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ABSTRACT

A novel multi-dimensional multi-resolution adaptive wavelet stochastic collocation method
(AWSCM) for solving partial differential equations with random input data is proposed. The un-
certainty in the input data is assumed to depend on a finite number of random variables. In case
the dimension of this stochastic domain becomes moderately large, we show that utilizing a hi-
erarchical sparse-grid AWSCM (sg-AWSCM) not only combats the curse of dimensionality but,
in contrast to the standard sg-SCMs built from global Lagrange-type interpolating polynomials,
maintains fast convergence without requiring sufficiently regular stochastic solutions. Instead, our
non-intrusive approach extends the sparse-grid adaptive linear stochastic collocation method (sg-
ALSCM) by employing a compactly supported wavelet approximation, with the desirable multi-
scale stability of the hierarchical coefficients guaranteed as a result of the wavelet basis having the
Riesz property. This property provides an additional lower bound estimate for the wavelet coef-
ficients that are used to guide the adaptive grid refinement, resulting in the sg-AWSCM requiring
an optimal (up to a constant) number of deterministic simulations for both smooth and irregular
stochastic solutions. Second-generation wavelets constructed from a lifting scheme allow us to
preserve the framework of the multi-resolution analysis, compact support, as well as the necessary
interpolatory and Riesz property of the hierarchical basis. Several numerical examples are given to
demonstrate the optimal convergence of our numerical scheme and to show the increased efficiency
when compared to the sg-ALSCM method.
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1 INTRODUCTION

Many applications in engineering and science are affected by uncertainty in input data, including
model coefficients, forcing terms, boundary condition data, media properties, source and interac-
tion terms, as well as geometry. For example, highly heterogeneous materials may have properties
that vary over small length scales so that these properties have to be often determined, e.g., by
interpolating or extrapolating measurements obtained at a few locations. These types of uncertain-
ties are known as epistemic because they are related to incomplete knowledge. In other situations,
referred to as aleatoric, uncertainty is due to intrinsic variability in the system, e.g., fluctuations in
turbulent flow fields. In practice, it is necessary to quantify both types of uncertainties, a process
which is naturally referred to as uncertainty quantification (UQ).

The presence of random input uncertainties can be incorporated into a system of partial dif-
ferential equations (PDEs) by formulating the governing equations as PDEs with random inputs.
In practice, such PDEs may depend on a set of distinct random parameters with the uncertainties
represented by a given joint probability distribution. In other situations, the input data varies ran-
domly from one point of the physical domain to another and/or from one time instant to another; in
these cases, uncertainties in the inputs are instead described in terms of random fields that can be
expressed as an expansion containing an infinite number of random variables. For example, for cor-
related random fields, one has Karhunen-Loève (KL) expansions [30,31], Fourier-Karhunen-Loève
expansions [29], or expansions in terms of global orthogonal polynomials [21, 50, 52]. However,
in a large number of applications, it is reasonable to limit the analysis to just a finite number of
random variables, either because the problem input itself can be described in that way (e.g., the
random parameter case) or because the input random field can be approximated by truncating an
infinite expansion [19] (e.g., the correlated random field case).

Currently, there are several numerical methods available for solving PDEs with random in-
put data. Monte Carlo methods (MCMs) (see, e.g., [17]) are the classical and most popular ap-
proaches for approximating expected values and other statistical moments of quantities of interest
that depend on the solution of PDEs with random inputs. MCMs are very flexible and trivial to
implement and parallelize using existing deterministic PDE solvers, but they feature very slow
convergence because they do not exploit any regularity the solution may possess with respect to
the input stochastic parameters. On the other hand, the convergence rates of MCMs have mild
dependence on the number of random variables so that for problems involving a large number of
random parameters, MCMs remain the method of choice.

Several numerical approaches have been proposed that often feature much faster convergence
rates. These include stochastic Galerkin methods (SGMs) [1, 3, 21, 35] and stochastic colloca-
tion methods (SCMs) [2, 34, 38, 39, 51]. The two approaches transform the original stochastic
problem into a deterministic one with a large number of parameters and differ in the choice of
the polynomial bases used and the resulting approximating spaces. To achieve increased rates of
convergence relative to MCMs, both approaches are typically based on global polynomial approxi-
mations that take advantage of smooth behavior of the solution in the multi-dimensional parameter
space. SGMs are based on orthogonal polynomials which leads to a coupling of the probabilistic
and space/time degrees of freedom; for this reason, SGMs are referred to as being intrusive. On the
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other hand, SCMs are based on interpolatory polynomials so that, when implemented, they result
in ensemble-based non-intrusive approaches for which the probabilistic and space/time degrees of
freedom are uncoupled.

We emphasize that the better convergence behavior of SGMs and SCMs relative to MCMs
requires high regularity with respect to the random variables. However, often in scientific and
engineering problems there are are irregular dependences, e.g., steep gradients, sharp transitions,
bifurcations, or finite jump discontinuities, of a quantity of interest (QoI) with respect to the ran-
dom variables. In such cases, global polynomial-based approximations such as SGMs and SCMs
seriously deteriorate to the point that they converge very slowly or may even fail to converge. In-
deed, for such applications, the use SGMs and SCMs often result in no improvements over MCMs.
As a result, one turns to local approximation methods. To be effective, such approximations have
to be implemented using refinement strategies that focus on regions of irregular behavior; other-
wise, there would be an explosion in the required computational effort as the number of random
variables increases, a phenomenon commonly referred to as the curse of dimensionality.

Not surprisingly, there have been many proposed methods that attempt to control the curse, i.e.,
to put off its inevitable fatal effect to higher dimensions. Several techniques involve domain de-
composition approaches using h-type finite elements basis functions, similar to those constructed
in the physical spatial domain. A multi-element approach utilized in [18] decomposes each param-
eter dimension into sub-domains and then uses tensor products to reconstruct the entire parameter
space. This method has successfully been applied to moderate dimension problems, but the tensor-
product decomposition inevitably re-introduces the curse of dimensionality. Similarly, [26, 27]
presents a tensor product-based multi-resolution approximation based on a Galerkin projection
onto a Wiener-Haar basis. This approach provides significant improvements over global orthogo-
nal approximation approaches. However, in terms of robustness, dimension scaling is not possible
due to the resulting dense coupled system and the lack of any rigorous criteria for triggering re-
finement.

It is recognized that any refinement strategy employed must be guided by an accurate estimation
of both local and global errors. In [32, 33], an adaptive sparse-grid stochastic collocation strategy
is applied that uses piecewise multi-linear hierarchical basis functions developed in [20, 22, 25].
This approach utilizes the hierarchical surplus as an error indicator to automatically detect the
regions of importance (e.g., discontinuities) in stochastic parameter space and to adaptively refine
the collocation points in this region. The adaptation process is continued until a prescribed global
error tolerance is achieved. This goal, however, might be reached by using more points than
necessary due to the instability of the multi-scale basis used; see §3.3 for a complete description of
the properties of such multi-scale sparse grid approximations using hierarchical subspace splitting
and see §4 for the additional properties required to construct an optimal multi-dimensional multi-
resolution approximation.

In §4, we propose an adaptive wavelet stochastic collocation method that possesses the ad-
ditional properties. The intent of our approach is to combat the curse of dimensionality while
maintaining the increased convergence rates of standard SCM approaches by utilizing optimal
compactly supported wavelet basis functions. The construction principles of such functions are
highly developed; see, e.g., [6, 9, 12, 13, 23] and the references therein. Such bases are in ubiq-
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uitous use in signal processing and other applications. They have also been rigorously shown
to result in optimal approximations of PDEs (see, e.g., [7, 8, 10, 14, 15, 36, 42, 43]) and of PDE
constrained optimal control problems (see, e.g., [11, 23]), when compared with traditional finite
element approximations. In this paper, due to their general applicability to arbitrary domains, we
consider second-generation wavelets constructed from a lifting scheme [46–48]. Moreover, in ad-
dition to maintaining compact support and the interpolatory properties of nodal bases, the beauty
of the second-generation wavelets is that they also form a Riesz basis, a property that guaran-
tees the stability of the hierarchical basis and allows one to construct an optimal multi-resolution
approximation.

