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ABSTRACT 
 
 

Political communications in the form of unstructured text convey rich connotative meaning that can 
reveal underlying group social processes. Previous research has focused on sentiment analysis at the 
document level, but we extend this analysis to sub-document levels through a detailed analysis of 
affective relationships between entities extracted from a document. Instead of pure sentiment analysis, 
which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our 
affect propagation algorithm automatically calculates and displays extracted affective relationships among 
entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several 
useful metrics are defined to infer underlying group processes by aggregating affective relationships 
discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, 
achieving a performance gain of 74% over comparable random guessers. 
 
 

1. INTRODUCTION TO AFFECTIVE TEXT ANALYSIS 
 
 

Affective text analysis is located at the intersection of the fields of affective computing and text 
analysis (see Solka 2008 for a review of this field). Affective computing is currently one of the most 
active research topics in computer science and cognitive science. According to Tao and Tan (2005), 
affective computing as a scientific research field is the attempt to “assign computers the human-like 
capabilities of observation, interpretation and generation of affect features.” Although the affective 
computing field as a whole is more concerned with the development of new methodologies of human-
computer interaction, an important component of affective computing capability is “affect 
understanding.” The artificial intelligence component at the human-computer interface must explore, 
detect, and extract the range of affective states of users in order to effectively interact with them across 
the full spectrum of communication. Affective text analysis is confined to the analysis of affect in text 
only, without benefit of multimedia or speech processing. In a particular sense, this makes the problem 
more challenging, but it also simplifies analysis by focusing on a single channel of communication. 

Text analysis is an applied research field that is largely dependent on achievements in the academic 
discipline of natural language processing (NLP) or computational linguistics. NLP is a very large area of 
basic research, encompassing areas of linguistic study that are important requisites of the present work, 
including named entity recognition, word stemming, word tokenization, sentence detection, and part-of-
speech processing, to name just a few (e.g., Jurafsky and Martin 2009). 

Affective states are a superset of the basic emotions (Ekman 1999), which are a limited set of 
recognizable psychophysiological states. Affect in text belongs to a branch of semantics that focuses on 
the connotative meaning of text, in contrast to denotation. Denotative meaning lies in the traditional 
cognitive domain where words and phrases merely convey explicit declarative knowledge encoded in 
propositions. A word denotes its dictionary meaning and nothing more. Connotation invites associations 
of words to other words and to their evaluative aspects, or affective meaning (Allan 2007). The manner in 
which affective meaning is expressed in language is somewhat culture-dependent (Besnier 1990). 

Textual affect can be either overtly or covertly communicated. The sentence “John loves Mary” is an 
explicit communication of affect. Compare this to “The economic stimulus plan is obviously socialist.” 
The second sentence represents a more subtle attempt to link the concept of the ‘stimulus plan’ to a 
negative evaluation, because in contemporary American politics the term “socialist” is pejorative. The 
possibility that overt or subtle communication of connotative meaning in text can be analyzed 
automatically opens the door to exciting opportunities to gain deep insight into the “deep structure” 
operated on by cognitive/affective processes that lie beneath the surface structure of language. 
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Specifically, affect expressed in a document by group members may be linked to group processes. 
Discovering links between affect and group process is a significant goal of this research effort. 

 
1.1 MOTIVATION 
 

Intelligence analysis is deeply concerned with social network analysis and identifying states and 
processes of groups. However, a significant proportion of intelligence data coming from groups and social 
networks, especially from internet sources such as blogs, email, position papers, forums, tweets, and chat, 
is textual. Political communications in the form of unstructured text convey rich connotative and affective 
meaning that can reveal underlying group social processes (e.g., importance of positive affect for group 
cohesion and negative affect for outgroup antipathy). Therefore, a critical element of deep social network 
analysis is automated extraction of affective meaning in text. This often depends on accurate reading of 
the ‘subtext’ that implicitly refers to commonsense/cultural knowledge, common ground and affect shared 
by group members. 

In a global socio-political landscape where winning hearts and minds is paramount to foreign policy 
success, there is a pressing need for the development of an “affective radar” to assess group dynamics. 
Some examples of intelligence targets for which group affect is pivotal are identification of emerging 
threats and hate groups, assessment of viability of spontaneous foreign political movements, and 
identification of grassroots social responses to implementation of U.S. foreign policy decisions. 

A critical element of deep social network analysis is the automated extraction and classification of 
affective responses toward various entities of interest, based on a theoretically-motivated affect taxonomy 
(for such definitions see Ortony and Turner 1990, and its references).  

Affects are conveyed through keywords and phrases (n-grams) and their relative position in 
sentences. Simple sentences like “I am amused” are easy to parse. Sentences with negation, like “I am not 
amused,” represent a more difficult challenge. Finally, sentences that contain words used in more 
complex contexts like “I went to the amusement park and broke my arm” are even more difficult to parse. 
In the last example, common knowledge suggests that “amusement park” would usually be associated 
with positive feelings, while the phrase “broke my arm” clearly suggests a negative feeling.  

An important step in the process of affect detection is the extraction of key words and phrases that 
connote affects, feelings, and emotions (affect lexicon). Several research groups have endeavored to 
extract emotional content from text automatically (Liu et al. 2003, Strapparava and Valitutti 2004, 
Valitutti et al. 2004, Lu et al. 2006). Our approach is to construct an affect lexicon starting from seed lists 
and expanding the lexicon using the PageRank algorithm on graph structures defined by WordNet and 
other sources. 
 
1.2 DEPTH OF AFFECTIVE TEXT ANALYSIS 
 

Affect text analysis can be executed at multiple levels of analysis: 
 
 Traditional document-level sentiment analysis assigns a positive or negative evaluation to a 

single (implied) entity, concept or event; 
 Extraction of multiple affect categories at a document level – admire, reproach, love, hate, 

joy, distress, hope, fear, pride, shame, resentment, satisfaction, etc.; 
 Fine-grained affective analysis propagates a multiplicity of affective meaning from affect 

terms to their intended sources and targets at sub-document levels.  
 

Our approach is unique in that it provides coverage at all three levels. 
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2. BACKGROUND 
 
 

There are two main divisions in semantic analysis of text, namely: denotation and connotation. 
Whereas denotation is the explicit meaning of text and carries the cognitive component, connotation 
refers to the affective meaning or associational aspect of text. The successful communication of 
connotative meaning often depends on an accurate reading of the ‘subtext’ which refers to implicit 
commonsense knowledge and affect shared by members of a cultural group. The most basic concept that 
relays connotative information is sentiment. 

 
2.1 SENTIMENT ANALYSIS AND AFFECTIVE SENSING 

 
Most early work in connotative analysis of text has been in the area of sentiment analysis or opinion 

mining, which is the assessment of polarity with respect to a topic or document (for a comprehensive 
review, see Pang and Lee 2008). Polarity is usually defined as the degree of positivity or negativity 
attached to an object, from the viewpoint of the user (reader). An important application of this research is 
opinion mining; which is the automated classification of customer feedback on products or movie 
reviews. Existing sentiment analysis systems tend to yield fair performance at best. However, polarity is 
not sufficiently fine-grained to provide a solid theoretical foundation for analysis of complex dynamics of 
groups or social networks. A more complete analysis of affective meaning is needed to fully understand 
group processes as embedded in text and subtext. 

There have been a few previous attempts to perform the research required to automatically extract 
affective meaning from text using either an affect lexicon or supervised learning techniques. These efforts 
have mostly been directed at classification of documents or sentences into one of several affect or 
emotion categories. An important development was WordNet-Affect, which extends WordNet by 
defining a hierarchy for affective meaning (Strapparava and Valitutti 2004, Valitutti, et al. 2004). The 
Linguistic Inquiry and Word Count system or LIWC (Pennebaker et al. 2001) was a noteworthy attempt 
to provide in a software program a psycholinguistic summary of text characteristics at the document level. 
LIWC performs keyword spotting of affective processes that includes positive emotions in addition to 
negative emotions such as anxiety, anger, and sadness. Some investigators have specifically attempted to 
identify affect in text (Liu et al. 2003, Al Masum et al. 2007, Alm et al. 2005, Aman and Szpakowicz 
2008, Abbasi et al. 2008) using either an affect lexicon or supervised learning techniques. These efforts 
have mostly been directed at document-level assessment of affect. Abbasi et al. (2008) studied the 
presence of violence- and hate-related affect in web forums operated by extremist political groups. This 
research shows the relevance of affect extraction techniques to the objectives of intelligence analysis. 

