
Multi-level Hybrid Cache: Impact and Feasibility

Zhe Zhang∗, Youngjae Kim∗, Xiaosong Ma†∗, Galen Shipman∗, Yuanyuan Zhou‡

∗Oak Ridge National Laboratory, †North Carolina State University, ‡University of California San Diego

Abstract

Storage class memories, including flash, has been attract-

ing much attention as promising candidates fitting into

in today’s enterprise storage systems. In particular, since

the cost and performance characteristics of flash are in-

between those of DRAM and hard disks, it has been con-

sidered by many studies as an secondary caching layer

underneath main memory cache. However, there has

been a lack of studies of correlation and interdependency

between DRAM and flash caching. This paper views this

problem as a special form of multi-level caching, and

tries to understand the benefits of this multi-level hybrid

cache hierarchy. We reveal that significant costs could be

saved by using Flash to reduce the size of DRAM cache,

while maintaing the same performance. We also discuss

design challenges of using flash in the caching hierarchy

and present potential solutions.

1 Introduction

The past decade has witnessed significant advances in

semi-conductor technologies and the emergence of var-

ious forms of storage class memory (SCM) such as

NAND flash, magnetic RAM (MRAM), phase-change

memory (PRAM), and Ferroelectric RAM (FeRAM). In

particular, NAND flash memory has low unit price (in

$/byte) due to its massive production. Therefore it has

not only been a major storage media for mobile devices

in recent years but also is becoming on the road to replace

a certain portion of hard disks (HDD) currently used in

desktop and server environments [12, 18].

Researchers have also proposed using SCM to extend

and complement traditional DRAM-based main mem-

ory in different ways: to compose hybrid main mem-

ory [15], to form new virtual memory hierarchy [19], and

as secondary buffer caches [8, 14]. Among them, SCM-

based caching is particularly important in I/O intensive

environments, where enterprise storage servers are pro-

visioned with large DRAM buffer caches to improve

Storage Area 

Network (SAN)

.....

DB Server 
(DB2, Oracle, etc)

Web Server
(J2ME, etc) 

File Server
(NFS, etc) 

Processors

L1/L2 Caches

HDD

Controller Controller..........

.....

HDD Storage pool

.....

Solid-state memory 

device pool

!"#$%&'(
!'$)'$

HDD
HDD

Main Memory

(Volatile / Non-volatile)

Figure 1: DRAM-based main memory and SCM form a multi-
level hybrid cache hierarchy.

I/O throughput and response time. A secondary SCM

caching layer can reduce the need for DRAM cache, sav-

ing hardware costs and energy, or supplying additional

cache capacity.

When both DRAM and SCM caches are used in a storage

server, a multi-level hybrid cache hierarchy is formed,

as illustrated in Figure 1. However, existing work has

overlooked the coordinated management of DRAM and

SCM caches in this hierarchy.

In fact, coordinatedmulti-level caching have been widely

studied in distributed computing environments [3, 6, 22,

25, 24]. In this work we view the above problem as a

special form of multi-level cache management, and re-

visit existing mechanisms based on the following unique

characteristics of the DRAM-SCM-HDD hybrid storage

hierarchy.

Firstly, in previously studied environments, multiple lev-

els of caches are typically deployed in and managed by

distributed computer systems connected with local or re-

mote networks. SCM, on the other hand, often resides

in the same node as, and has fast bus connection to, the

main memory.

Moreover, the low unit price of SCM, especially flash,

determines that its cache space can be an order of mag-

nitude larger than DRAM capacity. This is different than

in distributed multi-level caches, where a lower level of-

ten have comparable or even smaller cache space than an

1



upper level [3].

Finally, as a storage media, SCM possesses the following

unique characteristics:

(i) SCM’s write is noticeably worse than the read coun-

terpart. (ii) SCM becomes less reliable after many re-

peated write-erase cycles. Depending on the media type,

some SCM devices also suffer from degraded perfor-

mance during garbage collections, which are performed

when insufficient free blocks are available. (iii) The non-

volatile property of SCMmakes it an attractive option for

buffering dirty data blocks longer.

Based on these observations, in this paper we make two

major contributions.

• To understand the impact of multi-level hybrid caches,

we analyze the amount of DRAM that each GB of

SCM “saves” when used for demand paging, prefetch-

ing, and write buffering, respectively.

• To address the challenges of adopting this architec-

ture, we propose several novel mechanisms as well as

a number of design guidelines. Their purpose is to

help the system approach the ideal saving mentioned

above. For simplicity, the rest of our discussion will

be based on flash. However, they can be extended to

any type of SCM.

