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Abstract—In this project we look at the performance charac-
teristics of three tools used to move large data sets over dedicated
long distance networking infrastructure. Although performance
studies of wide area networks have been a frequent topic of
interest, performance analyses have tended to focus on network
latency characteristics and peak throughput using network traffic
generators. In this study we instead perform an end-to-end long
distance networking analysis that includes reading large data
sets from a source file system and committing large data sets
to a destination file system. An evaluation of end-to-end data
movement is also an evaluation of the system configurations
employed and the tools used to move the data. For this paper,
we have built several storage platforms and connected them with
a high performance long distance network configuration. We use
these systems to analyze the capabilities of three data movement
tools: BBcp, GridFTP, and XDD. Our studies demonstrate that
existing data movement tools do not provide efficient performance
levels or exercise the storage devices in their highest performance
modes. We describe the device information required to achieve
high levels of I/O performance and discuss how this data is
applicable in use cases beyond data movement performance.

I. INTRODUCTION

The time spent manipulating large data sets is often one of

the limiting factors in modern scientific research. In fields as

diverse climate research, genomics, and petroleum exploration,

massive data sets are the rule rather than the exception. With

multi-Terabyte and Petabyte data sets becoming common,

previously simple tasks, such as transferring data between in-

stitutions becomes a hugely challenging problem. The push to

Exascale computing promises to increase the difficulty level in

at least two ways. First, with a projected main memory size of

32-128 Petabytes for Exascale computers, typical future data

sets will be significantly larger than the total amount of storage

in existing file systems. Further, because of the staggering

operational costs of Exascale machines, we expect that only

a small number of such machines will exist, increasing the

number of users interested in remote data analysis.

Quite simply, existing networking and storage infrastructure

is not up to the task of transferring multi-Petabyte data sets

on a frequent basis. The notion that researchers will use a

web browser and wide area network (WAN) to move the bulk

of a 100 Petabyte data set seems unlikely. Additionally, glib

arguments involving a vehicle filled with magnetic tapes does

not provide the type of performance we desire. Researcher’s

will need a responsive data transfer tool with high degrees of

both resilience and performance to analyze the massive data

sets generated by Exascale computer systems.

In this project we examine the performance of three data

movement tools: BBcp, GridFTP, and XDD. Both BBcp and

GridFTP are popular data movement tools in the HPC com-

munity. However, both tools are intended for a wide audience

and are not optimized to provide maximum performance. In

constructing our test bed, we have focused on technologies and

performance constraints that are applicable to Exascale per-

formance levels. In particular, we have focused on analyzing

the impacts of distance (i.e. network latency) in transferring

large data sets and the importance of achieving device-level

performance from each component participating in the data

transfer.

In the remainder of this section we describe related work

in measuring and improving the performance of long distance

data transfers. In section 2 we describe the conceptual model

used to improve the performance of long distance data trans-

fers, what we call the impedance matching problem. In section

3 we describe the configuration of our test bed and how it

relates to existing Exascale computing technology projections.

In section 4 we compare the performance of the three data

movement tools, and examine the individual impacts of our

various storage optimizations. In section 5 we discuss our

results and describe future modifications we plan for our data

movement tool.

A. Related Work

The problem of efficiently moving data sets over long

distance networks has been studied by several research teams.

Traditional file transfer protocol (FTP) clients and secure shell

(SSH) transfer tools were never designed to achieve high

levels of performance for large scientific data sets. The most

popular tool for moving large data sets is likely GridFTP [1],

a component of the Globus toolkit [2]. The Globus GridFTP

client, globus-url-copy, provides support for multiple high per-

formance networking options including UDT and Infiniband.

It also supports parallel file system aware copying via the

use of transfer striping parameters. Our tool, XDD, provides

less security than GridFTP, and focuses on disk-aware I/O

techniques to provide high levels of transfer performance.

Another popular high performance transfer tool is BBcp [4].

BBcp is designed to securely copy data between remote sites



and provides options for restarting failed transfers, using direct

I/O to bypass kernel buffering, and an ordered mode for

ensuring data is both read and written in strict serial order. Our

tool, XDD, attempts to copy many of the features available in

BBcp, while also providing a disk-aware implementation.

Efficient use of both dedicated and shared 10 Gigabit Ether-

net network links have been studied by several research teams.

Marian, et al., examined the congestion algorithm performance

of TCP flows over high latency dedicated 10 Gigabit Ethernet

network connections and found that modern congestion control

algorithms such as HTCP and CUBIC provide high levels of

performance even with multiple competing flows [8]. Wu, et

al., and Kumazoe, et al., studies the impacts of congestion

control on shared 10 Gigabit Ethernet links, and found that

congestion control algorithms strongly impacted performance

at long distances [6], [13]. XDD provides a configurable

number of threads and supports modified TCP window sizes

to provide performance in shared network scenarios; however,

XDD is primarily designed as an high-end computing (i.e. Ex-

ascale) data movement tool where circuit switched dedicated

network links are more likely to be available.

An alternative approach to transferring large data sets be-

tween two file systems on either end of a long haul network is

to rely on wide area network (WAN) file systems. OceanStore

is a prototype WAN file system designed to provide continuous

access to data from all over the globe [5]. The Lustre parallel

file system has also been extended to support wide area

networks [12], and by using an optimized Lustre-aware file

copy tool, such as spdcpy [10], it may be possible to relocate

data within a geographically dispersed Lustre file system with

high levels of performance. The original YottaYotta product

line provided a service similar to long distance file transfers

by replicating file system disk blocks over a wide area network

connection [3].

II. HIGH PERFORMANCE DATA TRANSFERS

A file transfer can be decomposed into five primary com-

ponents: the source storage devices, the source host, the net-

work, the destination storage host, and the destination storage

devices. Fundamentally, a high performance file transfer is

a matter of tuning each component to provide high levels

of individual performance and matching the performance of

each connected component. This problem formulation can

be though of as special type of an impedance matching

problem where each component must provide data throughput

compatible with the connected components. Many of the

difficulties of a high performance file transfer are ensuring that

each component is both executing in its fastest performance

mode and not interfering the performance of the adjacent

components.

