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Summary 

This report provides a brief progress synopsis of the HPC Colony II project for the period 
of July 2010 to June 2011. HPC Colony II is a 36-month project and this report covers 
project months 10 through 21. It includes a consolidated view of all partners (Oak Ridge 
National Laboratory, IBM, and the University of Illinois at Urbana-Champaign) as well as 
detail for Oak Ridge. Highlights are noted and fund status data (burn rates) are provided. 

 
 
1 Background 
 

Colony II is a three-year Computer Science oriented project funded from the Fast-OS Re-compete 
program. The primary goal for Colony II is to enable portable performance on leadership-class 
machines—a task made difficult by the emerging variety of more complex computer architectures. 
Colony II attempts to move the burden of portable performance to system software, thereby allowing 
domain scientists to concentrate on their field rather than the fine details of a new leadership class 
machine. An overview matrix is provided in Table 1. 

 
Table 1: Overview Matrix for Colony II 
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2 Project Progress over Last 12 Months (months 10 through 21) 
 

To help realize our project goal of portable performance, the HPC Colony II project is focused 
on six interrelated topic areas which utilize adaptive technology to make portable scalability much more 
feasible. Our six topic areas are: 

 
o Reduce performance consequences from fault tolerance 
o Provide scalable membership, monitoring, & communication services 
o Investigate innovative ways to provide dynamic load balancing 
o Improve the resource management interface between center batch scheduling & on-node 

system software 
o Enable broad application sets on most capable machines 
o Enable Linux kernel advances for extreme scale systems 

 
2.1 Kernel & Kernel Support Advances (Colony lead: ORNL) 
 
 

During this period, we developed the first co-scheduling Linux kernel designed for High Performance 
Computing. Results were obtained on ORNL’s Jaguar XT5 system; first with the normal scheduling 
Linux 2.6.16.60 operating system, then  with  the coordinated  scheduling Linux 2.6.16.60 operating 
system described above. Results for normal Linux scheduling showed noticeable variability from test to 
test at scales of 10K cores. This was expected and coincides well with results obtained from Hoefler et al. 
[Hoefler10] and Sottile et al. [Sottile04], as well as our previous work. Performance measurements were 
then obtained using the coordinated-scheduling policy and modified operating system. It was immediately 
clear for this workload that the coordinated scheduling provided a significant performance improvement, 
both in terms of average execution time and in terms of variability between runs. Finally, an additional set 
of performance numbers with the normal operating system were measured. The last set of normal 
operating system results closely matched the set of results obtained before the co-scheduled kernel results 
taken in the middle. 

The left half of Figure 1 depicts the normal Linux results while the right half of Figure 1 depicts the 
co-scheduled results.  As described earlier, the benchmark employed for this testing results in a single 
number corresponding to a unit of execution time, the lower the better. The graphs indicate shorter 
durations (better performance) for the co-scheduled kernel. 

The best observed time from all experiments was 0.44. The average execution time for the co-
scheduled kernel was 0.56, which compares to 1.60 with the Normal Scheduled kernel. An improvement 
of 285%.  Moreover, the variability was much improved with the co-scheduled kernel. The standard 
deviation for the Normal Scheduled samples was 5.32; this compares to 0.20 for the co-scheduled kernel. 

 

 
Figure 1. Coordinated and uncoordinated schedulings. The above figure portrays histogram bins in a 
pie-chart to provide an indication of the relative timing of runs. The top chart gives results without 
scheduling, and bottom chart gives results for coordinated scheduling.  
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Figure 2. Coordinated and uncoordinated schedulings. The above figure portrays a histogram of runs 
with and without coordinated scheduling.  The lower histogram includes coordinated scheduling. 

With a standard deviation larger than the average, it is clear that the samples do not follow a Gaussian 
distribution. In fact, the distribution of samples  for  the  co-scheduled  kernel  has  a very prominent peak 
near the average measurement, and a short tail of longer times. However, the distribution for the Normal 
Scheduled kernel has a much broader peak and a very long tail of outlier samples with much longer times. 
These results can be seen in Figure 2. In the left histogram, the worse performing outliers are circled in 
red, and the two most are off the charts at 8.88 and 60.77. This variability is in stark contrast to the co-
scheduled results in the right histogram of Figure 2. 