Liu, Lieberman, and Selker (2003) recognized the significance of commonsense knowledge in 
extracting connotative/affective meaning from text. Their approach utilized affective knowledge 
contained in the Open Mind Common Sense (OMCS) database in the construction of their affect lexicon. 
In particular, they were interested in the kind of real-world knowledge that revealed common-place 
affective stances toward situations, things, people, organizations, concepts, and events. Sentences that 
contained affective meaning in OMCS were identified by spotting the “emotion ground” signified by 
affect-saturated keywords. These emotion grounds were used in models or templates to subsequently 
extract affect from documents. A similar approach grounded in an affect lexicon augmented with 
commonsense knowledge from OMCS was followed in He et al. (2004). However, the success of this 
approach was only partial since incorporation of commonsense knowledge was also burdened by the 
relatively unstructured sentence structures found in the OMCS database. 

A recent paper focused on the graphical display of affect in text. Gobron et al. (2009) proposed a 
three-dimensional representation of affect. Emotions were extracted from text using both an affect lexicon 
and a language model classifier. Extracted emotion states were then rendered as facial expressions of 
virtual humans in a social networking animation. 
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Our approach is in the spirit of Liu et al. (2003), but instead of OMCS, we used ConceptNet - a 
successor to OMCS. The developers of ConceptNet (Havasi et al. 2007, Liu and Singh 2004) structured 
the sentences in OMCS into a more structured, machine-friendly format. The ConceptNet3 database 
currently contains over 700,000 assertions, and is still being maintained and improved. An assertion has 
the structure of a sentence or a clause; it joins two concepts (e.g., nouns or noun phrases) with one of 20 
pre-defined verb-like relations. An important advantage of ConceptNet is that it is a semantic network 
that can be searched and manipulated like other graph structures. 

We adopted a cognitive theory of emotion (affect) as the taxonomy for modeling affective meaning in 
text. According to appraisal theory (O’Rorke and Ortony 1994), affect is the response to cognitive 
evaluations made by individuals and groups to outcomes associated with self, agents, objects, and events. 
For example, admiration/reproach is a valenced reaction to an approved/disapproved action of another 
agent. Pride/shame result from a similar evaluation of an action focusing on the self as an agent. O’Rorke 
and Ortony’s taxonomy considers 22 affects resulting from different types of appraisal, but of course this 
number is somewhat arbitrary and the set can be enlarged. Table 1 lists the 22 affect categories sorted by 
valence and binary/unary relation. 
 

Table 1. Affect Categories From O’Rorke and Ortony (1991) 
Unary Binary 

Positive Negative Positive Negative 
Joy Distress Happy-for Resentment 
Pride Shame Pity Gloating 
Gratification Remorse Admiration Reproach 
Satisfaction Disappointment Love Hate 
Relief Fear-confirmed Gratitude Anger 
  Hope Fear 

 
2.2 AFFECT AND GROUP PROCESSES 
 

A fundamental working hypothesis of this effort is that affective meanings extracted from text can 
serve as reliable indicators of underlying group processes during the entire group lifecycle. Evidence from 
the experimental literature confirms the existence of a close relationship between individual/group affect 
and group processes. For example, a well-known phenomenon studied in the social psychology literature 
is called Linguistic Intergroup Bias (LIB). The LIB is the “disposition to communicate positive in-group 
and negative out-group behaviors more abstractly than negative in-group and positive out-group 
behaviors” (Anolli 2006). To put it differently, people who behave in accordance with stereotypic 
expectations are described abstractly as typical members of the in-group or out-group; conversely, those 
who violate stereotypic expectations are described more concretely as individual or isolated cases that 
represent exceptions to group behavior.  

Research on intergroup bias has demonstrated that instances of in-group favoritism and out-group 
derogation are common in populations (Hewstone, et al. 2002). This research has shown the 
interconnectedness of cognitive and affective components of this type of bias. For example, manipulating 
(increasing) positive affect in minimal group settings increases favorable bias toward group members. 
Positive affective relationships typical of stable groups are undermined and reversed during the process of 
group schism.  

Sani (2005) found that schism is preceded by “the belief that the group identity has been subverted. 
This belief will prompt negative emotions (i.e., dejection and agitation) and decrease both group 
identification and perceived group entitativity (i.e., cohesion, oneness). In turn, low group entitativity will 
reduce the level of group identification. Finally, low group identification and high negative emotions will 
increase schismatic intentions.” The tight coupling of schismatic intentions and emotion/affect 
demonstrates how effective affect can be as a barometer of group drift toward schism. Affect can both 
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reflect and signal transition between developmental stages of groups (Barsade and Gibson 1998). The 
midpoint of a work team life is “characterized by considerable anxiety and anticipation about the capacity 
of the team to complete its goals” (p. 87). If affective terms can be captured and extracted from textual 
communications authored by group members, analysts may be able to gain valuable insights by treating 
these affective markers as leading indicators of the developmental stages of groups. 
 
 

3. TECHNICAL APPROACH TO COMPUTER-MEDIATED AFFECT EXTRACTION 
 
 

The affect extraction algorithm consists of one offline step and three online steps. The initial offline 
step of the algorithm is the construction of an affect lexicon for each affect category (i.e., identification of 
terms in English saturated with affect, feeling, and emotion). In order to extract affective meaning in a 
document three online steps are required. The first step is extraction of entities and affect terms in a 
document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of 
affective meaning in 22 affect categories. The second step involves determination of specific effects of 
affect terms in the local context of a document. The final step employs a variant of the PageRank 
algorithm to propagate affective meaning from affect terms to source and target entities. The functions of 
the prototype are depicted in Fig. 1. The final step is shown in the box named “Determine affect-entity 
relationships.” 

 

 
Fig. 1. TEAMSTER functional diagram. 

 
The affect propagation algorithm automatically identifies extracts, quantifies, and displays affective 

relationships among entities in graphical form in our prototype. 
The algorithm is endowed with a number of parameters that must be specified before running the 

algorithm on a text. Most of these parameters are associated with the propagation of affective meaning in 
a specific document. The parameter values can be manually tuned, but subsequent analysis demonstrated 
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that manually-tuned parameters led to low fitness scores on a set of benchmark documents. Therefore, we 
performed an optimization study (see Sects. 5 and 6) to discover the set of parameter values that leads to 
the best fitness score. 

 
3.1 SAMPLE TEXT 

 
For purposes of illustration we work with a simple example of fictitious text explicating political ties 

in the Middle East from a U. S. analyst perspective. The text should help to expose various aspects of the 
affect propagation algorithm described in Sects. 3.3 – 3.8. The full text of the sample is given below: 

 
It has been a time of insecurity for Israel. The U.S. maintains strong 
support and liking for Israel, just as Israel values its friendship with the 
U.S. However, Israel harbors a deep animosity and fear of Iran, while 
Iran does not approve of Israel. On the other hand, Egypt has a moderate 
liking and respect for Israel. 

 
The sample 57-word text is simple and explicit enough to demonstrate the execution of the affect 

algorithm while avoiding many of the difficult syntactical constructions and subtle meanings typical of 
unstructured political text. 
 
3.2 SOFTWARE PROTOTYPE 
 

A software prototype was developed in Java to test the affect detection algorithms described in this 
report, and to provide to the eventual user a practical platform for connotative/affective analysis of text. 
The prototype, called The Extraction of Affective Meaning and Structure from TExt Resources 
(TEAMSTER) is designed to automatically extract affect from documents, whereby the results of each 
step are displayed in different panels at the graphical user interface. The three steps are: 
  

 PageRank-directed construction of the affect lexicon using WordNet, ConceptNet, and other 
resources that structure knowledge as semantic networks or graphs (emotion panel); 

 Sensing of affect terms, entities, and topics in a document (evaluation panel); and 

 Propagation of affects between entities or topics and display of a network diagram of the 
affective relationships among entities in a document (affect analysis panel). 

A fourth step, which is the summarization of affect at the document level, is displayed in the textual 
output. The following subsections describe and illustrate the contents of the output of TEAMSTER. The 
theoretical foundations underlying the prototype are detailed in Sects. 3.3 – 3.8 (graphical user interface) 
and Sect. 4 (text output).  

 
3.2.1 Panel Content on the Graphical User Interface 
 

The first step of the algorithm is implemented as an off-line process that produces a set of affect 
vectors that become the search terms for target documents. Figure 2 shows in the emotion panel that the 
affect lexicon is visualized as both a list of ranks (right side) and a graph (left side). PageRank operates on 
the WordNet database to populate an affect lexicon starting with seed lists for every affect category. The 
clusters on the graph tend to mirror WordNet synsets. The flow of affective meaning proceeds along the 
directed arcs of the WordNet graph as in normal PageRank; alternatively, the user may request reversed 
or bi-directional flow. The user also may restrict the maximum number of hops during the random walk, 
or modify the damping parameter. If the PageRank parameters are modified during a session for some 
affect category, the user may transfer the new ranks to the document analysis that is displayed in the 
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evaluation pane. This feature allows the user to fine-tune the flow dynamics of affective meaning in order 
to improve the efficacy of the affect lexicon for the specific document being analyzed. 

 

	

Fig. 2. The emotion panel displays the results of the construction of the affect lexicon. 
 