The difficulty in achieving end-to-end high bandwidth for

large file transfers is ensuring that each component is moving

data at the required rate and not interfering with the perfor-

mance of the adjacent components. Consider two possible

configurations for a long distance file transfer. In the first

scenario, we see a simple system composed of two hosts, each

with a single hard drive and a network interface card plugged

into a shared switch. Existing transfer tools such as SCP and

FTP were designed with this type of scenario in mind. The

second scenario shows a more realistic configuration for use

in a HPC systems center. The hosts are composed of multiple

processors with large amounts of main memory, the hosts

have several direct connections to both high speed storage

arrays and high performance networking equipment. In such

scenarios, large scale data transmissions are the rule rather

than the exception.

A. The Storage and Network System Hierarchy

The Storage and network subsystem hierarchy shown in

figure 1, describes the levels of hardware and software that

an I/O request must traverse in order to initiate and manage

the movement of data between the application memory space

and a storage device or network. The I/O request is initiated by

the application when data movement is required. For a storage

operation such as a read or write, the request is processed

by several layers of system software such as the file system

manager, logical device drivers, and the low-level hardware

device drivers. During this processing the application I/O

request may be split into several “physical” I/O requests that

are subsequently sent out to the appropriate storage devices to

satisfy these requests. These physical I/O requests must pass

through the Fibre Channel Switch that makes the physical

connection between the Host Bus Adapter on the computer

system and the storage device, in this case a disk array

controller. The disk array controller will take the I/O requests

and generate one or more I/O requests for the individual

disk drives in the array. Each disk drive processes its request

and data is eventually transferred between the disk drive and

the application memory space with multiple opportunities for

buffering the data along the way.

Network send and receive operations are processed by

an entirely different set of software and hardware layers.

These include the socket layer, TCP layer, IP layer, device

drivers, and switches. During this processing the application

I/O request is split into “segments” that get buffered and

eventually presented to the Network Interface Card (NIC)

device driver. The NIC then transfers these segments on a

FIFO basis to their respective destination addresses. There are

multiple levels at which the acknowledgement of the receipt

of data (ACKs) occurs and it is beyond the scope of this

discussion to describe ACKs other than to mention that they

are handled transparently to the data transmission/receipt as

far as the application program is concerned.

The following sections present a more detailed description

of each level in the hierarchy with respect to its function and

performance implications.

1) Computer System: The Computer System is a critical

piece of the Storage Subsystem Hierarchy in that it encapsu-

lates all the software components and the necessary interface

hardware to communicate with the physical connections (i.e.

the Host Bus Adapters or NICs. The components within

the Computer System include the processors, memory, and
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Fig. 1. The Storage and Network Subsystem Hierarchy. Every storage or network I/O operation initiated by an application must traverse the hierarchy.
Performance is determined by how well the I/O behaves from one layer to the next in the respective hierarchy.

internal busses that connect the memory to the processors

and to the Host Bus Adapters or NICs. The performance

characteristics of each of these major components (i.e. the

clock-speed, number of processors, processor architecture,

memory bus bandwidth, etc.) plays a significant role in the

overall performance of the Storage Subsystem as will be

demonstrated in a later section. However, given the fastest

hardware available, the Storage Subsystem will only perform

as well as the underlying software, starting with the Applica-

tion Program.

2) Application Program: The term Application Program as

it is used here is any program running on the Host Computer

System that requires data movement between the memory in

the host computer and a Storage Unit. Application programs

can be either typical User programs or can be parts of the

Operating System on the host computer such as the paging

subsystem. In any case, these programs have the ability to

make I/O requests to any of the lower layers in the hierarchy

if the Operating System provides an appropriate programming

interface to do so. For example, the benchmark program used

to gather statistical data for this project can access a storage

unit through the file system manager, the logical volume device

driver(s), or through the storage device drivers. In general,

Applications that can manage and access the lower levels of

the hierarchy achieve better performance than Applications

that must traverse through the higher level layers such as the

File System Manager.

3) File System Manager: The File System Manager pro-

vides a level of abstraction to the Application Program in

order to simplify the process of accessing data on the storage

subsystem as a whole. Because of the amount of indirect

I/O processing that can accompany a single Application I/O

request (such as space allocation, inode lookups, etc.), the I/O

performance through the File System Manager can become

unnecessarily slow when moving very large amounts of data.

For example, a typical application opens a file and begins

reading data from that file into the application’s memory

buffer. When the application calls the read() function for X

number of bytes, the File System Manager will check to see

if that data is already in a system buffer. If the data is already

in memory, the File System Manager will copy X bytes from

the buffer into the application’s memory buffer. However, if

the data is not in memory, the File System Manager will issue

a read request to the underlying storage unit (which could

be a Logical Volume or a physical storage device), for N*Y

bytes where Y is the size of a system buffer and N is the



number of buffers required such that N*Y is greater than or

equal to X. Once the required bytes have been transfered to

memory from the underlying storage unit, the File System

Manager will copy the requested data into the application

memory buffer thereby completing the I/O request. When

reading relatively small amounts of data (on the order of

megabytes), the overhead involved with copying data from the

system buffers to the application buffer is minimal. But when

the amount of data gets very large (gigabytes on up) then the

memory-copy overhead becomes a significant limiting factor

in the overall bandwidth at which data can be read into the

application memory buffer. Other examples of File System

Manager overhead include the explicit and implicit overhead

involved with allocating space on the storage unit and the

size of individual transfers, both of which become critical for

sustained, high-bandwidth movement of large amounts of data.

Explicit space allocation is simply the amount of time taken to

allocate space for an I/O operation. If an application is writing

a 1 Gigabyte file 4096-bytes per write request then the file

system manager might have to perform a block allocation for

each of the 250,000 write requests from that applicaion. On the

other hand, if the application requested that the File System

Manager pre-allocate 1 Gigabyte of space for subsequent

write requests to that file the the file system manager only

need perform the space allocation once, at the beginning

of the overall operation. Implicit space allocation overhead

results from having the File System Manager performing space

allocations on a per-request basis and having those allocations

made at non-contiguous locations on the storage unit. The

effect of this may not be discovered until the file is read back

and the read bandwidth is low because the underlying storage

devices are not able to stream due to the non-contiguous

location of the blocks being read in. Some of the allocation

problems can be addressed by having the application use

very large transfer sizes, on the order of tens to hundreds of

Megabytes per transfer. For all the reasons mentioned above,

it is necessary to minimize the involvement of the File System

Manager whenever possible. This can be accomplished by

using Direct I/O, file pre-allocation, and large transfer sizes.