In context, the 285% speedup is good news for that class of applications impacted by synchronizing 
collectives, but it should be noted that overall application performance will depend upon many factors 
beyond synchronizing collective performance. Yet the 30% overall application slowdown reported by 
Nataraj et al. [Nataraj07] and Ferreira et al. [Ferreira08] indicates a significant amount of speedup may be 
realized by an entire application when noise effects are minimized. 

 
2.2 Fault Tolerance Advances (Colony lead: Univ. of Illinois) 

 
Also during this period, we continued our fault tolerance research by investigating a more advanced 

form of the message-logging scheme that we had studied initially. The new technique is based on a 
variant of the causal message logging protocol that seems to be a promising alternative to provide fault 
tolerance in large supercomputers. This study was conducted over three phases: first, we analyzed various 
scenarios that make pessimistic (i.e. conservative) message logging compromise the performance in order 
to keep consistency in an execution; next, we did a performance comparison of pessimistic and causal 
approaches for message logging with different applications; then we conducted a performance evaluation 
of the simple causal message logging protocol for applications that scale up to 1024 processors. 

In contrast to pessimistic message logging, this new causal approach has low latency overhead, 
especially in collective communication operations. Besides, it reduces the number of messages when 
more than one thread is running per processor. In our tests, we demonstrated that a simple causal message 
logging protocol has a faster recovery and a low performance penalty when compared to 
checkpoint/restart. 

As an example of the performance achieved with the new approach, Figure 3 shows the execution 
time observed on the NAS Benchmarks running on 1,024 processors of NCSA’s Abe cluster. This figure 
shows the times for executions in the forward path, i.e. under no faults. The causal scheme presents 
significantly lower overhead than pessimistic message logging, and achieves performance very similar to 
the traditional checkpoint-restart case. 
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Figure 3. Results with NAS Benchmarks running on 1,024 processors of 
NCSA’s Abe cluster 

Figure 4. Effect of a failure on execution of a 7-point stencil. 

To better evaluate the new approach when failures occur, we employed a 7-point stencil, and forced 
the recovery to happen after an external failure was introduced in the execution. The code executes 200 
iterations, and we introduced a failure at iteration 140. Figure 4 shows the performance under the causal 
message logging protocol and under checkpoint-restart; a checkpoint was taken at iteration 100. The 
figure plots the application progress, in terms of completed iterations, as a function of elapsed time. In the 
checkpoint-restart case, the work of a few iterations (i.e. 100 to 140) needs to be redone when the failure 
occurs; meanwhile, with causal message-logging, only the failing processor requires its work to be 
repeated, and other processors that do not depend on it can proceed. Hence, the interruption is less severe, 
and the overall execution is allowed to complete faster than in the checkpoint-restart case. Notice also the 
significant energy savings of the causal message logging protocol over checkpoint-restart, as only a few 
processors are affected by the occurrence of the failure and its recovery. 

In summary, our evaluations so far identified multiple performance problems of pessimistic message 
logging and showed that causal message logging has better performance and scalability for all the 
programs we ran in our experiments. Full results of these studies were reported in [Meneses2011]. There 
are, however, remaining challenges for causal message logging. Specifically, it imposes a higher latency 
on communication, which can be a problem for strong scaling and collective operations, and it requires a 
modest amount of additional memory to store determinants, when compared to executions without any 
fault tolerance provision. As we proceed in our research, we are addressing these issues and exploiting 
ways to alleviate them on large scale systems. 

 
2.3 Scalable Load Balancing (Colony lead: Univ. of Illinois) 

During this reporting period, we significantly 
expanded our research on dynamic load-balancing 
techniques. First, we consolidated our studies of applying 
a hierarchical load-balancing scheme that we had 
developed in the previous year; those studies were 
reported in [Zheng2010]. Using this hierarchical load 
balancer more recently, combined with optimizations 
added to the SMP version of Charm++, we were able to 
scale the NAMD molecular simulator to the entire extent 
of Jaguar, a Cray XT5 at ORNL, running on 224,000 
processors. Part of the obtained results, which we reported 
in [Mei2011], is shown in Figure 5, corresponding to 
NAMD’s performance under different configurations on 
Jaguar with a 100 million-atom dataset.  As shown, 
scaling is excellent for the no-cutoff case. 

