
 

1 

HPC Colony II
Award No. ERKJT17

Consolidated Annual Report
July-2010 to June-2011

Terry Jones1, Laxmikant Kalé2, Gennady Laventman3, Benjamin Mandler3
Celso Mendes2, Esteban Meneses2, José Moreira3, Yoav Tock3, Lukasz Wesolowski2

1Oak Ridge National Lab
Mailstop 5164

Oak Ridge, TN 37831

2University of Illinois
201 N. Goodwin Avenue

Urbana, IL 61801

3International Business Machines
1101 Kitchawan Rd

Yorktown Heights NY 10598

Submitted by: Terry Jones, PI
June 10, 2011

Summary

This report provides a brief progress synopsis of the HPC Colony II project for the period
of July 2010 to June 2011. HPC Colony II is a 36-month project and this report covers
project months 10 through 21. It includes a consolidated view of all partners (Oak Ridge
National Laboratory, IBM, and the University of Illinois at Urbana-Champaign) as well as
detail for Oak Ridge. Highlights are noted and fund status data (burn rates) are provided.

1 Background

Colony II is a three-year Computer Science oriented project funded from the Fast-OS Re-compete
program. The primary goal for Colony II is to enable portable performance on leadership-class
machines—a task made difficult by the emerging variety of more complex computer architectures.
Colony II attempts to move the burden of portable performance to system software, thereby allowing
domain scientists to concentrate on their field rather than the fine details of a new leadership class
machine. An overview matrix is provided in Table 1.

 
Table 1: Overview Matrix for Colony II

 

2 

2 Project Progress over Last 12 Months (months 10 through 21)

To help realize our project goal of portable performance, the HPC Colony II project is focused
on six interrelated topic areas which utilize adaptive technology to make portable scalability much more
feasible. Our six topic areas are:

o Reduce performance consequences from fault tolerance
o Provide scalable membership, monitoring, & communication services
o Investigate innovative ways to provide dynamic load balancing
o Improve the resource management interface between center batch scheduling & on-node

system software
o Enable broad application sets on most capable machines
o Enable Linux kernel advances for extreme scale systems

2.1 Kernel & Kernel Support Advances (Colony lead: ORNL)
 
 

During this period, we developed the first co-scheduling Linux kernel designed for High Performance
Computing. Results were obtained on ORNL’s Jaguar XT5 system; first with the normal scheduling
Linux 2.6.16.60 operating system, then with the coordinated scheduling Linux 2.6.16.60 operating
system described above. Results for normal Linux scheduling showed noticeable variability from test to
test at scales of 10K cores. This was expected and coincides well with results obtained from Hoefler et al.
[Hoefler10] and Sottile et al. [Sottile04], as well as our previous work. Performance measurements were
then obtained using the coordinated-scheduling policy and modified operating system. It was immediately
clear for this workload that the coordinated scheduling provided a significant performance improvement,
both in terms of average execution time and in terms of variability between runs. Finally, an additional set
of performance numbers with the normal operating system were measured. The last set of normal
operating system results closely matched the set of results obtained before the co-scheduled kernel results
taken in the middle.

The left half of Figure 1 depicts the normal Linux results while the right half of Figure 1 depicts the
co-scheduled results. As described earlier, the benchmark employed for this testing results in a single
number corresponding to a unit of execution time, the lower the better. The graphs indicate shorter
durations (better performance) for the co-scheduled kernel.

The best observed time from all experiments was 0.44. The average execution time for the co-
scheduled kernel was 0.56, which compares to 1.60 with the Normal Scheduled kernel. An improvement
of 285%. Moreover, the variability was much improved with the co-scheduled kernel. The standard
deviation for the Normal Scheduled samples was 5.32; this compares to 0.20 for the co-scheduled kernel.

 
Figure 1. Coordinated and uncoordinated schedulings. The above figure portrays histogram bins in a
pie-chart to provide an indication of the relative timing of runs. The top chart gives results without
scheduling, and bottom chart gives results for coordinated scheduling.

