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NUMERICAL ANALYSIS OF FIXED POINT ALGORITHMS IN THE
PRESENCE OF HARDWARE FAULTS

M. Stoyanov ∗ C. Webster †

Abstract.
The exponential growth of computational power of the extreme scale machines over the past few decades

has led to a corresponding decrease in reliability and a sharp increase of the frequency of hardware faults.
Our research focuses on the mathematical challenges presented by the silent hardware faults. i.e., faults that
can perturb the result of computations in an inconspicuous way. Using the approach of selective reliability we
present an analytic fault mode that can be used to study the resilience properties of a numerical algorithm.
We apply our approach to the classical fixed point iteration and demonstrate that in the presence of hardware
faults, the classical method fails to converge in expectation. We preset a modified resilient algorithm that
detects and rejects faults resulting in error with large magnitude, while small faults are negated by the
natural self-correcting properties of the algorithm. We show that our method is convergent (in first and
second statistical moments) even in the presence of silent hardware faults.

Key words. algorithmic resilience, fixed point method, linear solvers, numerical linear algebra, fixed
point methods

1. Introduction. As modern science and engineering push the limits of our knowledge
and understanding, there is an ever increasing demand for more complex mathematical
models to describe various real world phenomena. Coupling between processes and scales
as well as the need for better accuracy have created an insatiable demand for increased
computing power. To this end, bigger and faster computers are proposed and built every
year and every one of those machines is designed to challenge the limits of our configurations.
Transistor’s fabrication size shrinks exponentially and constraints on the power consumption
force circuits to operate at near critical voltage, so that even a small power fluctuation may
have an adverse effect on operation. In addition, the ever increasing number of components
offers more and more opportunity for hardware failure. Unfortunately, the rapid increase of
computational power has lead to a corresponding decrease in reliability, which has created
an ever growing concern for the reliability of the computed results [5, 7, 14,24–26].

In this work we focus on the problem of silent hardware faults that can perturb the
result of computations in an inconspicuous way. We devise a theoretical fault model and
a framework for analysis of error propagation, as well as assessment and enhancement of
algorithm’s resilience. In what follows, we describe the challenges associated with hardware
failure and silent faults, that have led to the research described in this effort.

1.1. Hardware failure. Hardware faults are a well known issue and measures are taken
to ensure that every computer component operates reliably. For example, memory comes
with error detection and correction [22, 26] and Cyclic-Redundancy-Checksums (CRC) are
used to guard against data corruption in network traffic. However, processing cores remain
largely unprotected [14, 17] and adding redundancy to all chips in a cluster is very expen-
sive in terms of manufacturing cost and increased energy consumption. Faults in a single
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component are rare, however, in an extreme-scale machine, small chances of failure are mul-
tiplied so they cannot be ignored. Experiments performed in 2011 on Jaguar (the largest
supercomputer at the time) showed a single node failure almost daily [14] and hundreds
of (corrected) bit-flips every hour [25]. Hardware level error detection and correction are
indispensable tools, however, the number of undetected and uncorrected faults is constantly
increasing.

Software based resilience techniques are used to complement the hardware approach.
One of the most common types of hardware fault is the fail-stop (sometimes called hard
faults), where either the entire application, or some of the nodes of the cluster, crash and fail
to return a result. This problem has been the focus of research in computational science over
the past decades and the most common approach for addressing this issue is the checkpoint
restart methods [2, 13]. Practically, all modern code is written so that it periodically saves
the state of the software and in the event of a crash, computations can be resumed from
the last saved checkpoint.

1.2. Silent faults. Hardware malfunction that doesn’t result in a crash, may result in
data corruption. If the fault affects a permanent data structure (e.g., an iteration matrix),
then checksums can be used to detect the deviation, however, not all faults leave a “visible”
permanent trace. For example, suppose two variables with values 2 (binary 010) and 4
(binary 100) need to be added. First they are moved from the DRAM into the SRAM
(CPU cache). Then suppose the hardware suffers a voltage fluctuation causing the cache to
fail and flip one bit in the second variable making it into a 6 (binary 110). When the add
instruction is executed, it will result in the incorrect answer 8 (binary 1000), which will be
stored back into DRAM and the corrupt data in the cache will be cleared. Effectively, the
hardware computes erroneously that 2 + 4 = 8. If the corrupted value contains invalid data
(e.g., inf or nan) or if the values fall outside of physical boundaries (e.g., negative area),
then some indication of a fault is still present. However, if the result is not “obviously”
wrong, then we have the most sinister type of a fault that perturb the computations in way
that is incorrect but yet believable. In our work, we call those the silent faults.

The main focus of this work is to propose and analyze novel numerical methods that
converge even in the presence of silent faults, regardless of their source. We do not restrict
our attention to bit-flips and our approach extends to any type of perturbation of the nu-
merical computations that does not permanently alter the persistent data in main memory.
The name silent is appropriate here, since it emphasizes the main challenge associated with
detection of those faults.

Experimental studies of the effects of faults (silent or otherwise) have been performed
(e.g., [6,9]) and techniques for fault detection have been proposed (e.g., [4,19]). Simple en-
hancements can improve the overall resilience of the methods, however, not all silent faults
can be corrected or even detected, and experiments provide insight on the reliability but are
restricted to the specific implementations and specific faults tested (e.g., bit-flips). In the
context of linear algebra, Algorithm Based Fault Tolerance (ABFT) [1,16,18] is an advanced
and very widely utilized technique. ABFT uses check-sums to detect data corruption in
matrices and vectors as well as correct some silent faults in the basic algebraic operations,
and ABFT has been successfully applied to dense [8] and sparse [23] matrix operations on
large scale systems. However, the application of ABFT remains restricted to linear opera-
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tions with explicit matrices, specific data-structures and implementation. Checksumming
is a very powerful way to guard against data corruption in persistent structures, however,
a more general higher-level approach is need to handle silent faults in the broader class of
problems.

The work [3, 15] propose an alternative approach where the program execution is split
into two modes, denoted safe and fast (respectively host and guest in [15]). The computa-
tions in safe mode are assumed to be performed reliably (i.e., zero or negligible probability
of a fault), however, they are also more expensive. The safe mode has to be implemented
with either redundant computation or via the use of specialized hardware, hence only the
minimum amount of work should be performed in this mode. On the other hand, the fast
mode is cheap, but prone to hardware failure. This approach is applied to a modified version
of the restarted GMRES algorithm, where a convergence test is performed in safe mode be-
tween every two outer GMRES iterations [15]. The convergence test rejects the next iterate
unless the residual error is reduced, thus large errors are rejected and only small ones are
accepted by the algorithm. Similar approach has also been applied to Conjugate-Gradient
method [21].

The approach of selective reliability is a viable technique for dealing with silent faults,
however, it also presents a number of new challenges. For example, the convergence of
the algorithm deteriorates as the frequency of the faults increases, due to the additional
work needed to correct each fault. However, the rate of deterioration, and the relationship
between the properties of the matrix (e.g., condition number), and the type of errors that
can be resolved remains unknown. Thus, the frequency and type of faults that can be
resisted is not fully characterized. Even if convergence is achieved, in the presence of random
faults, the final result of the computations is a random variable with associated probability
distribution, and the statistics of the distribution need to be quantified. As such, in what
follows, a novel numerical analysis paradigm is presented in which the potential of selective
reliability can be rigorously analyzed.