2 How much DRAM can be saved?

In this section, we analyze the multi-level caching prob-

lem in a hybrid storage system consisting of DRAM,

flash memory, and hard disk drive. We consider saving

DRAM as the primary impact of using flash in this I/O

stack. Therefore, our basic approach is to solve the fol-

lowing equation:

Flash(F ) = DRAM(D) (1)

In Equation 1, F represents the size of flash memory be-

ing used, D denotes the amount of DRAM with equiva-

lent impact to the performance. Intuitively, the equation

indicates that we can save D amount of DRAM with F

amount of flash. If we use Costf and Costd to represent

the unit prices for flash and DRAM, then the $ saving of

using F amount of flash is Costd · D − Costf · F .

2.1 Demand paging

Memory cache space can be used in three ways:

• Demand paging – keeping data block that are likely to

be re-accessed in the future

• Prefetching – fetching data blocks before they are re-

quested based on prediction of access patterns

• Write buffering – absorbing asynchronous write re-

quests

In this subsection we present our analysis and prelimi-

nary results on demand paging. Section 2.2 extends the

discussion to prefetching and write buffering.

In multi-level demand paging the role of the lower level

cache is to catch misses from the upper level. For a given

workload, let h(x) denote the cache hit rate with cache
size x. If we have a DRAM cache of size xd and a flash

cache of size xf , then we have a first level hit rate of

h(xd) and a second level hit rate of h(xf ) − h(xd). If
we further assume the random read cost on DRAM, flash

and HDD are rd, rf , rh respectively, then the average I/O

response time is:

h(xd) ·rd +(h(xf )−h(xd)) ·rf +(1−h(xf )) ·rh (2)

Having xf amount of flash saves total access time by

save(xf ) = [h(xf ) − h(xd)] · (rh − rf ). Therefore,
when coupled with xd amount of DRAM, then we can

deduct the following equation:

Flash(F ) = DRAM(h−1(h(xd) +
save(F )

rh − rd

) − xd)

(3)
, where save(F ) = [h(F ) − h(xd)] · (rh − rf ).

To empirically evaluate the saving we use a multi-level

cache emulator extended from and cross-validated with

a multi-level cache simulator used in [3, 25]. The em-

ulator runs on the application level and bypasses the

OS buffer cache by using direct and synchronous I/O.

Real SATA-II SSD (Intel SSDSA2SH032G1GN) and

HDD (WDC WD3200AAKS-75L9A0) are used in ex-

periments. Our preliminary experiments use a simple

DRAM − Flash − HDD architecture, and adopt the

LRU replacement policy on both caches. Three I/O

traces are used: OLTP (collected from online transac-

tion processing applications at a large financial institute)

andWebSearch (collected from a popular search engine)

are obtained from SPC 1, while TPC-H were collected

at the Purdue university by running the corresponding

benchmark. Prefetching is turned off and write requests

in traces are ignored.

Figure 2.a shows the I/O response time of the OLTP trace

with different DRAM and flash sizes. In this trace the av-

erage request size is 15KB, and the read access costs on

DRAM, SSD and HDD are: rd = 1.56µs, rf = 86µs,

and rh = 2.35ms. From the figure, we see that without

flash, the response time decreases almost linearly with

larger DRAM cache. Adding a flash cache improves the

performance significantly in most cases. Moreover, the

response time is much less sensitive to DRAM cache size

when flash is larger than DRAM. That is because even

with a high aggregate cache hit ratio (∼ 90%) the I/O
response time is dominated by disk accesses. As long as

flash is larger than DRAM, increasing the DRAM size

will only transfer flash cache hits into DRAM cache hits,

without reducing disk accesses.

1http://traces.cs.umass.edu/index.php/Storage/Storage

2



 0

 200

 400

 600

 800

 1000

 1200

 1400

4MB 8MB 16MB 32MB 64MB 128MB 256MB

I/
O

 R
e
s
p
o
n
s
e
 T

im
e
 (

µ
s
)

DRAM Cache Size

AB

w/o flash
w/ 32MB flash

w/ 128MB flash
w/ 256MB flash

0.0

0.2

0.4

0.6

0.8

1.0

1MB 4MB 16MB 64MB 256MB 1GB 4GB 16GB

C
a
c
h
e
 H

it
 R

a
ti
o

LRU Cache Size

OLTP TPC-H WebSearch

(a) (b)

Figure 2: (a) Average I/O response time of OLTP trace. (b) LRU cache hit ratio with different traces.

