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Abstract

Although many NP-hard graph optimization problems can be solved
in polynomial time on graphs of bounded tree-width, the adoption of these
techniques into mainstream scientific computation has been limited due to
the high memory requirements of the necessary dynamic programming tables
and excessive runtimes of sequential implementations. This work addresses
both challenges by proposing a set of new parallel algorithms for all steps of a
tree decomposition-based approach to solve the maximum weighted indepen-
dent set problem. A hybrid OpenMP/MPI implementation includes a highly
scalable parallel dynamic programming algorithm leveraging the MADNESS
task-based runtime, and computational results demonstrate scaling. This
work enables a significant expansion of the scale of graphs on which exact
solutions to maximum weighted independent set can be obtained, and forms
a framework for solving additional graph optimization problems with similar
techniques.
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1. Introduction

Discrete optimization problems on graphs are notoriously difficult to par-
allelize and finding exact solutions to such optimization problems is often
severely limited by the size of the instance. Algorithms based on tree de-
compositions provide a tantalizing possibility, since the complexity of many
NP-hard optimization problems is transformed to become polynomial in the
number of vertices in the graph (and exponential in the decomposition’s
width).

Tree decompositions were introduced by Robertson and Seymour in 1984
[12] as tools in the proof of the Graph Minors Theorem. Each decomposition
has an associated measure of width, and the minimal achievable width for
a graph is its treewidth. This can be thought of as a measure of how “tree-
like” the graph is. The computational community became interested in tree
decompositions after it was shown that numerous NP-hard graph problems
can be solved in polynomial time on graphs with bounded treewidth [2].

However, nearly all the work assessing the viability of such approaches
has been purely theoretical in nature; we are aware of no other attempts to
parallelize either the construction of a tree decomposition or the subsequent
dynamic programming. Here we present the first serious effort at applying
high performance computing (HPC) to this area.

There is a potential for parallelism inherent to tree decomposition-based
algorithms: (i) the dynamic programming computation at each node in the
tree decomposition requires only partial information about the graph, and
(ii) the dynamic programming tables for large sets of tree nodes can be com-
puted independently of one another. While these features of the computa-
tion seem to lead to a natural sort of parallelism, exploiting them requires
a non-traditional approach when designing a parallel algorithm. Our work
leverages the task-based framework offered by MADNESS (Multiresolution
Adaptive Numerical Environment for Scientific Simulation) [14] in order
to handle the work distribution, load balancing, and asynchronous nature
of the dynamic programming. We establish links between algorithms from
several disparate communities by using PARMETIS [10] as part of the tree
decomposition construction, and the MADNESS runtime to handle the ir-
regular, asynchronous properties of the dynamic programming.

For graphs with large size (which we measure by the number of ver-
tices) and low treewidth, the results are compelling, and we achieve near
linear speedups relative to a serial implementation. These new algorithmic
enhancements and improvements in implementation efficiency enable us to
exactly solve optimization problems on networks that are several orders of
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magnitude larger (in terms of the number of nodes/edges) than attainable
with other methods from the literature.

The algorithms described in this paper have been implemented as part
of the open source INDDGO†software package [6].

2. Background

2.1 Definitions and terminology

Formally, a graph G = (V,E) is a set of vertices V and a set of edges E
formed by unordered pairs of vertices. All graphs in this paper are assumed
to be finite, simple and undirected. We also assume the graphs under consid-
eration are connected, since otherwise, the techniques being discussed here
can be applied to find solutions for each connected component, which can
then be easily combined into a solution for the entire graph.

For a vertex v ∈ V , let N(v) = {u : (u, v) ∈ E} be the neighbors of v.
We say H = (W,F ) is a subgraph of G = (V,E), denoted H ⊆ G, if both
W ⊆ V and F ⊆ E. An induced subgraph is one that satisfies (x, y) ∈ F for
every pair x, y ∈ W such that (x, y) ∈ E. We denote the induced subgraph
of G with vertices X ⊆ V as G[X].

The last graph-related definition we need is of chordal graphs — those
where every cycle with more than three vertices has an edge connecting two
non-consecutive vertices [3].