1.3. Analysis framework in the presence of faults. Our modern treatment of predict-
ing the behavior of physical phenomena and complex engineering problems, relies on mathe-
matical modeling followed by computer simulations. Traditional numerical algorithms have
been developed with the assumption that the underlying algebraic operations, e.g., matrix
vector products, can be carried out accurately. However, as the reliability of supercomputers
decrease, scientists and engineers can no longer afford to make this assumption; especially
when providing analysis and informing decision makers of the behavior of computer sim-
ulations. Numerical algorithms compute approximations to the solutions of mathematical
models, and therefore, introduce an associated numerical error. Silent faults introduce addi-
tional hardware artifacts in the computer simulation that are often times indistinguishable
from the numerical error, and therefore, a new analysis paradigm to simultaneously consider
both numerical and hardware error must be established.

In this work, we establish a framework of numerical analysis that is free from the as-
sumption that computations can always be performed accurately. Following the approach
of selective reliability [3,15], we assume that the result of numerical operations will be ran-
domly perturbed. In order to provide analytic framework that is as general an agnostic to
ever changing hardware architectures and implementation techniques, we make minimal as-
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sumptions on the structure of such perturbations. In the new analysis paradigm, we provide
rigorous error bounds with respect to the hardware error, and we prove convergence of the
algorithms, even if they are implemented on unreliable hardware (i.e., hardware susceptible
to silent faults). As a demonstration of our approach on solutions of systems of equations,
we analyze the widely used fixed point family of iterative solvers. We show how error of
large magnitude can be rejected, so that faults can only introduce discrepancy that is of
the order of the standard numerical error, thus preserving the theoretical convergence rates.
This is the first step towards building a suite of resilient numerical algorithms that provide
reliable results even in an unreliable computing environment.

The rest of the paper is organized as follows: in §2 we present the fault model and define
convergence with respect to hardware induced error. In §3, we preset the analysis of the
classical fixed point iteration and how it can be enhanced using the technique of selective
reliability. In §4, we present a numerical comparison between the classical and enhanced
fixed point methods.

2. Hardware error propagation and convergence. In this section we establish the
framework for analyzing the effects of silent hardware faults on numerical algorithms. We
propose a fault model that is agnostic to specific hardware architectures or software im-
plementations. Using this model, we provide rigorous definition of hardware error and
convergence in the presence of silent hardware malfunction.

2.1. Fault model. Hardware faults can be very diverse in nature and the resulting
discrepancy introduced into the computations can be unpredictable. For example, consider
some of the possible effects of a bit-flip, which is one of the most common types of hardware
faults. A bit-flip in the opcode may convert one numerical operation into another (i.e.,
addition may turn into multiplication). A bit-flip in a floating point number can cause
error in the entire range of values representable by the floating point standard, e.g., see
our earlier work on the IEEE-754 double precision representation [11, 12]. A bit-flip in
a pointer or array index can cause data to be read from a random location in memory
and hence result in an error of unpredictable pattern. In complex operations, such as
sparse matrix vector product, a fault in one number can propagate to multiple entries of
the resulting vector depending on the sparsity pattern. Furthermore, some of the most
efficient checkpoint/restart techniques for handling hard faults use partial/incomplete data
recovery, that converts hard faults to soft faults and introduces additional error. Thus, the
statistical properties of this new error strongly depend on the hardware circuits, floating
point representation, data structures used, problem structure (e.g., matrix pattern) and
even random memory content.

In order to keep our analysis as general as possible, we present a fault model that is
agnostic with respect to all of the aforementioned specific conditions. First, consider that
algorithms are comprised of a series of steps, where each step computes an intermediate
result that leads to a final answer. Then, we assume that each algorithm is implemented
with selective reliability, i.e., the steps are performed in either safe or fast modes, where the
possibility of failure in safe mode is negligible, and every operation performed in fast mode
is susceptible to hardware malfunction. The implementation of safe mode can be achieved
via either redundancy or dedicated specialized hardware. Therefore, we assume that safe
computations are significantly more expensive, and in this effort we require that the bulk
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of the work is performed in fast mode.
We model the hardware faults and the associated random perturbations as a two level

probability model, i.e., a mixture model. We assume that the hardware faults are indepen-
dent random events, and for every step performed in fast mode there is a positive probability
to encounter a hardware malfunction that perturbs the intermediate result. Thus, the first
level is modeled by a Bernoulli discrete distribution, where the two options are “faults were
encountered at this step” and “no faults were encountered at this step”. Once a fault is
encountered, the magnitude and structure of the introduced discrepancy depends on too
many specific factors, hence, we assume that the perturbation is a random variable with
unknown probability density. We illustrate with an example below.

Example 2.1 (Adding two vectors). Consider the following three step algorithm:

1. Fast: Compute some x ∈ RN

2. Fast: Compute some y ∈ RN

3. Safe: Return z = x + y

The first two steps are performed in fast mode, while the last step is executed in safe
mode. For steps 1 and 2, let p1, p2 ∈ R so that 0 < p1, p2 < 1, be the Bernoulli parame-
ters that indicate the corresponding probability of encountering hardware faults. Each fault
rate depends on the specific hardware configuration, code implementation, as well as the
computational complexity of the associated step, i.e., operations that are computationally
more expensive take longer to execute and are more likely to encounter faults. However,
for a given algorithm and implementation on specific hardware, we assume that p1 and p2

are known, i.e., we assume that we can measure an approximate rate of faults of a given
machine.

If the algorithm encounters a fault on the first step, instead of returning x we would
compute x + x̃, where x̃ ∈ RN is a random vector with unknown probability density. That

is, x̃ is associated with a complete probability space
(
RN ,F , P̃1

)
, where F = 2R

N
is the σ-

algebra of events and P̃1 is some unknown probability distribution. We do not assume that
x̃ has any specific structure or is bounded in any norm. Similarly, a hardware fault on the
second step of the algorithm would perturb the result y to y + ỹ, where ỹ is associated with

a complete probability space
(
RN ,F , P̃2

)
and unknown probability measure P̃2. In other

words, the distribution of x̃ is a mixture between the distribution P̃1 with weight p1 and the
Dirac-delta distribution δ0(x̃) with weight (1− p1).

The last step of the algorithm is performed in safe mode and hence we assume that
computations are done according to machine specification. However, the final answer z
would be affected by perturbations in x and y, and thus the result could be perturbed by
either x̃ or ỹ or both x̃ + ỹ. Even if all the steps of the algorithm are deterministic, the
stochastic nature of hardware faults turns the final result into a random variable.

