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ABSTRACT

The goal of the COMPOSE-HPC project is to “democratize” tools for automatic transformation of pro-
gram source code so that it becomes tractable for the developers of scientific applications to create and
use their own transformations reliably and safely. This paper describes our approach to this challenge, the
creation of the KNOT tool chain, which includes tools for the creation of annotation languages to control
the transformations (PAUL), to perform the transformations (ROTE), and optimization and code genera-
tion (BRAID), which can be used individually and in combination. We also provide examples of current
and future uses of the KNOT tools, which include transforming code to use different programming models
and environments, providing tests that can be used to detect errors in software or its execution, as well as
composition of software written in different programming languages, or with different threading patterns.

Keywords: Productivity Tools, Evolutionary Programming Models



1. INTRODUCTION

High-performance computational science and engineering (CSE) developers are accustomed to trans-
forming and refactoring their software to maintain and enhance it. Reasons include:
• Porting codes to new programming models, libraries, or platforms;
• Updating calls to a library or utility routine used pervasively throughout a code;
• Changing data structures to improve performance, such as switching between an array of structures

(derived types) and a structure containing arrays as members; and
• Expressing platform-specific optimizations as transformations of code, applied at build time, as a

more sustainable alternative to trying to maintain multiple distinct versions of the code.
Such transformations are typically done manually, in a text editor. On occasion, tools such as sed or scripts
written in perl or python might be used to help automate the process. However, these approaches are tedious
and error-prone. The possibilities for error or oversight by a person working in an editor are obvious. In
addition, text-based transformation tools are not aware of programming language syntax; can easily be
“fooled” by code that violates (often in trivial ways) the programmer’s assumptions; and are hard to apply
selectively. On the other hand, source-to-source transformation tools, such as ROSE [1], are syntax-aware
so can perform such transformations rigorously, but require a deep understanding of compiler operations
and programming experience beyond the majority of CSE software developers.

The COMPOSE-HPC project seeks to address these very real and pervasive challenges through a tool
chain for simplifying the development and use of source-to-source (s2s) transformation, facilitating its adop-
tion as part of the CSE software developer’s tool box. The rest of this paper is organized as follows: We
provide a motivating example of what we’re trying to accomplish, in the context of the NWChem parallel
computational chemistry package [2] (Sec. 2), and then describe the KNOT tool chain and its tools: PAUL,
ROTE, and BRAID (Sec. 3). We then summarize a number of other applications of the KNOT tool chain
we are working on (Sec. 4) and close with a discussion of our experience to date and future plans (Sec. 5).

2. A MOTIVATING EXAMPLE

The NWChem parallel computational chemistry package [2] makes extensive use of the Global Ar-
ray Toolkit (GA) [3, 4], a library-based partitioned global address space programming model that was co-
designed with NWChem. A common idiom in GA programming is dynamic load balancing of irregular
tasks across available processes through the use of a shared counter. However, as process counts increase,
so does contention for the shared counter, which adversely impacts scalability. Moreover, the irregular-
ity of the tasks made it simpler to ignore locality considerations (which tend to increase the imbalance).
This was generally considered acceptable as long as the cost of the computation scaled significantly higher
than communication (i.e., n4 computation vs. n2 communication). However this is clearly not going to be
satisfactory for exascale, where data movement costs, in terms of both time and power, will increasingly
dominate computation costs.

The recent development of the TASCEL [5, 6] task pool environment offers an alternative approach to
the dynamic load balancing problem through work stealing, as illustrated in Fig. 1. Conversion of a code
from the GA shared counter idiom to the TASCEL work pool idiom is a significant change, requiring a series
of transformations which must be implemented carefully and correctly throughout a fairly significant chunk
of code. Though the semantics of TASCEL are relatively straightforward, its application in the original
SCF code is both integral and ubiquitous, making it ideal for annotation-based code transformations. Added
benefits of expressing annotations as structured comments within the original code include:
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Figure 1. Parallel efficiency for
the base (GA) and transformed
(TASCEL) versions of the SCF
mini-application simulating an ar-
ray of beryllium atoms.
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• exposing and making transformation points explicit;
• preserving the original code for production use; and
• facilitating comparisons against the new code.
To illustrate the application more concretely, we focus on the Self-Consistent Field (SCF) [7] module of

the NWChem package, and more specifically on the contribution of the two-electron integrals to the Fock
matrix, which is the most computationally intensive portion of the SCF algorithm. Because of the current
capabilities of the KNOT tools, we piloted the transformations using a somewhat simplified, stand alone
SCF mini-application implemented in C. We are now beginning to work with the full Fortran code within
the actual NWChem package.