 

3 

 
Figure 2. Coordinated and uncoordinated schedulings. The above figure portrays a histogram of runs
with and without coordinated scheduling. The lower histogram includes coordinated scheduling.

With a standard deviation larger than the average, it is clear that the samples do not follow a Gaussian
distribution. In fact, the distribution of samples for the co-scheduled kernel has a very prominent peak
near the average measurement, and a short tail of longer times. However, the distribution for the Normal
Scheduled kernel has a much broader peak and a very long tail of outlier samples with much longer times.
These results can be seen in Figure 2. In the left histogram, the worse performing outliers are circled in
red, and the two most are off the charts at 8.88 and 60.77. This variability is in stark contrast to the co-
scheduled results in the right histogram of Figure 2.

In context, the 285% speedup is good news for that class of applications impacted by synchronizing
collectives, but it should be noted that overall application performance will depend upon many factors
beyond synchronizing collective performance. Yet the 30% overall application slowdown reported by
Nataraj et al. [Nataraj07] and Ferreira et al. [Ferreira08] indicates a significant amount of speedup may be
realized by an entire application when noise effects are minimized.

2.2 Fault Tolerance Advances (Colony lead: Univ. of Illinois)

Also during this period, we continued our fault tolerance research by investigating a more advanced

form of the message-logging scheme that we had studied initially. The new technique is based on a
variant of the causal message logging protocol that seems to be a promising alternative to provide fault
tolerance in large supercomputers. This study was conducted over three phases: first, we analyzed various
scenarios that make pessimistic (i.e. conservative) message logging compromise the performance in order
to keep consistency in an execution; next, we did a performance comparison of pessimistic and causal
approaches for message logging with different applications; then we conducted a performance evaluation
of the simple causal message logging protocol for applications that scale up to 1024 processors.

In contrast to pessimistic message logging, this new causal approach has low latency overhead,
especially in collective communication operations. Besides, it reduces the number of messages when
more than one thread is running per processor. In our tests, we demonstrated that a simple causal message
logging protocol has a faster recovery and a low performance penalty when compared to
checkpoint/restart.

As an example of the performance achieved with the new approach, Figure 3 shows the execution
time observed on the NAS Benchmarks running on 1,024 processors of NCSA’s Abe cluster. This figure
shows the times for executions in the forward path, i.e. under no faults. The causal scheme presents
significantly lower overhead than pessimistic message logging, and achieves performance very similar to
the traditional checkpoint-restart case.

 

4 

 

 
Figure 3. Results with NAS Benchmarks running on 1,024 processors of
NCSA’s Abe cluster 

Figure 4. Effect of a failure on execution of a 7-point stencil.

To better evaluate the new approach when failures occur, we employed a 7-point stencil, and forced
the recovery to happen after an external failure was introduced in the execution. The code executes 200
iterations, and we introduced a failure at iteration 140. Figure 4 shows the performance under the causal
message logging protocol and under checkpoint-restart; a checkpoint was taken at iteration 100. The
figure plots the application progress, in terms of completed iterations, as a function of elapsed time. In the
checkpoint-restart case, the work of a few iterations (i.e. 100 to 140) needs to be redone when the failure
occurs; meanwhile, with causal message-logging, only the failing processor requires its work to be
repeated, and other processors that do not depend on it can proceed. Hence, the interruption is less severe,
and the overall execution is allowed to complete faster than in the checkpoint-restart case. Notice also the
significant energy savings of the causal message logging protocol over checkpoint-restart, as only a few
processors are affected by the occurrence of the failure and its recovery.

In summary, our evaluations so far identified multiple performance problems of pessimistic message
logging and showed that causal message logging has better performance and scalability for all the
programs we ran in our experiments. Full results of these studies were reported in [Meneses2011]. There
are, however, remaining challenges for causal message logging. Specifically, it imposes a higher latency
on communication, which can be a problem for strong scaling and collective operations, and it requires a
modest amount of additional memory to store determinants, when compared to executions without any
fault tolerance provision. As we proceed in our research, we are addressing these issues and exploiting
ways to alleviate them on large scale systems.