2.2. Convergence with respect to hardware error. The perturbation associated with
a hardware failure in fast mode is distinct from round-off error. Finite precision standards
such as IEEE-754 introduce rounding error with each operation, however, this error is small
and deterministic in nature. Algorithm conditioning with respect to round-off error is a
well established subject in numerical analysis, however, conditioning cannot account for
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the random and potentially unbounded discrepancy introduced by hardware malfunction.
Round-off error is introduced into the computations in compliance with standards and
specifications, the hardware error that we consider is associated with abnormal machine
behavior.

The error associated with numerical algorithms is usually measured in some norm. For
all examples given in this paper, w.l.o.g., we assume that we are working with l2 norm
defined on RN . However, our definitions are general and norm agnostic, and many of our
results trivially extend to other norms. Thus, we present the following definition:

Definition 1 (Hardware error). Error introduced into numerical computations by hard-
ware malfunction.

In Example 2.1, the perturbation associated with the first step is x̃ and, hence, the
hardware error is ‖x̃‖. Similarly, the error associated with the second step is ‖ỹ‖ and the
final hardware error is ‖x̃ + ỹ‖. The random vectors x̃ and ỹ have unknown probability
density, however, using our assumption about the probability of failure we have that PB(x̃ 6=
0) = p1 and PB(ỹ 6= 0) = p2, where PB indicates the probability with respect to the
Bernoulli measure. Therefore, the probability of non-zero final error is

PB(x̃ + ỹ 6= 0) = PB(x̃ 6= 0) + PB(ỹ 6= 0)− PB((x̃ 6= 0) ∩ (ỹ 6= 0)) ≤ p1 + p2 − p1p2.

Note that we cannot make more specific conclusions about the distribution of ‖x̃+ ỹ‖ since
we made no assumptions about the measures P̃1 and P̃2.

In addition to hardware error, the accuracy of numerical algorithms is of critical impor-
tance. For example, a finite representation of an infinite dimensional operator introduces
discretization error and the scheme is said to converge if the error goes to zero as the num-
ber of degrees of freedom increases. Another example is an iterative solver that generates
a sequence of solutions. In this case, convergence is characterized by the sequence’s ability
to achieve a result as the number of iterations increases. Similarly round-off error can be
reduced by using higher precision and representing real numbers with more bits, i.e., single,
double, and quad precision.

In general, numerical convergence is related to the concept of additional computational
works leading to an increasingly more accurate approximation. We want to extend this
idea beyond numerical error and include hardware error, so that silent hardware faults are
automatically corrected, accounting for additional computational complexity. The cost may
be associated with extra iterations of an iterative solver or more refined mesh discretization,
but in all cases more work should imply better accuracy. Furthermore, the hardware error
is a random variable and hence, we consider accuracy in statistical sense, i.e., we want the
statistical moments of the hardware error to tend to zero.

We formalize the idea of convergence in the presence of hardware faults by considering
an algorithm with steps implemented in fast mode. We describe the hardware faults via
the sequence of known Bernoulli parameters p = (p1, p2, · · · , pn, · · · ), and collection of

unknown measures P̃ =
(
P̃1, P̃2, · · · , P̃n, · · ·

)
. Let e be the difference between the result of

one realization of the algorithm and the desired exact solution, that is, e indicates the sum of
numerical and hardware errors. Finally, denote by Ep,P̃ [e] and Vp,P̃ [e] the expectation and

variance of e with respect to the mixture distributions defined by p and P̃ . The statistical
moments of e strongly depend on P̃ , however, in order to keep our approach agnostic to
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specifics of the hardware, we take a conservative approach where we assume that every fault
results in a the perturbation that would have the most detrimental effect on e. Following
that notation, we define:

Definition 2 (Convergence with respect to hardware error). A method is convergent with
respect to the hardware error, if for every ε > 0 there is a finite amount of work associated
with the algorithm that will bound the statistics as

sup
P̃

Ep,P̃ [e] < ε, and sup
P̃

Vp,P̃ [e] < ε2, (2.1)

where the supremum is taken over all possible probability measures on RN .
Traditional numerical analysis assumes that the hardware is perfectly reliable, i.e., all

steps of algorithms are performed in safe mode and, therefore, the hardware error is always
zero, i.e., p = 0 at all times. However, since the hardware error is potentially unbounded
(i.e., supremum over P̃ ), even if a single step of an algorithm is performed in fast mode
(i.e., p > 0), classical algorithms would fail to converge. For example, the simple approach
described in Example 2.1 does not offer the ability to correct hardware error in the first
two steps and hence the final error x̃ + ỹ will have non-zero expectation. To correct this
and guarantee convergence, we must modify the first two steps in a way that allows us to
increase the computational cost and make the statistical moments of ‖x̃‖ and ‖ỹ‖ decay to
zero.

Our objective is to take existing algorithms and allow for as many steps as possible in
fast mode while still preserving convergence. In order to achieve this goal, we modify the
algorithms in such a way as to control the propagation of faults so that the final hardware
error has bounded statistics.

3. Analytic framework for fixed point methods. Iterative linear and non-linear solvers
are the most widely utilized approaches for numerical solutions of large scale problems asso-
ciated with most modern applications. Such methods generate a sequence of approximations
of increasing fidelity to the exact solution, terminating after a convergence criteria has been
achieved. One of the most widely used class of iterative methods is the family of fixed
point solvers, which includes the linear methods such as Jacobi and Gauss-Siedel as well as
nonlinear methods, such as Newton. Both types of methods possess properties that enable
natural resiliency, and hence, are good example to illustrate our approach.

The basic idea of fixed-point methods is to construct a sequence of vectors {x(k)}∞k=0

that enjoy the property of convergence x(k) → xG, where xG is a fixed point that satisfies
the following linear or nonlinear system G(xG) = xG. In practice, the fixed point iterative
process is stopped at the minimum value n, such that ‖x(n) − x‖ < ε, where ε is a fixed
tolerance and ‖ · ‖ is any convenient vector norm. However, since the exact solution is obvi-
ously not available, it is necessary to introduce a suitable stopping criteria. The increment
e(k) = ‖x(k+1)−x(k)‖ between two successive iterates is the most common indicator for con-
vergence, when the iteration reaches the asymptotic regime. Yet, this condition may cause
premature termination in the first few iterations, therefore, we require that at least kmin

number of iterations are taken1. We summarize the fixed point iteration in the following
algorithm:

1Depending on the structure of G(x), in many applications it is sufficient to take kmin = 1.
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Algorithm 1 (Fixed point iteration).

Given G, b, initial x(0), tolerance ε and kmin

Let k = 0

repeat
x(k+1) = G(x(k))

e(k) = ‖x(k+1) − x(k)‖
k = k + 1

until (k > kmin) and
(
e(k) < ε

)
Convergence of Algorithm 1 is contingent upon the properties of G(x) and the initial

iterate x(0). One sufficient condition for convergence is based on the famous fixed point
Theorem, a proof of which can be found in [20].

Theorem 1 (Fixed point theorem). Suppose Γ ⊂ RN is complete in some norm ‖ · ‖ and
let G : Γ→ Γ be a contraction map, i.e., there is a constant r < 1 so that

‖G(x)−G(y)‖ ≤ r‖x− y‖, for all x,y ∈ Γ.