 
Figure 5. Scaling of NAMD on ORNL’s Jaguar 

under different configurations. 
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The areas of weather and climate prediction pose a hard challenge for the efficient use of large 
systems. One of the major factors limiting performance of forecasting models in current machines is load 
imbalance. Besides the static causes of such imbalance, such as topography, there are dynamic factors that 
may affect a weather simulation, like the movement of clouds and of thunderstorms. Due to that 
imbalance, scalability of those models suffers when they are executed on a large number of processors. 

We investigated the use of our Adaptive MPI (AMPI), an implementation of the MPI standard based 
on Charm++, on BRAMS, an existing production-level weather forecasting model. BRAMS is written in 
Fortran90 and uses MPI for parallelization. As an example, Figure 6 shows the result of a real BRAMS 
forecast and the corresponding load observed on the 64 processors executing that forecast. The color 
coding scheme represents rain intensity, in the forecast, and processor load, in the grid of processors. As 
one can see, there is a big and clear correlation between more rain and higher computational load. 

We conducted several tests with BRAMS on Kraken, a Cray XT5 at ORNL. In those tests, we 
assessed the effects of virtualization and of load balancing on BRAMS executions. Our first observation 
was that simple AMPI virtualization already improved BRAMS performance. This was due to a 
combination of (a) better overlap between computation and communication, and (b) better cache 
utilization, since the over-decomposition of AMPI produces sub-domains that more naturally fit the sizes 
of the machine’s caches (we measured such cache improvements and reported results in 
[Rodrigues2010]). 

 
Figure 6. Results of a BRAMS weather forecasting and corresponding load on the 64 used processors. 

Next, we applied several load balancers to BRAMS. Besides testing various load balancers already 
available in Charm++, we also developed a new balancer based on the distribution of sub-domains to 
processors according to a space-filling curve defined by to a Hilbert function. This distribution seems to 
be very appropriate for the two-dimensional domain decomposition employed by BRAMS, and preserves 
some of the locality of communication across sub-domains, even when some of those sub-domains 
migrate across processors due to load balancing. As a brief sample of our obtained results, Figure 7 shows 
the original processor utilization in BRAMS before any virtualization was applied, and the resulting 
utilization obtained with a virtualization factor of eight (i.e. AMPI divides each original domain into eight 
sub-domains) and the Hilbert load balancer. There is a much higher utilization, and we observed a 
reduction of more than 30% in the total execution time. 

 
Figure 7. Processor utilization in BRAMS: pre-virtualization (left) and after virtualization and load-balance (right). 
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The more recent work in this area has focused on attempts to provide more automation to the entire 
optimization process via load balancing, such as finding automatically the best load balancing period, 
based on balancing costs and imbalance penalties. Our studies indicated that, for codes with a large 
memory footprint such as BRAMS, assessing the degree of imbalance is relatively cheap compared to 
actually migrating sub-domains across processors. Hence, one can exploit techniques that monitor the 
degree of imbalance closely, and only allow migrations that would produce performance gains higher 
than the penalties associated to the current imbalance. 

The present grant also partly funded preliminary work on power-aware load-balancing techniques. It 
is now well known that increasing the number of cores and clock speeds on a smaller chip area implies 
more heat dissipation and an increased heat density. This increased heat, in turn, leads to higher cooling 
costs and the possible occurrence of hot spots. Effective use of dynamic voltage and frequency scaling 
(DVFS) can help to alleviate this problem. However, there is an associated execution time penalty, which 
can get amplified in parallel applications. In high performance computing, applications are typically 
tightly coupled and even a single overloaded core can adversely affect the execution time of the entire 
application. We have started to investigate a temperature-aware load-balancing scheme that uses DVFS to 
keep core temperatures below a user-defined threshold, with minimal timing penalties. While doing so, it 
also reduces the possibility of hot spots. We tested our scheme with three parallel applications having 
different energy consumption profiles. 

