

total time for 64 files

GFLOP/s

time for one file

Effective bandwidth

Page 15 of 17

ACKNOWLEDGEMENTS

I would like to acknowledge everyone whose help and support enabled me to complete

this SULI internship program.

I am grateful to the U.S. Department of Energy, Office of Science, and Office of

Workforce Development for Teachers and Scientists (WDTS) who support Summer

Undergraduate Internship (SULI) program and gave me a great opportunity to work with the

experienced scientists in the field.

I am deeply thankful to my mentors Dr. Joshua New and Dr. Jibonananda Sanyal whose

immense guidance, encouragement, and support allowed me to complete this summer internship

project. They provided guidance where needed but encouraged independent solutions to

unexpected problems. The skills gained here will definitely help me to become successful in my

future career.

 I would also like to thank the administration of ORNL, ORAU, ORISE, SULI program,

and BTRIC division for their assistance throughout the internship project.

REFERENCES

1 Edwards, Richard E. (2013). "Automating Large-Scale Simulation Calibration to Real-World

Sensor Data." Doctoral Committee: Lynne E. Parker (advisor), Joshua R. New, Michael

Berry, Hamparsum Bozdogan, and Husheng Li. A Dissertation presented for the Doctor

Page 16 of 17

of Philosophy Degree in Archives of The University of Tennessee, Knoxville, TN, May,

2013.

2Garrett, Aaron, New, Joshua R., and Chandler, Theodore (2013). "Evolutionary Tuning of

Building Models to Monthly Electrical Consumption." Technical paper DE-13-008. In

Proceedings of the ASHRAE Annual Conference, Denver, CO, June 22-26, 2013.

3Mark Harris “CUDPP Documentation,” CUDPP 2.0 (CUDA Data Parallel Primitives Library,)

http://www.gpgpu.org/static/developer/cudpp/rel/cudpp_1.1/html/ (7 August 2013).

4Mark Harris, “How to Implement Performance Metrics in CUDA C/C++,” nVIDIA Developer

Zone, November 2012, https://developer.nvidia.com/content/how-implement-

performance-metrics-cuda-cc (6 August 2013)

5New, Joshua R., Sanyal, Jibonananda, Bhandari, Mahabir S., Shrestha, Som S. (2012).

"Autotune E+ Building Energy Models." In Proceedings of the 5th National SimBuild of

IBPSA-USA, International Building Performance Simulation Association (IBPSA), Aug.

1-3, 2012.

6nVIDIA, “CUBLAS Library,” “User Guide,” July 2013,

http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf (6August 2013)

7nVIDIA, “CUDA C Programming Guide,” Design Guide, July 2013,

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (6 August 2013).

8nVIDIA, “Thrust Quick Start Guide,” Thrust, July 2013, https://developer.nvidia.com/thrust

(6 August 2013).

9nVIDIA, “What is GPU Computing?,” High Performance Computing, January 2013,

http://www.nvidia.com/object/what-is-gpu-computing.html (6 August 2013).

10Oak Ridge Leadership Computing Facility (OLCF), “Titan Overview,” Titan Cray XK7

http://www.gpgpu.org/static/developer/cudpp/rel/cudpp_1.1/html/
https://developer.nvidia.com/content/how-implement-performance-metrics-cuda-cc
https://developer.nvidia.com/content/how-implement-performance-metrics-cuda-cc
https://developer.nvidia.com/content/how-implement-performance-metrics-cuda-cc
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/thrust
http://www.nvidia.com/object/what-is-gpu-computing.html

Page 17 of 17

 https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/ (6 August 2013)

11“Online Algorithm,” Algorithms for calculating variance, August 2013,

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance (6 August 2013)

12Sanyal, Jibonananda and New, Joshua R. (2013). "Supercomputer Assisted Generation of

Machine Learning Agents for the Calibration of Building Energy Models." In

Proceedings of the Extreme Science and Engineering Discovery Environment

(XSEDE13) Conference and selected to be featured in Lightning Talks, San Diego, CA,

July 22-25, 2013.

13Tomov S., Nath R., Du P., Dongarra J., “MAGMA Users’ Guide,” MAGMA Users

Documentation, November 2009, http://icl.cs.utk.edu/projectsfiles/magma/docs/magma-

v02.pdf (6 August 2013).

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance%20(6
http://icl.cs.utk.edu/projectsfiles/magma/docs/magma-v02.pdf
http://icl.cs.utk.edu/projectsfiles/magma/docs/magma-v02.pdf

	In-Situ Statistical Analysis of Autotune Simulation Data using Graphical Processing Units
	ABSTRACT
	I. INTRODUCTION
	A. Graphical Processing Units (GPUs)
	B. CUDA
	C. GPU Accelerated Libraries
	1. Thrust
	2. CUDPP
	3. CUBLAS
	4. MAGMA

	II. METHOD
	III. RESULTS
	IV. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	10Oak Ridge Leadership Computing Facility (OLCF), “Titan Overview,” Titan Cray XK7