The outline of the paper is as follows. In §2, we introduce the mathematical description of a
general stochastic initial-boundary problem and the main notation used throughout the paper. In
§3, we briefly recall the stochastic collocation method and adaptive strategies using both global
as well linear hierarchical polynomials. In §4, we propose our novel adaptive wavelet stochastic
collocation method and the properties of the second-generation wavelets we employ. In §5, sev-
eral numerical examples are given to demonstrate the effectiveness and efficiency of our method
compared with classic approaches.
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2 PROBLEM SETTING

We follow the notation in [2, 38, 39] and begin by letting D denote a bounded domain in Rd, d =
1, 2, 3, and (Ω,F , P ) denote a complete probability space. Here, Ω denotes the set of outcomes,
F ⊂ 2Ω the σ-algebra of events, and P : F → [0, 1] a probability measure. We are interested
the following stochastic initial-boundary value problem: find u : Ω ×D × [0, T ] → Rm such that
P -almost everywhere in Ω

L(a)(u) = f in D × [0, T ] (2.1)

subject to the boundary and initial conditions

B(b)(u) = g on ∂D × [0, T ]

u = u0 on D × {t = 0}. (2.2)

Here,L denotes a differential operator (linear or non-linear) depending on the coefficient(s) a(ω, x, t)
with (ω, x, t) ∈ Ω × D × [0, T ]; B denotes a boundary operator depending on the coefficient(s)
b(ω, x, t) with (ω, x, t) ∈ Ω × ∂D × [0, T ]. Similarly, the right-hand sides f(ω, x, t), g(ω, x, t),
and u0(ω, x) can be assumed to be random fields as well. Note that, in general, a, b, f , g, and u0

belong to different probability spaces, but for economy of notation, we simply denote the stochas-
tic dependences of these random data as if all belong to the same probability space. We denote
by W (D) a Banach space and assume the underlying stochastic input data are chosen so that
the corresponding stochastic system (2.1)–(2.2) is well-posed so that it has an unique solution
u(ω, x, t) ∈ L2

P (Ω)⊗ L2(W (D); 0, T ), where the space

L2
P (Ω)⊗ L2(W (D); 0, T )

:=

{
u : Ω×D × [0, T ]→ Rm

∣∣∣∣
∫ T

0

∫

Ω

‖u‖2
W (D) dP (ω)dt < +∞

} (2.3)

consists of Banach-space valued functions that have finite second moments. Finally, we note that in
this setting the solution u can either be a scalar or vector-valued function depending on the system
of interest.

An example problem posed in this setting is given as follows.

Example 2.1 [Linear parabolic PDE with random inputs] Consider the initial-boundary value
problem [53]: find a random field u : Ω×D × [0, T ]→ R such that P -almost surely

∂tu(ω, x, t)−∇ · [a(ω, x)∇u(ω, x, t)] = f(ω, x, t) in Ω×D × [0, T ]

u(ω, x, t) = 0 on Ω× ∂D × [0, T ]

u(ω, x, 0) = u0(ω, x) on Ω×D,
(2.4)

where ∇ denotes the gradient operator with respect to the spatial variable x ∈ D. To guarantee
the well-posedness of the solution of (2.4) in L2

P (Ω)⊗ L2(H1(D); 0, T ), one assumes that almost
surely the coefficient a(x, ω) is positive and uniformly bounded, i.e.,

P
(
ω ∈ Ω : amin ≤ a(ω, x) ≤ amax ∀x ∈ D

)
= 1 with amin, amax ∈ (0,∞) (2.5)
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and that the right-hand side satisfies
∫ T

0

∫

D

E[f 2]dxdt :=

∫ T

0

∫

D

∫

Ω

f 2(ω, x, t) dP (ω)dxdt < +∞ P -a.e. in Ω.

2.1 FINITE DIMENSIONAL NOISE

In many applications, the source of randomness can be approximated using just a finite number of
uncorrelated, or even independent, random variables. As such, similar to [2, 38, 39], we make the
following assumptions regarding the stochastic input data, i.e., the random coefficients a and b in
L and B and the right-hand sides f , g, and u0 in (2.1)–(2.2).

A1) The stochastic input coefficient a satisfies (2.5) and the other stochastic input data are
bounded from above and below with probability 1, e.g., for the right-hand side f(ω, x, t), there
exists fmin > −∞ and fmax <∞ such that

P
(
ω ∈ Ω : fmin ≤ f(ω, x, t) ≤ fmax ∀x ∈ D, ∀t ∈ [0, T ]

)
= 1 (2.6)

and similarly for all remaining inputs.

A2) The stochastic input data have the form

d0(ω, x, t) +
N∑

n=1

yn(ω)dn(x, t), (2.7)

where N ∈ N+ and y = [y1(ω), . . . , yN(ω)] : Ω → RN is a real-valued vector of independent
random variables.

In many applications, the stochastic input data may have a simple piecewise random represen-
tation whereas, in other applications, the coefficients a and b in (2.1) and the right-hand sides f , g,
and u0 in (2.2) may have spatial variation that can be modeled as a correlated random field, making
them amenable to description by a Karhunen-Loève (KL) expansion [30, 31]. In practice, one has
to truncate such expansions so that they are of the form (2.7), with the number N of terms kept
depending on the degree of correlation and the desired accuracy of the simulation. Examples of
both types of noise, each satisfying assumptions A1 and A2, are given next.

Example 2.2 [Piecewise constant random fields] We assume the spatial domain D is the union of
non-overlapping subdomains Dj , j = 1, . . . , J , and the time interval (0, T ) is the union of disjoint
subintervals (Tk−1, Tk), k = 1, . . . , K. Then, we consider stochastic input data that is piecewise
constant and random on each space-time subdomain Dj × (Tk−1, Tk), i.e.,

d0(x, t) = σ0 and dn(x, t) = σn1Dj×(Tk−1,Tk)(x, t), n = j + (k − 1)K,

where σn, n = 0, . . . , N , denote constants, 1Dj×(Tk−1,Tk) denotes the indicator function of the set
Dj × (Tk−1, Tk) ⊂ D × [0, T ], and the random variables yn(ω) are bounded and independent.
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Once the bounded sample space Ω is defined, the constants amin, amax, fmin, fmax, etc. in the
constraints (2.5)–(2.6) are easily deduced. Note that (2.5) requires restrictions on the constants
σn and the bounds on the random variables yn(ω) corresponding to the coefficient a; in practice,
such restrictions would be deduced from the physics of the problem.

Example 2.3 [Karhunen-Loève expansion] Any second-order correlated random field c(ω, x, t)
with continuous covariance function Cov[c](x̃1, x̃2), where x̃1 = (x1, t1) and x̃2 = (x2, t2) are
space-time coordinates, can be represented as an infinite sum of random variables by means of,
e.g., a KL expansion. For x̃ = (x, t), we define the operator F : L2(D) × L2(0, T ) → L2(D) ×
L2(0, T ) by

Fv(x̃) :=

∫ T

0

∫

D

Cov[c](x̃1, x̃)v(x̃1) dx̃1 ∀ v ∈ L2(D)× L2(0, T ). (2.8)

Because of the symmetry and positivity properties of covariance functions, the operator F has
real, non-negative eigenvalues {λn}∞n=1 that may be arranged in non-increasing order and corre-
sponding real orthonormal eigenfunctions {cn(x̃)}∞n=1. For simplicity of the exposition, we assume
that the eigenvalues are positive. Furthermore, if we define mutually uncorrelated real random
variables by

yn(ω) :=
1√
λn

∫ T

0

∫

D

(c(ω, x̃)− E[c](x̃)) cn(x̃) dx̃, n = 1, 2, . . .

with zero mean and variance V ar[yn] =
√
λn, then c(ω, x, t) can be represented by the truncated

N -term KL expansion satisfying assumption A2 with d0(x, t) = E[c](x, t) and dn(x, t) = cn(x, t)
for n = 1, . . . , N . Finally, note that if the process is Gaussian, then the random variables {yn}∞n=1

are standard identically independent distributed random variables.

In what follows, we denote by Γn ≡ yn(Ω) ⊂ R the image of the random variable yn, then set
Γ :=

∏N
n=1 Γn, where N ∈ N+, and assume that the components of the real-valued random vector

y = [y1(ω), . . . , yN(ω)] : Ω→ RN have a joint probability density function (PDF)

ρ(y) : Γ→ R+ with ρ(y) ∈ L∞(Γ)

such that ρ(y) =
∏N

n=1 ρn(yn). We note that, given assumption A1, the image set Γ is a bounded
hypercube in RN . Moreover, from assumption A2, we have that the solution u to (2.1)–(2.2)
depends on a realization ω ∈ Ω through an instantiation of the random vector y ∈ Γ. Therefore,
the probability space (Ω,F , P ) is equivalent to (Γ,B(Γ), ρ(y)dy), where B(Γ) is the Borel σ-
algebra on Γ and ρ(y)dy is the finite measure of the random vector y.

