
ORNL/TM-2012/41409
	
 	

	

	

	

	

	

	

	

	

	

White Paper on data Repository
Reorganization Proposal for the xLPR
Project
	

	

	

	

	

	

	

	

September 2012
	

	

	

Prepared by
Hilda B. Klasky
Paul T. Williams
B. Richard Bass
	

	

	
 	

	

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html	

	

	

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.	

	

	

ORNL/TM-­‐2013/41409	

	

	

	

Computational	
 Sciences	
 and	
 Engineering	
 Division	

	

	

	

	

	

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 	

	

	

	

Author(s)	

	

Hilda B. Klasky
Paul T. Williams
B. Richard Bass

	

	

	

	

	

	

Date	
 Published:	
 September	
 2012	
 	

	

	

	

	

	

	

	

	

	

Prepared	
 by	

OAK	
 RIDGE	
 NATIONAL	
 LABORATORY	

Oak	
 Ridge,	
 Tennessee	
 37831-­‐6283	

managed	
 by	

UT-­‐BATTELLE,	
 LLC	

for	
 the	

U.S.	
 DEPARTMENT	
 OF	
 ENERGY	

under	
 contract	
 DE-­‐AC05-­‐00OR22725	

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 4	
 of	
 12	

	

Table	
 of	
 Contents	

1	
 Executive Summary	
 ...	
 5	

2	
 INTRODUCTION	
 ..	
 5	

3	
 xLPR Subversion repository structure.	
 ..	
 5	

4	
 What to store in Subversion?	
 ...	
 6	

5	
 Where to store the rest of the xLPR documents?	
 ...	
 7	

6	
 Closure	
 ...	
 9	

7	
 Access to tools	
 ...	
 9	

8	
 Links for more information	
 ..	
 10	

9	
 Annexes	
 ..	
 11	

9.1	
 Types	
 of	
 Subversion	
 Branches:	
 ..	
 11	

9.2	
 Types	
 of	
 Subversion	
 Tags	
 ..	
 12	

	

	

	
 	

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 5	
 of	
 12	

	

	

1 Executive Summary
As the xLPR project moves along, it is important to properly manage the knowledge generated
by the different groups. We focus specifically on the knowledge and communications written in
files, including general documents, source code and executable files. Data generated through
the project are different in nature and, for this reason, need to be treated differently. To that end,
ORNL put in place a series of tools that facilitate proper storage and management of project
data, document and code changes, group collaboration, knowledge transfer, transparency,
accountability and auditability. This paper describes the approaches/tools that we recommend
for moving the project forward on knowledge management.

2 INTRODUCTION
ORNL has been given the task of managing data for the xLPR project. The data generated by
the project includes general documents and code. We have put in place a series of repositories
that help with the management of the data generated through the project. ORNL is hosting three
main repositories for xLPR data:

1) a Subversion repository for data that requires change tracking (located at
https://xlpr.ornl.gov/svn).

2) a wiki system for knowledge management (located at https://xlpr.ornl.gov/wiki), and

3) a shared drive (located at https://xlpr.ornl.gov/share) to facilitate transfer of huge files
that do not require change management and cannot conveniently be shared through
other means.

In the following sections we describe the latter repositories, the reason why we recommend
them, a proposal for the directory structure and what to store on each repository.

3 xLPR Subversion repository structure.

The xLPR Subversion repository uses the standard repository layout suggested in the
Subversion documentation at http://subversion.apache.org/docs/. The basic elements of the
xLPR Subversion repository are three directories: 1) trunk, 2) branches, and 3) tags. The latter
directories in Subversion can be checked out separately. Figure 1 is a visual representation of
a Subversion repository layout. The green items represent the evolving flow of the trunk
directory activity. The yellow items represent the evolving flow of the branches directory activity.
The blue items represent the tags directory activity. Trunk, branches and tags directories are
explained below. Please bear in mind that each node in Fig. 1 represents a copy of the whole
Subversion repository.