The two-electron contribution to the Fock matrix involves a computationally sparse n4 calculation over
an n2 data space. Most of the n4 tasks do not make any significant contribution to the matrix (< 1% for
larger problems), but all must be enumerated and at least partly evaluated to know which are significant. In
the GA idiom, a shared counter is used to track the task identifiers from the n4 space as they are handed out
to processes ready for work regardless of the locality of the associated data. Each task gets the (non-local)
data required to evaluate the significance of the contribution (two tiles each from the “Schwarz” and density
matrices). Exceeding the threshold results in a task proceeding with the four-deep loop nest to evaluate the
relevant block of two-electron integrals and accumulate their contributions to the Fock matrix.

A number of transformations are required to shift the code to use the TASCEL programming model and
optimize it:

1. Change the task enumeration loop so that all processes enumerate all n4 tasks.
2. Filter out, on a process basis, all tasks in which the first Schwarz tile is non-local (to enhance locality).
3. Evaluate the significance of the remaining “local” tasks.
4. Insert significant tasks into a TASCEL task pool, which will be executed with dynamic load balancing

via work stealing.
5. Record which process tasks, from the original n4 space, are actually executed. This can be used to

seed the task pools for subsequent iterations of the SCF algorithm, thus avoiding the expense of global
task enumeration and filtering.

The clearly systematic transformations span a significant code base (over 2100 lines spread over 7 files),
resulting in about a 40% increase in size. A similar set of transformations could be applied to other oc-
currences of the GA shared counter idiom elsewhere in the approximately 4.5M lines of NWChem code to
achieve similar effects.
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3. THE KNOT TOOL CHAIN

KNOT is the overarching name given to the suite of tools we are developing. These tools are intended
to provide selected, general, cross-cutting transformation capabilities, such as language interoperability and
automated contract enforcement, as well as provide a basis for CSE software developers to create their own
transformation tools. Custom tools can be developed to answer software engineering problems related to the
increasing rate-of-change of HPC architectures, allowing scientific programmers to modify, rearrange and
otherwise rewrite their code in an automated, componentized, and deterministic way. This approach enables
a lighter-weight, “pay for what you use” strategy, facilitating the development of small tools addressing
specific needs of applications and their developers, while providing sufficient structure to allow the tools to
be combined and shared with others.

As depicted in Fig. 2, the three main components of the KNOT tool chain are PAUL, ROTE and BRAID.
PAUL is a parser front-end that understands and renders annotations in the scientist’s code. Annotations
identify particular contexts and blocks of transformable code. The scientist is free to use existing annota-
tions drawn from other sources or create new annotations. Annotations may be bound to particular rewrite
rules that ROTE uses to perform the actual transformations. BRAID enables rewrite rules to generate code
in multiple languages. It uses both PAUL and ROTE to create a language-independent intermediate repre-
sentation for complete two-way language interoperability.

3.1 PAUL: USING SOURCE CODE ANNOTATIONS TO CONTROL TRANSFORMATIONS

One of the key challenges to developing automated transformation tools for large software projects is
targeted, end-user control since transformations often require information about their context. The PAUL
(Parser for Annotations in a User-defined Language) component of KNOT is based on the use of comments,
embedded in the original code, to explicitly identify transformation locations and provide context. Preserv-
ing information about transformations directly in the code also provides documentation and mitigates the
risk that transformation information will diverge from the source code over time.

Annotations in PAUL take the form of structured comments. For example,1

/* %TAG formatted-string */

1We use multi-line C comments here. PAUL also supports single line C and C++ comments, as well as F77 and F90 comments
in Fortran.

Figure 2. A schematic depiction of the
process through which custom trans-
formation tools are created and used
within the KNOT tool chain.
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The % introduces the annotation, TAG identifies the particular annotation language to be used, and the re-
maining formatted-string is parsed according to the definition of the indicated annotation language.

Transformation annotations can serve many purposes. They can be used to allow a programmer to
identify specific data structures to be transformed, leaving other data structures within the program alone.
Annotations can also be used to indicate which representation is most appropriate at different program
locations to allow code to be generated to map between two representations. For example, one of the
transformations investigated early in the project involved the conversion of data structures and associated
access code from an array-of-structs to a struct-of-arrays form, which is a common change to improve cache
utilization of code that has an impact on locality of access.

PAUL is implemented as a thin layer over the existing ROSE compiler infrastructure. PAUL provides
the ROSE traversals that can be invoked to search for structured comments, parse them, and decorate the
appropriate nodes of the abstract syntax tree (AST) representing the program via the ROSE AST attribute
mechanism. The result of applying PAUL to an annotated source code is a ROSE AST decorated with the
information contained in the structured comments, ready to be further processed by other KNOT tools.