A tree decomposition of a graph G = (V,E) is a pair (X,T ), where
X = {X1, . . . , Xn} is a collection of subsets of V and T = (I, F ) is a tree
(acyclic graph) with I = {1, . . . , n}, satisfying three conditions:

1. ∪i∈IXi} is equal to the vertex set V (i ∈ I),

2. for every edge uv in G, {u, v} ⊆ Xi for some i ∈ I, and

3. for every v ∈ V , if Xi and Xj contain v for some i, j ∈ I, then Xk also
contains v for all k on the (unique) path in T connecting i and j. In
other words, the set of nodes whose associated subsets contain v form
a connected sub-tree of T .

Note that we will use the term vertex to refer to elements of V and node
to to refer to elements of I to avoid confusion. The subsets Xi are often
referred to as bags of vertices. The width of a tree decomposition (X, (I, F ))

†Integrated Network Decompositions and Dynamic programming for Graph Optimiza-
tion
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is the maximum over 1 ∈ I of |Xi| − 1, and the treewidth of a graph G,
denoted τ(G), is the minimum width over all valid tree decompositions of
G. An optimal tree decomposition for a graph G is one with width τ(G).

An important class of graphs of class used in this paper are the k-trees,
which are defined recursively. In the smallest case, a clique on k+ 1 vertices
is a k-tree. Otherwise, for n > k, a k-tree on n+1 vertices can be constructed
from a k-tree H on n vertices by adding a new vertex v adjacent to some
set of k vertices which form a clique in H. A k-tree has treewidth exactly k
(the bags of the optimal tree decomposition are the cliques of size k + 1).
We call the set of all subgraphs of k-trees the partial k-trees. It easy to
see that any partial k-tree has treewidth at most k (one can derive a valid
tree decomposition of width k from that of the k-tree which contains it).
Furthermore, any graph with treewidth at most k is the subgraph of some
k-tree [15]. Thus the set of all graphs with treewidth at most k can be
generated by finding all k-trees and their subgraphs, leading us to a simple
generator for random graphs of bounded treewidth.

In this paper, randomly generated partial k-trees are denoted with the
prefix “pkt” followed by the number of nodes, maximum width, and edge
density. For example, pkt.500000.10.80 is a partial k-tree generated by keep-
ing 80% of the edges from a random 10-tree on 500,000 nodes. We may
write things like pkt.500000.width.80 to denote a set of graphs that all have
500,000 nodes and 80% of the edges of their parent k-tree, whose treewidth
(k) is being varied.

2.2 Sequential Algorithms

Before presenting the details of our parallel algorithm and related compu-
tational results, we describe the general idea behind a serial algorithm for
solving the maximum weighted independent set (MWIS) problem using dy-
namic programming and discuss the various bottlenecks that one encounters
in the serial environment. The general process for solving MWIS using tree
decompositions to achieve fixed parameter tractability is shown in Figure 1,
and described in detail in [13]. At a high level, after initializing the graph,
an elimination ordering is computed and used to guide triangulation (line 4
in Algorithm 1), a process of adding edges to make the graph chordal. It
is then easy to compute a tree decomposition for the chordal graph using
Gavril’s construction routine (lines 7-20 in Algorithm 1).

After construction, the resulting decomposition (X,T ) is rooted, and we
execute the dynamic programming following a post-order walk on the tree
T . At each node, we construct a hash table of partial solutions — for MWIS,
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Figure 1: Solving MWIS using Dynamic Programming and Tree Decompo-
sitions

this stores each independent set within the bag with the weight of the best
possible “expansion” of that set into the subtree rooted at that bag. As
shown in Algorithm 2, we can reduce memory requirements by storing only
the independent sets in the intersection of a bag with that of its parent node
(also described in [13]). When the post-order walk terminates at the root,
the highest weight in the root node’s hash table is the maximum weight
of any independent set in the graph G. If the elements in the maximum
weighted independent set are desired, extra bookkeeping is required during
the computation, and the algorithm must walk back “down” the tree to
construct the solution from the hash tables.