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 6	
 of	
 12	

	

Fig. 1 Visual representation of a Subversion repository layout

1. The ‘trunk’ directory holds the “main line” of development (See green items in Fig. 1).

The trunk contains the most current development code/document at all times. This is
where users work up to their next major release of code. The trunk should only be used
to develop code that will be the next major release.

2. The ‘branches’ directory contains branch copies of the trunk directory (See yellow items
in Fig 1). With the branches directory, users can create paths for their code/documents
to progress to more specific goals, like an upcoming release. The branches directory
contains copies of the trunk at various stages of development.

3. The 'tags’ directory contains tag copies (See blue items in Fig. 1). Tags are, like
branches, copies of your code. Tags, however, are not to be used for active
development. They mark (tag) a certain state of your code. It is a snapshot of your
deliverables at a certain point in time.

Additional details are provided in Section 9 (Annexes).

4 What to store in Subversion?

Data that needs to be baselined, i.e. ‘tagged’, should be stored in Subversion. Subversion is
exactly the right tool for:

• archiving old versions of files and directories, possibly resurrecting them, or examining
logs of how they've changed over time

• collaborating with people on documents (usually over a network) and keeping track of
who made which changes

• tracking changes on source code

This is why Subversion is so often used in software development environments—working on a
development team is an inherently social activity, and Subversion makes it easy to collaborate
with other programmers. Of course, there's a cost to using Subversion as well: administrative
overhead. ORNL will manage a data repository to store the information and all its history, and
be diligent about backing it up. When working with the data on a daily basis, users won't be able
to copy, move, rename, or delete files the way you usually do. Instead, users have to do all of
those things through Subversion.

Now, we should be aware that using a Subversion repository adds extra workflow to the project.
And, users must make sure they are not using Subversion to solve a problem that other tools
solve better. For example, because Subversion replicates data to all the collaborators involved,

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 7	
 of	
 12	

	

a common misuse is to treat it as a generic distribution system. People will sometimes use
Subversion to distribute huge collections of pdf files, photos, digital music, or software
packages. The problem is that this sort of data usually isn't changing at all. The collection itself
grows over time, but the individual files within the collection aren't being changed. In this case,
using Subversion is “overkill”, or it is like swatting a fly with a Buick.

Using Subversion to store a folder with technical reports and documents that do not change
over time will only slow the process of accessing the xLPR repository and will get us into
difficulties at ORNL for not using Subversion as a tracking tool but as a generic distribution
system. We are not concerned so much about storage size, but about network bandwidth
issues. Each user action - performing a check out, creating tags or branches, etc. - will
make complete copies of the whole repository, and the accumulation of these copies
over time could overwhelm the network!

The xLPR Subversion repository should be used to store project documents and code that need
version tracking, i.e. the Configuration Items (CIs) described in the Software Configuration
Management Document. For the xLPR repository,

• the ‘trunk’ root directory contains subdirectories for the different xLPR ‘tasks groups’.
• Within each ‘task group’ subdirectory, there are two main folders:

o the “docs” folder which contains documents, and
o the “src” folder which contains source code.

So, a sample task group should contain the following:

task_group_name/docs/deliverables

 /src/
 /conf
 /libs
 /…

5 Where to store the rest of the xLPR documents?
ORNL has set up an xLPR wiki at https://xlpr.ornl.gov/wiki. A major objective here is to prevent
a network bottleneck that could result from copying large amounts of files that do not change
over time when tagging and branching the repository. In the wiki, users will find relevant
reports/documents, such as MRPs, NUREGs, PVP papers and other publications. Also, the wiki
is useful for storing documents that do not change over time and that do not require software
configuration management; examples are pdf files, images, meeting minutes, and PowerPoint
presentations.

xLPR users should not fear the learning curve associated with use of the wiki. That effort is
comparable to learning Subversion through the TortoiseSVN client. Wikis are effective tools for
content management and are replacing shared drives for reasons that include:

• Searching documents and file contents is easy
• Attachments are versioned
• Changes to web pages can be tracked
• Web pages can be commented and users can see the associated meta data

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 8	
 of	
 12	

	

• Easy creation of image thumb-nailing and galleries
• Availability of tools to facilitate group collaboration

The xLPR wiki is a private storage for internal documentation, communications, and
dissemination of information across institutional and national boundaries.