Then, there is a unique fixed point xG ∈ Γ so that G(xG) = xG. Furthermore, for any
x(0) ∈ Γ the sequence {x(k)}∞k=0 defined by x(k+1) = G(x(k)) converges to xG (i.e., ‖x(k) −
xG‖ → 0) and the error ‖x(k) − xG‖ is bounded by

‖x(k) − xG‖ ≤ rk‖x(0) − xG‖.

Theorem 1 is a strong result that not only grantees convergence to the desired solution,
but also gives the linear rk decay of the error. Some fixed point methods exhibit even faster
convergence rate, e.g., Newton’s method converges quadratically, however, in this work, we
focus on methods with linear rate.

Example 3.1 (Linear solvers). Here we focus on using fixed point methods to solve linear
systems of type:

Ax = b, (3.1)

where A ∈ RN×N is a given matrix, b ∈ RN is a given right hand side vector and we are
interested in the solution xG ∈ RN that satisfies (3.1). Two of the most common fixed
point methods for linear systems are known as the Jacobi and Gauss-Siedel methods. The
contraction maps and the corresponding contraction coefficients are given by:

• Jacobi Method

GJ(x) = D−1 (b− Sx) , rJ = ρ(D−1S),

where D = diag(A) (i.e., D is a diagonal matrix with the diagonal entries of A),
S = A−D, and ρ indicates the spectral radius of the matrix D−1S.

• Gauss-Seidel Method

GGS(x) = L−1 (b−Ux) , rGS = ρ(L−1U),

where L = lower(A) (i.e., L is a lower triangular matrix of the entries of A), U =
A−L, and ρ indicates the spectral radius of the matrix L−1U .
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The exact solution xG to (3.1) is a fixed point of both GJ(x) and GGS(x), therefore, if
either rJ < 1 or rGS < 1, the corresponding fixed point iteration will converge to xG in l2

or any equivalent norm, for any x(0) ∈ RN (i.e., Γ ≡ RN ).

3.1. Hardware error analysis. The most computationally expensive step of Algorithm
1 is finding the next iterate

x(k+1) = G(x(k)), k = 0, 1, 2, · · · (3.2)

In fact, in most applications this step is orders of magnitude more expensive then computing
the increment e(k). However, hardware fault in the evaluation of e(k) may cause premature
termination of the algorithm, hence, we assume that the last two steps of the algorithm
together with the conditional branching are computed in safe mode.

To reduce the computational cost associated with (3.2), we assume that the k + 1
iterate is computed in fast mode. Then we must allow for the possibility to encounter a
silent hardware fault at step k, i.e., instead of x(k+1) we could compute

x̃(k+1) = G(x(k)) + x̃.

If x̃(k+1) ∈ Γ, Algorithm 1 will generate a new sequence {y(k)}∞k=0 where y(0) = x̃(k+1) and
y(i+1) = G(y(i)), and from Theorem 1 y(i) → xG. The total numerical error for the new
sequence is bounded by

‖y(i) − xG‖ ≤ ri‖y(0) − xG‖ ≤ ri‖x(k+1) − xG‖+ ri‖x̃‖ ≤ rirk+1‖x(0) − xG‖+ ri‖x̃‖.

The first term of the bound ri+k+1‖x(0) + xG‖ is identical to the one associated with the
error free iteration. Therefore, the hardware error associated with the fixed point method
that is caused by a single hardware failure is bounded by ri‖x̃‖, where i is the number of
iterations after the failure and ‖x̃‖ is the magnitude of the hardware induced perturbation.
Analogously, if we encounter j hardware faults at iterations i1, i2, · · · , ij with perturbations
x̃(i1), x̃(i2), · · · , x̃(ij), then we have the following bound

‖x(k) − xG‖ ≤ rk‖x(0) − xG‖+

j∑
l=1

rk−il‖x̃(il)‖. (3.3)

Thus, the hardware error associated with j silent faults is bounded by
∑j

l=1 r
k−il‖x̃(il)‖.

Next we consider the convergence of the method with respect to the hardware error as
in Definition 2. The terms rk−il → 0 as k →∞, however, for any non-zero r, the supremum
in (2.1) will contain the unbounded terms ‖x̃(il)‖ and hence the expectation and variance
of the hardware error will be unbounded. In practice, we expect to encounter perturbations
of finite magnitude, however, a sufficiently large perturbation may require a prohibitive
number of additional iterations to converge. Our earlier work shows how rescaling the
entries of A can be used to reduce the expected value of ‖x̃(il)‖ [10–12], however, not all
problems can be efficiently rescaled and scaling cannot drive the expectation of ‖x̃(il)‖ to
zero. Therefore, the fixed point iteration is not convergent with respect to silent faults if
the evaluation of G(x(k)) is done in fast mode.
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3.2. Resilience enhancement techniques and convergence. We assume that the eval-

uation of e(k) and the conditional branching are computed in safe mode and we require that
the expensive step that computes x(k) be executed in fast mode. The fixed point method
has self correcting properties that can negate the effects of hardware error with small mag-
nitude, however, a novel approach is needed to discriminate and reject iterates x(k+1) that
are contaminated by hardware error with large magnitude.

First, note that the increments e(k) defined in Algorithm 1 decay monotonically, i.e.,

e(k) = ‖x(k+1) − x(k)‖ = ‖G(x(k))−G(x(k−1))‖ ≤ r‖x(k) − x(k−1)‖ = re(k−1). (3.4)

The monotonic property (3.4) (i.e., ek ≤ rek−1) can be easily verified at each step and
deviation from this behavior is an indication of hardware malfunction. If the property fails,
i.e., we observe something other than monotonic convergence, then we reject the next iterate
x(k+1) and recompute G(x(k)). In practice, the value of r may be unknown, hence we can
introduce a tuning parameter α, that is an upper estimate such that α ∈ (r, 1]. If such an
estimate is not available, we can start the iteration with α = 1 and from several increments
e(k) we can estimate α as α ≈ e(k+1)/e(k). Effectively, this will provide an upper bound on
the hardware error introduced by the computations.

The monotonic condition (3.4) can be tested for any iterate k > 0, however, the first
iterate needs a different choice for e(−1). An upper bound for e(0) is given by

e(0) = ‖x(1) − x(0)‖ = ‖x(1) − xG + xG − x(0)‖
≤ r‖x(0) − xG‖+ ‖x(0) − xG‖
= (r + 1)‖x(0) − xG‖
≤ (α+ 1)β,

where β is a second tuning parameter that is an upper bound for ‖x(0) − xG‖. Thus, we
set e(−1) = (α+ 1)β, which is only needed for the first step of the iteration.

With all this in mind, we propose the following improved fixed point algorithm, where
all steps except x(k+1) = G(x(k)) are executed in safe mode:

Algorithm 2 (Improved fixed point iteration).