4) Logical Volume Device Drivers: The Logical Volume

Device Drivers provide a mechanism to easily group storage

devices into a single logical device in order to increase storage

capacity, performance, and/or to simplify the manageability of

large numbers of storage devices. The Logical Device Driver

presents a single device object to the File System Manager or

Application. The Logical Device Driver is then responsible for

taking a single I/O request from the Application or the File

System Manager and mapping this request onto the lower level

storage devices, which may be either actual storage devices or

other logical volumes. There are many ways to configure a

logical volume that consists of multiple underlying storage

devices. One common configuration is to stripe across (also

known as a wide-stripe) all the storage devices in an effort

to increase available bandwidth or throughput (operations per

second). In a wide-striped logical volume, data is laid out on

the underlying storage device in “stripe units”. A stripe unit

is the amount of sequential data that is transferred to/from a

single storage device within the logical volume before moving

to the next storage device in the volume. In theory the stripe

unit can be any number of bytes from a single 512-byte sector

to several megabytes. In practice however, the stripe unit has

a minimum size of a memory page (4096 bytes normally) and

is usually an integer power of 2 bytes in size (i.e. 4096, 8192,

16384, etc.). Finally, it is important to note that the stripe unit

size a constant within a logical volume and cannot be changed

without restructuing all the data on the logical volume.

5) The I/O Protocol Driver: The I/O Protocol Driver is

responsible for translating the I/O request from the upper level

device/protocol drivers into a form that fits the I/O protocol

used to communicate the request to the underlying storage or

network devices. In general, an internal I/O request consisting

of a command (read/write or send/recv), a data buffer address,

and a data transfer length. This request is converted into one

or more SCSI commands for storage or a network send/receive

operations for network I/O which are then passed to the proper

Host Bus Adapter or Network Interface Card as appropriate.

6) Low-Level Device Driver: This device driver takes the

high-level information (i.e. the SCSI command) from the

I/O Protocol Driver and interfaces directly with the host-bus

adapter that will perform the actual data transfer between

the storage or network device and memory. For example,

given a PCIe-to-Fibre Channel Host Bus Adapter, this device

driver will set up the host bus adapter with the address of

the SCSI command buffer, the application data buffer, and

the target device and then tell the host bus adapter to begin

the operation. The host bus adapter will transfer the SCSI

command buffer to the intended target device. At some later

time the target device will request a data transfer operation

that will be managed in part by the host bus adapter. At the

end of the entire operation, an interrupt is generated to notify

the Low-Level Device Driver of the completion status the I/O

operation. Under normal circumstances, the Low-Level Device

Driver then propagates the completion status to the upper-level

drivers, eventually reaching the User Application Program.

7) Physical Connection Layer: This layer defines the hard-

ware that physically attaches the host-bus adapter to the

storage device or one computer to another via a network.

These connections can be as simple as a single 3-foot cable or

as elaborate as a multi-stage communication fabric spanning

many miles. The most common storage interconnect is Fibre

Channel or Ethernet in one flavor or another. Either one of

these can be used to connect a storage device directly to

a host computer system or to form a network that allows

multiple host computer systems to access multiple storage

subsystems. These multi-host, multi-device configurations are

commonly referred to as Storage Area Networks or SANs.

A Storage Area Network is the most flexible in terms of

multiple access paths to a single storage device, multi-host

shared access, fault tolerance, and performance. However, this

flexibility also means increased complexity in managing all the

nodes connected to the SAN, whether they are host computers

or disk devices.



8) Storage Device and Storage Units: The distinction be-

tween a Storage Device and Storage Unit is that a Storage

Device is made up of one or more Storage Units but can appear

to be a single device. The example is that of a Disk Array

which is a Storage Device that contains several individual

Storage Units (disk drives) but can appear to the system as

a single, very large, disk drive. In the case of a disk array,

the I/O request is received from the host bus adapter and is

divided up into one or more I/O requests to the underlying

disk drives. Storage Units are individually addressable storage

devices that cannot be further subdivided into smaller physical

units. The principle example of this is a Disk Drive.

9) Network I/O: Network I/O is fundamentally different

than Storage I/O because inbound Network data is unsolicited.

This means that it can arrive at the network device without

any prior request from an application program. Therefore the

Network subsystem as a whole has to be able to accept

incoming network data and store it until such time as an

application requests that data from the Network subsystem.

Furthermore, the Network subsystem is a shared resource

among all the applications that perform Network I/O. As

a result the Network subsystem currently relies on placing

incoming data into system buffers that are later copied into

an application buffer upon request. For large amounts of data

being received by an application the memory copy from the

network buffer to the application buffer can become significant

thereby limiting the achievable bandwidth to an artificially low

rate. Similarly, when sending data, the data in the application

buffer is copied into one or more network buffers which

are eventually placed onto the network wire by the Network

Interface Card. Again, the data copy operations can be a

bandwidth-limiting factor for applications moving large data

sets.

B. Impedance Matching Problem

Each layer of software and/or hardware between the Ap-

plication and the Storage Device adds overhead and other

anomalies that can result in highly irregular performance as

viewed by the Application. Overhead is essentially the amount

of time it takes for the I/O request to traverse the specific layer.

The source of overhead in each layer is specific to a layer

and is not necessarily constant within a layer. An example of

this is the overhead induced by the Physical Connection layer.

A physical connection consisting of a short cable introduces

virtually no overhead since the propagation of a signal at the

speed of light over a 3-foot distance is not significant. On the

other hand, propagation of a packet of data traversing a 10,000-

mile network through multiple switching units will introduce

noticeable overhead.

An interesting artifact resulting from the interaction of the

components in the Storage and Network Subsystem Hierarchy

is analogous to the Impedance Matching problem in electrical

signal propogation on a wire. The term Impedance Matching is

used as an analogy to what happens when there is a mismatch

of operational characteristics between two interacting objects.

In an electrical circuit, an impedance mismatch has an effect

on the performance of the circuit in terms of its gain or

amplitude at particular frequencies. In the Storage Subsystem

Hierarchy, an impedance mismatch has more to do with things

like I/O request size and alignment mismatches that have an

effect on the performance (bandwidth or transaction rate) of

the storage subsystem as viewed by the application. The effects

of these mismatches can be viewed from several different

perspectives including the Application perspective, the Device

perspective (network or storage), and the System perspective.

The effects of this phenomenon are presented in the sections

that follow.