Algorithm 1 Gavril’s tree decomposition algorithm

1: procedure Gavril(G,π)
2: . Graph G = (V,E), π a permutation of V
3: Initialize T = (X, (I, F )) with X = I = F = ∅
4: H = Triangulate(π,G);
5: n = |V |, k = 1, I = {1}, X1 = {πn}
6: t[πn] = 1 . t is an n-long array
7: for i = n− 1 to 1 do
8: Bi=GetNeighbors(H,πi, {πi+1,. . . ,πn});
9: Find m = j such that j ≤ k for all πk ∈ Bi;

10: if Bi = Xt[m] then
11: Xt[m] = Xt[m] ∪ {πi};
12: t[πi] = t[m];
13: else
14: k = k + 1;
15: I = I ∪ {k}; Xk = Bi ∪ {πi};
16: F = F ∪ {k, t[m]}; . update T
17: t[πi] = k;
18: end if
19: end for
20: return T = (X, (I, F ));
21: end procedure
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Algorithm 2 Compute a node’s hash table

1: procedure ComputeDPTable(G, T ,k)
2: . Graph G, a tree decomposition T , node k
3: Let T = (X, (I, F )) where c1, c2, . . . , cd denote
4: the children of node k and p the parent
5: Let Dj be the DP hash table for node j
6: with fj(s) the value of a set s in Dj

7: S = FindAllWIS(G[Xk])
8: . S a set of ordered pairs (s, w(s))
9: for all (s, z) ∈ S do

10: for i = 1 to d do
11: ti = s ∩Xci

12: Look up ti in table Dci : (ti, ·, fci(ti))
13: z = z + fci(t)
14: end for
15: . Subtract the weight of the parent intersection
16: Let sp = s ∩Xp; fk(sp) = z − w(sp)
17: if (sp, ·, ·) /∈ Dk then
18: Dk = Dk ∪ (sp, s, fk(sp))
19: else . The key sp exists in the hash table
20: Let (sp, s

′, x) be current entry in Dk

21: if fk(sp) > x then
22: Update Dk to (sp, s, fk(sp))
23: end if
24: end if
25: end for
26: return Dk

27: end procedure

2.3 Sequential Implementation Results

In previous work [13], we presented sequential software to construct tree
decompositions using various heuristics alongside a fast, memory-efficient
dynamic programming implementation for solving MWIS. Although that
work showed that algorithms based on these techniques could be practical
from a computational standpoint, it also revealed numerous bottlenecks in
the computation that limited the scale of the graphs which could be ana-
lyzed. Two limiting factors are the amount of memory required to store
the dynamic programming tables of partial results from numerous subprob-
lems at multiple tree nodes simultaneously, and the total time required for
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the generation and subsequent node-by-node analysis of the tree decompo-
sition. We now quickly review the serial performance on a test suite of
partial k-trees of various widths and sizes. We consider two metrics: run-
time measured in seconds and memory high water mark (HWM) measured
in gigabytes (GB), which is the maximum memory in use at any given time
during execution. In Figure 2, we provide separate timing and HWMs for
the tree decomposition (TD) and dynamic programming (DP) steps as the
width and size of the graph change. For example, Figures 2(a) and 2(b)
illustrates the increase in runtimes and memory usage when the graph size
is fixed and its width increases. We note that for higher width graphs, dy-
namic programming takes up to twice as much time as tree decomposition,
and uses nearly four times the memory.
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Figure 2: Runtime and memory variation with width and size

Since the real benefit of tree decomposition-based algorithms lies in fast
solutions for low-width graphs with a high vertex/edge count, we also in-
clude a plot of performance at a fixed width, with increasing graph size,
in Figure 2(d). It is interesting to note that this changes the balance of
resources needed for each step of the algorithm drastically. Here, decom-
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position generation dominates the runtime, and the memory used during
dynamic programming is only negligibly higher than that needed for tree
construction (hard to see even at a logarithmic scale).

These results indicate that both the tree decomposition generation and
the dynamic programming would benefit from a parallel implementation —
the former primarily to reduce the runtime, and the latter to provide both
acceleration and the distribution of objects across the memory of numerous
nodes.

3. Creating tree decompositions in parallel

As discussed in Section 2.3, generating the tree decomposition can become
a bottleneck as the number of nodes in the graph grows. In order to address
this, we developed parallel algorithms for two key steps in the process: (i)
finding an elimination ordering, and (ii) generating the bags for the tree
decompositions. Finding the bags is computationally intensive since it re-
peatedly searches for the neighbors of a vertex v which occur after v in the
ordering, i.e., the forward neighbors. Here we describe our approaches to
improving the performance of both on a distributed memory architecture.