The second step is an on-line process whereby the evaluation panel displays visualizations of affect in 
a document according to several different perspectives. The panel is partitioned into four quadrants as 
displayed in Fig. 3: (1) scrolling text window; (2) document word series chart; (3) extracted entity list; 
and (4) document graph. Words from the affect lexicon are highlighted in red in the scrolling text (upper 
left-hand corner), and displayed in sequential order in the word series chart. The length of the dropline in 
the word series chart (upper right-hand corner) is determined by its normalized PageRank value. The 
word series chart provides a sense of the flow of intensity with respect to a particular affect category 
throughout the document. Selecting a word in the scrolling text by double-clicking highlights that word in 
both the word series chart and document graphs. The document graph (lower left-hand corner) contains 
all words in the document with stop words removed and is rendered by Jung, an open-source Java 
drawing library. Each node is color-coded by its part-of-speech tag. Named entity extraction, the results 
of which are shown in the lower right-hand panel, is accomplished using the open-source LBJ named 
entity tagger from the University of Illinois.  
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Fig. 3. The evaluation panel visualizes affect in single documents. 

 
An important function of the evaluation panel is to support development of analyst understanding of 

the multiplicity of affective meaning typical of real documents. The user can visualize affect-entity 
relationships without clutter by pruning the document graph to show only selected affect and extracted 
entities along with their shortest connecting paths. The shortest paths provide the user with a sense of 
local context by revealing direct connections between selected terms. 

The third step executed by TEAMSTER is propagation of affect to entities and the display of 
affective relationships in the Affect Analysis Panel. Figure 4 shows a diagram of affective relationships 
extracted from an excerpt of a document downloaded from the official Hamas website, dated 4-13-2009. 
This document is saturated with affect in rather plain language relatively unmasked by diplomatic 
protocol. 
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Fig. 4. An affect-entity relationship diagram from a Hamas document displayed in affect analysis panel. 

 
3.2.2 Document-Level Summarization of Affective Content 

 
The document-level summarization metrics are defined in Sect. 4. Briefly, these metrics accumulate 

information about each affective relationship in a document. The metrics are calculated by the affect 
extraction algorithm, but are not displayed on the graphical user interface. However, the metrics are 
presented for all entity pairs in the text output of the prototype application. For example, the direct 
affective relationship between America and Israel as characterized in the Hamas document is displayed as 
below (with corresponding definitions or equation numbers from Sect. 4 given in parentheses): 

 
Entity 1 :: america 
Entity 2 :: israel 
rPositive :: 0.6529942057256105  (4.4a) 
rNegative :: 0.0    (4.4b) 
rCombined :: 0.32649710286280526 (4.4c) 

 
The textual output reveals an overall positive feeling on the part of America for Israel and a lack of 
American negative affect toward Israel (as described by Hamas). Therefore, the combined affect is on the 
positive side. The term “cosSum”, taken from Eq. (4.1), is an intermediate result in the calculation of 
affective similarity. It refers to the cosine of a pair of (vector) relationships between two selected entities 
and a third entity that is subsequently summed over all other entities in the document. The affective 
similarity between America and Israel according to the sample document is shown in the output as: 
 

Entity 1 :: america 
Entity 2 :: israel 



 

10 

cosSum :: 25.819990956308914 
numOfEntities :: 35.0 
Affective Similarity :: 0.782423968372 (4.1) 

 
which indicates a relatively high degree of similarity. Finally the text output reports two subjectivity 
metrics: 
 

Subjectivity 1 :: 0.20588235294117646 
Subjectivity 2 :: 0.23024785661018204 

 
The subjectivity metrics assess the degree to which the author is engaged in non-zero affective 
relationships with other entities extracted from a document. Objective texts should possess relatively little 
evidence of affective relationships between the author and entities described in the text. The apparent lack 
of affective entanglement is typical of the preferred style of objective news reporting. 
 
3.3 NOTATION USED IN DEVELOPMENT OF AFFECT PROPAGATION ALGORITHM  
 

Let  mAAA ,,1   be a set of affects. We adopted a well-established taxonomy from O’Rorke and 

Ortony (1994) that discriminates 22 affect categories, but in theory any taxonomy that associates affect 
terms with entities could be used. To each affect category, we may associate a collection of terms so 
that:  inii AAA ,,1   for ni ,,1 . These are the terms that induce the affect in the chosen lexicon 

(English in this report). As sets, the affects are not mutually exclusive (i.e., we may have  mji ,,1,   

so that Ai Aj  ). This occurs when an affect term is a member of multiple affect categories.  

We partition A into binary and unary affects as: A  Ab Au . In our affect taxonomy there are 11 
natural pairs of affects; each member of the pair contains a positive and negative member, e.g., love and 

hate. We define another partition of the affect category set A into positive affects Aand negative affects 

A . In our scheme, positive and negative affects are symmetric, thus A  A  m

2
. 

Let A be the set of all affect terms in a text. Further, define Also define N to be the set of terms 
indicating negation, Q the set of terms indicating quantification and C the set indicating conjunction. 
Lastly, let E be the set of entity terms, which is specified by an external recognition process. Unary affect 
tokens are always linked to a single source entity in E. The source is the entity experiencing the affect. 
Binary affect tokens are also linked to a source entity, but additionally, they are also joined to a target 
entity. The target entity is the recipient of the affect.  

There always exists a distinguished entity ( 1e ) – author – in E that is referenced by personal pronouns 
{I, we, me, us}, or implicitly referenced (e.g., when there is no apparent explicit reference to either a 
source entity or a target entity belonging to a binary relation affect token.) 

The sample text contains tokens from each word category described above. We have E={Israel, U.S., 
Iran, Egypt}, A={insecurity, support, liking, values, animosity, fear, approve, respect}, N={not}, Q = 
{strong, deep, moderate} and C={just as, and, while}. Some of these terms have multiple instances or 
tokens in the text. 

We adopt the graph notation introduced by Cohen (2010) to define paths through a document. Let a 
(directed) graph  EVG ,  of the word tokens in a document be a set of vertices V and a set of weighted 

edges WVVE  , where a weighted edge  ijji wvv ,,  is a directed link from vi to vj with weight wij. 

We’ll assume that edge weights lie in the closed interval [0,1].  Since V contains all (except some stop 
words) the word tokens in a document V  EAQNC . A path through a graphG is a sequence 
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of triples    TTTT wvvwvvp ,110110 ,,,,,    such that every triple is an edge in E. The set of all paths 

from vi to vj is written  ji vvGPATHS ,,  or simply  ji vvPATHS , when G is known. Also, letG be the 

adjacency matrix for graph G whose  ji,  is the weight of an edge from vertex i to vertex j. 
Consider the following clause from the sample text “… Israel values its friendship with the U.S.” 

This sentence is expressed in canonical “Noun Phrase-Verb Phrase” form, which allows the affect verb 
‘values’ to follow the natural flow of the text to spread activation to and connect with the target entity 
‘U.S.’ in the VP.  The affect word ‘values’ must also propagate and link to the source entity ‘Israel’ in the 

NP, but the direction of activation is against the natural text ordering. The transpose of G  (denoted TG ) 
effectively reverses the directional flow of the words represented by graph G, which turns out to be useful 
in joining affect tokens to source/target entities that appear prior to the affect token in the text, and 
therefore against the flow induced by the natural ordering of the text. Forward and reverse directions of 
flow are required to join binary affect terms to entity pairs, but unary affect terms can be placed either 
prior to or following the modified entity in the natural text ordering. Since we have no a priori reason to 
suspect that either case applies, a propagation that is capable of proceeding in both forward and reverse 
directions is preferable when propagating activation from a unary affect to the associated entity. Using 

both matrices G and GT in succession simulates a bidirectional flow of spreading activation from affect 
tokens to entities in the text graph. These three operations: forward flow, reverse flow, and bidirectional 
flow are the main methods required to spread the activation of flow from saturated affect tokens in a 
document to source and target entities. 

We expect that local contextual modifications of affective meaning in a document occur within the 
boundaries of a local neighborhood. Let LH (x ') be the H-hop neighborhood of vertex (term) x 'V . 

That is, the set of all vertices y that can be reached from x '  by following a path of at most H triples.  
 
3.4 CONSTRUCTION OF THE AFFECT LEXICON 
 

The initial offline step of the affect extraction algorithm is the construction of an affect lexicon for 
each affect category, (i.e., identification of terms in English saturated with affect, feeling, or emotion). 
This step is an off-line process that produces a set of affect vectors that become the search terms for 
documents. Figure 1 shows that the affect lexicon is visualized in the emotion panel as both a list of ranks 
(right side) and a graph (left side). PageRank is well-known as the theoretical foundation of many search 
engines (e.g., Google) in the internet webspace. A set of hyperlinked webpages can be formally 
represented as a graph where pages are nodes and hyperlinks are the directed arcs of the graph. PageRank 
is an algorithm that attaches a score denoting a degree of page authority to a website based only on the 
topology of web connectivity (Bianchini 2005).  