1) The Impedance Matching Problem as it Relates to Large-

Scale Data Transfers: Simply increasing the number of hosts

participating in a file transfer is not a tractable path to-

wards exa-scale dataset movement. For example, to move one

Petabyte of data per day requires a sustained, average, end-to-

end bandwidth of 12 GBytes per second for 86,400 seconds

(one day). In order to achieve this requires a storage subsystem

at the source and destination sites, capable of sustaining 12

GBytes/sec reading (source-side) or writing (destination-side)

data for at least one day. This implies, of course, that each

storage system should be able to accommodate one Petabyte

of data. This also implies that the system as a whole can

compensate for occasional sluggishness in the network or

storage devices by moving data faster for brief periods of time

in order to maintain the average rate of 12 GBytes/second.

Fundamentally, to sustain the required bandwidth requires stor-

age and network devices that can run at a bandwidth 20% to

50% (or more) higher than the sustained bandwidth. The 20%-

50% comfort margin is necessary to accommodate inevitable

variations in the bandwidth of the individual components.

In order to properly match the impedance of a large-

scale data transfer from one end of the transfer to the other

requires attention to the number of application threads used

to perform storage or network I/O, the size of the transfers,

and eliminating as many memory-to-memory copy operations

as possible.

The number of threads used to perform storage I/O depends

largely on the characteristics of the storage device. For a single

disk drive, two or three threads is more than sufficient to

keep the disk drive busy. For a logical volume composed

of several disk arrays each of which has many disk drives,

it is entirely possible that many more threads are required

to effectively keep all the underlying disk drives busy and

streaming. However, if there are too many threads, then

coordinating the order in which I/O operations are issued to

the storage device becomes important. Otherwise, it is possible

to overwhelm and confuse the underlying storage controllers

and devices to the extent that that drop out of streaming mode

resulting in a significant drop in delivered bandwidth (see

figures 2 and 3).

It will be shown that for storage devices, larger transfer sizes

result in higher sustained bandwidth and less of a dependency

on the number of threads. The size of a transfer request should

be at least the size of an entire stripe of the logical volume or

some integer multiple of that size. Keeping the I/O requests



Fig. 2. Serial Operation Ordering forces each I/O operation to wait for the previous operation to complete before it can start.
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Fig. 3. Loose Operation Ordering causes each I/O operation to wait for the previous operation to release it from a semaphore before it can schedule its own
operation. Hence, I/O operation N will release operation N+1 just before operation N gets scheduled. This will allow operaiton N+1 to get scheduled before
N has completed thereby hiding the inter-operation latency.



aligned on stripe-boundaries is also important but is more

a function of the underlying file system and its allocation

policies.

Eliminating memory-to-memory copies is relatively straight

forward with file system I/O. It requires the use of Direct I/O

which is supported by most all current-generation file systems.

The use of Direct I/O imposes some restrictions on the I/O

requests but they are easily met and it is not necessary to

cover all those details in this paper.

That said, it is important to note that Direct I/O is not

readily available for Network I/O. The concept of Direct I/O

for networks is also referred to as Zero-Copy. The problem

is that there has been little effort into putting Zero-Copy into

the standard releases of the Linux Operating System which

is the OS-of-Choice in the HPC arena. As a result of this it

was discovered that in order to maximize the bandwidth of

transferring data from an application buffer on one computer

system to an application buffer on another computer system

over a network it is necessary to use more threads rather

than larger transfer sizes. As our results show, the size of

the transfer, beyond a minimum size of about 8 MBytes, has

no affect on the end-to-end bandwidth of transferring a large

amount of data. On the other hand, the number of threads used

to transfer the data from one end to the other has a linear-

scaling affect on the bandwidth up to about 96% of the wire

speed of the network.

In the end, it was discovered that maximizing the storage-to-

memory bandwidth on the storage subsystem required coordi-

nated, well-formed, Direct I/O from a relatively small number

of threads. Maximizing the memory-to-memory bandwidth

between two applications over a network required reasonably-

sized transfer sizes but a relatively large number of threads

operating in simultaneous pairs. Putting this all together re-

quires precise management of threads performing storage I/O

and Network I/O on both ends of an end-to-end data copy of a

large amount of data over a relatively long period of time. The

precise management of these threads and their I/O behavior

is, in fact, the impedance matching function as it were.

C. The Data Movement Problem

Data analysis in the high performance computing world is

currently limited in scale by an I/O bottleneck that forces

processors to idle while waiting for data from disk. In this

storage challenge entry we perform a detailed examination of

one aspect of the I/O bottleneck: long distance data movement.

The time spent manipulating large data sets is often one of

the limiting factors in modern scientific research. In fields

as diverse high-energy physics, petroleum exploration, and

genomics, massive data sets are the rule rather than the

exception. Modern middleware and parallel file systems go

to great lengths to accelerate complicated data access patterns;

however, when datasets become truly large, even simple tasks,

such as moving data between two remote sites can become a

challenging endeavor.

XDDCP uses the End-to-End options to accomplish the task

of copying data from one computer to another over a network.

The End-to-End operation is accomplished by a matched pair

of XDD instances with one instance running on the source

computer and the other instance running on the destination

computer. The source computer is defined to be the system

that reads in the original file and transmits its contents over

a network to the destination computer which is defined to be

the system that writes the copy of the file to stable storage.

Data movement is always from the source to the destination.

It is important to note that the source and destination instances

of XDD must be “matched” in the sense that they each

have the same queue depth and that they agree on which

network addresses and ports to use. For E2E operations the

queue depth can either be specified explicitly using the “-

queuedepth” option or it can be specified implicitly using the

option: -e2e destination hostname:base_port,number_of_ports

When the queue depth is specified implicitly, it will take

precedence over the “-queuedepth” option if it is also specified.

Furthermore, the queue depth implied on the “-e2e destination”

option is the sum of all “number_of_ports” specified for a

given XDD run. XDD can use either buffered I/O (figure 6)

or Direct I/O (figure 7) for reading the source file or writing the

destination file. Buffered I/O will increase the CPU overhead

and possibly result in lower overall bandwidth performance of

an E2E operation. Therefore, it is recommended that Direct I/O

be used whenever possible. The following diagrams illustrate

the basic difference between buffered I/O and Direct I/O as

they relate to an E2E operation.

III. METHODOLOGY

As part of our work, it is necessary to transfer multi-

Terabyte data sets over long distances. In order to measure

the effectiveness of our transfers we built a testbed capable

of shipping data thousands of miles along a networking loop.

