
	

	 	 	

	

	 	

	

	

	

	

	

	

Proposal:	 Application	 of	 Agile	 Software	
Development	 Process	 in	 xLPR	 	
ORNL-‐2012/41412	

	

November 2012
	

	

	

Prepared by
Hilda B. Klasky
Paul T. Williams
B. Richard Bass

	

	

	 	

	

	 	 	

	

	

	

	

	

	

	

	

	

	

	

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.	

	

	

	

	 	 	

	

ORNL-‐2012/41412	

	

Computational	 Sciences	 and	 Engineering	 Division	

	

	

Proposal:	 Application	 of	 Agile	 Software	
Development	 Process	 in	 xLPR	 	
ORNL-‐2012/4141	
	

Hilda	 B.	 Klasky	

Paul	 T.	 Williams	

B.	 Richard	 Bass	

	

Date	 Published:	 	 September	 2012	

	

Prepared	 by	

OAK	 RIDGE	 NATIONAL	 LABORATORY	

Oak	 Ridge,	 Tennessee	 37831-‐6283	

Managed	 by	

UT-‐BATTELLE,	 LLC	

for	 the	

U.S.	 DEPARTMENT	 OF	 ENERGY	

under	 contract	 DE-‐AC05-‐00OR22725	

	

	 	

	

Page	 1	 of	 47	

	

Contents	
Introduction	 ...	 2	
The	 problem:	 xLPR	 is	 following	 a	 Waterfall	 Software	 Development	 Process	 Type:	 the	 Spiral	
approach	 ..	 3	
The	 proposed	 solution:	 follow	 an	 Agile	 Software	 Development	 Process	 type	 	 4	
Proposed	 Deliverables	 ..	 5	
Proposed	 Schedule	 ...	 5	
How	 an	 Agile	 Approach	 will	 allowing	 managers	 to	 interrogate	 the	 system	 at	 any	 given	
time	 to	 determine	 the	 status	 of	 each	 module	 ...	 8	
How	 to	 pull-‐up	 issues	 for	 a	 module	 on	 JIRA	 (LEAPOR	 module	 sample)	 	 9	

Reporting	 in	 JIRA	 ...	 12	
How	 does	 the	 Agile	 development	 approach	 comply	 with	 the	 ASME	 NQA-‐1-‐2008	 (including	
Addenda	 2009)	 Quality	 Assurance	 Requirements	 for	 Nuclear	 Facility	 Applications?	 	 17	
Annex	 1	 ASME	 NQA-‐1-‐2008	 (including	 Addenda	 2009)	 Quality	 Assurance	 Requirements	 for	
Nuclear	 Facility	 Applications,	 Part	 I	 Requirement	 3,	 Paragraph	 800;	 Requirement	 11,	
Paragraphs	 100,	 200,	 400,	 500,	 and	 600;	 Part	 II,	 Subpart	 2.7;	 and	 Part	 II,	 Subpart	 2.14.	 	 18	
Annex	 2	 Waterfall Model of Code Development – Pros and Cons	 ...	 42	
	

	

Page	 2	 of	 47	

	

Introduction	
Reflecting on what we have seen regarding of the xLPR team need to report progress to project

management, and the current evolution of facts in which teams have started to write all sorts of

code before formal approval of the long list of documents to be delivered, we feel the prevailing

need to recommend that the xLPR software development process be modified for reasons

outlined herein. In the following, we discuss the deficiencies of the current approach, and then

present a proposed solution that addresses those deficiencies.

We want to stress that our proposal to change the software development process in the xLPR

project aims to excel on being:

• Results Oriented by building software prototypes extremely early in the

development process as a response to the early requirements of the user. A series

of prototypes or a series of modifications to the first prototype will gradually lead

to the final software product,

• Increase Software Quality by handling changes and identifying issues early

during the development,

• Focus on Customer Satisfaction by promoting communication between the

team and the final customer through the project lifespan,

• Light-weight: there is less are fewer number of document deliverables and

approvals of these deliverables are not cumbersome.

• Resources Saving: are achieved by removing overhead activities, time, and

tasks, team members are focused on producing results.

• Maintain Team Morale by using a light weight process that will keep team

members engaged and will show progress in their accomplishments. Motivation

is very important to increase productivity.

• Allowing managers to interrogate collaborative tools at any given time to

determine the status of each module by using the issue tracking system JIRA

based on a relational database; xLPR team leaders and managers will be able to

see module status automatically in the dashboard of the project.

• Complying with the ASME NQA-1-2008 (including Addenda 2009) Quality

Assurance Requirements for Nuclear Facility Applications:

	

Page	 3	 of	 47	

	

• Part I

a. Requirement 3, Paragraph 800;

b. Requirement 11, Paragraphs 100, 200, 400, 500, and 600;

• Part II, Subpart 2.7; and

• Part II, Subpart 2.14, when applicable.