We are now in position to restate the random input data in terms of y as follows:

a(ω, x, t) = a(y, x, t), f(ω, x, t) = f(y, x, t) for (y, x, t) ∈ Γ×D × [0, T ]

b(ω, x, t) = b(y, x, t), g(ω, x, t) = g(y, x, t) for (y, x, t) ∈ Γ× ∂D × [0, T ]

u0(ω, x) = u0(y, x) for (y, x) ∈ Γ×D.
(2.9)
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As a result, the problem (2.1)–(2.2) can be restated as follows: find a random function u(y, x, t) :
Γ×D × [0, T ]→ Rm such that ρ-almost everywhere y ∈ Γ, we have that

L(a(y, x, t))(u) = f(y, x, t) in D × [0, T ] (2.10)

subject to the boundary and initial conditions

B(b(y, x, t))(u) = g(y, x, t) on ∂D × [0, T ]

u = u0(y, x) on D × {t = 0}. (2.11)

Then, by the Doob-Dynkin lemma [40], the unique solution u of (2.1) and (2.2) can also be char-
acterized by the same random vector y, i.e.,

u(ω, x, t) = u(y1(ω), . . . , yN(ω), x, t) ∈ L2
ρ(Γ)⊗ L2(W (D); 0, T ), (2.12)

where L2
ρ(Γ) is the space of square integrable functions of Γ with respect to the measure ρ(y)dy.

As indicated in (2.12), the solution u(y, x, t) belongs to the function spaceL2
ρ(Γ)⊗L2(W (D); 0, T )

that is defined by

L2
ρ(Γ)⊗ L2(W (D); 0, T )

:=

{
u : Γ×D × [0, T ]→ Rm

∣∣∣∣
∫

Γ

∫ T

0

‖u‖2
W (D)ρ(y)dtdy <∞

}
.

(2.13)

We once again note that, in general, each appearance of y in (2.10)–(2.11) can be a different
vector of random variables each belonging to a different probability space and that in the end,
the solution u depends on all the different y’s which collectively belong to the product space of
the individual probability spaces. However, again to economize notation, we do not explicitly
differentiate between the different vectors of random variables.

Thus far we have turned the possibly infinite-dimensional stochastic initial-boundary value
problem given by (2.1)–(2.2) into a finite-dimensional parametric problem (2.10)–(2.11). With-
out loss of generality, we will assume the support of the random variables yn is Γn = [0, 1] for
n = 1, . . . , N and therefore the bounded stochastic (or parameter) space is the N -dimensional
unit hypercube Γ = [0, 1]N . At this point, we can apply any stochastic approximation technique,
e.g., spectral-Galerkin, locally adaptive, etc. However, the focus of our work involves non-intrusive
approximations (such as Monte Carlo sampling or stochastic collocation methods) in probability
space for which, for any realization y(ωk) of the random parameters, solutions can be constructed
using standard deterministic approximation techniques in space-time, e.g., finite difference meth-
ods, finite element methods, finite volume methods, etc. for spatial discretization and backward
Euler or Crank-Nicolson schemes for temporal discretization [37, 53].
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3 ADAPTIVE STOCHASTIC COLLOCATION METHODS

To provide context and background for the new method we present in §4, in this section we dis-
cuss, in general terms, adaptive stochastic collocation methods (SCMs). These approximations are
computed via Lagrange interpolation of the random parameter dependence of solutions of (2.10)-
(2.11), described in §3.1, constructed from either globally or locally supported basis functions,
described in §3.2 and §3.3 respectively. In §3.3, we discuss in somewhat more detail the special
case of hierarchical piecewise polynomial basis functions, leading to the hierarchical, locally adap-
tive, piecewise linear approximations. The latter is the closest precursor to our new method and,
naturally, we use it for comparison purposes.

We note that the use of polynomials having the property that the interpolation matrix is diago-
nal, i.e. the “delta property” (see Remark 3.1), leads to approximations that some authors refer to
as stochastic collocation methods (SCMs). Others use that terminology to refer to any method for
which the parameter and spatial/temporal degrees of freedom uncouple; with this view, which is
the one we adopt, all methods discussed below and in this section and in §4 would be referred to
as being SCMs.

3.1 LAGRANGE INTERPOLATION IN THE PROBABILISTIC DOMAIN

The goal is to construct a numerical approximation of the solution of (2.10)–(2.11) in a finite-
dimensional subspace P(Γ) ⊗ L2(Wh(D); 0, T ). Here, Wh(D) ⊂ W (D) is a standard finite el-
ement space of dimension dim(Wh) = Mh, used for spatial discretization and P(Γ) ⊂ L2

ρ(Γ) is
a finite-dimensional space of dimension dim(P(Γ)) = M , used for approximation in parameter
space. Of course, a temporal discretization, usually via a finite difference method, is implied as
well. Interpolatory approximations in parameter space start with the selection of a set of distinct
points {yk}Mk=1 ∈ Γ, in parameter space and a set of basis functions1 {ψk(y)}Mk=1 ∈ P(Γ). Then,
we seek an approximation uMh,M ∈ P(Γ) ⊗ L2(W (D); 0, T ) of the solution u of the problem
(2.10)-(2.11) of the form

uMh,M(y, x, t) =
M∑

k=1

ck(x, t)ψk(y). (3.1)

The Lagrange interpolant is defined by first obtaining M realizations uMh
(yk, x, t) of the finite

element approximation2 of the solution u(yk, x, t) of the problem (2.10)-(2.11), i.e., one solves for
the finite element approximation for each of the interpolation points in the set {yk}Mk=1. Then, the
coefficient functions {ck(x, t)}Mk=1 are determined by imposing the interpolation conditions

M∑

`=1

c`(x, t)ψ`(yk) = uMh
(yk, x, t) for k = 1, . . . ,M. (3.2)

1In general, the number of points and number of basis functions do not have to be the same, e.g., for Hermite
interpolation. However, because here we only consider Lagrange interpolation, we let M denote both the number of
points and the dimension of the basis.

2Extensions to other methods, e.g., finite difference, finite volume, spectral or h-p, etc. are straightforward.
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Thus, the coefficient functions {c`(x, t)}M`=1 are each a linear combination of the data functions
{uMh

(yk, x, t)}Mk=1; the specific linear combinations are determined in the usual manner from the
entries of the inverse of the M ×M interpolation matrix K having entries Kk` = ψ`(yk), k, ` =
1, . . . ,M . The sparsity of K heavily depends on the choice of basis; that choice could result in
matrices that range from fully dense to diagonal.

A main attraction of interpolatory approximations of parameter dependences is that it effects
a complete decoupling of the spatial/temporal and probabilistic degrees of freedom. Clearly, once
the interpolation points {yk}Mk=1 are chosen, one can solve M deterministic problems (i.e., the
spatial/temporal discretization of (2.10)-(2.11)), one for each parameter point yk, with total dis-
regard to what basis {ψk(y)}Mk=1 one choose to use. Then, the coefficients {ck(x, t)}Mk=1 defining
the approximation (3.1) of the solution of (2.10)-(2.11) are found from the interpolation matrix
K as discussed above; its only in this last step that the choice of basis enters into the picture.
Note that this decoupling property makes the implementation of Lagrange interpolatory approxi-
mations of parameter dependences as trivial as it is for Monte Carlo sampling. However, if that
dependence is smooth, because of the higher accuracy of, e.g., polynomial approximations in the
space P(Γ), interpolatory approximations require substantially fewer sampling points to achieve a
desired tolerance.

Remark 3.1 (The “delta property”) Given a set of interpolation points, to complete the setup
of a Lagrange interpolation problem, one has to then choose a basis. The simplest and most
popular choice are the Lagrange polynomials, i.e., polynomials that have the “delta property”
ψ`(yk) = δk`, where δk` denotes the Kroeneker delta. In this case, the interpolating conditions
(3.2) reduce to ck(x, t) = uh(yk, x, t) for k = 1, . . . ,M , i.e., the interpolation matrix K is simply
the M ×M identity matrix. In this sense, the use of Lagrange polynomial bases can be viewed
as resulting in pure sampling methods, much the same as Monte Carlo methods, but instead of
randomly sampling in the parameter space Γ, the sample points are deterministically structured
as, e.g., tensor product or sparse grid points.