PAUL also facilitates developing custom annotation languages utilizing new structured comment TAGs.
By default PAUL supports annotations formatted as “key=value” pairs and LISP-style symbolic expressions.
Future plans include adding support for user-supplied parsers. By relying on structured comments and
providing a parser infrastructure, the process of extending PAUL to support the specification and parsing of
new annotations is simplified.

3.2 ROTE: PROGRAM TRANSFORMATION VIA TERM REWRITING

The Retargetable Open Transformation Engine (ROTE) is intended to provide programmers control
over how programs are automatically transformed at the source level in order to implement refactorings
and code adaptations that are necessary in porting code between HPC platforms. While tools like Eclipse
or Netbeans provide refactoring capabilities, they offer only a fixed set of pre-defined transformations over
which users have little control. By contrast, an open engine for supporting transformations will allow users
with specialized knowledge of both the code and platforms to make informed decisions about the precise
manner by which a transformation is implemented.

Our goal with ROTE is to allow transformations to be specified with annotated program code as input,
allowing information not reflected in the language syntax and semantics to be available to the transformation
tool. Source code annotations specified and parsed by PAUL are used to drive the ROTE process, telling the
tool where and how transformations should be applied.

Code transformations in ROTE are based on the formal theory of term rewriting [8]. In the theory, terms
are any tree-structured data, which can be iteratively transformed by the repeated application of rules. A set
of properly constructed rules induces a particular transformation on a set of terms. Although term rewriting
provides us with a solid formal foundation, the theory is quite general; part of the challenge in ROTE is to
adapt the general theory to the specific problem of transforming programs.

There are several existing term rewriting systems, languages, and tools. We evaluated a number of
these, including Maude [9], CiME [10], Stratego [11], and ASF/SDF [12]. Some of these tools are already
specialized to work with source code, but only at a very low level. Since our transformations are intended
to be directed by end-users, ROTE must be able to mediate between users’ high-level intentions and the
low-level details of term rewriting tools. We use a tool called minitermite, developed as part of the SATIrE
project [13, 14], to bridge between a high-level representation, similar to an AST, and a lower-level term
representation used at the level of the rewriting system. We have extended minitermite to support Fortran-
specific AST nodes in addition to the original C language support.

We have investigated two approaches to the specification and implementation of transformations. First,
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foo(...,
- struct s *k
+ struct s k
,...) {
<...
- k[E1].x
+ k.x[E1]
...>
}

Figure 3. A snippet of Coccinelle “semantic patch” syntax
showing the before and after code in transforming part of
a C program from using an array-of-structs to a struct-of-
arrays. Similar to a unix “unified diff” patch, the overall
pattern of the patch code snippet is matched to the source
code. Lines prefixed with “-” specify patterns to be replaced
with the matching “+” line. Different from unix diffs, the
matching is language aware and pattern-based rather than
literal text.

we have used the Coccinelle [15] tool to implement transformations as semantic patches. This diff-like
format allows a transformation to be specified with a before-and-after template of the code to be modi-
fied. Coccinelle is convenient because it provides an interface layer between ROTE and the underlying
term rewriting engine, but unfortunately it currently only supports the C language. Second, we have used
Stratego/XT, a full-featured term rewriting system, to implement transformations directly as rewrite rules
on terms. Stratego does provide a facility for transforming program source code to and from the “ATerm”
term format, but is otherwise a much lower level tool than Coccinelle. In particular, rules can specified
directly on the term encoding of the program, and this can be useful, at times, when very precise or subtle
transformations are required.

The choice to approach ROTE using both higher-level semantic patches and lower-level term rewriting
rules allows us to study the problem of user-tunable transformations at two different levels of abstraction.
On the one hand, the semantic patches in Coccinelle allow us to specify complex transformations with
relative concision and clarity, since the patch is expressed directly in terms of C syntax. For example, a
semantic patch that matches and transforms access to a C struct is done by writing normal C syntax
for the structure accessors, and using diff-like “+/-” prefixes to indicate the pre- and post-transformation
code (an example is shown in Figure 3). Rewriting systems like Stratego instead require such program
elements to be denoted by AST nodes; this syntax can be quite verbose, and consequently may obscure the
transformation logic. On the other hand, semantic patches provide the user with only a before-and-after view
of transformations, and may make complex, multi-step transformations cumbersome to describe. In term
rewriting systems, transformations are built up from smaller transformations, allowing for precise control
over their composition.