Given G, initial x(0), tolerance ε and kmin

Select α ∈ (r, 1] and β > ‖x(0) − xG‖
Let e(−1) = (α+ 1)β

k = 0

repeat
x(k+1) = G(x(k))

e(k) = ‖x(k+1) − x(k)‖
if e(k) < αe(k−1) then

Accept x(k+1) (i.e., k = k + 1)

else
Reject the step (i.e., make no modifications to k)

end if

until (k < kmin) or
(
e(k) < ε

)
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The evaluation of G(x(k)) in Algorithm 2 is the only step that is susceptible to silent
faults. We note that it is possible for a silent fault encountered at iteration k to result in
failure of the monotonic condition e(k+2) < αe(k+1) at step k + 2, even if step k + 1 was
computed without any faults. This delayed rejection can result in stagnation of Algorithm
2 and we address this issue in §3.4. First, we focus on an upper bound for the sum of
numerical error and hardware errors.

We take an approach similar to [12]. Suppose we encounter a fault at iteration k, then
we replace x(k+1) by

x̃(k+1) = G(x(k)) + x̃.

For example, when k = 0, faulty initial iterate will be rejected and completely corrected
unless

‖x(1) + x̃− x(0)‖ < (α+ 1)β.

On the other hand, if we accept a faulty iterate x̃(1), we consider a new iteration y(0) = x̃(1)

such that

‖yi − xG‖ ≤ ri‖x̃(1) − xG‖
≤ ri‖x̃(1) − x(0) + x(0) − xG‖

≤ ri
(

(α+ 1)β + ‖x(0) − xG‖
)
. (3.5)

It is important to note that the error bound for the new iteration, given by (3.5), is inde-
pendent of the magnitude of the error ‖x̃‖ introduced; and depends only on the parameters
α, β and the accuracy of the initial iterate ‖x(0) − xG‖. Furthermore, since ri → 0, the
improved algorithm is convergent with respect to a fault in the first iteration (as i→∞).

Next, we consider faults encountered at iterations k > 0. In order to account for the
possibility of multiple faults, we employ an inductive argument that we base on the following
lemma.

Lemma 1 (Magnification of error). Let {x(s)}ks=0 be a sequence of iterates generated by
Algorithm 2 and suppose that for some constant C > 0 and some integer k̃ ≤ k the following
holds

‖x(k) − xG‖ ≤ Crk̃ and ‖x(k) − x(k−1)‖ ≤ Crk̃ (3.6)

If a fault is encountered during computation of x(k+1), then for i > k (assuming no further
faults are encountered) the following estimate hold

‖x(i) − xG‖ ≤ (1 + α)Cri−k+k̃−1 and ‖x(i) − x(i−1)‖ ≤ Cri−k+k̃−1 (3.7)

Proof: If we encounter a fault at iteration k > 0, Algorithm 2 will reject any perturbation
x̃(k) unless

‖x(k+1) + x̃− x(k)‖ < α‖x(k) − x(k−1)‖.

Rejection of the fault results in the fixed point iteration simply being delayed by one
iteration, hence (3.7) holds trivially. If the fault is accepted, then we obtain a fault
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x̃(k+1) = x(k+1) + x if the iteration proceeds without any further faults for i > k

‖x(i) − xG‖ ≤ ri−k−1‖x̃(k+1) − xG‖
≤ ri−k−1‖x̃(k+1) − x(k) + x(k) − xG‖
≤ ri−k−1α‖x(k) − x(k−1)‖+ ri−k−1‖x(k) − xG‖

≤ Cri−k−1αrk̃ + Cri−k−1rk̃

= C(1 + α)ri−k−1+k̃

Similarly,

‖x(i) − x(i−1)‖ ≤ ri−k−1‖x̃(k+1) − x(k)‖
≤ αri−k−1‖x(k) − x(k−1)‖

≤ αCri−k−1+k̃ �

Combining (3.5) and Lemma (1) we now present the main result of this section
Theorem 2 (Multiple faults). Suppose that Algorithm 2 is executed for k iterations and

it encounters j ≤ k faults at iterations k1 < k2 < · · · < kj. Then, at iteration k

‖x(k) − xG‖ ≤ Cmaxr
k−j(1 + α)j , (3.8)

where

Cmax = max

{
(1 + r)‖x(0) − xG‖

r
,
(α+ 1)β + ‖x(0) − xG‖

r

}
Proof: If k1 > 0 (i.e., the first iteration doesn’t encounter faults), then for k ≤ k1 assump-
tion (3.6) holds with C = r(−1)(1 + r)‖x(0) −xG‖ and k̃ = k, and therefore, for k ≥ k1 and
k < k2 we have that

‖x(k) − xG‖ ≤ (1 + α)Cmaxr
k−1, and ‖x(k) − x(k−1)‖ ≤ αCmaxr

k−1.

Conversely, if k1 = 0, then according to (3.5), for 0 < k ≤ k2 assumption (3.6) holds with
C = r−1

(
(α+ 1)β + ‖x(0) − xG‖

)
and k̃ = k − 1, and therefore, for k ≥ k2 and k < k3

‖x(k) − xG‖ ≤ (1 + α)Cmaxr
k−2, and ‖x(k) − x(k−1)‖ ≤ Cmaxr

k−2.

Inductively, suppose that for k ≥ kj−1 and k < kj , we have that assumption (3.6) holds
with C = Cmax(1 + α)j−1 and k̃ = k − j + 1, then according to Lemma 1 we have that for
k ≥ kj

‖x(k) − xG‖ ≤ (1 + α)jCmaxr
k−j , and ‖x(k) − x(k−1)‖ ≤ α(1 + α)j−1Cmaxr

k−j

The result in Theorem 1 gives an estimate on the error associated with the resilient fixed
point algorithm (i.e., Algorithm 2). More importantly, the estimate is independent of the
magnitude of the introduced perturbations x̃ and the iterations (kj) where the faults occur.
Every time we encounter a fault, we waste one iteration (i.e., we decrement the exponent of
r by one) and the fault introduces a magnification factor of 1 +α. This allows us to bound
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the statistics of the error independent of P̃ and we need only focus our attention to the
number of faults encountered in k iterations.

Each iteration of the fixed point scheme has approximately the same computational
complexity, hence, we expect that the rate of faults, i.e., the Bernoulli parameters, associated
with each step to be essentially constant. Let pk = p for all iterations k, then the number of
faults j encountered in k iterations follows a binomial distribution. Let ρ(j|k), for 0 ≤ j ≤ k,
indicate the binomial probability measure, i.e., the probability of encountering j faults in
k total iterations with fault rate p. Then, according to Theorem 2, for any distribution P̃
of the hardware induced perturbations, the statistical moments of the total numerical error
can be bounded by:

Ep,P̃

[
‖x(k) − xG‖

]
≤ Cmax

k∑
j=0

rk−j(1 + α)jρ(j|k),

Vp,P̃

[
‖x(k) − xG‖

]
≤ C2

max

k∑
j=0

r2k−2j(1 + α)2jρ(j|k). (3.9)

Therefore, the improved iteration is convergent if

lim
k→∞

k∑
j=0

rk−j(1 + α)jρ(j|k) = 0,

lim
k→∞

k∑
j=0

r2k−2j(1 + α)2jρ(j|k) = 0. (3.10)

Condition (3.10) is sufficient for convergence, so long as Algorithm 2 does not encounter a
false positive rejection of a fault free iterate. If multiple faults are accepted in consecutive
iterations, it is possible for Algorithm 2 to stagnate. We address this issue in §3.4, however,
we first look at the rate of convergence of the modified algorithm.