Results from our initial experiments show that it is 
possible to save up to 14% in execution time and 12% 
in machine energy consumption as compared to 
frequency scaling without using load balancing. As an 
example, Figure 8 shows the measured execution time 
of a Jacobi-2D code on 128 processors, as a function of 
the temperature set for the machine room’s air 
conditioner. When our temperature-aware load balancer 
(TempLDB) is used, the effects of a slowdown due to 
pure DFVS are not as strong, resulting in better overall 
performance. In other tests, we are also able to bound the 
average temperature of all the cores and reduce the 
temperature deviation amongst the cores by a factor of 
three. A full description of our initial results in this area 
was reported in [Sarood2011]. 

 
Figure 8. Effects of temperature-aware load balancing on Jacobi-2D 
execution with 128 cores under DVFS 

 
2.4 Task Mapping (Colony lead: Univ. of Illinois) 

 
The third focus of our study was the problem of task mapping on large parallel machines. Network 

contention has a significantly adverse effect on the performance of parallel applications with increasing 
size of parallel machines. Machines of the current petascale era are forcing application developers to map 
tasks intelligently to job partitions to achieve the best performance possible. We have developed a 
framework for automated mapping of parallel applications with regular communication graphs to two and 
three dimensional mesh and torus networks. This framework can save much effort on the part of 
application developers to generate mappings for their individual applications.  

One component of our framework is a process 
topology analyzer to find regular patterns and, when 
found, to determine the dimensions of the communication 
graphs of applications. The other component is a suite of 
heuristic techniques for mapping 2D object grids to 2D 
and 3D processor meshes. The framework chooses the best 
heuristic from the suite for a given object grid and 
processor mesh pair based on the hop-bytes metric. We 
obtained performance improvements using the framework, 
for a 2D Stencil benchmark in MPI and for the Weather 
Research and Forecasting model (WRF) running on the 
IBM Blue Gene/P.  

 
Figure 9. Results from topology-aware mapping of the WRF 

model on Blue Gene/P 



 

7 

For WRF, some of our results are shown in Figure 9; on 1,024 nodes, the average hops per byte 
reduced by 63% and the communication time (not shown in the figure) reduced by 11%. We measured an 
overall performance improvement of 17% for the application. At 4,096 nodes, there is a reduction in total 
execution time by 5%. Such performance improvements can be quite significant for the overall 
completion time of long running simulations. We also compared our algorithms with others discussed in 
the literature, as described with the full results of this study in [Bhatele2010]. 

 
2.5 Scalable membership, monitoring, & communication services (Colony lead: IBM Research) 

 
We continue our activities on the HPC Colony II project for the second year, in cooperation with our 

partners from Oak Ridge National Laboratory (ORNL) and University of Illinois at Urbana-Champaign. 
As originally planned, we conducted research on scalable membership, monitoring and 

communication services that will enable sophisticated applications and general purpose cluster computing 
on high-performance computing systems with a very large numbers of processors. The SpiderCast 
system, that will provide these services, will be based on overlay and peer-to-peer technologies.  

Membership services enable the discovery of both active group processes as well as failed nodes and 
processes, thus facilitating fault tolerance implementations [Renesse98, Ganesh03, Allavena05, 
Varma06]. The Attribute-service allows each node to declare runtime attributes on itself, which facilitates 
easy integration of cluster services and a distributed mechanism for service location and discovery. 
Monitoring services enable the collection and aggregation of statistics from nodes and processes thus 
supporting the implementation of dynamic load balancing schemes [Renesse03]. Group communication 
services provide groups of processes with the means to efficiently communicate using topic-based 
publish/subscribe, which greatly helps developing clustered applications [Chockler01, Eugster03, 
Chockler07]. SpiderCast will also provide a DHT (distributed hash table) implementation, which provides 
services for storing and looking up key-value pairs in a distributed manner [Stoica01, Cass10]. 

SpiderCast will, on the one hand, utilize the unique architecture and networking features of Blue 
Gene [BGP08] to achieve top performance, and on the other hand, develop scalable technologies for 
systems with tens of thousands of processors, which can be deployed on general clustered systems. 
 