Due to the space limitation we do not show the response

time results for the other two traces. However, in Fig-

ure 2.b we present their cache hit ratios on a single

level LRU cache. This corresponds to the h(x) func-
tion above, and enables the estimation of flash cache’s

impact using Equation 3. We see that in OLTP and TPC-

H traces, almost 90% of requests can be hit in 256MB
memory space. In contrast, WebSearch shows much less

temporal locality than other workloads. 4GB memory

space can barely satisfy 50% hits of requests.

$ Saving: We illustrate the actual $ saving by com-

paring two sample configurations: a 128MB DRAM

cache and a hybrid cache of 64MB DRAM and 128MB

flash (marked as “A” and “B” in Figure 2.a). Since

they have almost the same response time, we have

Flash(128MB) = DRAM(64MB) (as in Equa-
tion 1). With a 5:1 price ratio of DRAM and flash

($/GB), the hybrid cache saves 59% over the single level
DRAM cache. With a 10:1 ratio the saving becomes

79%.

2.2 Prefetching and Write Buffering

Prefetching: In modern systems the behavior of sequen-

tial prefetching is controlled by two parameters, prefetch

degree, indicating how much data to prefetch for each

prefetching request, and trigger distance, indicating how

early to issue the next prefetch request. The memory

consumption with a giving prefetching degree P and

trigger distance T is roughlyT+P
2
[24]. While prefetch-

ing mechanisms have different ways of setting T and P

values, the main factors affecting these decisions are ap-

plications’ data access rates and storage media’s latency

and throughput.

Since flash has smaller read latency and higher read

throughput than HDD, with a given workload we have

Pf < Ph and Th < Th, where Pf , Tf , Ph, and Th

are prefetch degrees and trigger distances for flash and

HDD, respectively. Therefore, with nsr sequential read-

ing streams, the following equation can be deducted:

Flash(nsr · (Th +
Ph

2
))

= DRAM(nsr · (Th +
Ph

2
− Tf −

Pf

2
))

Write buffering: Write buffering is less studied than

demand paging and prefetching because of its asyn-

chronous nature. However, researchers have pointed out

that the lack of careful management could lead to con-

siderably degraded performance [2].

Current DRAM write buffering mechanisms are de-

signed with several main considerations in mind. Firstly,

multiple updates to the same pagemay be aggregated and

performed once. Secondly, spatially related writes may

be merged into large sequential requests which are favor-

able for hard disk performance.

In contrast to HDD, flash devices do not have rotating

parts, and the main benefit of large sequential writes is

to reduce the number of erases. Therefore, with a flash

memory cache layer underneath, DRAM write buffering

only needs to accumulate write requests up to sizes of a

flash erasing unit f pg (typically 128KB or 256KB).

However, it is still beneficial for DRAM to leverage tem-

poral locality and catch re-writes to the same page. Oth-

erwise the same page will be erased multiple times on

the flash layer. Meanwhile, the flash memory layer could

serve as a buffer region to re-organize dirty blocks into

spatially sequential batches to optimize disk I/O.

If there are nsw sequential writing streams, with an aver-

age rate of wr, and the system uses ald as the age limit

in flushing dirty pages in DRAM, alf for flash, then we

have the following equation:

Flash(nsw ·wr ·alf ) = DRAM(nsw ·dr ·ald − f pg)

3 Approaching the ideal saving

It is not trivial to achieve the ideal savings as analyzed

in Section 2. In this section we discuss major technical

3



challenges of multi-level hybrid caching and also pro-

pose possible mechanisms to overcome those challenges.

3.1 Challenges

In NAND flash memory devices, read and write opera-

tions are executed at the granularity of pages. Unlike in-

place updates in HDD, an update on a flash page needs

to mark this page as “invalid” and write the new con-

tent in a free page elsewhere. The device will eventu-

ally reach a state where too few free pages are remain-

ing, at which time a process is triggered to collect and

erase invalid pages marked by page updates and create

free pages/blocks for future write operations. This pro-

cess is called Garbage Collection (GC). Normal read and

write operations will be slowed down during GC, to dif-

ferent extents depending on device types [11].

In addition, even without being disturbed by GC, write

operations on flash take considerably longer time than

reads (up to 10× latency). If occurring on the critical

path such as synchronous reads, this could cause appli-

cation slowdowns.

Moreover, the reliability and lifetime of flash devices

could be severely degraded with frequent page updates.

[17] has analyzed the case where flash is used as write

buffers for storage volumes. It is pointed out that since

all writes to a volume are absorbed by a relatively small

flash device, the wear-out time is much shorter (less than

5 years with more than half of the workloads) compared

to the scenario where flash is used as persistent storage

(over 100 years for the majority of workloads).