PageRank is adapted here to the task of constructing an affect lexicon by capitalizing on the fact that 
lexical resources like WordNet and ConceptNet are graph structures. A random walk on these graphs can 
be performed in a manner similar to that described by Esuli and Sebastiani (2007). Starting with seed lists 
of words saturated with specific affects, a graph walk onto WordNet is performed to locate additional 
affect terms. Their intensities are ranked by PageRank while stepping through a word association graph 
(synsets) instead of a hyperlinked document graph. A similar graph walk can be performed on the 
ConceptNet database.  

 
3.5 EXTRACTION OF ENTITIES AND AFFECT TERMS 
 

The extraction of specific terms from a text depends upon an extensive preprocessing phase during 
which several natural language processing tasks (NLP) are carried out. These tasks include tokenization, 
word stemming, part-of-speech tagging, sentence detection, pruning and document graph construction. 
We rely on the Java OpenNLP Tools library (see References for URL address) to perform most of these 
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tasks. After tokenization and other NLP tasks have completed, the affect and entity terms are identified by 
search within the graph structure of the underlying text. Entity extraction is exogenous to our affect 
extraction algorithm, and we are currently using the open-source Illinois LBJ named entity tagger to 
identify entities in documents (Ratinov and Roth 2009). This software tags entities in a text as a person, 
location, organization or miscellaneous category. In the future we plan to expand entity extraction to 
capture special classes of abstract nouns (e.g., socialism) and concrete nouns (e.g., steak), because these 
types of entities can serve as targets of affective meaning. We introduce a function, f : AU , where 

U  0,1   that returns the intensity or score of each affect token for affect category Aj obtained from an 

affect lexicon. We use a normalized PageRank function (npr) as the specific form of the affect intensity 
function f here. 
 
3.6 CONTEXTUAL EFFECTS OF AFFECT TERMS 
 

After the extraction of all affect and entity tokens, a number of common English words from a “stop 
list” must be removed or pruned from the document. These words do not add significantly to the affective 
meaning of a text. The graph transformation follows the natural ordering of the text, possibly including 
some aggregation of terms that repeat in multiple locations.  

The meaning or intensity of affect terms are perturbed or modified by the other words appearing in 
the local context of the document graph. Hence it is important to adjust the affect intensities predicted by 
PageRank in the off-line step to account for negation, qualifiers, conditionals, and other subordinating 
conjunctions such as although and while. Conditionals are not addressed here as we initially focus on 
negation and qualification.  

The proper treatment of negation is a basic topic in text analysis (e.g., Harabagiu et al. 2006). Let the 
partially ordered set of negation tokens   N ijHijkijk aLnn :  of cardinality ijm  be the negation 

tokens (some of which may refer to identical negation words, e.g., not) qualifying affect token ija . 

Similarly, the partially ordered set of qualifier tokens   Q ijHijkijk aLqq :  of cardinality ijp are the 

qualifier words modifying ija in a document of interest. The token ija in a text corresponds to the affect 

term ijA in the lexicon. The negation function processes the effects of nested negation tokens, i.e., double 

negation, triple negation, etc., and the qualifier function adjusts affect intensities for a series of qualifier 
words associated with an affect token. The unit ranges ]1,0[U , U  [1, 0] and U  [1,1] will be 

used as shorthand notations in what follows. We introduce a function k : QU  that returns a 
previously determined mapping from qualifier terms into a real-valued intensity (see Appendix B for 
details.) The negation and qualifier functions operate on affect token intensities and are defined below. 
We use recursion parameter x in the qualifier function to make the iterative or cumulative nature of the 
function more formal and explicit. 
 

      ij
m

ijij afmafneg ij  1,                                                         (3.1)  
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The recursion parameter is 10  ijpx . The qualifier function qual : N0 U U U  is 

recursively defined whereas the negation function neg :U N0 U  is not recursive. The output of k 

is a score that represents the strength of the qualifier when modifying an affect term. For 1 k(q) 0, q 

is a reducer (decreases affect intensity), and for 0  k(q)1, q is an enhancer (increases affect intensity). 
The values assigned by k are pre-determined by an external ranking procedure (see Appendix B). It 
should be clear that affects ija are tokens and not just words or phrases in the affect lexicon. The important 

distinction is that there may be multiple tokens representing the same affect term in a given document. 
The affect intensity, I :U  N0 N0 U , is the strength of a particular affect token in a local 

context of a document after accounting for negation and qualification. 
 

     ijijijijijij mafpqualnegmpaI ,,,,                                         (3.3) 

 
where f refers to the normalized PageRank (npr) of affect term ija for category Aj from the affect lexicon. 

The ranges of both qual() and neg() are in the interval U-+, which guarantees that the range of I is in U . 

In case affect intensity is positive (i.e.,    0ijafneg ), then the range of I is restricted to U ; otherwise 

the range of I is restricted to U . Substituting Eq. (3.1) into Eq. (3.3) we have: 

 

    
  





otherwise,,

integer oddan  is  if,,
,,

ijijij

ijijijij
ijijij mafpqual

mmafpqual
mpaI                        (3.4) 

 
3.7 PROPAGATION OF AFFECTIVE MEANING FROM AFFECT TERMS TO SOURCE 

AND TARGET ENTITIES 
 

The extraction of affects and entities from a document is a prerequisite for the final step of single 
document analysis, namely the identification of non-zero affective relationships among entities. Many 
documents of potential interest to analysts – blogs, emails, political forum exchanges, and chat dialogues 
– have complex structures that often introduce multiple entities and topics. Affective relationships among 
some of those entities according to the author’s perspective are usually encoded within the denotative or 
connotative semantics. The text mining task is to appropriately spread the activation of affective meaning 
from tokens in the affect lexicon to neighboring entities in a document. This on-line task is at least 
superficially similar to the type of spreading activation employed off-line to construct the affect lexicon, 
suggesting that a similar PageRank-like graph walking algorithm may be appropriate. PageRank applies 
here because we are working with graphical representations of documents. We selected a class of random 
walk with restart (rwr) algorithms that step through the graph space connecting affect terms to source and 
target entities.  

We argue for a spreading activation model of the cognitive process of linking saturated affect terms to 
specific entities in the document. The concept of spreading activation has a long history in models of 
cognition (Anderson 1983), and has been implicated in more recent models of human text processing 
(Lemaire 2006, Crestani 1997, Graesser 1997). Our approach is founded on the notion that affective 
meaning in documents flows from saturated affect terms to significant neighbor nodes, which can be 
conceptualized as sinks. The spread of activation must be properly regulated in order for the spreading 
affect to reach their intended sources and targets. Flow must proceed in the correct direction and 
discouraged from following pathways in the document graph that are not productive. 

In general flow proceeds in the same direction as the natural ordering of the text (forward) or in a 
reverse direction (reverse). In the case of unary affects, a bidirectional flow may be required to diffuse 
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affective meaning to a linked entity. For example, “Mary was dejected” follows a reverse flow from affect 
term to source entity, and “The dejected Mary went home” depends on a forward affective flow to link 
affect and source entity. Each type of directional flow is associated with a specific adjacency matrix. 
There are three cases: 

 
Case      Flow   Matrix 
Binary (affect token to target entity)   forward   G 

Binary (affect token to source entity)  reverse   TG  

Unary      forward, reverse G , GT                         
____________________________________________________________________ 
 

3.7.1 Edge Weight Modification 
 
Flow regulation is determined during a preliminary step that involves the adjustment of the edge 

weights in the adjacency matrices G and GT  to account for local context. A typical adjacency matrix 
contains only 0’s and 1’s indicating absence or presence of a directional link between two nodes in the 
document graph. However, each affect token induces a particular perspective on the graph semantics, and 

requires a unique approach to flow regulation inG and GT . Now edge weights are potentially allowed to 
have any value in U+. The lower the value of the edge weight, the more flow of activation is inhibited 
from continuing in that direction. The flow algorithm searches for specific word types to impede flow, 
such as entities, affects and punctuation. First, we search for specific word types (affect, entities) inG and 

GT represented by the set of edges E in G. The zi [in Eqs. (3.5) – (3.6)] are constants or parameters in U+ 
that modify edge weights according to word type. 
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G

G'                    (3.5) 

In Eq. (3.5) G is just the modified G matrix after accounting for affect and entity terms. Henceforth 
we refer to G simply as G . Next the algorithm accounts for the blocking effects of punctuation. 
However, the tokenizer omits punctuation from the document graph G, so we cannot find punctuation 
symbols in the nodes of G . Instead, punctuation symbols are associated with the document graph edges. 
Let P : E  P represent the mapping of an edge to its punctuation symbol where P = {period, ?, ! , 
comma, doublequote, empty}; if there is no mapping to an explicit punctuation symbol, the edge value is 
empty. 
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Equations (3.5) and (3.6) complete the modifications to the edge weights. The final step is to row-

normalize G and GT such that the transition probabilities from each node sum to unity. This step yields 

the normalized weight matrices G
~

and TG
~

. Normalization is required as a pre-processing step for the 
Random Walk with Restart algorithm. This step is somewhat complex compared to normalizing a matrix 
with only 1’s and 0’s. Appendix A outlines the procedure we use to accomplish the normalization. 
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3.7.2 Online Affect Propagation 

