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1 Overview of CESM

The community earth system model(CESM) is a fully coupled, global cli-
mate model that provides computer simulations of the past, present and
future climate states. The most recent version of the CESM is available to
the community on the website [1]. The code, a reference manual and a user’s
guide for each component, input datasets and outputs from some basic mod-
els are freely available. A detailed overview of CCSM 4(an earlier version of
CESM) is described in [2].

The CESM models the land, atmosphere, ice and the ocean. To charac-
terize the uncertainities in the climate, solution to the governing PDEs (or
stochastic PDEs) has to be obtained. One of the methods employed to solve
the SPDEs are generalized polynomial chaos. This in turn requires us to
run the simulations multiple times. Running simulations to determine the
physical quantities consumes a lot of cpu time. In this paper we build an
emulator which can be used to simulate the values of the physical quantities
at unknown grid points within a certain error bound. As a proof of concept,
we present the results obtained with a 2 degree atmospheric dataset [3].

2 Dataset

For the experiments, we have used the T42 dataset. The data arises out
of the 42 - wave triangular truncation. This can very accurately treat the
features and their horizontal derivatives down to approximately 950 KM. In
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a T42 model the transform grid interval is approximately 300 KM at the
equator. The T42 model is a 2.8 degree transform grid. These terms are
almost always evaluated using parametrization techniques. The dataset is a
grid of size 64 by 128. The data gives the time average of the temperature at
each of the grid points. Community atmospheric model, version 3(CAM3)
is the latest in a succession of atmospheric general circulation models that
have been made widely available to the scientific community. The CAM3
incorporates a significant number of changes to the dynamical formulation,
thge treatment of cloud and precipitation processes, radiation processes and
atmospheric aerosols. This is described in Collins et al. (2005b). The stan-
dard configuration of the CAM3 is based on an Eulerian spectral dynamical
core, where the vertical discretization makes use of 26 levels treated using a
second order finite-differences [3].

3 Stochastic collocation method

Consider the following Partial differential equation(PDE):

L(u) = 0, (1)

B(u) = 0. (2)

Suppose the above PDE has a variable parameter α then the solution equa-
tion can be rewritten as an SPDE as follows

L(u;α) = 0, (3)

B(u) = 0 (4)

Where α follows a given distribution. The above system of equations model
the climate and can be used to quantify the uncertainities associated with
the climate.

The solution to the above system of equations is regarded as a random
process and can be expanded by Wiener-Askey polynomial chaos as [4]

u(x, t;α) =
P∑

i=0

ui(x, t)Φi(ζ(α)) (5)

The approximation to the solution can be obtained in two ways, namely,
Galerkin and Collocation method. Galerkin method is an intrusive method
and collocation method is a non intrusive method. Here we use the stochastic
collocation method described in [5].
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3.1 Generalized Polynomial Chaos

The particular stochastic collocation method used for the study is known as
Generalized polynomial chaos(gPC). We begin with the review of the basic
ideas behind gPC. Let D ⊂ R`, ` = 1, 2, 3, be a physical domain with bound-
ary ∂D and coordinates x = (x(1), . . . , x(`)) and let T > 0 be a real number.
We consider the following general (scalar) stochastic partial differential equa-
tion 

ut(x, t, y) = L(u), D × (0, T ]× Rd,
B(u) = 0, ∂D × [0, T ]× Rd,
u = u0, D × {t = 0} × Rd,

(6)

where L is a(nonlinear) differential operator, B is the boundary condition
operator, u0 is the initial condition, and y = (y(1), . . . , y(d)) ∈ Rd, d ≥ 1,
are a set of independent random variables characterizing the random inputs
to the governing equation from various sources, e.g., boundary condition,
system parameters, etc. The solution is therefore a stochastic quantity,

u(t, x, Z) : D̄ × [0, T ]× Rd → R. (7)

Let us assume for all i = 1, . . . , d, the random variables y(i) are continuous

with probability density functions(PDF) ρi : Γ(i) → R+, where Γ(i) ∆
= y(i)(Ω)

is the image of y(i). Then the random vector y = (y(1), . . . , y(d)) has a joint
PDF

ρ(y) =
d∏

i=1

ρ(i)(y(i)). (8)

In the following we will adopt the multi-index notation: Let i = (i1, . . . , id) ∈
Nd

0 be a multi-index, with |i| =
∑d

k=1 ik, and i = j iff. ik = jk,∀k = 1, . . . , d.
We also define an index set

JN
∆
= {i ∈ Nd

0 : |i| ≤ N} (9)

for a given integer N ≥ 0. An N th-order generalized polynomial chaos(gPC)
expansion to the solution of (6) takes the form

uN(t, x, y) =
∑
i∈JN

ûi(t, x)Φi(y), (10)

where, for the stochastic collocation method, the expansion coefficients are
determined by solving,

u(t, x, yk) =
∑
i∈JN

ûi(t, x)Φi(yk), ∀k ∈ JN . (11)
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Thus, the stochastic collocation gPC approximation is determined by having
knowledge of the solution of (6) for each independent realiztion, yk, of the
random inputs. Following classical approximation theory, the gPC expansion
(10) converges when u is square integrable with repect to ρ(y), that is for
any fixed(t, x) ∈ [0, T ]× D̄,

||u− uN ||2L2
ρ

∆
=

∫
(u− uN)2 ρ(y)dy → 0, N →∞ (12)

The convergence of the gPC approximation is directly related to the smooth-
ness of the stochastic solution u. To solve for the coefficients, we are required
to have the values of the physical quantity for different values of parameters.
This in turn requires us to run the simulation multiple times. This requires
significant compute power and time. Here we use multi-dimensional interpo-
lation schemes to emulate the ensemble of simulation.