3.3. Convergence Rate. The classical fixed point algorithm converges linearly, i.e.,

O(rk), where r is the contraction constant (e.g., the spectral radius of the iteration matrix)
and k is the number of iterations. However, in the presence of hardware faults, even if the
algorithm produces an accurate approximation to the desired solution, the rate of conver-
gence often times deteriorates [11, 15]. Furthermore, the slowdown is strongly influenced
by the number of introduced hardware faults. Therefore, we are interested in the rate of
convergence as a function of the rate of faults p.

The statistical moments of the hardware error are bounded in (3.9), where ρ(j|k) is the
binomial measure

ρ(j|k) =
k!

j!(k − j)!
pj(1− p)k−j . (3.11)
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Then, by substituting (3.11) into (3.9), and combining like terms we obtain the estimates

Ep,P̃

[
‖x(k) − xG‖

]
≤ Cmax

k∑
j=0

k!

j!(k − j)!
rk−j(1 + α)jpj(1− p)k−j

≤ Cmax

k∑
j=0

k!

j!(k − j)!
(r(1− p))k−j((1 + α)p)j ,

Vp,P̃

[
‖x(k) − xG‖

]
≤ C2

max

k∑
j=0

k!

j!(k − j)!
r2k−2j(1 + α)2jpj(1− p)k−j

≤ C2
max

k∑
j=0

k!

j!(k − j)!
(r2(1− p))k−j((1 + α)2p)j .

Using the binomial theorem the expectation and variance are given by

sup
P̃

Ep,P̃

[
‖x(k) − xG‖

]
≤ Cmax (r(1− p) + (1 + α)p)k ,

sup
P̃

Vp,P̃

[
‖x(k) − xG‖

]
≤ C2

max

(
r2(1− p) + (1 + α)2p

)k
(3.12)

If (r(1− p) + (1 + α)p) < 1 and
(
r2(1− p) + (1 + α)2p

)
< 1, then the right hand side of

(3.12) can be made arbitrarily small by increasing k, i.e., performing a sufficient number
of iterations (extra work). Thus, Algorithm 2 will be convergent in terms of (2.1) if the
following condition is satisfied

p <
1− r

(1 + α)− r
and p <

1− r2

(1 + α)2 − r2
. (3.13)

From (3.13) we get a relationship between the contraction properties of G(x) and the
reliability of the hardware, required to guarantee convergence of the resilient fixed point
iteration. In particular, the convergence condition (3.13) allows us to quantity the following:

(i) For perfectly reliable hardware, i.e., p = 0, the exponential term of (3.12) becomes,

(r(1− p) + (1 + α)p)k = rk

Furthermore, the r−1 coefficient and the (α+1)β+‖x(0)−xG‖ terms in the definition
of Cmax manifest only at the occurrence of a fault, hence, when p = 0 we can take
Cmax = ‖x(0) − xG‖ and thus recover the rate and constant associated with the
convergence of the classical fixed point iteration.

(ii) As the hardware fault rate p increases, then r(1 − p) + (1 + α)p increases and the
convergence deteriorates accordingly.

(iii) As r → 1 and the conditioning of the fixed point method deteriorates, the convergence
condition forces p→ 0, which implies problems with worse conditioning require more
reliable hardware.
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(iv) The constant Cmax is of order 1/r, however, Theorem 1 states that error of magnitude
1/r can be correct with a single (fault free) iteration. Thus, for a fixed p, as r → 0,
the Cmax diverges but Algorithm 2 remain convergent.

Therefore, the modified fixed point iteration performs just as well as the classical method
when executed on reliable hardware, while at the same time Algorithm 2 allows for conver-
gence, even in the presence of silent hardware faults. Unreliable hardware would deteriorate
the rate of convergence, which can be rigorously quantified by (3.12) and (3.13).

3.4. Guarding Against False Positive Rejections. The accept/reject criteria discussed
above gives an upper bound for the statistics of the total numerical error. However, it
is possible for a hardware fault to create a false-positive rejection of a following fault-free
iteration. For example, suppose that at step k the result of G(x(k)) is perturbed so that

x̃ ≈ −G(x(k)), x̃(k+1) = G(x(k)) + x̃ ≈ x(k).

Even though e(k) is computed in safe mode, the perturbation x̃ will make e(k) very small,
which can cause either an early termination or any fault-free k + 2 iterate would no longer
be accepted and Algorithm 2 will stagnate.

We propose a number of ways to address stagnation. The first possible approach is to
apply redundancy techniques, where we assume that the probability of encountering two
consecutive hardware failures that result in identical hardware error is negligible. This
assumption is based on the consideration that every component of a supercomputer has a
relatively low rate of failure and faults in different components are likely to result in very
different hardware error. Suppose iteration k was rejected, then we store the computed
presumably faulty x(k+1) and repeat the last iteration. If we reject the repeated iteration
as well, then we compare the two rejected iterates, if they are within ε of each other, then we
overwrite the accept/reject criteria and force the acceptance of x(k+1) as the next iterate.

Another approach is to reject the last two iterates, upon encountering a fault, i.e., we
reject both xk+1 and xk. This is a very conservative approach that will guard against
stagnation, however, every faulty iterate may result in the rejection of a fault free iterate as
well. This is a feasible approach only if the rate of hardware faults is low and the increased
storage cost of keeping two consecutive iterates is not of consideration.

Another redundancy approach would be to keep the history of the norms of the incre-
ments and test ek against several of the past ek−1, ek−2, · · · . That is

if (e(k) < αe(k−1)) or (e(k) < α2e(k−2)) or (e(k) < α3e(k−3)) then
Accept x(k+1)

else
Reject x(k+1)

end if

While computationally and storage wise cheap, this approach will still fail if we encounter
multiple consecutive faults causing stagnation, hence this method is only feasible if the
probability of such event is negligible. Furthermore, if α is an overestimate of r, then α3 is
an even bigger overestimate of r3 and hence this approach allows the acceptance of hardware
error with larger magnitude.

In addition, there are multiple approaches to guard against early termination. Post-
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processing in safe mode will guarantee that the residual associated with the final computed
iterate is indeed within ε. If the test fails, we can restart the fixed point iteration with
the last iterate as the new initial guess x(0). This is a very safe, but potentially expensive
approach, as it requires one evaluation of (3.1) in safe mode.

Another approach is to require that two or more of the last computed increments e(k)

simultaneously satisfy the convergence criteria e(k) < ε, i.e., we replace the convergence test
by

repeat
· · ·

until
(
e(k) < ε

)
and

(
e(k−1) < ε/r

)
and

(
e(k−2) < ε/r2

)
· · ·

So long as encountering multiple consecutive faults that cause early termination has negli-
gible probability, this approach will guarantee convergence.