 
The main part of the affect propagation phase of the algorithm uses a variant of PageRank (random 

walk with restart) to accomplish spreading activation from affect tokens to entities. Random walk with 
restart (rwr) is executed twice centering on each affect term in the document, once for forward and once 

for reverse flow. The function    Urwr TGGEA
~

,
~

:  estimates the degree of association 
(relevance) of an entity with an affect token. The rwr algorithm can be considered as a special case of 
personalized PageRank. An energized start node, for example – an affect token, transmits activation to its 
neighborhood with probability proportional to the edge weights. At each step there exists probability  of 
returning to the start node, which propagates flow from an affect term. Thus, successive random walks 
through G are enacted from the start node. The (forward) relevance score of node j with respect to start 

node i (for binary affects) is defined as the steady state probability  G
~

,, ji vvrwr  that node j will be 

visited during the random walk cycles using the forward normalized weight matrixG
~

. Consider the 

vector      GGG
~

,,,
~

,,,
~

,, 21 liiii vvrwrvvrwrvvrwrw 

  containing the forward rwr scores for all 

entities with respect to the ith affect term. The vector iw


is determined by solving a linear system problem 

as shown in Eq. (3.7): 
 

  iii hww

  1

~
G                     (3.7) 

 

The symbol ih


 in Eq. (3.7) is the 1n start vector of zeros and ones. The start node in this vector (affect 

token) is assigned a scalar value of 1, and all other values in the vector are 0. Equation (3.7) permits rwr 
to be evaluated deterministically (see Tong et al. 2008). Where reverse flow is required instead of forward 

flow TG
~

is used in place of G
~

in Eq. (3.7). The main difference between PageRank and rwr is that random 
jumps in the latter always return the random walk pointer to a subset of nodes in the document graph. In 
this case the unique start node is an affect token. 

The “author” entity requires special processing because when used as a default entity it receives no 
output from rwr. Ordinarily, the rwr rank for author associated with affect ija will be calculated using a 

member of the set of personal pronouns Z = {I, we, me, us}. Where there are no local tokens from Z in 
the neighborhood of ija to represent the author, the “ghost” author rank associated with binary affect 

token ija is given as: 
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where 10  at . The directionality of text processing in rwr is either reverse or forward depending upon 

whether the author ( 1e ) is a source or target entity. Forward flow with G
~

 is used when the author is a 

target entity as shown in Eq. (3.8). However, when the author is the source entity TG
~

is substituted 
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for G
~

in (3.8) to reverse affective flow. Author entity processing for unary affect terms requires the 

maximum rank obtained from forward and reverse propagation, or     TGG
~

,,,
~

,,max ijkijk aerwraerwr . 

The parameter  in Eq. (3.8), whose range is in U+, is a constant rank assignment for so-called 
“ghost” entities when no other source or target entity achieves a threshold rank with respect to the value 
of ta. In case no members of Z are activated and other entities are activated by an affect token, then a 
ghost entity will not be inserted. If any author pronouns are sufficiently activated as reflected in the rwr 
score, then that score is used instead of invoking a “ghost” author entity. Finally, if neither of the two 
above conditions is satisfied, an author entity is not associated with affect term ija . 

We now return to the discussion of processing of affect terms in general. The affect-entity 
relationship function computes the overall strength of the relationship between an affect token and entity 
pair  UEAb AEE:  or affect token and source entity  UEAu AE:  as shown in Eq. (3.9a) 

for binary affect categories and Eq. (3.9b) for unary affects. 
 

         ,~
,,

~
,,,,,,

2/1TGG jlkjlijljljljlkib aerwraerwrmpaIpownaeeEA                 (3.9a) 

         ,~
,,,

~
,,max,,, TGG jlijlijljljljliu aerwraerwrmpaIpownaeEA                 (3.9b) 

 
where 0 ≤  is a scaling parameter intended to help distribute combined ranks more evenly over the 

(0,1) range. The negative power function axxaxpown )sgn(),(   is an extension of the standard power 
function to ensure proper treatment of negative numbers. Note from Eq. (3.9a) and Eq. (3.9b) that rwr is 

executed twice, once for each affect category (usingG
~

for forward and TG
~

for reverse). Equation (3.9a) 
captures the co-occurrence between two entities by taking the geometric mean as the combination 
function. 
 
3.7.3 Evidence Aggregation from Multiple Affect Tokens 
 

Many documents contain multiple affect tokens representing each affect category. Therefore, when 
considering the affective relationship between entities with respect to a category, we must aggregate the 
evidence from each affect token in that category. From our example, the tokens “values” and “liking” are 
both exemplars in the affect lexicon from the “love” category. We adopt a model of reasoning under 
uncertainty with belief functions based on certainty factors to assess the evidence from multiple tokens in 
a single document. Certainty factors are equivalent to a noisy-or gate in aggregating the effect of multiple 
bits of evidence on a belief (Lucas 2001). A belief function is similar to a probability but expresses a 
degree of certainty in a proposition in the face of empirical evidence.  

Each entity pair  ki ee , has associated evidence for affect category Aj consisting of their joint ranks 

inherited from each member of the set of affect tokens. Some evidence may support the presence of an 
affective relationship with respect to Aj, whereas other evidence may refute the same. We define a set for 

each type of evidence: a set for ( 
ikjE ) and a set against ( 

ikjE ) the association of entity pair  ki ee , with 

binary affect category Aj. Similarly, 
ijE and 

ijE are positive and negative evidence sets supporting an 

association between entity ie and unary affect category Aj. Negative evidence is generated by the presence 

of negation in the local neighborhood of the affect token, but positive evidence is not influenced by 
negation. Evidence is only credible enough to be counted in case its EA rank is more extreme than 
threshold values 1,0  ub tt . Definitions for these evidence sets are given below: 
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  bjkibjikj taeeEAaE 
.. ,,:  (binary)              (3.10a) 

  bjkibjikj taeeEAaE 
.. ,,:  (binary)              (3.10b) 

  ujiujij taeEAaE 
.. ,:   (unary)               (3.10c) 

  ujiujij taeEAaE 
.. ,:   (unary)               (3.10d) 

 
The set of all binary affect evidence for the association of entity pair  ki ee , with category Aj is ikjE . 


ikjE and 

ikjE form a partition of ikjE . Also, let cardinalities 
  ikjb Ec , 

  ikjb Ec , 
  iju Ec , and 


  iju Ec . 

The expert system MYCIN (Tsadiras and Margaritis 1998, Qu and Shirai 2003) is an example of a 
model that uses belief/disbelief functions to aggregate evidence of the same type using certainty factors. 
In the case of binary affects, we are interested in quantifying the belief that entity pair  ki ee ,  is 

associated with affect category Aj. The (dis-)belief functions are defined here using recursion parameters 
x,y. The belief function for positive evidence B : N0 EEAU  and disbelief function for negative 

evidence D : N0 EEAU are defined as follows: 

 

  0,,,0 0, 
ikjjkiikj EaeeB                    (3.11a) 

  0,,,0 0, 
ikjjkiikj EaeeD                     (3.11b) 

        



  ikjxjkiikjxjkibikjxjkiikjikjxjkiikj EaeexBaeeEAEaeexBEaeexB ,1,,1, ,,,1,,,,,,,,1

                      (3.11c) 

        



  ikjyjkiikjyjkibikjyjkiikjikjyjkiikj EaeeyDaeeEAEaeeyDEaeeyD ,1,,1, ,,,1,,,,,,,,1

                      (3.11d) 
 

For 1,,0  bcx   and 1,,0  bcy  , and where 0,ja is a null argument. It is easy to verify that if 

the range of the bEA function is U+ , then the range of the belief function (B) is also U+. A similar argument 

can be formulated for the disbelief function (D). For all unary affect categories we use evidence 

sets 
ijE and 

ijE . 