4 Interpolation

Below we illustrate the 2D lagrange interpolation. The same can be easily ex-
tended to n dimensions. 2D-Lagrange interpolation is based on 1D-Lagrange
interpolation. The 2D Lagrange polynomials can be written as a product of
1D Lagrange polynomials.

Lij = Li(x)Lj(y) 0 ≤ i ≤ n, 0 ≤ j ≤ m

Li(x) =
n∏

s=0,s 6=i

x− xs

xi − xs

, Lj(y) =
m∏

s=0,s 6=j

y − ys

yi − ys

So we have:

Lij(xr, ys) =

{
1 if i = r and j = s
0 otherwise

And then we have:

P (x, y) =
n∑

i=0

m∑
j=0

f(xi, yj)Lij(x, y)
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Where P (x, y) is a polynomial that interpolates f(x, y) in the given data.
The same concept can be extended to n-dimensions. Higher dimensional
interpolation is useful when the physical quantity is treated as a multivariable
function.We use the barycentric Lagrange interpolation [6].

5 Emulation and Analysis

To verify the concept, we performed an emulation with the available data.
Here we consider the 2 degree dataset, which has been briefly described
before in section 2. We consider a physical quantity to be a function of
a parameter and time. Interpolation is performed to evaluate the physical
quantity at an unknown timestep and parameter value. For eg., we use the
temperature field at time steps t1, t2, t4 and t5 to determine the temperature
field at time step t3 and compare with the existing dataset. We also have
performed multi-dimensional interpolation to evaluate the physical quantity
at an unknown ’time’ and a ’parameter value’. Interpolation and collection
of statistics(mean) has been performed in two possible different orders, viz.
collecting the statistics and interpolating and vice versa. Each have their own
pros and cons. Collecting the statistics first and interpolating is much faster,
but has very less information. The results are tabulated below. We have
looked at different physical quantities like temperature, sea level pressure.
These physical quantities are treated as a function of different parameters
like low and high stable clouds, time scale for precipitation etc.

Physical Quantity CMFTAU RHMINL ZMCONVKE
Temperature 7.3386e-4 7.6201e-4 7.9195e-4
SWCF 0.011593 0.010047 0.014185
LWCF 0.011004 0.013628 0.012268
CLDTOT 0.008997 0.011015 0.009601
Q 0.005506 0.006094 0.005246
U 0.080686 0.095737 0.086530

Table 1: Statistics + Interpolation
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Physical Quantity CMFTAU RHMINL ZMCONVKE
Temperature 7.3389e-4 7.6208e-4 7.9191e-4
SWCF 0.011600 0.010040 0.014182
LWCF 0.011003 0.013627 0.012267
CLDTOT 0.008990 0.011018 0.009609
Q 0.005508 0.006096 0.005245
U 0.080685 0.095740 0.086528

Table 2: Interpolation + Statistics

From the tables it is clear that the order of interpolation and collecting the
statistics does not make much of a difference to the relative errors. Hence
either of them can be used to generate the ensembles based on the needs. It
is also interesting to note that some of the physical quantities (like U(Zonal
velocity)) exhibit large error percentages. One possible explanation for it is
that the zonal winds have a large deviation between successive years. This
makes the interpolation inaccurate, where as temperature fields are much
more steadier, hence we obtain better results on interpolation. We also looked
at how lower degree interpolation schemes perform for temperature and ve-
locity. It turns out that in case of temperature, lower degree interpolation
schmes perform fairly well, but in case of velocity, the higher degree interpo-
lation performs much better. The lower degree interpolations perform fairly
well in cases where we are interested only in statistics. But if the metric
is the overall relative norm, then the 3rd degree interpolation performs the
best.

Phy. Qty. 0th Order 1st Order 2nd Order 3rd Order
U 5.0958e+03 5.8761e+03 4.9994e+03 48.8494
Temp 0.5327 0.4558 0.5579 0.4742

Table 3: Norm of the error in interpolation
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Figure 1: Temperature field (Simulated)
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Figure 2: Temperature field (Interpolated)
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Figure 3: Temperature field (2D Simulated)
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Figure 4: Temperature field (2D Interpolated)

From the figures it is clear that the interpolated temperature field is
fairly close to the simulated field. We used different degrees of interpolation
to check the accuracy of the interpolation. It turns out that interpolation
odd degrees perform better because of the symmetry. The interpolation
was performed for the parameter CMFTAU. Linear interpolation marginally
outperforms the cubic interpolation.
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Physical Quantity 1st 3rd

Temperature 0.455815 0.4742052
Velocity 0.0199419 0.0249795

Table 4: The comparison of error norms for different degrees of interpolation
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