2.3 Scalable Load Balancing (Colony lead: Univ. of Illinois)

During this reporting period, we significantly
expanded our research on dynamic load-balancing
techniques. First, we consolidated our studies of applying
a hierarchical load-balancing scheme that we had
developed in the previous year; those studies were
reported in [Zheng2010]. Using this hierarchical load
balancer more recently, combined with optimizations
added to the SMP version of Charm++, we were able to
scale the NAMD molecular simulator to the entire extent
of Jaguar, a Cray XT5 at ORNL, running on 224,000
processors. Part of the obtained results, which we reported
in [Mei2011], is shown in Figure 5, corresponding to
NAMD’s performance under different configurations on
Jaguar with a 100 million-atom dataset. As shown,
scaling is excellent for the no-cutoff case.

Figure 5. Scaling of NAMD on ORNL’s Jaguar

under different configurations.

 

5 

The areas of weather and climate prediction pose a hard challenge for the efficient use of large
systems. One of the major factors limiting performance of forecasting models in current machines is load
imbalance. Besides the static causes of such imbalance, such as topography, there are dynamic factors that
may affect a weather simulation, like the movement of clouds and of thunderstorms. Due to that
imbalance, scalability of those models suffers when they are executed on a large number of processors.

We investigated the use of our Adaptive MPI (AMPI), an implementation of the MPI standard based
on Charm++, on BRAMS, an existing production-level weather forecasting model. BRAMS is written in
Fortran90 and uses MPI for parallelization. As an example, Figure 6 shows the result of a real BRAMS
forecast and the corresponding load observed on the 64 processors executing that forecast. The color
coding scheme represents rain intensity, in the forecast, and processor load, in the grid of processors. As
one can see, there is a big and clear correlation between more rain and higher computational load.

We conducted several tests with BRAMS on Kraken, a Cray XT5 at ORNL. In those tests, we
assessed the effects of virtualization and of load balancing on BRAMS executions. Our first observation
was that simple AMPI virtualization already improved BRAMS performance. This was due to a
combination of (a) better overlap between computation and communication, and (b) better cache
utilization, since the over-decomposition of AMPI produces sub-domains that more naturally fit the sizes
of the machine’s caches (we measured such cache improvements and reported results in
[Rodrigues2010]).

Figure 6. Results of a BRAMS weather forecasting and corresponding load on the 64 used processors.

Next, we applied several load balancers to BRAMS. Besides testing various load balancers already
available in Charm++, we also developed a new balancer based on the distribution of sub-domains to
processors according to a space-filling curve defined by to a Hilbert function. This distribution seems to
be very appropriate for the two-dimensional domain decomposition employed by BRAMS, and preserves
some of the locality of communication across sub-domains, even when some of those sub-domains
migrate across processors due to load balancing. As a brief sample of our obtained results, Figure 7 shows
the original processor utilization in BRAMS before any virtualization was applied, and the resulting
utilization obtained with a virtualization factor of eight (i.e. AMPI divides each original domain into eight
sub-domains) and the Hilbert load balancer. There is a much higher utilization, and we observed a
reduction of more than 30% in the total execution time.

Figure 7. Processor utilization in BRAMS: pre-virtualization (left) and after virtualization and load-balance (right).

 

6 

The more recent work in this area has focused on attempts to provide more automation to the entire
optimization process via load balancing, such as finding automatically the best load balancing period,
based on balancing costs and imbalance penalties. Our studies indicated that, for codes with a large
memory footprint such as BRAMS, assessing the degree of imbalance is relatively cheap compared to
actually migrating sub-domains across processors. Hence, one can exploit techniques that monitor the
degree of imbalance closely, and only allow migrations that would produce performance gains higher
than the penalties associated to the current imbalance.