The following specific activities were conducted in this funding period: 

1. We completed the implementation of 
the multi-zone scalable membership 
service (see [TR1]). This service 
supports a two level hierarchy of 
SpiderCast zones, which allow an order 
of 1000 zones, each holding and order 
of 1000 nodes. We have a software 
prototype that demonstrates these 
capabilities.  

2. We completed the low level design of the Distributed Hash Table (DHT, see [TR2]). This service 
allows storage and lookup of key-value pairs in the memory of SpiderCast nodes. It is exposed as 
a service to the application using SpiderCast and is also used as an internal building block of the 
publish-subscribe component. 

3. We completed a prototype implementation of the DHT. 
4. We completed the low level design of publish-subscribe component. 
5. We expect to finish the implementation of the publish-subscribe component by end of funding 

period, according to plan. 
6. By the end of the current funding period we will complete a software prototype of the DHT and 

Publish-Subscribe services. We will present the results of our experiments and provide additional 
documentation. 
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3 Project Status and Future Plans 
 

Progress for Colony II has proceeded according to plans and without unresolved problems. During 
this reporting period, we maintained bi-weekly teleconferences with our project collaborators from UIUC 
and IBM, and had two face-to-face team meetings: one at the Supercomputing’10 conference in 
November’2010 at New Orleans, Louisiana, and another in April’2010 during the 9th Charm++ 
Workshop at Urbana, IL.  Finally, a project website is maintained at http://www.hpc-colony.org 
 
3.1 Overall Assessment of Progress With Respect to Project Plan 
 

To date, all project FWP milestones have been realized on time. 
Table 2. HPC Colony FWP Milestones for months 10 through 21 

PROJECT Milestones (months 10 through 21) 
July 2010 – June 2011 

Planned Actual 

Load-balancing framework capable of accepting application 
knowledge information 

07/2010 07/2010 

Message-logging protocol extended with integration to load-
balancing 

 
 09/2010  

01/2009 

Demonstration of a basic overlay-based communications stack 
that runs on both Blue Gene networks  (torus, collectives) 

09/2010  01/2009 

An initial prototype of the standalone distributed 
communication infrastructure 

 09/2010  01/2010 

Documentation plus manual of the communication 
infrastructure 

 09/2010  09/2009 

Initial demonstration of Oak Ridge National Laboratory and 
UIUC selected applications 

 09/2010  09/2009 

Annual report of activities submitted to U.S. Department of 
Energy (DOE) 

09/2010  06/2010 

New class of hierarchical load balancers based on topology-
aware algorithms 

 12/2010  12/2010 

Demonstration of a basic SpiderCast system functionality in 
Blue Gene 

 03/2011  03/2011 

Evaluation and testing of the standalone communication 
infrastructure on a large cluster of computers 

03/2011  03/2011 

Research paper/report 03/2011  11/2010  
Message-logging and proactive fault-tolerance schemes tested 

on full-scale applications and integrated  to Charm++ 
distribution 

 03/2011  03/2011 

Paper reporting new Fault Tolerance features  03/2011  09/2010  
Integration of optimized communications stack / distributed 

communication infrastructure 
 06/2011  06/2011  

 
 
3.2 Selected Overall Project Highlights 

a. Completed a 2010 INCITE Allocation Award. We plan to apply for a follow-up INCITE 
Allocation Award as well as Blue Waters allocation. 

b. During  this  period,  we  developed  the  first  co‐scheduling  Linux  kernel  designed  for  High 
Performance  Computing.  A  bulk‐synchronous‐parallel  benchmark  improved  285%  in 
execution time performance under the new kernel. 

c. Developed a new power aware load balancing strategy which has shown improvements for both 
execution time and power consumption. The new scheme takes advantage of dynamic voltage and 
frequency scaling (DVFS) hardware capabilities. 
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d. We completed the initial implementation of a multi-zone scalable membership service as well as 
the low level design of the new Distributed Hash Table to be used for key-value pairs within 
SpiderCast. 

e. Our new adaptive task mapping strategies show improvements for the Weather Research and 
Forecasting (WRF) model. For 1,024 nodes, the average hops per byte reduced by 63% and the 
communication time reduced by 11%.. 

g. Developed new causal-based message logging scheme with improved performance and 
scalability. 

h. We also completed the design and implementation of a new dynamic load-balancing technique. 
Results for the BRAMS weather forecasting model show much higher machine utilization and 
reduction of more than 30% in execution time. 