 

  0,,0 0, 
ijjiikj EaeB                     (3.11e) 

  0,,0 0, 
ijjiikj EaeD                     (3.11f) 

        



  ijxjiijxjiuijxjiijijxjiij EaexBaeEAEaexBEaexB ,1,,1, ,,1,,,,,1          (3.11g) 

        



  ijyjiijyjiuijyjiijijyjiij EaeyDaeEAEaeyDEaeyD ,1,,1, ,,1,,,,,1          (3.11h) 

  
where 1,,0  ucx  and 1,,0  ucy  . Intuitively, belief/disbelief increases/decreases 

proportionally with each independent piece of supporting evidence obtained from analyzing an affect 
token. 
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The combination of multiple evidence is obtained by chaining these rules in iterative fashion until all 
positive evidence is aggregated using B, and all negative evidence is aggregated using D. The order of 
considering the evidence does not matter, although taking tokens in their natural order in the document is 
a reasonable tactic. Finally, conflicting evidence is aggregated from the total evidence for (B) and against 
(D) the presence of an affective relationship for a given entity pair. Let   bbb ccc ,  denote the pair of 

cardinalities for the binary affect evidence sets, and let    bbb aaA ,  denote the last pair of affect terms 

in both binary affect evidence sets. The affective relationship between entity pair  ki ee , and category Aj 

is represented by the function 
  UEEr ijkikjikj NNEE:  and defined as: 

 

      
     

















ikjbkibikjikjbkibikj

ikjbkibikjikjbkibikj
ikjikjbbkiikj EaeecDabsEaeecB

EaeecDabsEaeecB
EEAceer

,,,,,,,min1

,,,,,,
,,,,             (3.12a) 

 
Now let   uuu ccc ,  denote the pair of cardinalities for the unary affect evidence sets, and let 

   uuu aaA , be the last pair of tokens in both unary affect evidence sets. For entity ie and category Aj, 

the unary affective relationship function rij  NNE
ij E

ij U  is defined as: 

 

      
     

















ijuiuijijuiuij

ijuiuijijuiuij
ijijuuiij EaecDabsEaecB

EaecDabsEaecB
EEAcer

,,,,,min1

,,,,
,,,               (3.12b) 

 
which is equivalent to the rule for combining conflicting evidence in the EMYCIN expert system shell. 
The outputs of functions rikj and rij are actually single elements of a vector representing the total 
(binary/unary) affect relationship profile for an ordered entity pair where each component of the vector 
denotes the total strength of the evidence for a unique affect category. Please note that rikj is not 
symmetric (i.e., in general rikj   rkij). This lack of affective symmetry is illustrated in the sample text, 
where Egypt is said to like Israel, but no reciprocal liking on the part of Israel is directly stated. 

For the sake of simplicity we refer to the binary affect vector between two ordered entities 

 ki ee , as ikmikikik rrr ,,, 21 r . We can collect rik for all entity pairs  ki ee , to construct an affect-entity 

relationship matrix (for binary affect categories). This matrix contains all the (binary) affective 
information in a document. Similarly, the unary affect-entity relationship matrix is constructed using 
unary affect row vectors ri for all entities ei. Both matrices could be combined in a single matrix. 
Alternatively, we can write the collection of (binary) affective relationships as a vector set: 

 nnb )1(23211312 ,,,,,,  rrrrrT  . The collection of unary affective relationships is defined as 

 nu rrrrT ,,,, 321  . 

We may also consider the collection of affective relationships in a document as a network diagram or 
graph AEDR  E,T   where the nodes are the set of named document entities E, and a labeled set of 

edges T EEWE  where the weights, WE , are (affect) vectors rather than simple scalar values. Only 
those affect – entity relations or weights that have sufficient strength (i.e., above a threshold value) should 
be represented in the network diagram. Entities are represented as nodes, and affect categories are 
represented as labeled edges in the diagram. Unary affect relations are represented with self-referential 
loops to and from a single node. Figure 5 illustrates an affect-entity relationship diagram for the sample 
text. 
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Fig. 5. Affect-entity relationship diagram for Middle Eastern political actors. 

 
We think of the affect-entity relationship diagram as the underlying affect schema of the author of a 

document. This kind of visualization of affective relationships at the graphical user interface, which is 
implemented in the TEAMSTER prototype, provides users and analysts with a holistic apprehension of 
the affective or social perceptions of the document author. 

 
 

Israel 

Egypt 
U.S.

Iran
distress (3) 

like (2) like (3) 

admire (4), like (4) 

not admire (-5) 

hate (4), fear (3) 
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4. SUMMARY METRICS FOR AFFECTIVE RELATIONSHIPS 
 
 

The previous section described an algorithm to derive detailed affective meaning at sub-document 
levels from texts. While this detailed information is important to parsing connotative meaning, it is also 
important to be able to aggregate data in order to provide a high level view of affect in a document. 
Affective relationships among entities in a document can be aggregated to produce document-level scores 
related to the use of affect in the document. Ultimately this type of aggregation will allow us to connect 
affective meaning to underlying group processes. 

 
4.1 AFFECTIVE SIMILARITY 

 
One important metric is the extent to which entities  ki ee , feel similarly about the other named 

entities extracted from the document. In other words, do two entities see and feel about the world in a 
similar way (from the perspective of the author of the document)? Walter and Bruch (2008) emphasized 
the importance of affective similarity in work groups for sustained efforts to attain goals set by the group. 

We define the affective similarity s : U n n1  N U  or affinity between entity pair  ki ee , as a sum 

of cosine similarities (referred to as cosSum in Sect. 3.2.2) with every other entity in the document as 
shown in Eq. (4.1): 
 

    














kij
j kjij

kjij

kij
j

kjijbik nn
ns

,
Ε

22,
Ε 2

1
,cos

2

1
,

rr

rr
rrT                    (4.1) 

 
The fraction preceding the summation symbol is a normalization factor where En whereas the cosine 

sum is a cumulative distance quantity. 
The function s quantifies the degree to which an entity pair is perceived to have similar feelings about 

the world. Note that s is symmetric, i.e.,    nsns bkibik ,, TT  . 

 
4.2 DIRECT AFFECTIVE RELATIONSHIP 

 
Next consider the direct affective relationship between two entities in a document. We define a 

decomposition of the elements of the vector rik into four additive vectors:  
 

  ikikikikik rrrrr                     (4.2) 

 

where, for example,   ikmikikik rrr ,, 21r  is the vector of negatively-valued binary affective 

relationships between ei and ek for positive affect categories. For the components of 
ikr only negative 

affect relationships (e.g., -0.5) for positive affect categories (e.g., hate) receive non-zero values; in other 
words, this vector compiles the evidence for lack of negative affective relationships. The constructions for 
all four additive vectors are defined in Eqs. (4.3a) to (4.3d). 
 



 






otherwise0

AAA and0r if jikj
b

ikj
ikj

r
r                  (4.3a) 
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

 






otherwise0

AAA and0r if jikj
b

ikj
ikj

r
r                  (4.3b) 



 






otherwise0

AAA and0r if jikj
b

ikj
ikj

r
r                  (4.3c) 



 






otherwise0

AAA and0r if jikj
b

ikj
ikj

r
r                  (4.3d) 

 
Several measures can be defined to express direct affective relationships for  ki ee , . The function 

    
  UUUR mm NN:  assesses the strength of the evidence for the presence of positive 

affects between two entities, and     
  UUUR mm NN:  does the same for negative affects. 

Finally, the function   UUUR N:  denotes the strength of the evidence for an overall positive 
affective relationship between two entities by taking into account both positive and negative affect. 
  

     /1,2/;,,
22 bikikbikikik mpownmR   rrrr                (4.4a) 

     /1,2/;,,
22 bikikbikikik mpownmR   rrrr                (4.4b) 

       2;,,;,,;,  bikikikbikikikikikik mRmRRRR   rrrr                (4.4c) 

 
Here mb denotes the number of binary affect categories, and  is a user-selected parameter (positive real 
number) that attempts to evenly distribute the function output through the entire range by means of a root 
transformation. None of the functions defined in Eqs. (4.4a), (4.4b) or (4.4c) are symmetric. 

Observing the conjoint space formed by affective similarity and direct affective relationship reveals 
something about the nature of group processes when the group memberships of entities in a document are 
known. For example, consider the following partition of the affective space in Table 2:  
 

Table 2. Examples of Social Meaning in a 2D Affective Index Space 
Case Possible social meaning 

      0;,,;,&0,    ikikikikikikbik RRRRRRns T  Strong group cohesion 

      0;,,;,&0,    ikikikikikikbik RRRRRRns T In-group rivalry or competition, 
intergroup competition 

      0;,,;,&0,    ikikikikikikbik RRRRRRns T In-group heterogeneity 

      0;,,;,&0,    ikikikikikikbik RRRRRRns T Out-group antipathy or in-group 
factionalization 

 
We can visualize the elements of this table in a 2-dimensional space as in Fig. 6: 
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Fig. 6. Examples of social meaning portrayed in a 2D affect space. 

 
4.3 SUBJECTIVITY 
 

Subjectivity (with respect to the author) of text has previously been studied by NLP researchers (e.g., 
Weibe et al. 2004). News reporting is expected to convey minimal subjective content; conversely, op-ed 
pieces are typically saturated with subjectivity. We hypothesize that a large degree of the affective 
component of bias or subjectivity expressed in a document should manifest itself in the form of direct 
affective relationships between the author and named entities in the document. Let  niAR i ,,2:1  r  

be the set of affective relationships with author as subject. The degree of subjectivity in a document can 
be estimated by summarizing the  extent  of  author  relationships  with  other  entities.  For  example, 
Eqs. (4.5a) and (4.5b) respectively show the relative frequency of author relationship with other entities 

using   


 UUJ n 1:  and the average author relationship intensity,   
  R1* : nUJ . We define the 

Boolean variable 


 


otherwise

if i
i 0

01 1r  

 

  



ni

in
nARJ

,21

1
,                    (4.5a) 

  



ni

in
nARJ

,2
21

*

1

1
, r                   (4.5b) 

 
where n is the number of entities in a document. 