The present grant also partly funded preliminary work on power-aware load-balancing techniques. It
is now well known that increasing the number of cores and clock speeds on a smaller chip area implies
more heat dissipation and an increased heat density. This increased heat, in turn, leads to higher cooling
costs and the possible occurrence of hot spots. Effective use of dynamic voltage and frequency scaling
(DVFS) can help to alleviate this problem. However, there is an associated execution time penalty, which
can get amplified in parallel applications. In high performance computing, applications are typically
tightly coupled and even a single overloaded core can adversely affect the execution time of the entire
application. We have started to investigate a temperature-aware load-balancing scheme that uses DVFS to
keep core temperatures below a user-defined threshold, with minimal timing penalties. While doing so, it
also reduces the possibility of hot spots. We tested our scheme with three parallel applications having
different energy consumption profiles.

Results from our initial experiments show that it is
possible to save up to 14% in execution time and 12%
in machine energy consumption as compared to
frequency scaling without using load balancing. As an
example, Figure 8 shows the measured execution time
of a Jacobi-2D code on 128 processors, as a function of
the temperature set for the machine room’s air
conditioner. When our temperature-aware load balancer
(TempLDB) is used, the effects of a slowdown due to
pure DFVS are not as strong, resulting in better overall
performance. In other tests, we are also able to bound the
average temperature of all the cores and reduce the
temperature deviation amongst the cores by a factor of
three. A full description of our initial results in this area
was reported in [Sarood2011].

Figure 8. Effects of temperature-aware load balancing on Jacobi-2D
execution with 128 cores under DVFS

2.4 Task Mapping (Colony lead: Univ. of Illinois)

The third focus of our study was the problem of task mapping on large parallel machines. Network

contention has a significantly adverse effect on the performance of parallel applications with increasing
size of parallel machines. Machines of the current petascale era are forcing application developers to map
tasks intelligently to job partitions to achieve the best performance possible. We have developed a
framework for automated mapping of parallel applications with regular communication graphs to two and
three dimensional mesh and torus networks. This framework can save much effort on the part of
application developers to generate mappings for their individual applications.

One component of our framework is a process
topology analyzer to find regular patterns and, when
found, to determine the dimensions of the communication
graphs of applications. The other component is a suite of
heuristic techniques for mapping 2D object grids to 2D
and 3D processor meshes. The framework chooses the best
heuristic from the suite for a given object grid and
processor mesh pair based on the hop-bytes metric. We
obtained performance improvements using the framework,
for a 2D Stencil benchmark in MPI and for the Weather
Research and Forecasting model (WRF) running on the
IBM Blue Gene/P.

Figure 9. Results from topology-aware mapping of the WRF

model on Blue Gene/P

 

7 

For WRF, some of our results are shown in Figure 9; on 1,024 nodes, the average hops per byte
reduced by 63% and the communication time (not shown in the figure) reduced by 11%. We measured an
overall performance improvement of 17% for the application. At 4,096 nodes, there is a reduction in total
execution time by 5%. Such performance improvements can be quite significant for the overall
completion time of long running simulations. We also compared our algorithms with others discussed in
the literature, as described with the full results of this study in [Bhatele2010].

2.5 Scalable membership, monitoring, & communication services (Colony lead: IBM Research)

We continue our activities on the HPC Colony II project for the second year, in cooperation with our

partners from Oak Ridge National Laboratory (ORNL) and University of Illinois at Urbana-Champaign.
As originally planned, we conducted research on scalable membership, monitoring and

communication services that will enable sophisticated applications and general purpose cluster computing
on high-performance computing systems with a very large numbers of processors. The SpiderCast
system, that will provide these services, will be based on overlay and peer-to-peer technologies.

Membership services enable the discovery of both active group processes as well as failed nodes and
processes, thus facilitating fault tolerance implementations [Renesse98, Ganesh03, Allavena05,
Varma06]. The Attribute-service allows each node to declare runtime attributes on itself, which facilitates
easy integration of cluster services and a distributed mechanism for service location and discovery.
Monitoring services enable the collection and aggregation of statistics from nodes and processes thus
supporting the implementation of dynamic load balancing schemes [Renesse03]. Group communication
services provide groups of processes with the means to efficiently communicate using topic-based
publish/subscribe, which greatly helps developing clustered applications [Chockler01, Eugster03,
Chockler07]. SpiderCast will also provide a DHT (distributed hash table) implementation, which provides
services for storing and looking up key-value pairs in a distributed manner [Stoica01, Cass10].