Although the data began and ended at our laboratory, we used

independent components for each portion of the loop so that

the source and destination were completely separate.

A. Storage Infrastructure

Out storage testbed consisted of six Infortrend EonStor

S16F-R1430 disk arrays. The arrays were equipped with two

controllers and 16 Hitachi DeskStar E7K500 disks. Each

controller contained a single PC3200 DIMM, four 4Gbps Fibre

Channel ports, and supported up to 1024 queued commands.

The disks were 7,200 RPM serial ATA (SATA) disk drives with

500GB of capacity and an 8MiB cache. Although the con-

trollers were capable of redundant operation, we disabled the

redundancy features and used each controller independently.

The controllers were configured to provide RAID level 5 in a

7+1 configuration with 64KiB stripe size. Each controller was

connected into a storage area network (SAN) with a single

4Gbps Fibre Channel connection.

The storage network fabric was a Brocade Silkworm 4100

switch. The switch supported up to 32 4Gbps Fibre Channel

connections with 256Gbps of end-to-end aggregate bandwidth.

For our configuration it was necessary to split the 6 shelves (12

controllers) into 4 file systems. We constructed 12 zones such



Fig. 4. A basic XDD End-to-End data copy operation from the Source file to the Destination file using a single thread on each system.

that the “A” controllers from the first three shelves connected

to the host block adapters (HBAs) for the first source-side

host, the “B” controllers for the first 3 shelves connected too

the first destination-side host, the “A” controllers for the last 3

shelves connected to the second source-side host, and the “B”

controllers connected to the second destination-side host.

B. Host Infrastructure

Our host configurations used standard commodity parts and

the Linux operating system. All four systems were identical

with the exception that the machines named pod7, pod9, and

pod10 had dual Quad-Core AMD Opteron 8382 processors,

whereas our fourth system, pod11, had dual Quad-Core AMD

Opteron 2358 SE processors. The former processors ran at

2.6GHz while the latter processor ran at 2.4GHz. All four

systems had 32GB of main memory, a built-in Gigabit Ethernet

network interface, a Myricom Myri-10G Dual-Protocol net-

work interface card (NIC), and two dual port QLogic ISP2432-

based 4Gb Fibre Channel host bus adapters.

The Gigabit Ethernet port was connected to the National

Center for Computational Science (NCCS) management net-

work. The Myricomm NIC was connected to a Fujitsu

XG2000 10 Gigabit Ethernet switch. The XG2000 is a 20-

port enterprise-class 10Gig Ethernet switch. The XG2000

was configured into Virtual LAN (VLAN) environments such

that pod7 and pod10 were in a single VLAN and pod9 and

pod11 were in a separate VLAN. The isolated VLANs were

connected to the long haul network described later. Finally,

each host had three Fibre Channel connections into the Fibre

Channel switch as described in Section III-A.

The host systems ran Fedora 13 version of the Linux op-

erating system using kernel version 2.6.33.3-85. To aggregate

the three storage units into a single file system per host we

constructed a single volume group striped across each physical

volume with a 64KiB stripe size. We then constructed a local

XFS file system on each host using the default file system

parameters with the exception that we used 4KiB block sizes.

The XFS file system introspects into Linux logical volume

manager (LVM) so that file system requests are aligned with

the LVM stripe size to as great a degree as possible.

C. Network Infrastructure

The two VLANs described in Section III-B were inter-

connected by the Department of Energy’s UltraScience Net

(USN), an ultra-scale network testbed for large-scale sci-

ence [9]. The USN facility included a dedicated OC192

connection that connected Oak Ridge National Laboratory

(ORNL) to Fermilab in Chicago, Pacific Northwest National



Fig. 5. An XDD End-to-End data copy operation using multiple threads to move data in parallel from the Source file to the Destination file.

Network Loop Details Distance (mi) RTT (ms)

ORNL-ORNL 0.2 0.28

ORNL-Chicago-ORNL 1400 26.8

ORNL-Chi.-Sea.-Chi.-ORNL 6600 128

ORNL-Chi.-Sea.-Sunnyvale 8600 163

TABLE I
ULTRASCIENCE NET WIDE AREA NETWORK LATENCIES MEASURED WITH

THE PING UTILITY.

Laboratory in Seattle, and the Stanford Linear Accelerator

Center in Sunnyvale, California. The network was constructed

with two lambdas; however, since we configured the network

to both begin and end at Oak Ridge, we were only able to

achieve single OC192 connection speeds (9.6Gbps). Effec-

tively, we were able to construct network loops of different

lengths by constructing a cross-connection within the core

switch of each participating network site. Table I shows the

round-trip-time (RTT) measured with the ping utility for each

of the wide area network configurations.

D. Data Movement Software

Several software packages have been built for high perfor-

mance data movement. In this section we focus on describing

two of the most popular tools, BBcp and GridFTP, and our

own data movement software package, XDD.

1) BBCP: Originally built to transfer large data sets as

part of the BaBar Collaboration [11], BBCP was developed

by the the SLAC National Accelerator Laboratory (formerly

the Stanford Linear Accelerator Center). The major advantage

of BBCP versus traditional file transfer tools such as FTP

and SCP is increased performance for large data transfers,

particularly over large distances. Additionally, BBCP does not

require a long running server process, instead, upon invocation,

BBCP will spawn a process on both the source and destination

endpoints. The processes will then perform the file transfer

requested by the user.

BBCP supports a host of data transfer options included mul-

tiple I/O threads, network compression, and an append mode

that allows a previously cancelled transfer to be resumed.

Additionally, BBcp provides support for an ordered transfer

mode that ensure file data is read and written in serial order,

and an un-buffered mode that support direct I/O file access as

long as the file size is a multiple of 8KiB. Although we tested



Fig. 6. An XDD End-to-End data copy operation using Buffered I/O to read the Source file and write the Destination file. Also note that the Network data
is buffered in the MBufs.

the un-buffered and ordered transfer modes, we achieved the

highest levels of file transfer performance by only setting the

request buffer sizes.

2) GridFTP: GridFTP is a core service within the Globus

Grid Toolkit, and provided by Globus’ GridFTP servers and

the globus-url-copy GridFTP client. GridFTP provides features

for cluster-to-cluster end-to-end file transfers including file

striping support, load balancing across independent numbers

of source and destination hosts, multiple network protocols,

and a data source plugin architecture that may be effective

for improving file I/O performance. GridFTP requires the use

of the Grid Security Infrastructure (GSI) to provide certificate

based authentication for all file transfers.