3.1 Parallel elimination order generation

A close look at the profile of the subroutines needed for tree decomposition,
shown at log scale in Figure 3(a), clearly shows elimination ordering (using
the METIS implementation of the multiple minimum degree heuristic) takes
roughly 90% of total time. To address this, we integrated routines from the
ParMETIS library [8] [9] [10], which provides a distributed fill-reducing or-
dering using nested dissection techniques. Although this provided a drastic
reduction in runtime, the widths of the resulting tree decompositions (shown
in Figure 4) were often unacceptably larger than their sequential analogues.
We note that more generally, the heuristics employed to find the ordering
were originally designed to minimize the number of edges added in the tri-
angulation and offer mixed results with respect to width (see [13]).

Since the complexity of the dynamic programming is exponential in the
treewidth, it is critical to devise a parallel ordering routine that limits this
inflation. Based on ideas in a paper of Hendrickson et al. [4], we created a
two-step procedure shown in Algorithm 3 that uses ParMETIS to partition
the nodes into subsets which have known relative positions in the final order,
then runs a second fill-reducing heuristic on the subgraph induced by each
subset to refine the ordering. We chose to use the AMD algorithm [1] for
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the second step, based on experimental results in [13]. For computational
results and conclusions, please see Section 5.1.
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Figure 3: Tree decompositions

3.2 A parallel version of Gavril’s algorithm

Once the elimination ordering time has been reduced, Gavril’s algorithm
(Algorithm 1) dominates the tree decomposition computation. We paral-
lelize this algorithm using a hybrid MPI + pthreads approach as described
in Algorithm 4. This distributes the work of finding forward neighbors and
calculating tree edges across multiple compute nodes, with multiple bags be-
ing generated simultaneously on each node. Since the bag Xt[m] in line 10 of
Algorithm 1 is not locally known in a distributed environment, we postpone
the bag unions to a sequential refinement stage, temporarily creating a tree
with exactly n nodes. The master process then operates on the full set of n
bags and n − 1 edges, merging appropriate nodes to produce a tree equiv-
alent to the sequential algorithm described in Algorithm 1 (for the same
elimination ordering). In Algorithm 5, the subroutine ReplaceParent is
used to remove redundancy when a parent and child in the unrefined tree
have identical bags by essentially removing the child from the tree, making
its children now directly inherent from what was their grandparent.

4. Task-oriented parallel dynamic programming

Having described our novel ideas for parallelizing the construction of tree
decompositions, we now move on to our approach for applying distributed
computing to the dynamic programming. Our approach uses task-oriented
computing, where large operations are divided into smaller units called tasks.
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Algorithm 3 Find elimination ordering using ParMETIS (optionally with
AMD)

1: procedure ParFindElimOrder(G, useAMD)
2: . Let G = (V,E), |V | = n, and size/rank
3: be the MPI communicator size and task rank
4: x = n/size, xm = n mod size
5: Let vtxdist[] be an array of size+ 1, storing
6: MPI task displacement, with vtxdist[1] = 0
7: vtxdist[i] = vtxdist[i− 1] + x ∀ i ∈ [2, size+ 1]
8: V= ∪sizei=1αi; αi ={vix, vix+1, . . . , vx(i+1)−1}
9: . Local node neighbor info in adjncy[], xadj[]

10:
adjncy = concat(adjncy,N(vj))
xadjvj = |adjncy|

]
∀ vj ∈ αi

11: ParMETIS V3 NodeND(vtxdist,adjncy,xadj)
12: Re-ordered vertices of ith MPI task are in α′i,
13: collect vertices into root MPI task.
14: V ′ = (α′1, . . . , α

′
size) with

15: α′i= (v′ix, v
′
ix+1, . . . , v

′
x(i+1)−1)

16: . Translate ParMETIS indices back to vertices
17: V ′′[v′i] = vi where i ∈ [1, n];
18: if !useAMD then
19: return V ′′;
20: end if
21: . Redistribute V ′′ among tasks
22: V ′′ = {v′′1 , v′′2 , . . . , v′′n} = {β1 ∪ β2 ∪ . . . ∪ βsize}
23: βi = {v′′ix, v′′ix+1, . . . , v

′′
x(i+1)−1} i ∈ [1, size]

24: πi = FindElimOrder(G[βi], AMD)
25: return Π = (π1, π2, . . . , πsize)
26: end procedure