SpiderCast will, on the one hand, utilize the unique architecture and networking features of Blue
Gene [BGP08] to achieve top performance, and on the other hand, develop scalable technologies for
systems with tens of thousands of processors, which can be deployed on general clustered systems.

The following specific activities were conducted in this funding period:

1. We completed the implementation of
the multi-zone scalable membership
service (see [TR1]). This service
supports a two level hierarchy of
SpiderCast zones, which allow an order
of 1000 zones, each holding and order
of 1000 nodes. We have a software
prototype that demonstrates these
capabilities.

2. We completed the low level design of the Distributed Hash Table (DHT, see [TR2]). This service
allows storage and lookup of key-value pairs in the memory of SpiderCast nodes. It is exposed as
a service to the application using SpiderCast and is also used as an internal building block of the
publish-subscribe component.

3. We completed a prototype implementation of the DHT.
4. We completed the low level design of publish-subscribe component.
5. We expect to finish the implementation of the publish-subscribe component by end of funding

period, according to plan.
6. By the end of the current funding period we will complete a software prototype of the DHT and

Publish-Subscribe services. We will present the results of our experiments and provide additional
documentation.

 

8 

3 Project Status and Future Plans

Progress for Colony II has proceeded according to plans and without unresolved problems. During
this reporting period, we maintained bi-weekly teleconferences with our project collaborators from UIUC
and IBM, and had two face-to-face team meetings: one at the Supercomputing’10 conference in
November’2010 at New Orleans, Louisiana, and another in April’2010 during the 9th Charm++
Workshop at Urbana, IL. Finally, a project website is maintained at http://www.hpc-colony.org
 
3.1 Overall Assessment of Progress With Respect to Project Plan
 

To date, all project FWP milestones have been realized on time.
Table 2. HPC Colony FWP Milestones for months 10 through 21

PROJECT Milestones (months 10 through 21)
July 2010 – June 2011

Planned Actual

Load-balancing framework capable of accepting application
knowledge information

07/2010 07/2010

Message-logging protocol extended with integration to load-
balancing

 09/2010

01/2009

Demonstration of a basic overlay-based communications stack
that runs on both Blue Gene networks (torus, collectives)

09/2010 01/2009

An initial prototype of the standalone distributed
communication infrastructure

 09/2010 01/2010

Documentation plus manual of the communication
infrastructure

 09/2010 09/2009

Initial demonstration of Oak Ridge National Laboratory and
UIUC selected applications

 09/2010 09/2009

Annual report of activities submitted to U.S. Department of
Energy (DOE)

09/2010 06/2010

New class of hierarchical load balancers based on topology-
aware algorithms

 12/2010 12/2010

Demonstration of a basic SpiderCast system functionality in
Blue Gene

 03/2011 03/2011

Evaluation and testing of the standalone communication
infrastructure on a large cluster of computers

03/2011 03/2011

Research paper/report 03/2011 11/2010
Message-logging and proactive fault-tolerance schemes tested

on full-scale applications and integrated to Charm++
distribution

 03/2011 03/2011

Paper reporting new Fault Tolerance features 03/2011 09/2010
Integration of optimized communications stack / distributed

communication infrastructure
 06/2011 06/2011

3.2 Selected Overall Project Highlights

a. Completed a 2010 INCITE Allocation Award. We plan to apply for a follow-up INCITE
Allocation Award as well as Blue Waters allocation.

b. During  this  period,  we  developed  the  first  co‐scheduling  Linux  kernel  designed  for  High 
Performance  Computing.  A  bulk‐synchronous‐parallel  benchmark  improved  285%  in 
execution time performance under the new kernel.

c. Developed a new power aware load balancing strategy which has shown improvements for both
execution time and power consumption. The new scheme takes advantage of dynamic voltage and
frequency scaling (DVFS) hardware capabilities.