For our testing we are using a single GridFTP server on the

destination and globus-url-copy from the source machine. We

are using the TCP network transport and set the TCP buffer

size to 32MiB. We used the default routines for accessing

file data which use the standard open, read, write and close

system calls. GridFTP does not provide a direct I/O option for

circumventing Linux kernel copies.

E. XDD

XDD was originally designed as a tool for characterizing

the performance of disk subsystems from a single system [?].

Originally conceived as a command-line based UNIX program

designed to consistently reproduce performance measurements

for various disk I/O access patterns. XDD is capable of

utilizing disk subsystems extremely efficiently, and producing

much higher file throughput than many other disk accessing

tools (e.g. the standard UNIX tool dd).

Although not designed to transfer file data over the network,

the efficient disk access routines in XDD made it an excellent

starting point for building a disk-aware file transfer utility.

We added a very simple networking implementation that

transforms XDD into a point-to-point data mover. In general

we have attempted to copy the user interface of BBcp where

possible. Transfers are initiated with a single command from

the source machine, with the remote server being started on an

as needed basis. There are no long running servers required to

run XDD. Additionally, we have implemented a restart/resume

capability that allows remote transfers that have failed or been

cancelled during transfer to continue where the transfer left

off. XDD also supports a configurable number of I/O threads;

however, the number of network and disk threads must be the



Fig. 7. An XDD End-to-End data copy operation using Direct I/O to read the Source file and write the Destination file. Note the absence of the File System
Buffers - data is transferred directly from the Source file into the application buffer and from the application buffer to directly to the Destination file.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

B
a
n
d
w

id
th

 (
M

B
/s

)

Distance (mi.)

XDD 8 threads
BBCP 4 threads

GridFTP 16 threads

Fig. 8. Disk-to-disk file transfer bandwidth for each tool’s highest perfor-
mance configuration.

same.

IV. LONG DISTANCE DATA TRANSFER PERFORMANCE

As we described in Section II, sustained performance for a

long distance data transfer requires efficient performance from

each hardware component of the transfer and a mechanism for

coupling the highest performance modes for each device into

a high performance implementation. Figure 8 demonstrates

the effectiveness of our approach for XDD in comparison

to BBcp and GridFTP. For each tool, we present the best

performing configuration over all of the network distances

measured. While the file transfer performance for XDD is

clearly superior to the transfer performance of BBcp and

GridFTP, by providing a few tuning options dependent upon

the transfer distance, it is possible to improve the performance

of XDD a further 10%. The remainder of this section provides

a detailed performance analysis of the hardware components

and the three file transfer software packages.

A. Component Capabilities

We begin our performance analysis by examining the iso-

lated performance of the disk arrays, network, and hosts.

Each component participating in our transfer is capable of

saturating a 10Gb interface with data; however, the parameters

required to achieve high performance are not identical for each
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Fig. 9. USN network loop bandwidth measurements with IPerf cross-
connected through Oak Ridge site.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  10  20  30  40  50  60  70  80  90  100

B
a
n
d
w

id
th

 (
M

b
/s

)

Threads

IPerf 2MiB Window
IPerf 4MiB Window
IPerf 8MiB Window

IPerf 16MiB Window

Fig. 10. USN network loop bandwidth measurements with IPerf cross-
connected through Chicago site.

Fig. 11. Network bandwidth measured with IPerf over the Chicago loop.

component. In order to construct a 10Gb data transfer it is

necessary to measure the overheads associated with matching

each device’s high performance modes.

B. Network Performance

Table I shows the distance and roundtrip latency mea-

surements for each of the USN network loop configurations.

Figures 9, 11, 12 and 13 show the network bandwidth in

Megabits per second (Mbps). To perform the measurements we

ran Iperf for 60 seconds while varying both the number of TCP

flows and the TCP window size. The maximum possible TCP

window size was limited to 16MiB by the sysctl configuration

in Linux. In figure 9 we can see that with low latencies,

network bandwidth can be maxed out by a single flow with

a moderate window size. In figure 11,the latency is increased

and it becomes necessary to increase the number of flows but

not the TCP window size to achieve maximum throughput. At

long distances, as in figure 12 and figure 13, high degrees of
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Fig. 12. USN network loop bandwidth measurements with IPerf cross-
connected through Seattle site.
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Fig. 13. USN network loop bandwidth measurements with IPerf cross-
connected through Sunnyvale site.

bandwidth are achievable, however we must employ multiple

flows and a larger TCP window size. For example, over the

Sunnyvale loop, it is necessary to use at least 8 flows to achieve

7290Mbps (911MB/s) with a 16MiB TCP window size.

C. Disk Array Write Performance

XDD was originally designed as a tool for measuring

I/O system throughput. We have used the performance mea-

surement features within XDD to profile writing 200GiB of

random data to pod10 to measure the impacts of request

size and I/O thread count on disk array write bandwidth.

Our experiments demonstrated that 200GiB of data moved

enough data to provide easily reproducible results. For all

of these tests we have configured XDD to use direct I/O;

for truly large transfers, the performance overheads associated

with kernel buffer management make it impossible to operate

our storage arrays within their highest performance mode.

Figure 14 shows the performance of writing data without

imposing any thread ordering. Because the array controllers
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Fig. 14. Disk array write performance without request ordering.
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Fig. 15. Disk array write performance with serial request ordering.
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Fig. 16. Disk array write performance with loose request ordering.
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Fig. 17. Disk array read performance without request ordering.
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Fig. 18. Disk array read performance with serial request ordering.

support up 1024 queued SCSI commands, for most reasonable

request sizes and thread counts the file write performance is

excellent. In fact, for smaller numbers of threads, the no-order

I/O thread scheduling strategy produces the highest measured

file write bandwidth in all of our testing. Figure 16 shows

the file write bandwidth with loosely ordered I/O requests.

The observed file write bandwidths are virtually identical to

the no-ordering strategy with the exception that performance

is slightly lower due to increased synchronization overhead.

The results of writing the file with serial ordering, shown

in figure 15, are far different than the first two I/O request

scheduling strategies. With serial ordering, the thread count is

not a relevant factor in file write bandwidth; instead write

performance is dictated almost solely by the request size.