Moreover, other important projects and research groups are already making use of wikis to
share project documents. Examples of those include

In the public arena:

• http://moinmo.in/
• http://twiki.org/
• http://code.google.com/

In the private arena:

• MS SharePoint
• Atlassian Confluence
• IBM Connections

Because of all the advantages that a wiki provides to the team, we suggest using it to store
meeting minutes, progress reports, presentations, reference documents and white papers. The
following tree presents the basic structure of the xLPR wiki in task group space:

task_group_name/meetings
 /monthly_reports
 /presentations
 /reference_docs
 /white_papers

xLPR Groups should at least use the meeting_minutes, monthly_reports and presentations
folders. xLPR Groups can create other folders as needed, for example: QA Templates is a
folder needed for xLPR QA template documents.

Why do we recommend a wiki system over a shared drive for xLPR documentation? Because
wiki systems are more capable to perform searches, group collaboration, knowledge transfer,
transparency, accountability and auditability. This is the reason why wikis are now replacing
shared drives. The disadvantages of using shared drives to store project data are:

•Structure – Because they’re so simple, there’s no structure. Vast forests of folders
spring up and people aren’t generally sure where to put things anymore. They find their
own little corners of the drive, and just put all files there.

 •Gardening – People are afraid to delete anything because they didn’t put it there.
Someone else stored the file, so I’m not going to delete it – they might want it.

 •Search –Quite simply, for 90% of share drives (probably 99%), there is no search.
Google boxes and other tools can solve this problem, but most people don’t have them
on the “server in the corner”.

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 9	
 of	
 12	

	

 •Versioning – How are files versioned in a typical shared drive? Renaming! You know
what I mean. Which file is newer, i.e., specification-17Nov12.doc, specification-v2.doc,
specification-mikes-edit.doc, specification-draft.doc? No one knows. In the end you
probably look for the file modification date, but that can be dangerous.

 •History – Who changed what and when? There are no names with file changes and no
comments (“I’ve edited this and it’s good to go.”), so it can take a long time to work out
exactly what has changed.

However, ORNL does provide a shared data area to share huge files that do not need to go
through the software configuration management process. For browsing/downloads, users can
map a network drive to scfm.ornl.gov/share or xlpr.ornl.gov/share. Both addresses currently
point to the same area.

To prevent the gardening issue mentioned above, the shared drive clean-up maintenance is as
follows:

Every night, a script removes all files that have not been modified in the last 30 days, and
removes all directories that have not been modified in the last 30 days if they are either 1)
empty or 2) do not contain files that have been modified within the last 30 days.

6 Closure

ORNL’s goal is that the knowledge management tools presented in this white paper will provide
substantial added value to the xLPR consortium. Specific points emphasized here are given as
follows:

• Data generated through the project are different in nature and, for this reason, need to
be treated differently.

• The recommended tools will facilitate management of

o project’s documentation,
o communications,
o document and code changes,
o group collaboration,
o knowledge transfer,
o transparency,
o accountability,
o auditability, and
o dissemination of information across institutional and regional boundaries.

To seek help with your questions and problems regarding the content of this white paper, please
contact Hilda Klasky at klaskyhb@ornl.gov.