3.2 ADAPTIVE GLOBAL SPARSE-GRID LAGRANGE INTERPOLATION

When the solution is analytic with respect to the noise parameterization [2,38,39], the most widely
used approach to for constructing approximations of the form (3.1) involves the construction of a
global Lagrange interpolant, by replacing the polynomial space P(Γ) by Pp(Γ), defined as the
span of product polynomials, i.e.,

Pp(Γ) = span
{ N∏

n=1

ypnn with p = (p1, . . . , pN) ∈ J (p)

}
,

where the index set J (p) determines the type of polynomial space used. Thus, the dimension M
of Pp(Γ) is the cardinalty of the index set J (p). Two obvious choices are tensor product spaces of
one-dimenional polynomials of degree p for which J (p) = {p ∈ NN : max1≤n≤N pn ≤ p} and
total degree p spaces for which J (p) = {p ∈ NN :

∑N
n=1 pn ≤ p}.
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Both these choices are problematical even for problems having moderately large parameter
dimension N . The first choice results in M = (p + 1)N interpolation points, a number which
grows explosively with increasing N ; this is perhaps the most egregious instance of the curse of
dimensionality. For the second, we have M = (N + p)!/(N !p!) interpolation points, i.e., much
slower growth than for the tensor product case, so that the inevitable fatal effects of the curse are
postponed to higher dimensions. However, this choice requires a judicious choice of the location of
the interpolation points because arbitrary choices can result in large Lebesgue constants which can
lead to serious deterioration in accuracy. Unfortunately, good choices of total degree interpolation
points in N -dimensional cubes are not known, even for moderate values of N .

A third choice for the interpolation abscissas are sparse-grid points, constructed from the roots
of either the nested Chebyschev (Clenshaw-Curtis) or the Guassian polynomials. [2, 38, 39]. Typi-
cally, in these approaches the index set is defined using the Smolyak method [5, 45] where

J (p) =

{
p ∈ NN :

N∑

n=1

αnf(pn) ≤ f(p)

}
with f(p) =

{
0, p = 0

1, p = 1

dlog2(p)e, p ≥ 2
.

Other polynomial spaces have been described and considered in, e.g., [4, 49].

For any choice of interpolation points, a reduction in the number of interpolation points can be
effected by using dimension-adaptive global polynomials. For example, for the tensor product and
total degree cases, one can use the index sets J (p) = {p ∈ NN : max1≤n≤N αnpn ≤ αminp}
and J (p) = {p ∈ NN :

∑N
n=1 αnpn ≤ αminp}, respectively, where the weights αn > 0,

n = 1, . . . , N , can be computed either a priori or a posteriori; see [38].

3.3 ADAPTIVE HIERARCHICAL SPARSE-GRID LAGRANGE INTER-
POLATION

None of the approaches discussed above are effective in approximating solutions u(y, x, t) of
(2.10)-(2.11) that have irregular dependence with respect to the random parameters. This is perhaps
even truer for those methods, commonly refereed to as polynomial chaos methods, that use global
orthogonal polynomials in the parameter space. What is required for the effective approximation of
solutions having irregular dependence with respect to the random parameters is an approximating
space that allows for, through a judicious choice of basis, a multi-level, multi-scale decomposition.
Such an approach can be constructed using piecewise polynomial approximations in the parameter
space with multi-level, multi-scale hierarchical bases. A step in this direction was the development
of an adaptive piecewise linear hierarchical sparse-grid approximation [5, 22] and their utiliza-
tion for solving problems with random inputs [32, 33]. In this section we discuss hierarchical
sparse-grid Lagrange interpolation approaches and also specialize to the approach [5, 22, 32, 33].
In §4, we extend this technique by developing a multi-dimensional multi-resolution interpolating
wavelet-based approximation.

Instead of using global polynomial interpolating spaces that attempt to achieve greater accuracy
by increasing the degree p of the polynomial space, piecewise polynomial interpolation spaces
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attempt to achieve greater accuracy with a fixed polynomial degree by refining the grid that is the
underpinning of the definition of the space. Problems having solutions with irregular behavior
cannot take advantage of increases in the degree of the polynomials used; however, through local
grid refinement in regions where the solution exhibits irregular behavior, piecewise polynomial
spaces have the potential to be effective for such problems. However, realizing that potential for
problems with even moderate parameter dimension N is not a straightforward matter.

Piecewise polynomial spaces for Lagrange interpolation are most often implemented in a stan-
dard “finite element” manner using locally supported nodal basis functions. One advantage of this
approach is that the basis functions have the “delta property” (see Remark 3.1). However, such
choices do not result in a multi-scale basis so that defining reliable error indicators for adaptive re-
finement is a difficult matter and, in fact, obtaining approximations that are optimal with respect to
the number of degrees of freedom used to achieve a desired accuracy is not possible. We also focus
the discussion on sparse-grid hierarchical polynomial interpolation because multi-dimensional ap-
proximations based on tensor product grids are not viable for high-dimensional parameter spaces,
even for polynomial degree p = 1, because of the large number of degrees of freedom involved.

That is, for each parameter dimension n = 1, . . . , N , we define Vn := L2
ρ(Γn). Then, the

desired approximation is based on a sequence of subspaces {Vin}∞in=0 of V of increasing dimension
Min which is dense in Vn, i.e., ∪∞in=0Vin = Vn. The sequence of spaces is also required to be nested,
i.e.,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vin ⊂ Vin+1 ⊂ · · · ⊂ Vn. (3.3)

A set of subspaces satisfying these requirements are defined as the span of a nodal piecewise
polynomial basis of order p, i.e.,

Vin = span{φinjn(yn) | 0 ≤ jn ≤ 2in}, (3.4)

where in denotes the scaling level of all the basis functions φinjn with compact support, i.e., supp(φinjn) =

O(2−in), and φinjn(yn) is a polynomial of degree p. For example, suppose Min distinct points are
selected in the interval Γn such that the maximum distance between any two neighboring points
is of order O(2−in). Then, the simplest choice for the set {φinjn}

Min
jn=1 are the linear “hat” functions

corresponding to the selected points in Γn; in this case, we indeed have that the support of each
φinjn(yn) is of order O(2−in).

Similarly, for an N -dimensional problem, we define VN := L2
ρ(Γ). Then, a sequence of sub-

spaces {VNl }∞l=0 of VN can be constructed using a sparse-grid framework, i.e.,

VNl =
⋃

|i|≤l

N⊗

n=1

Vin =
⋃

|i|≤l

span
{ N∏

n=1

φinjn(yn)

∣∣∣∣ 0 ≤ jn ≤ 2in
}
, (3.5)

where i = (i1, . . . , iN) ∈ NN
+ is a multi-index and |i| ≡ i1 + · · ·+ iN ≤ l defines the resolution of

the sparse-grid approximation in VNL . Note that full tensor-product resolution is defined by simply
replacing the index set by maxn=1...,N in ≤ l.

Instead of using locally supported nodal bases, we construct a hierarchical approximation at
level L using a truncation VNL of the infinite expansion VN . We begin with a basis for VN0 and
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then, due to the nested property of {VNl }∞l=0, we express the finer subspaces of VNl as a direct sum
VNl = VNl−1 ⊕WN

l , whereWN
l = VNl

/
⊕l−1
m=0VNm . Therefore, we have that

VNL = VN0 ⊕WN
1 ⊕ · · · ⊕WN

L . (3.6)

Then, the hierarchical sparse-grid approximation of uMh,M(y, x, t) ∈ VNL ⊗ L2(W (D); 0, T ) in
(3.1) is defined by

uMh,M(y, x, t) ≡ INL (u)(y, x, t) =
L∑

l=0

∑

|i|=l

∑

j∈Bi

cij(x, t)ψ
i
j(y), (3.7)

where INL : VN → VNL denotes the approximation operator, ψi
j =

∏N
n=1 φ

in
jn

denotes a multi-
dimensional hierarchical polynomial, and Bi a multi-index set defined by

Bi ≡
{
j ∈ NN

+

∣∣∣∣
0 ≤ jn ≤ 2in , jn odd , 1 ≤ n ≤ N, if in > 0

jn = 0, 1, 1 ≤ n ≤ N, if in = 0

}
. (3.8)

The approximation space Pp(Γ) = VNL and the particular basis chosen are required to possess
the following properties.

P1) Nested hierarchical subspaces: VN0 ⊂ VN1 ⊂ · · · ⊂ V N
∞ .

P2) Small compact support: supp
(∏N

n=1 φ
in
jn

)
= O

(
2−

∑N
n=1 in

)
.

P3) Interpolatory basis: {φij} in (3.4) is an interpolating basis for Vi, e.g., the “hat” functions,
so that the approximation operator INL in (3.7) is a multi-dimensional interpolation operator.