With a request size of 64MiB we were not able to achieve

the performance levels offered by the more relaxed request

scheduling algorithms; however, the stable disk performance

levels are encouraging and an area of future development.
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Fig. 19. Disk array read performance with loose request ordering.

D. Disk Array Read Performance

We used the same configuration to measure the file read

performance from disk, reading the 200GiB data file with

varying request sizes and thread counts. Again we measured

only direct I/O, as buffered I/O file system bandwidths were

much lower. High levels of disk array read performance are

more difficult to achieve in many cases because read requests

for large file transfers typically do not complete in the cache.

The incoming read requests need to be sequentially ordered

to a much greater degree than write requests to achieve

high levels of file system bandwidth. Still, our disk arrays

supported some degree of data pre-fetching, caching and

request re-ordering to achieve high levels of performance even

when presented with non-sequential workloads. Balancing

the overhead of mostly serializing the file request offsets

while not contending for software locks is challenge for read

intensive workloads. Figure 17 shows the performance of

writing data without imposing any thread ordering. Although

small numbers of reading threads provides high levels of

file read bandwidth, without thread ordering large numbers

of I/O threads cause the disk read performance to decrease

dramatically. We then expect that loose ordering might provide

enough request serialization to achieve consistently excellent

file read bandwidth. Figure 19 demonstrates that for 32MiB

request sizes it is the case that read performance is generally

excellent, and the peak performance is the highest observed

performance mode for our disk arrays. Figure 18 again shows

that the serial ordering option decouples file read performance

from the I/O thread count, and I/O request size again becomes

the major performance factor.

E. Disk Array Performance Pairing

In order to understand file transfer performance from the

disk perspective it is important to examine the how the

file write strategy and file read strategy are paired together.

Figure 20 and figure 21 show the I/O bandwidths for the

request scheduling strategies and request sizes most practical

for reading and writing a file, respectively. In XDD it is

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  5  10  15  20  25  30

B
a
n
d
w

id
th

 (
M

B
/s

)

Threads

Read, Loose Ordering, 32MiB Request
Read, Loose Ordering, 64MiB Request
Read, Serial Ordering, 32MiB Request
Read, Serial Ordering, 64MiB Request

Fig. 20. Candidate disk read strategies for file transfers.
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Fig. 21. Candidate disk write strategies for file transfers.

necessary to use the same request size on both the source

and destination endpoints.

Figure 22 shows the I/O bandwidths associated with read-

ing a with 32MiB requests and loose ordering and writing

a file with 32MiB requests and no ordering. The highest

performance modes are relatively well matched, and perfor-

mance does not degrade excessively for either the source

or destination as the thread count is increased (which may

be necessary to saturate high latency networks). Figure 23

shows the same file read and write pairing with the exception

that the request size is increased to 64MiB. Although the

highest performance modes for the file read and write are well

matched, we note that as the number of threads is increased,

performance declines much faster for file reads

Due to the insensitivity to thread count, we have also

examined the benefits of pairing serial ordered file reads and

file writes. Figure 24 shows the file read and write bandwidth

associated with serial ordering and a 32MiB request size.

Although the highest performance modes available in the

loose/no ordering pairings, the performance stability as the

thread count is increased make serial ordering attractive for
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Fig. 22. Disk array read performance with serial request ordering.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  5  10  15  20  25  30

B
a
n
d
w

id
th

 (
M

B
/s

)

Threads

Read, Loose Ordering, 64MiB Request
Write, No Ordering, 64MiB Request

Fig. 23. Disk array read and write performance with serial ordering and 64
Mebibyte requests.
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Fig. 24. Disk array read and write performance with serial ordering and 32
Mebibyte requests.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  5  10  15  20  25  30

B
a
n
d
w

id
th

 (
M

B
/s

)

Threads

Read, Serial Ordering, 64MiB Request
Write, Serial Ordering, 64MiB Request

Fig. 25. Disk array read and write performance with serial ordering and 64
Mebibyte requests.
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Fig. 26. Software overhead for BBCP and XDD measured as bandwidth.

extremely high latency networks. Similarly, the 64MiB request

size pairing is also interesting, though software issues limited

our testing with this combination for actual file transfers.

F. Host Performance

Figure 26 examines the software and host overheads of

BBcp and XDD. To evaluate the host performance, our initial

idea was to perform a transfer of 200GB of data from /dev/zero

to /dev/null over the localhost connection. To ensure better

measurement stability we used the taskset utility to assign the

source process to the first CPU socket (processors 0-3) and

the destination process to the second CPU socket (processors

4-7). Upon examining the BBcp source code, we learned that

BBCP does not actually perform I/O to /dev/zero or /dev/null,

instead it detects the special file endpoints and avoids the

file I/O calls entirely. We implemented similar behavior in

XDD to compare the implementations, and have labeled the

lines as “Null Transfers” to annotate that the file I/O stack

is not engaged. In the case of XDD we use the no ordering

request scheduling option to most closely match the behavior
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Fig. 27. Software overheads for GridFTP and XDD measured as bandwidth.

of BBcp. We also provided data for a “Simulated Transfer”

with XDD that uses a Null device and loose ordering on the

source side (which more closely matches the direct I/O access

implemented by XDD), and /dev/null with no ordering for

the destination endpoint. The BBcp implementation clearly

outpaces the performance of XDD. We attribute this primarily

to the simplicity of BBcp which leads to a very fast code

path. XDD expends CPU cycles managing the request ordering

which leads to much larger software overheads. Also note that

since the transfer is occurring entirely within a single host,

the observed bandwidth numbers can likely be doubled to

determine the capability of the host as a single endpoint in

a file transfer.

Figure 27 provides similar data for comparing the host and

implementation efficiencies for XDD and globus-url-copy, the

Globus GridFTP client. For reference, we again provide data

for the simulated transfer using XDD; however, the GridFTP

client is not capable of direct I/O so we also provided measure-

ments for a buffered I/O transfer from /dev/zero to /dev/null for

both software tools. The lines titled “Local Transfer” indicate

that the source reads data from /dev/zero, transmits the data

over a socket connected to localhost, and writes the data to

/dev/null. The XDD data clearly demonstrates that the cost of

reading data from /dev/zero is significant, and that techniques

such as direct I/O are important for avoiding unnecessary

memory copies. One problem with GridFTP is that it provides

no mechanism for leveraging direct I/O (and our measurements

also indicate that direct I/O is not a performance boost for

BBcp on our hardware either). Further, GridFTP seems to

exhibit poor scalability on our hosts, as adding threads reduces

performance even for small numbers of threads.