All of above techniques are viable under different circumstances. We select the two that
in the authors’ opinion are most robust and most widely applicable. Specifically we consider
the following Resilient fixed point Iteration.

Algorithm 3 (Resilient fixed point Iteration).

Given G, initial x0, tolerance ε and kmin

Let α ∈ (r, 1], β > ‖x(0) − xG‖
Let e(−1) = (α+ 1)β

k = 0

repeat
x(k+1) = G(x(k))

e(k) = ‖x(k+1) − x(k)‖
if e(k) ≤ αe(k−1) then

Accept x(k+1), i.e., k = k + 1

else
if Last iterate was rejected and ‖x(k+1) − xf‖ ≤ ε then

Accept x(k+1) (i.e., k = k + 1)

else
Reject the step, i.e., make no modifications to k

xf = x(k+1)

end if

end if

until
(
e(k) < ε

)
and

(
e(k−1) < ε/α

)
4. Numerical Example. In this section, we verify the theoretical results by comparing

the standard and resilient fixed point methods, when solving a parabolic partial differential
equation (PDE). In particular, we consider the Jacobi method applied to the linear system
of equations associated with one step of the implicit time integration of the heat equation.
Let Ω = [0, 1]× [0, 1] ⊂ R2 and consider the PDE

d

dτ
u(τ, ξ, η) =

∂2

∂ξ2
u(τ, ξ, η) +

∂2

∂η2
u(τ, ξ, η), (ξ, η) ∈ Ω, τ > 0,

u(τ, ξ, η)|∂Ω = 0,

u(0, ξ, η) = ξη(ξ − 1)(η − 1).
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We seek a numerical approximation to the solution u(τ, ξ, η). We discretize the problem in
Ω using a finite difference scheme with uniformly distributed nodes. Let

{ξi}ni=1, ξi =
i

n+ 1
, {ηj}nj=1, ηj =

j

n+ 1
,

and approximate

u(τ, ξi, ηj) ≈ ui,j(t), ui,j(0) = ξiηj(ξi − 1)(ηj − 1).

In this setting, the diffusion operator is discretized as

∂2

∂ξ2
ui,j(τ) ≈ ui−1,j(τ)− 2ui,j(τ) + ui+1,j(τ)

∆ξ2
,

∂2

∂η2
ui,j(τ) ≈ ui,j−1(τ)− 2ui,j(τ) + ui,j+1(τ)

∆η2
,

where ∆ξ = ∆η = 1
n+1 , and u0,j(τ) = un+1,j(τ) = ui,0(τ) = ui,n+1(τ) = 0. The spacial

discretization results in n2 ordinary differential equations that can be written in a matrix
form

d

dτ
v(τ) = Lv(τ),

where ui,j(τ) is given by vm = ui,j(τ), with m = (i− 1)n+ j, and L is the matrix represen-
tation of the discretized Laplacian operator.

Finally, we evolve the system in time with the use of a backward Euler method. That
is, we select a time step ∆τ and approximate

v(τ + ∆τ) ≈ (I −∆τL)−1 v(τ),

where I is the identity matrix. At each time step we need to solve a system of linear
equations. In order to study the resilience properties of the fixed point iteration, we consider
only the first linear system (i.e., τ = 0), such that

Ax = b,

where A = I −∆τL, b = v(0) and x ≈ v(∆τ).

4.1. Simulating Hardware Faults. We perform all computations on a desktop com-
puter with Intel Sandy-Bridge-E 6-core CPU, and we implement our algorithms using
MATLAB. The probability of a silent fault on the machine for the short duration of the
computation is negligible. Nevertheless, we perform all tests twice to ensure consistency in
the results. Since the hardware failure rate on this machine is low, we need to artificially
introduce faults into the computations. At every iteration, we poll a pseudo random number
using MATLAB’s function rand(1,1), which returns a uniformly distributed number in the
range (0, 1). If the random number is smaller than a specified threshold p, we introduce a
perturbation to the evaluation of xk+1. We consider two distribution of the perturbations.
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The first case, denoted by P̃u, uses the following formula

x̃ = 10z
1

‖g‖
g,

where g ∈ Rn2
is a vector with each component sampled from unit Gaussian distribution,

i.e., MATLAB’s function randn(n*n,1) and z ∈ [−9, 10] is uniformly distributed over
the range, i.e., MATLAB’s function 20*rand(1,1) - 9. We have chosen this form of the
perturbation because all directions in Rn2

are well described, i.e., 1
‖g‖g is a unit vector with

uniform distribution on the unit ball, and we have a representation of all the magnitudes
in the range 10−9 to 1010. While it is possible to encounter hardware fault that results in
bigger error, 1010 is sufficiently large to show the shortcomings of the classical fixed point
method described in Algorithm 1, and larger error would be easily rejected by our resilient
approach, i.e., Algorithm 3. On the other hand, hardware error that is significantly less
than ε will not have an effect on either algorithm. In what follows, we use ε = 10−8 and
hence 10−9 is a suitable lower cutoff bound for the perturbations.

In the second case, we consider the worst possible scenario denoted by P̃w. In the case of
linear fixed point methods (e.g., Jacobi method) the worst perturbation x̃w is aligned with
the dominant characteristic direction of the iteration matrix and the magnitude ‖x̃w‖ is the
largest magnitude that will be accepted by the test criteria, i.e., P̃ = δ0(x̃− x̃w). Thus, the
occurrence of faults remains random, however, the perturbations x̃ are the solutions to the
deterministic optimization problems that maximizes ‖x̃‖ in the direction of the dominant
eigenvector of the iteration matrix, subject to the constraint that the perturbation has to
be accepted by the test criteria of Algorithm 3.

4.2. Classical fixed point Iteration. We first consider the classical fixed point method
described in Algorithm 1. We take n = 100, which results in a system of 10, 000 linear
equations, i.e., A ∈ R10,000×10,000. We consider the Jacobi fixed point method with ∆t =
10−4, x0 = b and ε = 10−8 and the spectral radius of the resulting iteration matrix is
r ≈ 0.8028. We apply Algorithm 1 without any simulated hardware faults. In Figure 1
(dashed line on the right panel) we observe that the method converges linearly and it takes
83 iterations.

Next we want to observe the effects of the simulated hardware faults. We select the
rate of silent faults to be one in ten, i.e., p = 0.1 and we use P̃u. This rate is extremely
high compared to real world hardware, however, for the purpose of this study we want the
expected number of faults to be significant in every realization.

The results from 4 simulations are shown in Figure 1 (left). In tests 1 and 2, the
error does not drop below 10−7 in the first 1500 iterations and the method fails to return
an accurate answer. During test 3, the method reaches the tolerance in little over 500
iterations, after encountering a large number of consecutive fault-free iterations. Due to
the large fault rate, encountering such a lucky run of no faults is a possible but improbable
event and hence Algorithm 1 is unreliable.