These tasks are then executed asynchronously across a distributed com-
puter. MADNESS is a fast and accurate environment for computational
chemistry, now used in many other fields including nuclear, atomic, and
molecular physics. The MADNESS library and parallel runtime provide a
versatile scientific computing environment that abstracts the intricacies of
task-oriented computing, allowing application developers to focus on algo-
rithm development and implementation. The commonly used tools in MAD-
NESS are implemented on top of its parallel runtime, which provides an API
for parallel data structures and functionality required for task-oriented com-
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Algorithm 4 Threaded bag processing

1: procedure ThreadBag(G, Π, prefix, start, end)
2: for i = start to end do
3: Bi=GetNeighbors(G, πi, {πi+1,. . . ,πn})
4: Find m = πj such that j ≤ k for all πk ∈ Bi

5: Xk = Bi ∪ {πi}
6: store (πi,πm) . edge to parent bag
7: store Xk . content of the current bag
8: end for
9: send all stored edges and bags to rank 0.

10: end procedure

Algorithm 5 Parallel tree decomposition

1: procedure ParallelTreeDecomposition
2: Let Π=(π1, π2, . . . , πn); wr,ws be MPI rank and communicator size

with nthreads pthreads per task.
3: xr = n/ws, startpos = wr ∗ xr
4: tr = xr/nthreads
5: for i = 0 to nthreads do
6: tstart = startpos+ i ∗ tr
7: tend = tstart+ i ∗ tr
8: ThreadBag (G,Π, prefix, tstart, tend)
9: end for

10: Barrier()
11: Gather tree edges and bags from threads to create a tree decompo-

sition (T,X) with n nodes, n− 1 edges.
12: if wr == 0 (serial refinement) then
13: Let Xi be the bag of node i, associated with vertex πi. Let Adji

be the neighbors of i in T , with Pi the parent node. Let R be root of T .
14: for i = n− 1 to 1 do
15: if Xi\πi == XPi then
16: ReplaceParent(i)
17: end if
18: end for
19: end if
20: Write (T ′, X ′) with X ′ = {X ′1, X ′2, . . . , X ′m} where X ′i ∈ X and

Adj′i 6= ∅
21: end procedure
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putation. Key features include a) futures to manage dependencies and hide
latency; b) global name spaces; c) non-process-centric computing; and d)
dynamic load balancing and data redistribution [14].

When solving problems using dynamic programming and tree decomposi-
tions, the (rooted) decomposition determines a number of data dependencies
in the algorithm. For instance, in Figure 3(b) (which shows a small part of
a tree decomposition with children drawn below their parents) the process-
ing of tree node B cannot finish until computation at all its children (D, E
and F ) has completed. Therefore we use MADNESS tasks to encapsulate
the computation required at each tree node, and define dependencies using
futures.

Important steps in any parallel algorithm for solving the maximum
weighted independent set problem using dynamic programming are a) cre-
ating a table for storing all independent sets; and b) updating weights of
the independent sets at a tree node based on the values from children.

Tree nodes are distributed across tasks using a mapping function pro-
vided by the MADNESS parallel runtime. The task owning each node
is responsible for populating the local data structures and adding it to a
MADNESS distributed container (a built-in distributed hash-map-like data
structure). The local data structures are small (e.g. a w×w bitwise matrix,
where w is the bag size), and identical to those populated in the serial imple-
mentation; they include the bag intersections with children/parent nodes,
list of adjacent tree nodes, and the associated induced subgraph. Since the
work for “preparing” each node is independent, we employ OpenMP within
the task to speed up this pre-processing phase. All tasks can then access in-
formation using a key in the distributed container regardless of the physical
location of the data.

Once all nodes are prepared, and the distributed container is populated,
we define MADNESS tasks recursively via a pre-order walk starting at the
root, using Algorithm 7. At the leaf nodes, full hash tables are computed
and returned to the parent node via a special LeafTable routine, similar to
Algorithm 5 in [13]. After launching tasks for their children, internal nodes
of the tree wait for each child to finish, then incorporate the partial solutions
into the current table. The MADNESS task model enables us to implement
asynchronous table updates — the parent can update the table with input
from each child as it finishes, in an arbitrary order. Some care must be taken
to avoid race conditions, but the overall impact is a faster implementation
(since the work at a parent can be partially completed prior to receiving
updates from its last child). It should be noted that although the tree nodes
will likely be processed on different compute nodes, the MADNESS runtime
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frees the application developer from having to worry about the physical
location of each table.