 

9 

d. We completed the initial implementation of a multi-zone scalable membership service as well as
the low level design of the new Distributed Hash Table to be used for key-value pairs within
SpiderCast.

e. Our new adaptive task mapping strategies show improvements for the Weather Research and
Forecasting (WRF) model. For 1,024 nodes, the average hops per byte reduced by 63% and the
communication time reduced by 11%..

g. Developed new causal-based message logging scheme with improved performance and
scalability.

h. We also completed the design and implementation of a new dynamic load-balancing technique.
Results for the BRAMS weather forecasting model show much higher machine utilization and
reduction of more than 30% in execution time.

3.3 Future Plans and Ongoing Activities

a. Continue research on our coordinated kernel scheduler and measure the effectiveness on both
synthetic benchmarks and real applications.

b. Explore adaptive+ganged fault tolerance and load balancing strategies.
c. Measure the effectiveness of the Colony system software stack for several applications on

ORNL’s Jaguar system.
d. During the next funding period, we will continue the development of SpiderCast services that will

deliver the level of functionality and scalability necessary to accomplish the goals of the HPC
Colony II project. We will also improve the scalability and performance of the services already
developed during the previous funding periods. In particular, we will focus on the development of
(1) a ConvergeCast service, and (2) a demonstration of SpiderCast on a large scale system.

e. At the end of the next funding period we plan to have a software prototype that includes all
services we set out to implement at the beginning of the project. We plan to present the design of
those services, results of our experiments, a user manual and additional documentation.

f. By the end of the current funding period we will complete a software prototype of the
membership and attribute services. We will present the results of our experiments and provide
additional documentation.

3.4 Cost Status

 
ORNL: Due to the Continuing Resolution, we still have not received our full FY11 funds. Our
finance people anticipate a reduction of between 2% and 5% from the planned FY11 Colony ORNL
allocation ($185K), or between $175,750 and $181,000, plus our carry-over of $24,287. We
anticipate total expenditures of about $198K. This would leave a small amount of carry-over
(between 1% and 4%) if cuts follow our best current guess.

UIUC: By the end of our second project year (Sep.15, 2011) we expect  to have approximately 
$100,000 of unused funds, which corresponds to 20% of our total budget for the overall project 
period. This is still the result of our very late start in 2009, caused by the long inactive period 
between the project’s approval and its actual implementation and contract agreement between 
DOE and Illinois. During the ongoing second year (i.e. Sep.2010 to Sep.2011), we are on track to 
spending almost exactly the expected amount for this period ($250,000). We plan to shift part 
of our personnel to the tasks in this project, such that we can complete, during its third year, all 
the  activities  that  we  had  listed  in  our  proposed  plan.  That  move  is  expected  to  require 
employing  both  the  new  funds  for  the  third/final  year  ($250,000)  and  the  unused  funds 
mentioned above. 

IBM: We anticipate no unexpended funds for this period.

 

10 

4 Publications, Talks, and Software Products
 
4.1 Publications

• Terry Jones, “Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications”,
International Workshop on Runtime and Operating Systems for Supercomputers (ROSS
2011), Tucson, Arizona, USA, May 2011.

• Terry Jones, Gregory A. Koenig, “Clock Synchronization in High-end Computing
Environments: A Strategy for Minimizing Clock Variance at Runtime”. (submitted for
publication)

• Jonathan Lifflander, Phil Miller, Ramprasad Venkataraman, Anshu Arya, Terry Jones, and
Laxmikant V. Kalé. Exploring Partial Synchrony in an Asynchronous Environment Using
Dense LU. (submitted for publication)

• Terry Jones and Gregory Koening, “Providing Runtime Clock Synchronization With Minimal
Node-to-Node Time Deviation on XT4s and XT5s”, 2011 Cray Users Group Meeting,
Fairbanks, AK, May 2011.

• Terry Jones and Gregory Koening, “A Clock Synchronization Strategy for Minimizing Clock
Variance at Runtime in High-end Computing Environments”, 22nd International Symposium
on Computer Architecture and High Performance Computing, Rio De Janeiro Brazil. October
2010.

• Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping
of Regular Communication Graphs on Mesh Interconnects", Proceedings of International
Conference on High Performance Computing (HiPC), Goa-India, 2010.

• Gengbin Zheng, Abhinav Bhatele, Esteban Meneses and Laxmikant V. Kale, "Periodic
Hierarchical Load Balancing for Large Supercomputers", Accepted for publication in
International Journal for High Performance Computing Applications (IJHPCA), 2010.

• Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Alvaro Fazenda, Celso L.
Mendes and Laxmikant V. Kale, "A Comparative Analysis of Load Balancing Algorithms
Applied to a Weather Forecast Model", Proceedings of 22nd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD), Itaipava, Brazil,
2010.

• Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Celso L. Mendes and
Laxmikant V. Kale, “Optimizing an MPI Weather Forecasting Model via Processor
Virtualization”, Proceedings of International Conference on High Performance Computing
(HiPC), Goa, India, 2010.

• Esteban Meneses, Greg Bronevetsky and Laxmikant V. Kale, “Evaluation of Simple Causal
Message Logging for Large-Scale Fault Tolerant HPC Systems”, Proceedings of Workshop
on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS) at IPDPS,
Anchorage, USA, 2011.

• Aaron Becker, Gengbin Zheng, and Laxmikant Kale, “Distributed Memory Load Balancing”,
Encyclopedia of Parallel Computing, David Padua, Ed., 2011 (to appear)

• Osman Sarood, Abishek Gupta and Laxmikant V. Kale, “Temperature Aware Load
Balancing for Parallel Applications: Preliminary Work”, Proceedings of Workshop on High
Performance Power Aware Computing (HPPAC) at IPDPS, Anchorage, USA, 2011.

• Chao Mei, Yanhua Sun, Gengbin Zheng, Eric J. Bohm, Laxmikant V. Kale, James C. Phillips
and Chris Harrison, “Enabling and Scaling Biomolecular Simulations of 100 Million Atoms
on Petascale Machines with a Multicore-optimized Message-driven Runtime”, University of
Illinois, Urbana, 2011 (submitted for publication).

 

11 

4.2 Talks

• Celso L. Mendes and Laxmikant V. Kale, “Adaptive MPI”, Blue Waters PRAC Fall

Workshop, Urbana, October 2010.
• Abhinav Bhatele, “Mapping your Application on Interconnect Topologies: Effort versus

Benefits”, George Michael HPC Fellow Presentation at Supercomputing’10, New Orleans,
November 2010.

• Esteban Meneses, “Clustering Parallel Applications to Enhance Message-Logging Protocols”,
4th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing, Urbana, November
2010.

• Eric Bohm, “Scaling NAMD into the Petascale and Beyond”, 4th Workshop INRIA-Illinois
Joint Laboratory on Petascale Computing, Urbana, November 2010.

• Eric Bohm, Chao Mei, Yanhua Sun and Gengbin Zheng, “Charm++ Tutorial”, Chinese
Academy of Sciences, Beijing, China, December 2010.

• Abhinav Bhatele, “Topology Aware Mapping”, University of Illinois (presented by telecom
to the Chinese Academy of Sciences”, December 2010.

• Laxmikant V. Kale, “State of Charm++”, Charm++ Workshop, Urbana, April 2011.
• Osman Sarood, “Temperature-Aware Load Balancing for Parallel Applications”, Charm++

Workshop, Urbana, April 2011.
• Abhinav Bhatele, “New Developments in the Charm++ Load Balancing Framework and its

Applications”, Charm++ Workshop, Urbana, April 2011.
• Esteban Meneses and Xiang Ni, “Fault Tolerance Support for Supercomputers with Multicore

Nodes”, Charm++ Workshop, Urbana, April 2011.
• Eric Bohm, “Charm++ Tutorial”, Charm++ Workshop, Urbana, April 2011.

4.3 Software Products

• We are discussing our coordinated scheduling Linux kernel with an HPC vendor. Moreover,
the work was done as freely available software and may be taken up by additional HPC
vendors.