G. End-to-End File Transfer Performance

Having examined the performance of each of the individual

components in the end-to-end file transfer, we note that we

expect to be disk limited when using a single source host

and single destination host. Our 9.6Gbps USN network can

theoretically provide 1200MB/s of data throughput; however,
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Fig. 28. Comparison of transfer performance over the ORNL loop.

our disk arrays are only barely capable of 1000MB/s. Further,

we know that long distance network loops will require multiple

flows, and the disk arrays perform best with multiple flows as

well. However, the implementation of data movement from

disk to network is critical to achieving performance.

1) Low Latency Networks: Figure 28 shows the end-to-

end file transfer performance of a 200GiB file copied from

pod7 to pod9 over the USN looped through the ORNL cross

connection for XDD, BBcp, and GridFTP. For each tool we

used a 32MiB request size. We have also included the transfer

performance for XDD with serial ordering at both the source

and destination. The best performing XDD configuration is

almost twice as fast as the best performing BBcp configuration.

Although we tried to further improve BBcp performance

by using ordered and un-buffered configuration options, we

achieved the highest observed performance by setting only

the buffer size to 32MiB. The Globus GridFTP client provides

far fewer optimization options, and so we were only able to

set the request sizes. More interestingly, even though XDD

is the only transfer tool capable of effectively leveraging the

file system’s direct I/O capabilities, the performance differ-

ence between proper impedance matched settings (4 threads

achieving 829MB/s) and improperly matched transfer settings

(e.g. 16 threads achieving 596MB/s) are nearly 30% different.

Clearly proper impedance matching is important.

2) Increasing Latency: Figures 29, 30, and 31 show the

end-to-end transfer performance over the Chicago, Seattle,

and Sunnyvale network loops respectively. Again we see that

the request scheduling approach and explicit buffer manage-

ment used in XDD provides better transfer performance than

BBcp and GridFTP. We also again note that choosing the

best parameters is critical to maximizing the file transfer

performance. Finally, we note that over the USN Chicago

loop XDD using 16 threads with serial request ordering

results in extremely poor file transfer performance. During

our testing we occasionally observed that serial scheduling

transfers exhibited poor performance. Although we weren’t

able to consistently reproduce the problem, we believe that
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Fig. 29. Comparison of transfer performance over the Chicago loop.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5  10  15  20  25  30  35

B
a
n
d
w

id
th

 (
M

B
/s

)

Threads

XDD
XDD Serial

BBCP
GridFTP

Fig. 30. Comparison of transfer performance over the Seattle loop.
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Fig. 31. Comparison of transfer performance over the Sunnyvale loop.
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Fig. 32. XDD 2 Hosts transfer performance over dedicated WAN link.

an implementation defect is likely the cause of the instability,

and we intend to further examine the issue as part of our

further exploration of serial request ordering for end-to-end

file transfers.

3) Multiple Hosts: Finally, while an efficient implementa-

tion will be critical in moving data at extreme performance

levels, scalability beyond single endpoint transfers will be

necessary as networking technology moves to 40Gb Ethernet

and 100Gb Ethernet. We have implemented both multi-host

and multi-NIC capabilities within XDD. Figure 32 shows the

performance using two source endpoints and two destination

endpoints to transfer a 200GB file over each of the USN

network loops. XDD is able to saturate the network by adding

flows at each endpoint. For this experiment we did not use

a parallel file system, instead we replicated the on the local

source file systems, and transferred half of the file to each

destination endpoint. Although we could use custom data

distributions with a file system such as PVFS to reconstruct the

file on the destination side [7], we are interested in alternative

methods of accelerating parallel file system based transfers.

Although BBcp does not offer multi-host capabilities, GridFTP

offers extremely flexible multi-host support. However, due to

the network bottleneck limiting the performance of this test,

we did not perform testing with GridFTP.

V. DISCUSSION

Our experience developing file transfer capabilities for XDD

has demonstrated that an impedance matching model is an

effective scheme for high performance end-to-end file trans-

fers. Leveraging the highest performance modes of each of the

constituent devices is critical in achieving high performance

file transfers. Earlier tools, such as BBcp and GridFTP, pro-

vide adequate performance for many types of data transfers;

however, with XDD we have focused on pushing file transfer

performance as far toward device speeds as possible. We

believe that the types of techniques described in this paper

are critical to achieve the I/O performance goals set forth for

Exascale computing initiatives.



The key benefits offered in XDD’s end-to-end file transfer

capabilities are the I/O device scheduling strategies and the

explicit buffer management. By carefully managing how the

file I/O requests are issued to the underlying storage de-

vices we can extract the maximum performance from storage

devices ranging from single disks to complicated storage

arrays. Additionally, while it may seem most beneficial to

perform direct memory access (DMA) between the storage

devices and network interface(s), our results indicate that

an impedance matching approach that manages the buffers

within the file transfer tool provides access to device level

performance. The end-to-end performance levels attained by

XDD are only possible by taking the time to understand how

the application requests are serviced by the file system, how

the file system requests are serviced by the operating system,

and how the operating system requests are serviced by the

storage hardware.

VI. FUTURE WORK

In the immediate future we are planning to push XDD

to perform full performance end-to-end file transfers over a

dedicated 40Gigabit Ethernet network. In order to achieve

40Gigabit performance levels, with the highest efficiency

possible, our intent is to use both multiple hosts and multiple

NICs per host. At present, we use TCP/IP as our only network

protocol; however, the extensive kernel level interactions and

buffer copies requred by TCP offer several opportunities for

improvement with alternative network protocols. We intend

to explore zero-copy networking approaches based on the

Infiniband software stack and user-space UDP-based protocols

such as UDT in the near future.

Additionally, to achieve 5-15GB/s of file system bandwidth

it will be necessary to leverage parallel file system technology

to produce a consistent file at the destination site. Our goal is

not to abandon our disk-aware approach to end-to-end trans-

fers, but instead to augment our request scheduling techniques

to work with parallel file systems. This may involve modifying

the underlying parallel file system to expose detailed disk

layout information, or running XDD from within the file

system I/O nodes. As we test file transfer techniques and

approaches at 40Gigabit (5GB/s), we will also keep an eye

toward 100Gigabit (12.5GB/s) networks and beyond. A fully

saturated 100Gigabit connection will be capable of transferring

nearly 1 Petabyte of data per day.
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