Affective similarity, direct affective relationship and subjectivity metrics for all entity pairs are 
computed and reported in the textual output of TEAMSTER. 
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5. VALIDATION OF AFFECT PROPAGATION ALGORITHM 
 
 

The performance of the affect algorithm was evaluated using a subset of news reporting documents 
from the Multi-Perspective Question Answering (MPQA) corpus. The content of news articles is often 
rather dry with the author intent of maintaining at least a veneer of objectivity. This assessment obviously 
does not apply to op-ed articles, which tend to be richer in affective content. We elected to search for an 
appropriate subset of the larger corpus that was relatively charged with affective content. A 50-document 
subset was selected according to the following procedure. Documents were screened for affective content 
using the initial affect seed lists for all affect categories. The documents containing the highest absolute 
number of affect terms between 400 and 3600 words in length were selected. 

Eleven parameters of the affect propagation model (Table 3) were optimized using a combination of 
random search, hill-climbing and simulated annealing. A range of parameter sets were further analyzed 
qualitatively to evaluate the effectiveness of the affect propagation algorithm on real unformatted 
documents. 

 
Table 3. Optimization Parameters For The Affect Propagation Algorithm 

Parameter Name Symbol Description 
affectWeightage Za Edge weight constant for affect tokens
entityWeightage Ze Edge weight constant for entity tokens
sentenceEndWeightage Zp Edge weight constant for sentence 

termination symbols {. ? !} 
commaWeightage Zc Edge weight constant for commas 
quoteWeightage Zq Edge weight constant for quotes 
alpha  Restart probability for RWR algorithm 

tBinary tb Threshold intensity detection score 
for binary affective relationships 

tUnary tu Threshold intensity detection score 
for unary affective relationships 

tAuthor ta Threshold intensity detection score 
for affective relationships involving 
the author entity 

rootTransformationConstant  Scaling parameter applied after 
combining ranks of source entity and 
target entity for an affect token 

ghostAuthorRank  Default “ghost” author rank 

 
5.1 MPQA CORPUS 
 

The MPQA corpus contains news articles and op-ed pieces manually annotated using a specially-
crafted annotation scheme for opinions and other private states (i.e., beliefs, emotions, sentiments, 
speculations).  The corpus was initiated during the summer 2002 NRRC Workshop on Multi-Perspective 
Question Answering (MPQA) (Wiebe et al. 2005) sponsored by ARDA. The current release of the corpus 
contains 692 documents, a total of 15802 sentences. There are 5 distinct subsets of documents: 

 
 MPQA original subset 
 OpQA (Opinion Question Answering) subset 
 XBank 
 ULA (Unified Linguistic Annotation) 
 ULA-LU (Language Understanding subcorpus) 
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These articles are from 187 different foreign and U.S. news sources dated from 2001–2002.  They were 
identified by human searches and by an information retrieval system.  The majority of the articles are on 
10 different topics, but a number of additional articles were randomly selected (more or less) from a 
larger corpus of 270,000 documents. The 10 topics are: 

 
 argentina: economic collapse in Argentina 
 axisofevil: reaction to President Bush's 2002 State of the Union Address 
 guantanamo: U.S. holding prisoners in Guantanamo Bay 
 humanrights: reaction to U.S. State Department report on human rights 
 kyoto: ratification of Kyoto Protocol 
 mugabe: 2002 presidential election in Zimbabwe 
 settlements: Israeli settlements in Gaza and West Bank 
 spacestation: space missions of various countries 
 taiwan: relations between Taiwan and China 
 venezuela: presidential coup in Venezuela 

 
Most of the document subset we used for validation and optimization focused on one of the 10 topics 

listed above. The MPQA Corpus can be retrieved at http://www.cs.pitt.edu/mpqa/.  
 

5.2 AFFECT-ENTITY ANNOTATION 
 

Unfortunately the careful annotation scheme devised for the MPQA corpus was not adequately coded 
to identify affect-entity relations as they are conceptualized in this study. Therefore, we devised our own 
annotation scheme. The documents were tagged for affect terms and entities, and these tags served as a 
benchmark for validation of the affect propagation algorithm. One of the authors served as annotator with 
the aid of an affect-entity tagger application that was designed specially for this purpose and implemented 
as a Java application. A screenshot of the graphical user interface to the tagger is shown in Fig. 7.  

The panel in the upper left contains the raw text with affect terms highlighted in green and entities in 
red. The affect word list and entities list are shown at lower left. The entity list displays co-referenced 
entities in angle-brackets. The application requires the annotator to double-click terms in the document, 
and add them to either the affect or entity list. Affect terms are also classified by category. Entities appear 
as red-colored nodes on the diagram on the right side of the window. The annotators’ task is to connect 
and label entities with the appropriate affect label(s). The strength of the affect relation was designated by 
the user positioning a slider between the values of -5 and +5. More extreme values refer to more intense 
expressions of affective relationship. Negative values refer to a negation of the affect, as in “Iran does not 
approve of Israel.” Note that affect negation is not equated to the opposite form of the affect term (i.e., the 
semantic meaning is not identical to “Iran does disapprove of Israel”). A score of zero indicates either a 
balanced ambivalent relationship or the lack of an affective relationship (most probably the latter.) A zero 
intensity score is the default for all possible relationships not explicitly scored by the annotator. An affect 
vector for a specific affective relationship between two entities comprises the intensity scores for all 22 
affect dimensions taken together. 
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Fig. 7. Graphical user interface to the affect-entity tagger application. 

 
5.3 ERROR FUNCTION 
 

The raw affect vectors could be used as direct input into the calculation of the error function, but the 
affect vectors have a special property or hidden bias that emerges while measuring distances between 
affect intensity values. The bias overemphasizes real differences at the extremes of the scale and 
minimizes real differences at the center of the scale. Therefore, affect vectors undergo a sign-preserving 
square-root transformation to emphasize real distances between low-valued intensities, and minimize real 
distances between high-valued intensities. For example, the distance between intensities 0 and +1 should 
exceed the distance between intensities +4 and +5. The justification for this nonlinear transformation of 
scores is that the former represents a distinction between relationship and non-relationship, whereas the 
latter signifies only a slight difference between two very positive scores. The transformed affect intensity 
yi is calculated from the original affect intensity xi as follows: 

 

  iii xxy sgn                        (5.1) 

 
This transformation contracts distances between intensities at the extremes while allowing distances 
between intensities at the center of the range to remain large.  

The error function adopted for the optimization problem is the average Euclidean error of the 
transformed intensity, and is defined as: 
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   2,  
i

ii zyzyzydist


                               (5.2) 

 
where y, z are affect vectors respectively obtained from the affect propagation algorithm output and 
benchmark results. The distance function was calculated for the relationship between every possible entity 
pair (including unary relations). The final cumulative error score for the entire document set was just the 
average Euclidean error over all possible affective relationships and documents. The cumulative error 
became the basis of the fitness score for a parameterized affect propagation algorithm against the 
benchmark set of documents. 
 
5.4 FITNESS SCORE 
 

A fitness function based on average Euclidean error alone biases optimized solutions toward as few 
discovered affective relationships as possible. This property is due to the fact that most potential entity 
relationships (i.e., |E|2) are not realized. An improved fitness score was derived that is actually a ratio of 
the expected error of a random guesser to the actual error generated by the affect propagation algorithm. 
The fitness ratio has a semantic interpretation, in that fitness reflects the extent to which the algorithm can 
improve upon an appropriate smart random guesser. 

The performance of the random guesser (RG) is modeled as a sequence of independent Bernoulli 
trials for each potential affective relationship where the choice objects are in the set {R, NR}. The symbol 
R = “affective relation present” and NR = “affective relation not present”. The value of RG on a single 
Bernoulli trial follows the expression in Eq. (5.3): 

 








pNR

pR
RG

1y probabilitwith 

y probabilitwith 
                      (5.3) 

 
The parameter p is just the probability of guessing that an affective relationship exists between any 

two entities. Let q represent the actual number of non-zero affective relationships in a document relative 
to the number of potential relationships (which is equal to |E|2 where |E| is the average number of entities 
in a document.) An appropriate random guesser is one that matches the affect propagation algorithm’s 
propensity to find a relation between an arbitrary entity pair. If r is the total number of non-zero relations 
found by an algorithm, then: 

 
2ˆ Erp                         (5.4) 

 
There exist four possible outcomes of random guessing, and the expected values of these probabilities 

are given in Table 4. The probabilities off the main diagonal in Table 4 represent error outcomes. 
 