 
3.3 Future Plans and Ongoing Activities 

a. Continue research on our coordinated kernel scheduler and measure the effectiveness on both 
synthetic benchmarks and real applications. 

b. Explore adaptive+ganged fault tolerance and load balancing strategies. 
c. Measure the effectiveness of the Colony system software stack for several applications on 

ORNL’s Jaguar system. 
d. During the next funding period, we will continue the development of SpiderCast services that will 

deliver the level of functionality and scalability necessary to accomplish the goals of the HPC 
Colony II project. We will also improve the scalability and performance of the services already 
developed during the previous funding periods. In particular, we will focus on the development of 
(1) a ConvergeCast service, and (2) a demonstration of SpiderCast on a large scale system.  

e. At the end of the next funding period we plan to have a software prototype that includes all 
services we set out to implement at the beginning of the project. We plan to present the design of 
those services, results of our experiments, a user manual and additional documentation. 

f. By the end of the current funding period we will complete a software prototype of the 
membership and attribute services. We will present the results of our experiments and provide 
additional documentation. 

 
3.4 Cost Status 

 
ORNL:  Due to the Continuing Resolution, we still have not received our full FY11 funds. Our 
finance people anticipate a reduction of between 2% and 5% from the planned FY11 Colony ORNL 
allocation ($185K), or between $175,750 and $181,000, plus our carry-over of $24,287. We 
anticipate total expenditures of about $198K. This would leave a small amount of carry-over 
(between 1% and 4%) if cuts follow our best current guess. 
 
UIUC: By the end of our second project year (Sep.15, 2011) we expect  to have approximately 
$100,000 of unused funds, which corresponds to 20% of our total budget for the overall project 
period. This is still the result of our very late start in 2009, caused by the long inactive period 
between the project’s approval and its actual implementation and contract agreement between 
DOE and Illinois. During the ongoing second year (i.e. Sep.2010 to Sep.2011), we are on track to 
spending almost exactly the expected amount for this period ($250,000). We plan to shift part 
of our personnel to the tasks in this project, such that we can complete, during its third year, all 
the  activities  that  we  had  listed  in  our  proposed  plan.  That  move  is  expected  to  require 
employing  both  the  new  funds  for  the  third/final  year  ($250,000)  and  the  unused  funds 
mentioned above. 
 
IBM: We anticipate no unexpended funds for this period. 
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4 Publications, Talks, and Software Products 
 
4.1 Publications 

• Terry Jones, “Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications”, 
International Workshop on Runtime and Operating Systems for Supercomputers (ROSS 
2011), Tucson, Arizona, USA, May 2011. 

• Terry Jones, Gregory A. Koenig, “Clock Synchronization in High-end Computing 
Environments:  A Strategy for Minimizing Clock Variance at Runtime”. (submitted for 
publication) 

• Jonathan Lifflander, Phil Miller, Ramprasad Venkataraman, Anshu Arya, Terry Jones, and 
Laxmikant V. Kalé. Exploring Partial Synchrony in an Asynchronous Environment Using 
Dense LU. (submitted for publication)  

• Terry Jones and Gregory Koening, “Providing Runtime Clock Synchronization With Minimal 
Node-to-Node Time Deviation on XT4s and XT5s”, 2011 Cray Users Group Meeting, 
Fairbanks, AK, May 2011.  

• Terry Jones and Gregory Koening, “A Clock Synchronization Strategy for Minimizing Clock 
Variance at Runtime in High-end Computing Environments”, 22nd International Symposium 
on Computer Architecture and High Performance Computing, Rio De Janeiro Brazil. October 
2010.  

• Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping 
of Regular Communication Graphs on Mesh Interconnects", Proceedings of International 
Conference on High Performance Computing (HiPC), Goa-India, 2010.  

• Gengbin Zheng, Abhinav Bhatele, Esteban Meneses and Laxmikant V. Kale, "Periodic 
Hierarchical Load Balancing for Large Supercomputers", Accepted for publication in 
International Journal for High Performance Computing Applications (IJHPCA), 2010.  

• Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Alvaro Fazenda, Celso L. 
Mendes and Laxmikant V. Kale, "A Comparative Analysis of Load Balancing Algorithms 
Applied to a Weather Forecast Model", Proceedings of 22nd International Symposium on 
Computer Architecture and High Performance Computing (SBAC-PAD), Itaipava, Brazil, 
2010.  

• Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Celso L. Mendes and 
Laxmikant V. Kale, “Optimizing an MPI Weather Forecasting Model via Processor 
Virtualization”, Proceedings of International Conference on High Performance Computing 
(HiPC), Goa, India, 2010.  

• Esteban Meneses, Greg Bronevetsky and Laxmikant V. Kale, “Evaluation of Simple Causal 
Message Logging for Large-Scale Fault Tolerant HPC Systems”, Proceedings of Workshop 
on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS) at IPDPS, 
Anchorage, USA, 2011.  

• Aaron Becker, Gengbin Zheng, and Laxmikant Kale, “Distributed Memory Load Balancing”, 
Encyclopedia of Parallel Computing, David Padua, Ed., 2011 (to appear)  

• Osman Sarood, Abishek Gupta and Laxmikant V. Kale, “Temperature Aware Load 
Balancing for Parallel Applications: Preliminary Work”, Proceedings of Workshop on High 
Performance Power Aware Computing (HPPAC) at IPDPS, Anchorage, USA, 2011.  

• Chao Mei, Yanhua Sun, Gengbin Zheng, Eric J. Bohm, Laxmikant V. Kale, James C. Phillips 
and Chris Harrison, “Enabling and Scaling Biomolecular Simulations of 100 Million Atoms 
on Petascale Machines with a Multicore-optimized Message-driven Runtime”, University of 
Illinois, Urbana, 2011 (submitted for publication).  
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4.2 Talks  
 
• Celso L. Mendes and Laxmikant V. Kale, “Adaptive MPI”, Blue Waters PRAC Fall 

Workshop, Urbana, October 2010.  
• Abhinav Bhatele, “Mapping your Application on Interconnect Topologies: Effort versus 

Benefits”, George Michael HPC Fellow Presentation at Supercomputing’10, New Orleans, 
November 2010.  

• Esteban Meneses, “Clustering Parallel Applications to Enhance Message-Logging Protocols”, 
4th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing, Urbana, November 
2010.  

• Eric Bohm, “Scaling NAMD into the Petascale and Beyond”, 4th Workshop INRIA-Illinois 
Joint Laboratory on Petascale Computing, Urbana, November 2010.  

• Eric Bohm, Chao Mei, Yanhua Sun and Gengbin Zheng, “Charm++ Tutorial”, Chinese 
Academy of Sciences, Beijing, China, December 2010.  

• Abhinav Bhatele, “Topology Aware Mapping”, University of Illinois (presented by telecom 
to the Chinese Academy of Sciences”, December 2010.  

• Laxmikant V. Kale, “State of Charm++”, Charm++ Workshop, Urbana, April 2011.  
• Osman Sarood, “Temperature-Aware Load Balancing for Parallel Applications”, Charm++ 

Workshop, Urbana, April 2011.  
• Abhinav Bhatele, “New Developments in the Charm++ Load Balancing Framework and its 

Applications”, Charm++ Workshop, Urbana, April 2011.  
• Esteban Meneses and Xiang Ni, “Fault Tolerance Support for Supercomputers with Multicore 

Nodes”, Charm++ Workshop, Urbana, April 2011.  
• Eric Bohm, “Charm++ Tutorial”, Charm++ Workshop, Urbana, April 2011.  

 
4.3 Software Products  

 

• We are discussing our coordinated scheduling Linux kernel with an HPC vendor. Moreover, 
the work was done as freely available software and may be taken up by additional HPC 
vendors.  

 
• Some parts of this research have been incorporated to the public distribution of the Charm++ 

software infrastructure, which is available in both source and binary formats. In particular, a 
new release of Charm++ (v.6.2.1) was made available recently, through the Charm++ 
download website: http://charm.cs.uiuc.edu/software/  
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