P4) Decay of the coefficients for smooth functions in L2
ρ(Γ): there exits a constant C, inde-

pendent of the level L, such that for every u(y, ·, ·) ∈ L2
ρ(Γ) the following holds:

L∑

l=0

∑

|i|=l

∑

j∈Bi

∣∣cij
∣∣2 22l ≤ CL‖u‖2

L2
ρ(Γ). (3.9)

Denote byHi = {yi
j | j ∈ Bi} the set of points corresponding to the basis functions ψi

j(y) with
j ∈ Bi; then, the set of points corresponding to the subspaceWN

l is given by ∪|i|=lHi and the set
of points used by INL (u) is defined by

HN
L =

⋃

|i|≤L

Hi (3.10)

which is the sparse grid corresponding to VNL . Note that due to property P1, the sparse grid HN
L is

also nested, i.e., HN
L−1 ⊂ HN

L . In Figure 1, we plot the structure of a level L = 2 sparse grid in
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N = 2 dimensions, without considering boundary points. The left nine sub-grids Hi correspond
to the nine multi-index sets Bi, where

i ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

The level L = 2 sparse grid H2
2 shown on the right (top) includes only six of the nine sub-grids in

black according to the criterion |i| ≤ 2. Moreover, due to the nested property of the hierarchical
basis,H2

2 has only 17 points, as opposed to the 49 points of the full tensor-product grid.

H0,2

i 2
=

2

H0,1

i 2
=

1

H0,0

i1 = 0

i 2
=

0

H1,2

H1,1

H1,0

i1 = 1

H2,2

H2,1

H2,0

i1 = 2

Isotropic sparse grid H2
2

Adaptive sparse grid Ĥ2
2

Figure 1: Nine tensor-product sub-grids (left) for level L = 0, 1, 2 of which only the 6 sub-grids
with i1 + i2 ≤ 2 are chosen to appear in the level L = 2 isotropic sparse grid H2

2 (right-top)
containing 17 points. With adaptivity, each point that corresponds to a large surplus, e.g., the
points in red, blue, or green, lead to 2 children points added in each direction resulting in the
adaptive sparse grid Ĥ2

2 (right-bottom) containing 12 points.

Next, we explain how to compute the coefficients cij(x, t). In general, this requires the solution
of a linear system whose right-hand-side depends only on the value of the finite element approxi-
mation of the solution u at each collocation point. Moreover, the structure of the coefficient matrix
depends on the type of hierarchical polynomials used in (3.7). However, for some choices of the
basis, these coefficients can be computed explicitly.

Example 3.2 (Linear hierarchical piecewise polynomials) We can take the hierarchical one-dimensional
functions to be the standard piecewise linear finite element basis, i.e., the basis function φij in (3.4)
are obtained by the dilation and translation of the function

φ(y) =

{
1− |y| if y ∈ [−1, 1]
0 otherwise. (3.11)
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This basis possesses properties P1 − P4. Examples of higher-degree bases are given in [5]. Then,
INL (u) in (3.7) can be rewritten as

INL (u)(y, x, t) = INL−1(u)(y, x, t) + ∆INL (u)(y, x, t), (3.12)

where INL−1(u) is the sparse-grid approximation in VNL−1 and ∆INL (u) is the hierarchical difference
interpolant corresponding toWN

L . Due to property P1, the set of grid points used by ∆INL (u) can
be denoted by ∆HN

L = HN
L \HN

L−1. Then, due to the interpolatory property P3 and the choice of
the basis function (3.11), by substituting yi

j ∈ ∆HN
L in (3.12), we obtain that

cij(x, t) = INL (u)(yi
j, x, t)− INL−1(u)(yi

j, x, t)

= u(yi
j, x, t)− INL−1(u)(yi

j, x, t)
(3.13)

as the hierarchical surplus. This is simply the difference between the solution u at a point yi
j on

the current level of interpolation and the interpolated value of the previous level [25] at that point.
Therefore, using the recursive formula (3.12), we can compute all the coefficients cij in (3.7) by
calculating the coefficients of ∆INL (u) for l = 1, . . . , L.

According to the analysis in [25], for smooth functions described by property P4, the hierarchi-
cal surpluses tend to zero as the interpolation level goes to infinity. On the other hand, for irregular
functions having, e.g., steep slopes or jump discontinuities, the magnitude of the surplus is an in-
dicator of the interpolation error and, as such, can be used to control the error adaptively. That is,
for the sparse grid HN

L , abscissas involved in each direction can be considered as a tree-like data
structure as shown in Figure 1.

For example, on the left, we show that the red point in H0,0 has 2 children points at level
L = 1 in each of the horizontal and vertical directions; the 4 children are indicated by the arrows
emanating from the red point. Each of its 4 children also have 4 children of their own at level
L = 2, and so on for subsequent levels. Suppose the magnitude of the coefficients (the surplus)
associated with the blue and green children are larger than a prescribed tolerance, but those for
the two black children of the red point are smaller than the tolerance. In this case, refinement is
effected only from the blue and green children; no refinement is done of the black children. This
is indicated by having, at level L = 2, four arrows emanate from the blue and green points, but
none from the black points. We arrive at the adaptive space grid Ĥ2,2 that has 12 total collocation
points, shown on the right (bottom) of Figure 1. The analagous (non-adaptive) isotropic sparse
grid, which has 17 collocation points, is also shown on the right (top).

In general, a grid point in a N -dimensional space has 2N children which are also the neighbor
points of the parent node. However, note that the children of a parent point correspond to hierar-
chical basis functions on the next interpolation level, so that we can build the interpolant INL (u) in
(3.7) from level L − 1 to L by adding those points on level L whose parent has a surplus greater
than our prescribed tolerance. In this way, we can refine the sparse grid locally and end up with an
adaptive sparse grid which is a sub-grid of the corresponding isotropic sparse grid.

A sparse grid adaptive linear stochastic collocation method (sg-ALSCM) that utilizes a locally
supported linear hierarchical basis, given by (3.11), to approximate random functions in the multi-
dimensional hypercube Γ ⊂ RN were considered in [16,24,32,33]. As mentioned in Example 3.2,

15



the expansion coefficients cij(x, t) in (3.7) are simply the hierarchical surpluses and adaptive re-
finement is guided by the magnitude |cij| of those coefficients. However, this approach has a major
drawback: one cannot estimate the error from below with constants independent of the number of
hierarchical levels involved. Thus, the linear hierarchical basis does not form a stable multi-scale
splitting of the approximation space [41] and the absolute value of a hierarchical coefficient is just
a local error indicator and not a true error estimator. As a result, one obtains sufficiently refined
sparse approximations for which the error is behaving as predicted, but in doing so, one may have
used many more grid points than needed to achieve a prescribed error tolerance for the adaptive
procedure. This scheme has no guarantee of efficiency so that some previous claims of optimality
with respect to complexity for this approach are heuristic, not provable and, in general, not valid.

Our approach is generally similar, but uses multi-resolution wavelet approximations that pos-
sess all the properties (P1−P4) of the linear basis functions, but also possess an additional property
that guarantee optimality. We will introduce this essential criteria in Section 4 and more impor-
tantly, also explain the advantages of our novel adaptive wavelet stochastic collocation method
(AWSCM).
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4 ADAPTIVE WAVELET STOCHASTIC METHOD

As discussed several times in the paper, UQ for complex stochastic systems that require the approx-
imation and/or resolution of statistical QoIs involving, e.g., steep gradients, sharp transitions, bifur-
cations, or finite jump discontinuities, in possibly high-dimensional probabilistic domains, require
sophisticated multi-dimensional multi-resolution adaptive algorithms. To be effective, however,
refinement strategies must be guided by accurate estimates of errors (both local and global) while
not expending unnecessary computational effort approximating the QoI with respect to any random
dimension. In the sg-ALSCM described in §3.3, given the hierarchical sparse-grid approximation
(3.7) that satisfies properties P1 − P4, optimal approximations of such irregular problems cannot
be guaranteed. Here, by optimal we mean achieving a prescribed error tolerance with a minimal
number of grid points. This can result in an explosion in computational effort for high-dimensional
problems. Towards alleviating this effect, we require the following additional property of the basis
functions ψi

j (3.7), namely

P5) Riesz property: the basis {ψi
j} in (3.7)} is a Riesz basis so that there exists a constant

CR > 0, independent of the level L, such that for all IL(u) given by (3.7) the following
holds:

C−1
R

L∑

l=0

∑

|i|=l

∑

j∈Bi

∣∣cij
∣∣2 ≤

∥∥ILN(u)
∥∥2

VN
≤ CR

L∑

l=0

∑

|i|=l

∑

j∈Bi

∣∣cij
∣∣2 , (4.1)

where the set of multi-indices Bi is defined as in (3.8) and ILN(u) ≡ ILN(u)(y, ·, ·).

Unfortunately, finite element bases such as the linear hierarchical polynomials used in the sg-
ALSCM of [32, 33] are not Riesz bases, so norms of such approximations can only be bounded
from above (but not from below) by sequence norms of the corresponding coefficients. In other
words, they are not L2

ρ-stable, as implied by property P5. The same can be said for the high-order
hierarchical polynomial basis in [5], the Lagrangian interpolation polynomials used in [38, 39], as
well as the orthogonal polynomials of [26, 28, 52].