Algorithm 6 Update weights at a node i with values from child C

1: procedure UpdateTable(i, C)
2: Let WXi [p] denote the weight of an independent set p ⊆ Xi

3: for all independent sets s ⊆ Xi do
4: WXi [s] = WXi [s] + WC [s]
5: end for
6: end procedure

Algorithm 7 Compute hash table for bag Xi

1: procedure ComputeTable(i)
2: Let node i have bag Xi and neighbors Adji
3: if i is a leaf then
4: return MADTask(LeafTable(i))
5: end if
6: Let U [], V [] be arrays and j = k = 0
7: for n in Adji do
8: U [j] = MADTask(ComputeTable(n))
9: V [k] = MADTask(UpdateTable(n, U [k]))

10: j = j + 1; k = k + 1
11: end for
12: Wait for all Futures in V to return
13: return Xi

14: end procedure

5. Experimental Results

In the final section of the paper, we describe some computational results
that demonstrate the scaling behavior of the parallel procedures described
in the previous sections. We partition our scaling results into two parts, first
reporting on the performance of the parallel tree construction, then on the
dynamic programming. While we do achieve reasonable speedups for the
tree construction phase, we believe the scaling of the dynamic programming
will dominate overall behavior when using these algorithms to solve large
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realistic problem instances. As the graph size grows in terms of number of
nodes and edges, one can reasonably expect the treewidth of the graph to
also increase. While the tree decomposition construction times grow rel-
atively slowly with both the graph size and its width (see Figures 2 and
3, for example), the dynamic programming running time and memory con-
sumption increase exponentially with the width, making it a more significant
computational hurdle. Furthermore, the dynamic programming step is more
difficult to parallelize due to the asynchronous nature of the computation.
While it is often difficult to achieve good scaling results for graph optimiza-
tion problems and dynamic programming in general, we demonstrate linear
(and in some cases even superlinear) speedups for the dynamic programming
phase of our optimization algorithm, and consider our parallelization of the
dynamic programming to be the major computational contribution of our
work.

5.1 Parallel elimination order generation

To evaluate our algorithms for generating elimination orderings in paral-
lel, we compare both the widths of the resulting decompositions and the
required runtime. In Figure 4 we illustrate the differences between k (an
upper bound on the treewidth, since the graphs are partial k-trees), and the
widths produced by ParMETIS V3 NodeND (v3) and our hybrid combining
ParMETIS with AMD (v3+amd). The partial k-trees were generated with
parameters chosen to maintain a constant edge density (e.g. 500K nodes,
k = 10 has the same edge density as 1.2M nodes, k = 24). Using AMD
improves the width over ParMETIS alone for graphs with smaller k values,
but as the width increases, the advantage is lost. In Figure 5 we look at a
second test suite of partial k trees, where we compare both runtimes and
width against the sequential heuristic MetMMD.

5.2 Parallel tree decomposition and dynamic programming

Hüffner, et al., opined that “As a rule of thumb, the typical border of prac-
tical feasibility lies somewhere below a treewidth of 20 for the underlying
graph” [5]. Prior work using tree decompositions to solve optimization prob-
lems was typically limited to graphs less than 5000 nodes, with the tech-
niques described in a recent paper [11] restricting experiments even further
— to just several hundred nodes. We report computational results on par-
tial k-trees with five hundred thousand, one million, and two million nodes
with k = 10, 25, and 50. These represent graphs we believe are of an un-
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Figure 4: Widths from ParMETIS and ParMETIS + AMD on partial k-trees

precedented scale - one which was previously deemed impractical.

The sequential results used for comparison here were obtained using
one core of a 2.80Ghz Intel Xeon X5560 processor with 8MB of L1 cache
and 24GB of memory. Sequential runtimes were limited to a maximum of 24
hours. The parallel experiments were run on a partition of Jaguar [7], a Cray
XK6 with one 16-core AMD 6200 series processor and 32GB of memory per
node.
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Figure 5: Timing for parallel and sequential elimination ordering heuristics
on graphs pkt.500k.width.80
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Graph Speedup

pkt.500000.25.60 3.02
pkt.1000000.50.60 10.73
pkt.2000000.25.60 70.46
pkt.2000000.50.60 44.00

Table 1: Speedup with 8 tasks x 4 threads for Algorithm 5

5.2.1 Parallel tree decomposition
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Figure 6: Parallel tree decomposition runtimes

The INDDGO package implements Algorithms 3 through 5 to enable
generation of tree decompositions where all steps leverage available parallel
resources. Figure 5 shows the time required and widths achieved by parallel
elimination orderings relative to a serial heuristic.