The	 problem:	 xLPR	 is	 following	 a	 Waterfall	 Software	 Development	
Process	 Type:	 the	 Spiral	 approach	
	

We believe that the current xLPR SQA approach is guiding the xLPR team to follow what is

generally termed a “waterfall” type software development model, in which each phase follows

the next in sequence. The waterfall software development process (or model) is a sequential

design process, often used in the early days of software development, in which progress is seen as

flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation,

Analysis, Design, Construction, Testing, Production/Implementation, and Maintenance. The

waterfall development model originated in the manufacturing and construction industries,

which are highly-structured physical environments, where after-the-fact changes can be

prohibitively costly, if not impossible. Since no formal software development methodologies

existed in the early days of computing (the late 1950s), this hardware-oriented model was adapted

for software development and eventually formalized into a generally accepted practice by around

1970. In the software industry today, the term “waterfall” is typically used to describe a flawed,

nonworking (although still used) model for software development practice. (See a review of the

pros and cons of the waterfall model at the end of these notes in Annex	 2	 Waterfall Model of

Code Development – Pros and Cons.)

All of the software development processes that are based on the waterfall model include the

expectation of having a constant approval process; the latter can prove to be very resource-

consuming. These types of development processes are by nature documentation- and plan-driven

approaches, as captured in the following sequence:

SRD->approval->SDD->approval->V&V->approval->Code->approval

History has shown that projects using the waterfall software development processes usually run

over budget, over time, and deliverables are partially achieved in the best-case scenarios. To back

	

Page	 4	 of	 47	

	

up this statement we are including a recent research study performed at the University of

Southampton, School of Electronics and Computer Science.

The reason for these deficiencies is that the team focuses on generating the documentation and

getting it through the approval process. The effort to generate of the final product can be diluted

and, many times, never completed. By the time part of the documentation is complete, the project

resources have been exhausted. And these facts can already be observed in the development

teams of xLPR, who are naturally moving to write code before completing and formal approval of

their list of documents, as required by to the Spiral approach.

The	 proposed	 solution:	 follow	 an	 Agile	 Software	 Development	 Process	
type	
	

To counter deficiencies with the waterfall type process (the Spiral approach, in the case of

xLPR), software development groups evolved an alternative that serves to decrease the time

spent in the development cycle. The sequential phases were mostly removed and only those

essential steps that produce the expected deliverables, i.e., dialogue, coding and testing,

were retained. This more streamlined approach is identified in the industry as the “Agile”

software development process. Per our software development experience at ORNL, we propose

moving away from the current Spiral approach and adopting this Agile process for the xLPR

project. The Agile software development process is	 a	 very	 lightweight	 process	 that	 	

• employs	 short	 iteration	 cycles;	 	

• actively	 involves	 users	 to	 establish,	 prioritize,	 and	 verify	 requirements;	 and	 	

• relies	 on	 tacit	 knowledge	 within	 a	 team,	 as	 opposed	 to	 documentation.	 	

This	 process	 takes	 into	 account	 	

• the	 realization	 that	 most users do not have a fully-formed idea about their needs, and

• the problem of missing and changing requirements, recognizing that most changes in

requirements occur within a project’s life span.

The Agile process suggests building prototypes extremely early in the development process as a

response to the early requirements of the user. A series of prototypes or a series of modifications

to the first prototype will gradually lead to the final product. Agile is meant to embody short

	

Page	 5	 of	 47	

	

iterations, where the system is improved in each cycle. In addition, development proceeds step-

by-step with the user, as insight into the user’s own environment and needs is accumulated.

The sequence of steps in the Agile approach consists of the following:

implement->test->review->specify->redesign/refactor->re-implement.

Again, starting with implementing the system, the emphasis here is on Agile development. Thus,

the team focus is results oriented, not process oriented.

In the following sections, we propose detail a proposal for deliverables’ schedule that we believe

will help alleviate some of the problems highlighted in the first xLPR QA internal audit.

Proposed	 Deliverables	
Our proposed change to an Agile software development process calls for only two deliverables

from the xLPR groups that develop software:

1) Deliverable Report: A draft report shall be submitted for team review one month before

the EPRI QA audit scheduled during June 2013. The final report must be completed by

the end of the project. Below, an outline of the report is suggested.

a. Section 1. Introduction

b. Section 2. List of Requirements from JIRA

c. Section 3. Overall architectural design showing data flow

d. Section 4. List of test cases from JIRA

e. Section 5. Conclusions and lessons learned

2) Source code/executable every 6 – 8 weeks of development cycle.

Proposed	 Schedule	
Table	 1 presents a proposed schedule which aims to help the integration of all of the modules by

early 2013. It shows that each development team will have a short development cycle of 6 to 8

weeks max. In parallel, one deliverable document report will be prepared. Teams are expected

to:

	

Page	 6	 of	 47	

	

• enter (1) requirements and (2) test cases into the JIRA system

• perform the tasks in an Agile fashion by the sub-groups

• maintain a documented trace of the evolution of the

requirements/tests/bugs/improvements, as well as resolution of the latter, in the JIRA

system for the benefit of the team

• review the test results, modify or add new requirements/test cases from the lessons

learned in previous iterations

• present a list of requirements/bugs/improvements (taken from JIRA) as a release note at

the end of each development cycle

• approve a list of requirements/bugs/improvements (taken from JIRA) to be implemented

in the next iteration (deployment)