We further argue that when used as a cache (for demand

paging, prefetching and write buffering), flash faces page

updates caused by both write and read requests from ap-

plications. As an extreme example, a read-only work-

load still introduces write operations to flash cache when

new cache blocks are inserted and old ones are evicted.

Putting it precisely, every read/write request observed on

the disk level corresponds to one cache content update.

Therefore, the total update/erase frequency of flash cache

is the summation of disk read and write I/O rates.

Trace
Read Write

Size
(MB/s) (MB/s)

MSR Cambridge [16] 12.77 5.98 5.7TB

Exchange Server [17] 22.84 36.79 750GB

Table 1: Workload characteristics of block I/O traces.

In Table 1 we characterize representative disk block I/O

traces collected from real workloads. For instance, with

the MSR Cambridge trace, the write rate to flash cache

is 213% compared to write rate perceived by the disk

volume.

3.2 Possible solutions

To address the above challenges, existing single- and

multi-level cache management mechanisms need to be

revisited. In this section we discuss several new designs

and present preliminary results.

Direct path between DRAM and HDD: Toward the
goal of eliminating flash write operations from critical

paths, we propose keeping a direct path between DRAM

and HDD, instead of using a traditional tiered architec-

ture assumed by most existing multi-level caching stud-

ies [3]. Doing so enables data blocks that are missing

from both caches to be fetched directly from HDD to

DRAM, and then to be written to flash in background. In

addition, the system can select to bypass the flash cache

layer for some requests.

Frequency-aware policies: We argue that new cache re-

placement policies should be designed and adopted that

are aware of the cache content update frequency. As a

first step we propose a simple algorithm LRUf . It is a

variation of LRU with a cache content update frequency

that is only a fraction f of the original algorithm. This

can be achieved in different ways, the simplest among

which is to randomly discard some updates.

To evaluate this trade-off we have implemented LRUf

on the flash layer in the emulator introduced in Sec-

tion 2.1, and performed experiments with the OLTP

trace. The DRAM cache size is fixed at 4MB and flash

cache size changes from 8MB to 256MB.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

16 32 64 128 256

C
a

c
h

e
 H

it
 R

a
ti
o

LRU Cache Size (MB)

LRU
LRU75%
LRU50%
LRU25%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 64 128 256

C
a

c
h

e
 U

p
d

a
te

s
 (

x
 1

M
)

LRU cache size (MB)

LRU
LRU75%
LRU50%
LRU25%

(a) (b)

Figure 3: (a) and (b) show flash cache hit ratio and number of
content updates of LRU and different LRUf schemes with the

OLTP trace.

Figure 3 shows both the flash cache hit ratio and num-

ber of cache updates of of LRUf with different f val-

ues. It can be observed that LRU75% has very similar

hit ratios as LRU , while incurring 25% fewer cache up-
dates. LRU25% reduces the number of updates much

more aggressively, with the penalty of degraded hit ra-

tios with relatively large cache sizes. It decreases the hit

ratio by 4% for a 128MB cache and 9% for a 256MB
one, translating 13% and 37% increases in the number

4



of disk reads, which dominates the response time as we

discussed earlier.

4 Related Work

Multi-level Caching: There have been many studies on

improving secondary cache hit ratio in multi-level de-

mand paging. Existing work has been focused on pro-

viding exclusiveness [22, 4, 6] or capturing long-term

access patterns [26]. A comprehensive empirical evalua-

tion is provided in [3]. With these optimizations the sav-

ings with hybrid cache will be further improved. How-

ever, some techniques increases data transfers between

upper and lower caches which need to be considered

when applied to flash. Multi-level prefetching has also

been studied recently [23, 24, 25]. However, it has not

been empirically studied how to set appropriate prefetch-

ing aggressiveness on a very fast secondary cache such

as locally attached flash, which we consider as our future

work.

SSD storage and caching: Many studies have been con-
ducted on the performance optimization of systems em-

ploying flash/SSD [8, 20, 13]. In [21] a hybrid storage

device is proposed that can use a HDD as a write cache

for a SSD, reducing over-writes. There are also ongoing

efforts to design and develop adaptive file systems for

heterogeneous media [10, 5].

There have been researches on SSD-aware caching [18]

as well as using flash as a partial replacement of main

memory/DRAM [8]. CFLRU [18] is an optimization

of main memory caching mechanism with underlaying

SSD-based persistent storage. In [9] a hybrid memory

system is proposed where some portion of main mem-

ory is replaced with larger flash. However, they focused

an architectural design issue rather than cache manage-

ments.