On the other hand, standard Riesz bases, e.g., Fourier and orthogonal polynomials, consist of
functions that are globally supported. In the numerical PDE setting, this has the disadvantage of
leading to dense stiffness matrices and, in the UQ setting, to intrusive methods. However, certain
classes of hierarchical wavelet and pre-wavelet bases are not only Riesz bases, but consist of
compactly supported basis functions. Thus, we have the best of both worlds: the compact support
property of standard finite element bases and the Riesz basis property of spectral bases. Moreover,
an interpolating wavelet basis can be utilized for the approximation given by (3.7), satisfies all
the properties P1 − P5, and forms a stable multi-resolution analysis of the stochastic space L2

ρ

as defined in [13]. Hence, for the interpolating wavelet basis, we obtain the two-sided estimates
given by P5. Therefore, the magnitude of the wavelet coefficients |cij| in (3.7) can serve as true
local error estimators and the the lower bounds provided by the Riesz basis property gives us a
rigorous indicator of the efficiency of adaptive schemes. This means a prescribed error tolerance
is reached at the cost of just the optimal number of points (up to a constant) in a sparse grid

17



adaptation process. This results in a superior convergence rate when compared to methods using
other hierarchical multi-scale basis functions. We choose one particular class of second-generation
wavelets, namely lifted interpolating wavelets on the bounded interval, to achieve this goal. We
next provide details about such wavelets.

4.1 SECOND-GENERATION WAVELETS AND THE LIFTING SCHEME

Second-generation wavelets are a generalization of biorthogonal wavelets that are more easily
applied to functions defined on bounded domains. Second-generation wavelets form a Reisz basis
for some function space, with the wavelets being local in both “spatial” domain (in our context,
the parameter domain) and the frequency domain and often having many vanishing polynomial
moments, but they do not possess the translation and dilation invariance of their biorthogonal
cousins. The lifting scheme [46, 47] is a tool for constructing second-generation wavelets that
are no longer dilates and translates of one single scaling function. In contrast to first-generation
wavelets, which use the Fourier transform to build the wavelet basis, a construction using lifting is
performed exclusively in the “spatial” domain so that wavelets can be custom designed for complex
domains and irregularly sampled data.

The basic idea behind lifting is to start with simple multi-resolution analysis and gradually
build a multi-resolution analysis with specific, a priori defined properties. The lifting scheme can
be viewed as a process of taking an existing first-generation wavelet and modifying it by adding
linear combinations of the scaling function at the coarse level. To explain the procedure in detail,
we follow the notation in Section 3.3. The approximation space Vi = span{φij | 0 ≤ j ≤ 2i} in
(3.4) has a decomposition Vi = Vi−1 ⊕Wi, where Vi−1 and Wi are defined by

Vi−1 = span{φi−1
j |0 ≤ j ≤ 2i−1} and Wi = span{φij|0 ≤ j ≤ 2i, j odd }. (4.2)

Here, Wi is viewed as the hierarchical subspace on level i, and φij ∈ Wi are the first-generation
interpolating wavelets. Then, the corresponding second-generation wavelet φ̂ij is constructed by
“lifting” φij as

φ̂ij ≡ φij +
2i−1∑

ĵ=0

αi−1

ĵ,j
φi−1

ĵ
, (4.3)

where the weights αi−1

ĵ,i
in the linear combination are chosen in such a way that the new wavelet

φ̂ij has more vanishing moments than φij and thus provides a stabilization effect. If we apply this
approach to the piecewise linear hierarchical basis, i.e., to the “hat” functions, in such a way that
the lifting wavelet basis has two vanishing moments, we end up with

φ̂ij = φij −
1

4
φi−1
j−1
2

− 1

4
φi−1
j+1
2

for 1 < j < 2i − 1, j odd

φ̂ij = φij −
3

4
φi−1
j−1
2

− 1

8
φi−1
j+1
2

for j = 1

φ̂ij = φij −
1

8
φi−1
j−1
2

− 3

4
φi−1
j+1
2

for j = 2i − 1,

(4.4)
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where the three equations define the central “mother” wavelet, the left-boundary wavelet, and the
right-boundary wavelet, respectively. We illustrate the three lifting wavelets in Figure 2. For
additional details, see [48].

we end up with

ψl
k = φl

k − 1

4
φl−1

k−1
2

− 1

4
φl−1

k+1
2

for 1 < k < 2l − 1, k odd

ψl
k = φl

k − 3

4
φl−1

k−1
2

− 1

8
φl−1

k+1
2

for k = 1,

ψl
k = φl

k − 1

8
φl−1

k−1
2

− 3

4
φl−1

k+1
2

for k = 2l − 1,

(3.13)

where the three equations are used to define central wavelet, left-boundary wavelet
and right-boundary wavelet, respectively. For illustration, we plot these three lifting
wavelets in Figure
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Fig. 3.1: Left-boundary wavelet (left), central wavelet (middle), right-boundary
wavelet (right)

(1)the hat function can be viewed as wavelet but have no Riesz basis property.
The second-generation wavelet is lifted from the first generation wavelet by lifting
scheme and how.

(2) show the lifting process by taking hat function as an example.
(3) The lifted scheme has all 5 properties
(4) say that for 1d case there is fast algorithm for computing the wavelet coeffi-

cients, for multi-dimensional case, we will work on this. So far, we can compute the
coefficients by solving a linear system.

4. Numerical examples.

4.1. Example 1: approximation of a function with regularized line sin-
gularity.

4.2. Example 2: Burgers equation with stochastic initial shock.

4.3. Example 3: Stochastic elliptic problem.

5. Conclusion and future works.
REFERENCES

7

Figure 2: Left-boundary wavelet (left), central wavelet (middle), right-boundary wavelet (right).

Due to the fact that our second-generation wavelets are lifted from the first-generation wavelets,
properties P1 − P4 are guaranteed. In addition, from the analysis provided in [46, 47], we know
that they also constitute a Riesz basis so that property P5 is satisfied. Therefore, introduction
of the lifted wavelet basis into the hierarchical sparse-grid approximation framework results in
a novel non-intrusive sparse grid adaptive wavelet stochastic collocation method (sg-AWSCM).
This method allow us to encapsulate the advantages of the increased convergence rates of stan-
dard SCM and polynomial chaos approaches resulting from higher-order polynomial expansion
(p-refinement) [38] with the robustness of optimal local decompositions (h-refinement) [12] for
the approximation of irregular solutions and QoIs coming from PDEs with random inputs in high-
dimensional stochastic domains.

Note that due to the interpolatory property of the wavelet basis, when computing the wavelet
coefficients in (3.1), we only face an interpolation problem. That is, from the construction pro-
cedure of the lifted wavelets described above, we observe that neighboring wavelet basis function
at the same level have overlapping support such that the resulting interpolation matrix for our
sg-AWSCM is has greater bandwidth compared to that for sg-ALSCM. For the one-dimensional
problem, the paper [48] proposed fast algorithms for computing wavelet coefficients. We are cur-
rently working on extending their algorithms to the multi-dimensional case, but in this paper, we
just use mature numerical libraries, e.g., LINPACK. to solve the linear system for the interpolation
coefficients.
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5 NUMERICAL EXAMPLES

This section illustrates the convergence properties of the sparse grid adaptive wavelet collocation
method for solving three problems. In all examples, we use the linear hierarchical second genera-
tion lifted wavelets described in Section 4.1. The first example is used to compare our sg-AWSCM
with the sg-ALSCM for approximating irregular (deterministic) functions in N = 2 parameter
dimensions. In the second example, we apply our new approach to solve: (a) the Burgers equa-
tion with random boundary condition data and (b) the time-dependent Riemann problem for the
Burgers equation with random initial conditions. Finally, in the third example, we investigate
the ability of the sg-AWSCM to detect the important random dimensions in a elliptic problem
having a moderately high number of random parameter inputs. As opposed to previous dimension-
adaptive approach of [39], our new sg-AWSCM does not require a priori nor a posterori estimates
to guide adaptation. Instead, as described in Section 4, our multi-dimension multi-resolution adap-
tive approach uses only the sparse grid wavelet coefficient to guide refinement while maintaining
near-optimal convergence. We will also use this problem to compare the convergence of our sg-
AWSCM with other ensemble-based methods such as the isotropic sparse grid method and the
sg-ALSCM and to compare all these approaches to the best N -term sparse grid approximation.
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Figure 3: Results for f1(y1, y2) in Example 1: (a) the target function; (b) the points used by the
sg-AWSCM for a tolerance ε = 10−3; (c) error decay vs. number of points; (d) error decay vs. the
tolerance ε.
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5.1 APPROXIMATION OF IRREGULAR DETERMINISTIC FUNCTIONS