In Algorithm 5, our current implementation collects all of the edges and
bags created by each compute node (line 11) by writing one file per MPI
task. The rank-zero task then performs a concatenation prior to refinement.
Unfortunately, this usage of the file system appears to prevent the scaling of
our parallel tree decomposition beyond a modest number of MPI processes,
as seen in Figure 6. We believe that replacing the file system interactions
by a set of local memory stores followed by a global gather would resolve
this problem, and is planned as a future improvement to the code.

Despite the delays inherent from file system use, we achieve up to a 70×
speedup over the sequential version on just 32 cores (see Table 1). This
superlinear speedup can be attributed to a new, more efficient version of the
FindNeighbors routine that takes advantage of caching within each task.
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Figure 7: Dynamic programming runtime

5.2.2 Parallel dynamic programming

Although the parallelization of the tree decomposition construction does not
show compelling scaling results, our dynamic programming implementation
shows exceptional, even superlinear scaling. For example on a partial 25-
tree with 500,000 nodes, the dynamic programming portion of the sequential
algorithm required almost 22 hours (76630 seconds), and the speedup shown
in Figure 9(a) is superlinear. For example 512 tasks with 8 threads each
completed the dynamic programming in only 13 seconds!

We first consider the behavior of our algorithms with respect to the
shared memory parallelism. Figure 9(b) shows the runtime of the dynamic
programming algorithm using a fixed number of MADNESS tasks (128) and
varying the number of OpenMP threads per task. Threading improves the
runtime until we reach 12 threads, where delays from increased memory con-
tention offset the gains from parallel processing. Based on Figure 9(b), we
chose to conduct the remainder of our scaling experiments using 8 OpenMP
threads per MADNESS task to optimize performance.

Figures 7 and 8 illustrate the runtime and speedup, respectively, as we
vary both the number of tasks and the size of the input problem. We
note that all sequential experiments were run with a with a time limit of
24 hours, which prevented almost all graphs with width greater than 10
from completing. In Figure 7, this leads to trend lines that do not extend
to the smaller numbers of tasks for graphs on a million or more nodes. To
present speedup results, we used the smallest (and thus slowest) parallel run
completed in less than 24 hours (the minimum number of tasks depended on
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the input size) as a baseline for computing our speedups. Figure 8 depicts
scaling relative to the appropriate base case by using dashed lines to indicate
linear speedup (e.g. Opt-1 is linear relative to performance with 1 task and
Opt-32 relative to an initial run with 32 tasks) on the same graphs used in
Figure 7. As one can see, when the graph is large enough, the MADNESS
tasks were not starved for work and we were able to achieve speedups that are
approximately linear. Increases in communication overhead as the number
of tasks increases prevent perfect scaling.
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6. Conclusions and Future Work

In this paper we present what we believe to be the first application of high
performance parallel computing to tree decompositions and the related dy-
namic programming. We propose novel parallel algorithms to find elimi-
nation orderings, generate tree decompositions from these orderings, and
to perform the memory-intensive dynamic programming using the MAD-
NESS runtime. Our techniques are able to exactly solve MWIS instances
that are orders of magnitude larger (in terms of number of vertices and
edges) than any other problems solved in the literature. Since the scaling
of other branch-and-bound based algorithms depends strongly on the num-
ber of nodes and edges in the graph, we believe our work presents the only
known method to solve problems of this size to optimality.

Our empirical study shows the performance of each algorithm when run
on graphs with various widths and sizes, and many cases exhibit excellent
scaling. Our latest code is available for other researchers as part of the
INDDGO software package [6], and one of our longer term goals is to develop
a more general framework for solving graph optimization problems via the
type of dynamic programming we discuss in this paper. Such a framework
would allow the application developer to write only the problem-specific code
for the dynamic programming; everything related to the tree decomposition
and the distribution of tasks would be handled by the framework.
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