7 Access to tools
• Subversion: https://xlpr.ornl.gov/svn
• Wiki: https://xlpr.ornl.gov/wiki

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 10	
 of	
 12	

	

• Shared Drive: xlpr.ornl.gov/share

8 Links for more information

• http://svnbook.red-bean.com/en/1.7/svn-book.html
• http://en.wikipedia.org/wiki/Apache_Subversion
• http://ariejan.net/2006/11/24/svn-how-to-structure-your-repository
• http://ariejan.net/2006/11/21/svn-how-to-release-software-properly/
• http://rebelutionary.blogs.atlassian.com/2007/02/enterprise_wikis_replace_share

d_drives_c.html

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 11	
 of	
 12	

	

9 Annexes

9.1 Types of Subversion Branches:
The ‘branches’ directory contains branch copies of the trunk directory (See yellow items
in Fig 1). With the branches directory, users can create paths for their code/documents
to progress to more specific goals, like an upcoming release. The branches directory
contains copies of the trunk at various stages of development. There are different types
of branches. Below we present some of the most common ones.

a) Release Branches

When the trunk reaches the stage that it's ready to be released (or when users want
to freeze the addition of new features), users create a release branch. This release
branch is just a copy of the current trunk code.

The branch can be checked out separately and the user can start branding and
versioning the project. The user can also employ the release branch to fix bugs that
pop up during (beta) testing. The idea of this approach is to keep development
progressing in the trunk without having to deal with release-specific issues. So it's
perfectly fine to add new features to your trunk while you (or others) prepare the
release.

b) Bug fix branches
Branches may also be used to address the more serious bugs found in the trunk or
in a release branch. The bugs are of such magnitude that the user can't fix them in a
single commit. So, to focus on the problem of fixing this bug, the user should create
a new branch for this purpose. This allows development in the trunk or in the release
branch to continue, without disturbing them with new bugs or tests that break the
current code.

Bug fix branches are named after the ID they are assigned in xLPR’s issue tracking
tool, JIRA. Typically, this ID is a number, for example: xlpr-123. Of course, the user
can access bug-fix branches like any other.

c) Experimental branches
Experimental branches are used to try new technologies, solutions or approaches
without compromising the entire project. Something that happens often is the
introduction of new technologies. This is fine, of course, but you don't want to bet
your entire project on the outcome.

For example, imagine that you want to change from PHP 4 to PHP 5 (PHP is a
programming language) for your software tool. How long would it take you to convert
your entire project? Do you want your entire code base (trunk) to be useless until you
have converted all of your code? Probably not!

In this experiment, if implementing PHP 5 is a bridge too far for your application, then
the latter effort should be given its own branch. You can hack your way to PHP 5
conversion on that branch and, if you fail, you still have your current PHP 4 code in
the original branch.

	

White	
 Paper	
 on	
 Data	
 Repository	
 Reorganization	
 Proposal	
 for	
 the	
 xLPR	
 Project	
 Page	
 12	
 of	
 12	

	

Experimental branches may be abandoned when the experiment fails. If they
succeed, you can easily merge that branch with the trunk and deliver your big new
technology. These branches are usually named after the relevant experiment. I
always prefix them with 'TRY-, for example:

https://svn.example.com/svnroot/project/branches/TRY-new-technology

9.2 Types of Subversion Tags
The 'tags’ directory contains tag copies (See blue items in Fig. 1). Tags are, like
branches, copies of your code. Tags, however, are not to be used for active
development. They mark (tag) a certain state of your code. It is a snapshot of your
deliverables at a certain point in time. There are also different types of tags:

a) Release tags
Release tags mark the release (and state) of your code at that release point. Release
tags are always copies of the corresponding release branch. Release tags are prefixed
with 'REL-' followed by a version number.
Users can access these tags easily:

https://svn.example.com/svnroot/project/tags/REL-1.0.0

b) Bug fix PRE and POST tags
When you have created a bug fix branch, you want to mark (tag) the status of your code
before and after the bug fix. This allows you to easily refer to the changes you made
when you want to merge them back to your trunk or release branch.
The start-tag is called 'PRE' and the end-tag called 'POST'. Of course, you should add
the bug ID number here to show what bug you are tagging.
You probably will not check out bug fix tags, but you want to reference them when
merging bug fixes with your other code:

https://svn.example.com/svnroot/project/tags/PRE-3391
https://svn.example.com/svnroot/project/tags/POST-3391