Consider the two bivariate functions f1(y1, y2) on [−1, 1]2 and f2(y1, y2) on [0, 1]2 defined by

f1(y1, y2) =





exp(−2(y2
1 + y2

2)) if y2
1 + y2

2 ≥ 0.5

2 exp(−1

2
)− exp(−2(y2

1 + y2
2)) if y2

1 + y2
2 < 0.5

(5.1)

f2(y1, y2) =
1

|0.15− y2
1 − y2

2|+ 0.1
on [0, 1]× [0, 1]. (5.2)

It is easy to see that f1(y1, y2) and f2(y1, y2) represent two types of irregular behavior. The function
f1(y1, y2) has a jump in its first-order derivatives ∂f1/∂y1 and ∂f1/∂2 across the circle y2

1+y2
2 = 0.5

whereas f2(y1, y2) has a steep gradient across the curve y2
1 + y2

2 = 0.15. To construct interpolants
for both f1(y1, y2) and f2(y1, y2) using the sg-ALSCM and the sg-AWSCM, we first build a level
L = 3 isotropic sparse grid as the initial grid, then add nodes adaptively guided by linear hierar-
chical surpluses or wavelet coefficients, respectively. The interpolation results for f1(y1, y2) are
shown in Figure 3. Figure 3(a) displays the function f1; only the first quadrant is shown due to
the symmetries of the function. Figure 3(b) reveals the resulting adaptive sparse interpolation grid
constructed from the lifted wavelets for a tolerance ε = 10−3. In Figure 3(c), we show the opti-
mality of our approximation by plotting the convergence rates for the sg-ALSCM and sg-AWSCM
approximations as well as for the best N -term approximation that is obtained by extracting the N
terms with the N biggest coefficients from an approximation on a non-adaptive, isotropic sparse
grid. We observe that the convergence behavior of the sg-AWSCM more closely matches that of
the best N -term approximation, compared to the sg-ALSCM, which results in a reduction in the
number of function evaluations to achieve the desired accuracy ε = 10−3. In Figure 3(d), we also
plot the convergence behavior of both methods versus the tolerance ε. We see that for the same
prescribed tolerance for the hierarchical surpluses, the sg-AWSCM can achieve higher accuracy
than the sg-ALSCM. Similar conclusions can be made by examining Table 1, where we show the
number of sparse grid points required by the various interpolants to achieve a desired accuracy. In
all cases the sg-AWSCM outperforms the sg-ALSCM and more closely matches the best N -term
approximation.

error α sg-ALSCM sg-AWSCM best N-term
5.0E-03 366 330 265
1.0E-03 774 623 479
5.0E-04 920 737 640
1.0E-04 1927 1548 1261

Table 1: For N = 2 dimensions, we compare the number of function evaluations required by the
isotropic sparse grid (ISG), the sg-ALSCM, and sg-AWSCM and the best N -term approximation
to compute the interpolated approximation of f1(y1, y2) to an accuracy smaller than the prescribed
error tolerance α, i.e., so that ‖INL (f1)(y1, y2)− f1(y1, y2)‖ ≤ α.
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error α sg-ALSCM sg-AWSCM Best N-term
5.0E-02 243 238 237
1.0E-02 445 414 359
5.0E-03 638 491 431
1.0E-03 1392 1062 902

Table 2: For N = 2 dimensions, we compare the number of function evaluations required by the
isotropic sparse grid (ISG), the sg-ALSCM, and sg-AWSCM and the best N -term approximation
to compute the interpolated approximation of f2(y1, y2) to an accuracy smaller than the prescribed
error tolerance α, i.e., so that ‖INL (f1)(y1, y2)− f1(y1, y2)‖ ≤ α.

The same observations and conclusions can be reached for the function f2(y1, y2) by examining
Figure 4 and Table 2. Additionally, in Figure 5, we show the condition number of the linear system
used to construct the interpolation wavelet coefficients f1(y1, y2); we see that the interpolation
matrix is well-conditioned. Therefore, as expected, due to the additional property P5 and the
well-conditioning of the interpolation matrix for the wavelet coefficients, when approximating
functions with discontinuous derivatives, the sg-AWSCM substantially reduces the complexity of
determining an accurate interpolant compared to the sg-ALSCM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b)

0
0.5

1

0

0.5

1
0

5

10

x

(a)

y

10−510−410−310−210−1
10−6

10−5

10−4

10−3

10−2

10−1

tolerance !

L2  e
rro

r

(d)

 

 
AWSCM
ALSCM

0 500 1000 1500 2000
10−4

10−3

10−2

10−1

100

101

# points

L2  E
rro

r

(c)

 

 
Best N−term
AWSCM
ALSCM

y1

y1

y2

y2

Figure 4: Results for f2(y1, y2) in Example 1: (a) the target function; (b) the points used by the
sg-AWSCM for a tolerance ε = 10−2; (c) error decay vs. number of points; (d) error decay vs. the
tolerance ε.
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1.

5.2 BURGERS EQUATION WITH RANDOM INPUTS

We next apply our novel sg-AWSCM to construct optimal approximations of solutions of two
Burgers equation problems. First, we consider the steady viscous Burgers equation with random
boundary condition data: 




1

2

∂u2

∂x
− ν ∂

2u

∂x2
= 0 in [−1, 1]

u(−1) = y(ω), u(1) = 0,
(5.3)

where the left boundary condition data is a uniformly distributed random variable y(ω) ∼ U [0.95, 1.05],
i.e., the parameter space Γ = [0.95, 1.05] and the PDF ρ(y) = 10; the viscosity is set to ν = 0.1.

The deterministic solver used for this problem is as a finite difference discretization of the
conservative form of the equation followed by an application of Newton’s method to solve the
resulting nonlinear system. Figure 6 show the computed realizations of the solution u(y, ·) for
several values of the left boundary value y(ω). Observe that perturbing y(ω) from 1 to 1.005
effects a startlingly large perturbation to the solution u(y, ·). Thus, we conclude that the solution
u(y, ·) is very sensitive to y(ω) near y(ω) = 1. In particular, this holds for the point x0 at which
the solution u changes sign. Thus, if we choose the quantity of interest to be the point x0, we again
have an instance of irregular behavior. Therefore, we focus on quantifying the uncertainty of x0

propagated from y(ω) following the uniform distribution U [0.95, 1.05]. To build the multi-scale
interpolant using the AWSCM, we start with a 4-level uniform grid on [0.95, 1.05] and then add
points adaptively, guided by the size of the wavelet coefficients. The tolerance ε is set to 10−3.
The relation between x0 and y(ω) and the corresponding adaptive grid are shown in Figure 7. We
can see that x0(y) has a steep slope around y(ω) = 1 (which accounts for its high sensitivity
near that value) and that the corresponding adaptive grid is refined around the point y(ω) = 1.
The convergence rate of E[x0] is shown in Figure 8 and compared to that of the best N -term
approximation obtained by extracting N terms with N largest coefficients from an approximation
on an non-adaptive, uniform grid.

Next, we solve a time-dependent Riemann problem for a Burgers equation with random initial
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shock location [44]:




∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0, (x, t) ∈ [−1, 1]× (0,+∞)

u0(x, ω) =

{
1 if x < y(ω)

0 if x ≥ y(ω).

(5.4)
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The initial shock location depends on an uniform random variable y(ω) ∼ U [−0.1, 0.1], i.e., we
have the parameter space Γ = [−0.1, 0.1] and the PDF ρ(y) = 5. A formula for the expectation
E[u] and variance Var[u] of the exact solution u can be found in [44].