In addition to the individual tests, we are also interested in the statistics of the total
numerical error. We perform 10, 000 tests and observe the average numerical error as a
function of the number of iterations. Figure 1 (right) shows the lack of convergence for the
first 1500 iterations. The expected value of the total numerical error depends on the rate
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of faults and for a sufficiently small p, it is possible that the expectation can drop below
ε = 10−8 (e.g., see test case 3). Furthermore, if p is sufficiently small, the method will have
a significant chance of not encountering any faults and returning an accurate approximation
to the solution xG. However, the mean error will be bounded away from zero for any non-
negative p. A resilient algorithm should provide results that are accurate in expectation for
any arbitrary ε, for as large of fault rate p as possible, therefore, according to Definition 2
the classical fixed point iteration does not converge with respect to hardware induced error.
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Figure 1: The Jacobi method implemented using the classical fixed point itereration of
Algortihm 1 with simulated hardware faults at rate p = 0.1. Left: the result of four
sample tests, where only Test 3 converged to desired tolerance but even that case took
over 500 iterations. Right: (solid line) the expected value of the error as a function of the
iteration computed by taking the average of 10, 000 samples, i.e., with the use of Monte
Carlo sampling. (dashed line) the method implemented without simulated faults converges
in 82 iterations.

4.3. Resilient fixed point Iteration. We repeat the same set of experiments described
in the previous section by keeping all of the parameters as described in section 4.2, except
we replace the classic fixed point iteration with the resilient fixed point Algorithm 3. The
tuning parameters that we use are α = 1 and β = 2‖b‖, both of which are overestimate
and hence conservatively safe. Figure 2 (left) shows the result of 3 tests compared to an
error free iteration. In contrast to the classical method, the resilient iteration is much more
reliable and despite the large number of simulated hardware faults, all tests converge in less
than 100 iterations.

The test were performed with p = 0.2, which is in fact in violation of the convergence
condition (3.13), which implies that the bound on p is conservative and hence (3.13) is
sufficient but not necessary. This is due to the fact that the magnification factor (1 + α)
assumes that all hardware faults result in accepting a perturbation of maximum possible
magnitude. In practice, many of the faulty iterates are either rejected or have a smaller
magnitude and thus (1+α) is an overestimate. In Figure 2 (right), we plot the expected total
numerical error as a function of the iteration for three different fault rates p = 0.05, 0.2, 0.3.
While larger p implies that the algorithm would require more iterations to converge, the
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resilient algorithm returns a reliable result even if 30% of the iterations are computed with
faults. In Figure 3 (left), we plot just the mean for the p = 0.3 case and the mean plus
one standard deviation, demonstrating that we see convergence in both expectation and
variance. Thus, according to Definition 2, the resilient fixed point method converges even
in the presence of hardware faults.

Additionally, Figure 3 (right) shows the mean number of faults that are detected (i.e.,
rejected), allowed (i.e., faults resulting in perturbations that is not rejected) and false-
positive (i.e., rejections without a fault). The number of accepted and rejected faults
increases with p, however, the number of false-positive remains very small for any p. Thus,
the criteria defending against false-positive rejection rarely comes to use.
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Figure 2: The Jacobi method implemented using the resilient fixed point iteration of Algo-
rtihm 3 with simulated hardware faults. Left: superimposed fault free iteration compared
to three iterations using fault rate of p = 0.2. Right: average of the results using 10, 000
simulations and observe convergence of the expected value of the total numerical error.

4.4. Considering the Worst Case Scenario. In this section we test the performance of

the resilient Algorithm 3 using the worst case faults defined by P̃w. The purpose of the tests
is to demonstrate the limitations of the method as well as the sharpness of the estimate
(3.13).

We take N = 100, ∆τ = 10−4 (resulting in r ≈ 0.8028), α = 1, β = 2‖b‖ and ε = 10−8.
According to (3.13), the variance of the error associated with Algorithm 3 will converge for
p < 0.1060, for p > 0.1060 but p < 0.1647 the mean error will tend to zero but the variance
will not, for p > 0.1647 the method will not be convergent. In Figure 4, we show the average
results of 10, 000 realization of Algorithm 3 with different values of p. Indeed, when p = 0.08
we see convergence of mean and variance. For p = 0.11, we see convergence of the average
error, but also large fluctuations of the mean indicating large variance, the problem with
the variance becomes even more pronounced for p = 0.13. Note that on the semi-log plot
we need large accuracy to obtain a smooth line, however, Monte Carlo accuracy is σ/

√
S,

where σ is the standard deviation of the error for a given k and S is the total number of
samples, thus, unless σ tends to zero as a function of k, we require a prohibitive number of
samples to make a smooth plot. In the case of p = 0.14, the convergence is too slow for the
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Figure 3: The Jacobi method implemented using the resilient fixed point iteration of Algo-
rtihm 3 with simulated hardware faults. Left: mean and mean plus one standard deviation
of the error for the Jacobi method with p = 0.3 Right: average number of detected, allowed,
and false-positive faults observed in 10, 000 simulations.

method to be practical. As soon as we violate condition (3.13) for the mean, at p = 0.17,
Algorithm 3 is no longer convergent. This demonstrates the sharpness of our results.

Next, we fix N = 100, p = 0.4, α = 0.4, β = 2‖b‖ and ε = 10−8, and we vary ∆τ
making it smaller and smaller, which results in r → 0. In the classical fixed point iteration,
as r → 0, the convergence rate increases and the method takes fewer and fewer iterations.
However, according to (3.12), as r → 0 the term under the exponent will converge to (1+α)p
(or (1 +α)2p for the variance), hence, at some point, we will not observe faster convergence
even if we decrease r. Figure 4 (right) shows four examples corresponding to small r, and
indeed we see very little difference between the convergence rate when r = 0.0392 and
r = 0.0041 (corresponding to ∆τ = 5× 10−7 and ∆τ = 10−7). On the other hand, at k = 1
there is little difference in the expected error and hence we do not observe the predicted
1/r behavior of the constant Cmax, which suggests that the estimate of the constant can be
improved in future work.

5. Conclusion. This work demonstrates an analytic approach improving fixed point
methods in the presence of silent hardware faults. Utilizing hardware and software based
resilience techniques, we split our algorithm into safe and fast modes. While most of the
computations are performed in the fast mode, a well chosen accept/reject criteria executed
in safe mode can control the introduction and propagation of hardware induced error.

We extend the current framework of numerical analysis by removing the assumption
that computations in fast mode can be performed reliably. We propose an architecture
agnostic error model that can be used to analyze the hardware error propagation and
an algorithm’s convergence properties. In particular, we analyze the classical fixed point
iteration and proposed several modifications that can dramatically improve resilience. We
perform a numerical comparison between the standard and resilient fixed point methods. We
demonstrate that the classical approach fails to converge in expectation, while the resilient
method converges even when encountering a very high rate of silent hardware faults.
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Figure 4: The Jacobi method implemented using the resilient fixed point iteration of Al-
gortihm 3 with simulated hardware faults. Left: mean error for different values of p cor-
respoding (bottom to top) to convergent behavior (p = 0.08), convergent mean but not
variance (p = 0.11, 0.13, 0.14), and divergent behavior p = 0.17. Right: mean error for
different values of r → 0.
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