• Some parts of this research have been incorporated to the public distribution of the Charm++

software infrastructure, which is available in both source and binary formats. In particular, a
new release of Charm++ (v.6.2.1) was made available recently, through the Charm++
download website: http://charm.cs.uiuc.edu/software/

 
5 References
 
[Allavena05] A. Allavena, A. Demers, and J. E. Hopcroft, "Correctness of a gossip based membership protocol,"

in PODC '05: Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS symposium on
Principles of distributed computing. New York, NY, USA: ACM Press, 2005, pp. 292-301.

[BGP08] IBM-Blue-Gene-Team, "Overview of the IBM Blue Gene/P project," IBM Journal of Research
and Development, vol. 52, no. 1/2, pp. 199-220, 2008.

[Chockler01] G. Chockler, I. Keidar, and R. Vitenberg, "Group communication specifications: a comprehensive
study," ACM Computing Surveys, vol. 33, no. 4, pp. 427-469, 2001.

 

12 

[Chockler07] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, "Spidercast: a scalable interest-aware
overlay for topic-based pub/sub communication," in DEBS '07: Proceedings of the 2007 inaugural
international conference on Distributed event-based systems. New York, NY, USA: ACM, 2007,
pp. 14-25.

[Eugster03] P. TH. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, "The many faces of
publish/subscribe," ACM Comput. Surv., vol. 35, no. 2, pp. 114-131, June 2003.

[Ferreira08] Kurt Ferreira, Ron Brightwell, Patrick Bridges. Characterizing Application Sensitivity to OS
Interference Using Kernel-Level Noise Injection. International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC'08), Austin, TX, November 2008.

[Ganesh03] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer membership management for
gossip-based protocols. IEEE Transactions on Computers, 52(2), February 2003.

[Hoefler10] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence of System Noise on
Large-Scale Applications by Simulation. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC'10), Nov. 2010.

 [Howland04] P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value
decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):995–
1006, 2004.

[Lakshman10] A. Lakshman and P. Malik, "Cassandra: a decentralized structured storage system," SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, pp. 35-40, Apr. 2010.

[Lee99] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

[Nataraj07] A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and P. Beckman. The ghost in the machine:
Observing the effects of kernel operation on parallel application performance. In Proceedings of
SC’07, 2007.

[Oliker07] L. Oliker, A. Canning, J. Carter et al., "Scientific Application Performance on Candidate
PetaScale Platforms," IEEE International Parallel and Distributed Processing Symposium
(IPDPS):1-12, 2007.

[Renesse98] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Proc.
Middleware 98, 1998.

[Renesse03] R. Van Renesse, K. P. Birman, and W. Vogels, "Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data mining," ACM Trans. Comput. Syst.,
vol. 21, no. 2, pp. 164-206, May 2003.

[Sottile04] M. Sottile and R. Minnich. Analysis of microbenchmarks for performance tuning of clusters. In
Proceedings of IEEE Cluster2004 International Conference on Cluster Computing, pages 371–
377, 2004.

[Stoica01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A scalable peer-to-
peer lookup service for internet applications," SIGCOMM Comput. Commun. Rev., vol. 31, no. 4,
pp. 149-160, October 2001.

[Tock10a] Yoav Tock, Benjamin Mandler, “SpiderCast: Distributed Membership and Messaging for HPC
Platforms: An Architectural Overview and High Level Design”. Colony-II technical report,
January 2010.

[Tock10b] Yoav Tock, Benjamin Mandler, Gennady Laventman, “SpiderCast: Distributed Membership and
Messaging for HPC Platforms: Publish-Subscribe and DHT Services High Level Design”. Colony-
II technical report, May 2010.

[Varma06] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, "Scalable, fault tolerant
membership for mpi tasks on hpc systems," in ICS '06: Proceedings of the 20th annual
international conference on Supercomputing. New York, NY, USA: ACM, 2006, pp. 219-228.

 

 

The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE‐AC05‐
00OR22725. Accordingly, the U.S. Government retains a non‐exclusive, royalty‐free license to publish or reproduce the 
published form of this contribution, or allow others to do so, for U.S. Government purposes. 