PAUL annotations are used by ROTE in two ways. First, in Coccinelle’s semantic patch format, we
have observed that targeted transformations (i.e., transformations that single out a specific data structure or
instance) can induce rather convoluted patches. To mitigate this issue, we have used PAUL annotations to
embed the targeting information within the program code itself. The annotations are then used to generate
the complex parts of the semantic patch automatically. Second, in Stratego annotations allow us to embed
metadata that will appear as sub-terms in the AST representation. This allows for rules which are “keyed”
to, or triggered by, particular annotations. We have used this facility in order to target specific regions of a
program, as well as to embed semantic information not inferable from the AST itself.

We are using PAUL and ROTE to apply the locality, communication, and scalability optimizations in the
Self-Consistent Field application discussed in Sec. 2, and also in the BLAS to CUBLAS transformation for
GPU-based accelerators discussed in Sec. 4.
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3.3 BRAID: LANGUAGE-INDEPENDENT CODE GENERATION

The BRAID rewrite system for abstract intermediate descriptions combines a term-based intermediate
representation with code generators for the languages C, C++, Fortran 77–2008, Java, Python, and Chapel.
BRAID is intended to be complementary to ROTE, operating at a higher level of abstraction, and in a
language-independent fashion. But BRAID’s powerful capabilities can also be used separately from ROTE,
which is the case for our initial applications.

While ROTE inherits the detailed intermediate representation (IR) used by ROSE, which captures all of
the details of the input source code down to the spacing of tokens within a line of code, BRAID operates
at a higher level. It uses a specially designed IR that is more abstract, language independent, and easy
to generate. While most programming languages offer multiple ways to express an operation, the BRAID
IR provides just one way represent each source language construct which is identical for all supported
programming languages. Switching output languages is simply a matter of switching code generators. It is
straightforward to define semantic-preserving conversions between the ROTE and BRAID IRs.

To facilitate authoring tools that work with the BRAID IR we provide a pattern-matching mechanism,
which we used extensively in the implementation of the BRAID code generators. The pattern-matcher sup-
ports terms as first-class data types and provides full unification semantics. For example, we can write a code
generation rule for variable increment operations that matches against each assignment(Var,bin_op(plus,
Var, 1) where both occurrences of Var are identical. We implemented the pattern-matcher as an extension
to the Python language inside of a decorator that expands all pattern-matching operations to more low-level
Python code on the fly. For each node type in the IR, we automatically generate several helper functions
from the formal grammar specification of the BRAID IR, including constructor functions that dynamically
type-check each of the node’s children. If these functions are used, it is impossible to create an inconsistent
IR tree. Due to the dynamic nature of the Python language it is also possible to experiment with ad hoc node
types by bypassing the type-checking constructors.

Initial applications of BRAID have been focused on language interoperability and interface contracts,
both of which are discussed in Sec. 4.

4. (OTHER) APPLICATIONS OF THE KNOT TOOL CHAIN

Since the primary purpose of the KNOT tool chain is to allow developers to create custom transformation
tools to address their software challenges, we briefly summarize some of the other applications we are
pursuing, besides the SCF example presented in Sec. 2, to help drive our overall research forward.

4.1 LANGUAGE INTEROPERABILITY

While most modern large-scale CSE applications involve the use of at least two programming languages,
and sometimes more, the connections between them, which can be subtly tricky and frequently compiler-
dependent are most commonly done manually.

With BRAID, we are building on prior work developing the Babel [16, 17] tool, which takes a more
general approach to language interoperability. BRAID allows the generation of glue code which is tailored
to the specific target application, allowing many of the overheads (both in terms of performance and code
size) previously associated with the Babel approach to be eliminated.

To illustrate these capabilities, we used BRAID to develop an interoperability tool that supports the
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Chapel language [18] in addition to C, C++, Fortran, Java, and Python2. The resulting tool takes formal
definitions of the desired interfaces, expressed in the Scientific Interface Definition Language (SIDL), pre-
viously developed in conjunction with Babel, and generates tailored glue code (partly in Chapel, partly in
C) that translates function arguments as needed. We also extended the Chapel runtime to allow Chapel’s
distributed arrays to be passed to other programming languages without copying the actual data [19, 20].

4.2 CONTRACTS FOR CORRECTNESS AND RESILIENCE

BRAID is not limited to language interoperability applications. It is also being used to support the spec-
ification and enforcement of contracts for software interfaces. Executable interface contracts are a software
verification mechanism involving the runtime monitoring of correctness properties. Interface contracts iden-
tify those properties that must be satisfied by the caller to use the software correctly and those that must be
satisfied by a proper implementation of the interface.