5 Conclusion

In this paper we discovered that a multi-level hybrid

cache can have significant $ cost saving (59% ∼ 79%)
over a traditional DRAM cache by adding an additional

flash layer.

We also found that flash memory has its limitations when

used as a secondary cache, due to its garbage collection

overheads, life time constraints and slow write opera-

tions, and proposed potential solutions.

References

[1] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. X-ray: A Non-Invasive Exclusive
Caching Mechanism for RAIDs. SIGARCH Comput. Archit.
News, 32(2):176, 2004.

[2] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and T. Talpey.
Awol: An Adaptive Write Optimizations Layer. FAST, 2008.

[3] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer. Empirical
Evaluation of Multi-level Buffer Cache Collaboration for Storage
Systems. SIGMETRICS, 2005.

[4] Z. Chen, Y. Zhou, and K. Li. Eviction-based Cache Placement
for Storage Caches. USENIX ATC, 2003.

[5] J. A. Garrison and A. L. N. Reddy. Umbrella File System: Stor-
age Management across Heterogeneous Devices. Trans. Storage,
5(1):1–24, 2009.

[6] B. S. Gill. On Multi-level Exclusive Caching: Offline Optimality
and Why Promotions Are Better than Demotions. FAST, 2008.

[7] S. Jiang and X. Zhang. ULC: A File Block Placement and Re-
placement Protocol to Effectively Exploit Hierarchical Locality
in Multi-level Buffer Caches. ICDCS, 2004.

[8] T. Kgil and T. Mudge. Flashcache: A Nand Flash Memory File
Cache for Low Power Web Servers. CASES, 2006.

[9] T. Kgil, D. Roberts, and T. Mudge. Improving Nand Flash based
Disk Caches. ISCA, 2008.

[10] E. Kim, H. Shin, B. Jeon, S. Han, J. Jung, and Y. Won. Frash:
Hierarchical File System for Fram and Flash. LNCS. 2007.

[11] Y. Kim, S. Oral, D. Dillow, F. Wang, D. Fuller, S. Poole, and
G. Shipman. An Empirical Study of Redundant Array of Inde-
pendent Solid-state Drives (RAIS). ORNL/TM-2010/61, National
Center for Computational Sciences, March 2010.

[12] I. Koltsidas and S. D. Viglas. Flashing Up The Storage Layer.
Proc. VLDB Endow., 1(1):514–525, 2008.

[13] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bi-
las. Using Transparent Compression to Improve SSD-based I/O
Caches. EuroSys (To Appear), 2010.

[14] E. L. Miller, S. A. Brandt, and D. D. E. Long. Hermes: High-
Performance Reliable MRAM-Enabled Storage. HOTOS, 2001.

[15] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating
System Support for NVM+DRAM Hybrid Main Memory. Ho-
tOS, 2009.

[16] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-
Loading: Practical Power Management for Enterprise Storage.
Trans. Storage, 4(3):1–23, 2008.

[17] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating Enterprise Storage to SSDs: Analysis
of Tradeoffs. EuroSys, 2009.

[18] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. CFLRU: A Re-
placement Algorithm for Flash Memory. CASES, 2006.

[19] M. Saxena and M. M. Swift. Flashvm: Revisiting the Virtual
Memory Hierarchy. HotOS, 2009.

[20] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber. Extending SSD Lifetimes with Disk-based Write Caches.
FAST, 2010.

[21] D. L. Willick, D. L. Eager, and R. B. Bunt. Disk Cache Replace-
ment Policies for Network Fileservers. ICDCS, 1993.

[22] T. M. Wong and J. Wilkes. My Cache or Yours? Making Storage
More Exclusive. USENIX ATC, 2002.

[23] G. Yadgar, M. Factor, K. Li, and A. Schuster. MC2: Multiple
Clients on A Multilevel Cache. ICDCS, 2008.

[24] Z. Zhang, A. Kulkarni, X. Ma, and Y. Zhou. Memory Resource
Allocation for File System Prefetching: From A Supply Chain
Management Perspective. EuroSys, 2009.

[25] Z. Zhang, K. Lee, X. Ma, and Y. Zhou. PFC: Transparent Opti-
mization of Existing Prefetching Strategies for Multi-level Stor-
age Systems. ICDCS, 2008.

[26] Y. Zhou, J. F. Philbin, and K. Li. The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches. USENIX ATC , 2001.

5