The deterministic solver used for this problem is a weighted essentially non-oscillatory (WENO)
scheme. Here we consider the solution at time t = 0.2. We compute the approximate determin-
istic solution on a uniform spatial grid with 1025 points in spatial domain [−1, 1]. In Figure 9,
we plot the expectation and variance of the approximate shock profile at t = 0.2, computed with
the AWSCM; also plotted are the corresponding exact statistics. To test the adaptive wavelet pro-
cedure, we choose our quantities of interest to be the expectations of u(y(ω), x) at 3 locations,
namely E[u](x = 0.036, t = 0.2), E[u](x = 0.127, t = 0.2), and E[u](x = 0.590, t = 0.2).
We then build the grids using AWSCM. At each location, we start with a 2-level uniform grid on
[−0.1, 0.1] in the parameter space and then add points guided by the magnitudes of the wavelet
coefficients. In Figure 9, we plot the adaptive grids for the three cases. We can see that the singular
point of u(y(ω), x, t = 0.2) with respect to y(ω) depends on the value of x. At the time instant
t = 0.2: if x ∈ [0, 0.2] such as x = 0.036 or x = 0.127, then u(y(ω), x, t = 0.2) has a singular
point but its location is determined by the value of x; on the other hand, there is no singular point
in u(y(ω), x, t = 0.2) for x ∈ [−1, 0)∪ (0.1, 1], including for x = 0.590, so that grid refinement in
parameter spaces is not needed; the AWSCM method recognizes this so that the 2-level initial grid
is not changed by the adaptation procedure.
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Figure 9: Expectation (left) and variance (middle) of the probabilistic shock profile in example
(B2).
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Figure 10: Adaptive grids for quantities of interest being E[u](x) at 3 spatial points: x = 0.036
(left), x = 0.127 (middle), x = 0.590 (right) in example (B2).
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5.3 ELLIPTIC PDE WITH RANDOM INPUTS

Similar to [38, 39], we consider an elliptic PDE in two spatial dimensions with random inputs.
As shown in the previous examples, the AWSCM and the sg-AWSCM can accurately capture the
irregular, even non-smooth regions in a low-dimensional stochastic parameter space. If the solution
depends on a moderately large number of random variables with sufficient regularity (analytic in
this case), the major challenge of the numerical approximation is anisotropic (dimension-adaptive)
refinement. Therefore, in this example we demonstrate the ability of the sg-AWSCM method to
detect important dimensions when the random variables do not “weigh equally” in the stochastic
solution.

The specific problem we solve is given by
{
−∇ ·

(
a(ω, x)∇u(ω, x)

)
= cos(x1) sin(x2) in Ω×D

u(ω, x) = 0 on Ω× ∂D, (5.5)

where D = [0, 1]2, x1 and x2 denote the components of the spatial position vector x, and ∇
denotes the gradient operator with respect to x. The forcing term f(ω, x) is deterministic. The
random diffusion coefficient a(ω, x) has a one-dimensional spatial dependence and is given by

log(a(ω, x)− 0.5) = 1 + y1(ω)

(√
πC

2

)1/2

+
N∑

n=2

ζnϕn(x1)yn(ω), (5.6)

where, for n ≥ 2,

ζn := (
√
πC)1/2 exp

(
−
(
bn

2
cπC

)2

8

)
(5.7)

and

ϕn(x) :=





sin

((
bn

2
cπx1

)2

Cp

)
for n even

cos

((
bn

2
cπx1

)2

Cp

)
for n odd.

(5.8)

In this example, the random variables {yn(ω)}∞n=1 are independent, have zero mean and unit
variance, i.e., E[yn] = 0 and E[ynym] = δnm for n,m ∈ N+, and are uniformly distributed in
the interval [−

√
3,
√

3]. For x1 ∈ [0, 1], let CL be the physical correlation length of the stationary
covariance function

Cov[log(a− 0.5)](x1, x
′
1) = exp

(
−(x1 − x′1)2

C2
L

)
. (5.9)

Then, the parameter Cp in (5.8) is Cp = max(1, 2CL) and the parameter C in (5.6) and (5.7) is
C = CL/Cp. Also, ζn and ϕn, for n = 1, . . . , N are the eigenvalues and eigenfunctions (given
by (5.7) and (5.8) respectively) of the covariance operator defined by substituting (5.9) into (2.8).
The eigenvalues ζn in (5.6) decay with increasing n with large values of the correlation length
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CL corresponding to fast decay. Thus, the parameter dimensions have decreasing influence on the
solution as their index increases and, for large CL, the influence decreases quickly. Therefore, an
approximation requires less accurate resolution of the dimensions having small influence, com-
pared with that for more influential dimensions so that, to achieve maximum efficiency (e.g., the
fewest sample points in parameter space) for a given overall accuracy, one should use anisotropic,
or dimension-adaptive set of sparse grid points.

For the numerical results, we set CL = 1
2

and retain 7 terms of the expansion (5.6) and treat
the truncated version as the exact diffusion field. In this case, the eigenvalues are ζ1 = 0.665,
ζ2 = ζ3 = 0.692, ζ4 = ζ5 = 0.274, ζ6 = ζ7 = 0.059. In order to investigate convergence rates,
we compare the expected value E[u] approximated by our sg-AWSCM method with a tolerance
ε = 10−5 to the “exact” solution determined from simulations based on 106 Monte Carlo (MC)
samples of the seven-dimensional parameter. Specifically, in Figure 11, for several values of the
level L, we plot ‖E[INL (u)] − EMC [u]‖, i.e., the L2(D) norm of the “error” between the expected
values obtained using the sg-AWSCM method and the densely sampled MC method. Also provided
in that figure are the corresponding errors for the isotropic sparse grid, for the sg-ALSCM, and for
the best N -term approximation defined by taking the N terms in the isotropic sparse grid solution
with the largest coefficients. The errors are plotted against the number of points in parameter space
each method requires to achieve the desired accuracy. As expected, due to the fast decay of the
eigenvalues, the convergence, with respect to the number of points used, of both the sg-AWSCM
and the sg-ALSCM is much faster than the approximation based on an isotropic sparse grid because
fewer points are placed along the non-important dimensions associated with small eigenvalues.
Furthermore, our new sg-AWSCM also reduces the overall complexity when compared to the sg-
ALSCM approximation, and nearly matches that for the bestN -term approximation. Further proof
of this can be seen in Table 3 that shows a reduction in the computational complexity for computing
the expected value using the sg-AWSCM, when compared to the isotropic sparse grid and sg-
ALSCM, by approximately a factor of 20 and 3 respectively, to achieve a desired accuracy of 10−7.
In fact, for this higher-dimensional problem, the savings incurred by the sg-AWSCM compared to
the sg-ALSCM as much more significant than for the previous low-dimensional examples. One
can expect the relative savings to increase as one further increases the parameter dimension. This
optimal performance is guaranteed by our sparse grid wavelet multi-resolution analysis.

error α isotropic SG sg-ALSCM sg-AWSCM best N-term
1.0E-05 73 34 30 25
5.0E-06 344 85 74 60
1.0E-06 2435 772 476 248
5.0E-07 7767 1271 1038 840
1.0E-07 85861 9604 3824 2812

Table 3: For N = 7 dimensions, we compare the number of function evaluations required by the
isotropic sparse grid (ISG), the sg-ALSCM, the sg-AWSCM, and the best N -term approximation
to compute the expected value of the solution to within a prescribed global error tolerance α, i.e.,
so that ‖E[INL (u)]− EMC [u]‖ ≤ α.
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Figure 11: The convergence rate of isotropic sparse grid, the sg-ALSCM, and the sg-AWSCM
approximations with tolerance ε = 10−5.
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6 CONCLUSIONS

This work proposed a novel sparse-grid adaptive wavelet stochastic collocation method for both
smooth and irregular solutions of partial differential equations with random input data. This
method can be viewed as a major improvement to previous works; isotropic and anisotropic global
Lagrange-type stochastic collocation based on tensor product approximations [2] or sparse grid
approaches [39, 39, 51], as well as the hierarchical sparse-grid locally adaptive linear stochastic
collocation method [32, 33].

The new technique consists of any standard deterministic approximation in the physical space
(e.g. Galerkin finite element) and an adaptive collocation in the probability domain at sparse-grid
points in the random parameter space, along with a hierarchical multi-dimensional multi-resolution
linear wavelet basis. This compactly supported Riesz basis guarantees the stability of the multi-
scale coefficients and leads to optimal hierarchical sparse grid approximations. That is, we are able
to guide adaptive refinement by the magnitude of the wavelet coefficient which results in a minimal
number of grid points to achieve a prescribed tolerance. This alleviates the curse of dimensionality
by reducing the computational complexity for problems having high stochastic dimension. More-
over, as a consequence of the interpolation property, guaranteed by the proposed lifting scheme,
our approach remains completely non-intrusive and naturally allow for the solution of uncoupled
deterministic problems that are trivially parallelizable, as for the Monte Carlo method.

The numerical examples included in this work provide computational verification of the op-
timality of our novel algorithm. The numerical results compare our new approach with several
classical and heavily utilized techniques for solving stochastic problems whose solutions are both
highly regular and even non-smooth with respect to the random variables. The results show that, in
particular, for moderately large-dimensional problems, the sparse grid adaptive wavelet stochastic
collocation approach seems to be very efficient and superior to all methods it is compared to.

Future directions of this research will include the a full convergence analysis of our new ap-
proach that will incorpoorate an examination of the complexity of our algorithm with respect to
the number of collocation points on the sparse grid, as the dimension of the problem increases.
However, as the computational results suggest, we also want to use the theoretical results to fully
explain the optimality of this techniques when compared to previous methods. Finally, we want to
avoid solving an interpolating matrix equation for the wavelet coefficients and intend to develop
fast algorithms for calculating the wavelet coefficients in sparse tensor product spaces.
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