The specification and automated runtime checking of software contracts are not typical features of tra-
ditional scientific programming languages. These capabilities, supported in Babel [21], are being integrated
into KNOT through BRAID and PAUL. PAUL structured comments will be used to specify the contracts,
and BRAID will generate the verification code.

In addition to supporting software verification, contracts can also aid fault tolerance. Silent data corrup-
tion is an area of increasing concern as we approach exascale. Contracts specifying “sanity” and consistency
checks on outputs (and inputs, to be thorough) can be used as detectors for data corruption. In many cases,
such contracts would be based on the programmer’s knowledge of the domain and the mathematics behind
the simulation, making them quite complementary to other techniques to detect data corruption.

4.3 SIMPLIFYING THE USE OF ACCELERATOR-BASED SYSTEMS

Accelerators, such as GPUs, are currently a popular route to increasing hardware performance while
limiting cost and power consumption. As they are commonly used today, CSE applications must put in a
good deal of additional effort to take advantage of them, porting and maintaining (portions of) their code to
a new language (i.e. CUDA or OpenCL). However, as accelerators gain support from common numerical
libraries, it will become increasingly feasible to take advantage of accelerators through calls to libraries
maintained by others, thus reducing or eliminating the need to maintain two code bases in parallel.

On the other hand, the interfaces for GPU libraries are generally not the same as the corresponding
CPU versions – data must be marshaled to and from the accelerator, etc. Thus, the programmer is still left
with a code maintenance challenge if they want to be able to use their application on both accelerator and
non-accelerator systems.

We have developed a proof of principle demonstration which uses ROTE to transform BLAS library
calls into the CUDA BLAS (or CUBLAS) library developed by NVIDIA, including the necessary mem-
ory management and data marshaling code. PAUL annotations are used to control the application of the
transformations so that (for example) small operations, which are not cost effective to execute on the ac-
celerator, can be kept on the CPU. With such tools, the application developer could write and maintain the
CPU-only version of the code, along with annotations for where CUBLAS substitutions are appropriate.
The transformations could then be applied at compile time, depending on the target platform.

Right now, the ROTE term rewriting engine is limited to the languages supported by the ROSE compiler.
BRAID will enable us to automatically generate code for an unsupported accelerator or a highly domain-

2This synergistic work is funded under the Composite Parallelism project supported by DOE ASCR.
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specific language (DSL). In this scenario, a transformer written with ROTE removes compute kernels from
the original program and inserts the calls and data transfers to the accelerator in their place. The (ROTE)
term representation of the compute kernels is then raised into the BRAID representation and handed over to
a code generator that compiles it into for the accelerator code. BRAID was designed to make it easy to write
customized code generators for new languages. Supporting a new accelerator architecture is then mostly a
work of writing a new BRAID code generator.

4.4 COMPOSITION OF THREADED SOFTWARE

A more forward-looking application we are beginning to explore involves multi-threaded applications.
Although threaded applications have been around for quite some time, the rise of multi-core processors
has lead to increasing interest in multi-threading. One of the challenging problems that comes with multi-
threaded applications is how to deploy them onto the computer – what combination of MPI processes and
threads to use – in order to get the best performance? Experience shows that frequently, different portions of
an application will perform better with different threading models. However with today’s tools, applications
are generally forced to compromise on a single threading model which is used throughout the application.

The goal of our work in this area is to allow different portions of an application to run with different
threading models, using tools built with the KNOT tool chain to insert the code necessary to glue the differ-
ent portions together. We are currently working with an OpenMP multi-threaded version of the LAMMPS
molecular dynamics application [22–24] to identify an appropriate target for a proof of principle implemen-
tation of the threaded composition capability which we will subsequently automate with KNOT.

5. DISCUSSION AND FUTURE PLANS

We have described how the COMPOSE-HPC project is developing a suite of tools, collectively known
as the KNOT tool chain, aimed at democratizing source-to-source transformation technology in order to
make it accessible to knowledgeable developers of computational science and engineering applications. Our
goal is a “pay for what you use” environment, in which users can develop small, tailored solutions to their
programming challenges with the confidence that they can be shared and composed. We have also described
a number of diverse applications we are pursuing, both as demonstrations of the possibilities and to drive
our research and development forward.

Our work to date has focused primarily on developing the core capabilities needed in the KNOT tools,
leveraging existing tools wherever possible. As capabilities mature, we will increase our focus on the
user interface to the tools, which is crucial to our research objective of demonstrating s2s transformation
technology which is tractable for those who are not experienced in writing compilers. Given the scope
and duration of the project, our goal is to deliver research-grade, proof of principle implementations of
the technology – accompanied by compelling demonstrations of its use – which can be turned into robust
production-quality tools as a follow-on activity.
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