Table 4. Expected Probabilities Arising From The Random Guess Model 
 Ground Truth (baseline) 

R NR 
Random Guess R pq p(1-q) 

NR (1-p)q (1-p)(1-q) 
 
We obtained an exact value for the average error using the baseline corpus in the case where a 

parameterized model predicts non-relationships between all entity pairs in the text (z = .0262477). The 
quantity z is therefore a constant with respect to the benchmark corpus taken as a whole. We call solutions 
from these models zero-vector solutions in the fitness space. Apparently a large number of parameter 
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combinations generate zero-vector solutions for the affect algorithm. A small proportion (q) of possible 
affective relations will actually be explicitly coded into most real texts, but most (1-q) will be non-
relations. For the benchmark corpus q = .10114. We can use Table 4 to decompose the error components 
of the constant z. There are two possible outcomes of a model generating zero-vector solutions: (1) a non-
relationship (NR) is selected when ground truth indicates there exists a non-zero affective relationship 
with probability  qp1 ; and (2) a non-relationship (NR) is selected when ground truth indicates there is 

no affective relationship with probability   qp  11 . Condition (1) is a miss (error) and condition (2) is 
a correct rejection. A model generating a zero-vector solution will not miss any non-relations, because it 
never posits an affective relationship. Let ε equal the expected random guess error when a non-zero 
relationship is missed by the random guesser. The average error is      0111  qpqpz  . But 

since for the zero vector solution 0p , we simplify the expression such that qz  . Therefore 

qz . Now let us also assume that the miss error ε can also serve as an approximate estimate of a false 
alarm, i.e., the detection of an affective relationship when ground truth indicates that none exists. Further, 
let 10  d equal the expected proportional error experienced when an affective relationship is correctly 
predicted but is still quantitatively off the mark. The expected random guess error for a single relationship 
taking into account all four possible outcomes from Table 4 is: 
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We designate the old fitness score (average Euclidean error) of the affect propagation algorithm by 

E(Alg). The fitness ratio is defined below. 
 

 
 lgAE

RGE
F                         (5.6) 

 
where F ≥ 0. When F >1 the algorithm predicts more accurately than a similar random guesser. The value 
of F can be infinite, but never attains this value unless the algorithm achieves a perfect match with the 
benchmark data (zero error). The improved fitness function eliminates the bias against finding relations. 
Instead, it attempts to balance the total numbers of false alarms and misses, leading to an optimum 
number of discovered relations. We note that F is just a linear transformation of the ratio  lg/ˆ AEp . In 
order to compute the fitness ratio we still require an estimate of the parameter d. We are using the value 
of d = 0.44. 
 
5.5 OPTIMIZATION 
 

The optimization study addressed only the affect propagation algorithm. We did not desire to allow 
the performance of the algorithm to be affected by the performance of the entity tagger and other basic 
natural language processing algorithms as these aspects of the software were not central to the function of 
the new algorithm for affect propagation. Accordingly, for the purposes of the optimization study, the 
benchmark entities and affect terms were supplied directly to the affect propagation algorithm. The 
algorithm automatically processed all 50 documents from the test corpus using a single parameter set. The 
output of this processing was a single fitness score that could be compared to fitness scores resulting from 
other parameter sets. A new parameter set was generated and subsequently evaluated for its fitness. This 
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process iterated until the optimization algorithm terminated. The parameter set with the highest fitness 
was taken as an indicator of the performance of the optimization algorithm. 

First, a series of 5000 random searches over the entire parameter space was conducted in order to 
establish a performance benchmark for the hill-climbing and simulated annealing algorithms. The 
summary statistics for the improved fitness score are: (1) maximum = 1.402; (2) minimum = 0.805; (3) 
mean = 0.996; (4) standard deviation = 0.067. The best fitness obtained by random search was therefore 
1.402, representing a 40% improvement over intelligent random guessers. 

 
5.5.1 Stochastic Hill-Climbing Optimization 
 

The initial optimization algorithm employed was a simple stochastic hill-climber over a continuous 
space initialized with a random parameter set. The current best parameter set is randomly perturbed on all 
dimensions and then evaluated. Only new parameter sets with a better fitness score are accepted and 
therefore become the new standard. This class of hill-climbing algorithms is vulnerable to entrapment in 
local minima over the solution space, but if the initial solution is close to a global minimum, then hill-
climbing can be an effective method of finding the local minimum for that solution. Parameter 
modifications are executed with a fixed step size of .001, with each parameter value having an equal 
chance of being increased, decreased or no change. The pseudo-code for the hill-climbing algorithm is 
show below: 

 
Method :: executeHillClimbingOptimization() 
NO_OF_EVALUATIONS = 50; 
NO_OF_PARAMETERS = 10; 
MAX_NO_OF_PARAMETER_COMBINATIONS = 100; 
for i = 1 to NO_OF_EVALUATIONS do 

newParameterList = generateRandomParameterList(); 
currentFitness = calculateFitness(newParameterList, documentSet); 
do 
         log(currentFitness);  
         oldParameterList = newParameterList;  
         previousFitness = currentFitness; 
         newParameterList = stochasticFirstChoice(oldParameterList, currentFitness, 1); 
         currentFitness = calculateFitness(newParameterList, documentSet); 
while (currentFitness > previousFitness) 

end for 
 
Method :: stochasticFirstChoice(oldParameterList, previousFitness, 

 parameterSelector) 
while parameterSelector <= MAX_NO_OF_PARAMETER_COMBINATIONS do 
         for i = 0 to NO_OF_PARAMETERS do 
                     V[i] = generateRandomIntegerInRange(0,2); 

end for 
resultList = generateNextParameterList(V, oldParameterList); 
currentFitness = calculateFitness(resultList, documentSet); 

          if (currentFitness > previousFitness) then 
                     return resultList; 
          else 
                   parameterSelector++; 

         return (stochasticFirstChoice(oldParameterList, previousFitness, 
 parameterSelector)); 

          end if                 
end while 
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return previousFitness; 
 
Method :: generateNextParameterList(V, parameterList) 
// This if else is repeated for all 11 parameters (for 11 elements inside V vector) with 
different stepsizes and ranges  
if (V[0]==1) then 
            if(parameter1< 0.999) then 
                newParameter1 = parameter1 + 0.001; // stepsize is 0.001 and range is (0,1) 
            else 
               newParameter1 = parameter1 + 0.001 - 1; 
else if (V[0]==2) then 
            if(parameter1< 0.999) then 
                newParameter1 = parameter1 - 0.001; 
            else 
               newParameter1 = parameter1 - 0.001 + 1; 
end if 
 
Method :: calculateFitness(parameterList, documentSet) 
cumulativeError = evaluateAEPropAlgorithm(parameterList, documentSet); 
fitness = cumulativeError / (size(documentSet)); 
return fitness; 
 
5.5.2 Simulated Annealing 
 

Simulated annealing (Aarts et al. 1997, Romeo and Sangiovanni-Vincentelli 1991) represents an 
advancement over stochastic hill-climbing in that it is capable of avoiding entrapment in local minima 
and therefore has a better chance of approaching the global minimum. The basic idea for improvement is 
that solutions with an inferior fitness score have a non-zero probability of acceptance. This feature allows 
the algorithm to probabilistically jump outside troughs that are potential local minima. The acceptance 
probability decreases as the algorithm progresses, thus simulating a physical annealing process as the 
sequence settles into a low-energy state. The actual probability of accepting a less fit solution is 

  tnesspreviousFiTdeltaE *exp  where tnesspreviousFinesscurrentFitdeltaE   and T is the 

iteration number. The acceptance probability decreases as the ratio tnesspreviousFideltaE  becomes 
more extreme (i.e., larger relative decrements in fitness have a lower chance of acceptance).  

We adopted an enhancement over simple simulated annealing to allow the optimization process to 
adapt to local fitness landscape conditions. When the fitness score is relatively flat we permit a wide 
range of search parameters to prevail in order to stimulate a new and productive direction of search. 
Conversely, when great improvements in fitness are observed the scope of parameter search is narrowed 
under the assumption that the algorithm is “on the right track.” Accordingly, Wang and Chen (1997) 
utilize a symmetric Beta distribution to model the variable step size for the modification of parameter 
values as follows: 
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          (5.7) 

 
The effect of Eq. (5.7) is that a greater disparity between the current and previous fitness scores will 

generate a less variable and more peaked Beta distribution. Every parameter has a 0.5 probability of 
modification after each iteration. The pseudo-code for adaptive simulated annealing is shown below: 
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Method :: executeAdaptiveSimulatedAnnealingOptimization() 
NO_OF_EVALUATIONS = 1; 
NO_OF_PARAMETERS = 11; 
Theta = 5; // exponent for adaptive step size selection 
Gamma = 6;  // multiplicative constant for adaptive step size selection 
Decay = 0.98;   // temperature decay factor 
Qprob = 0.5;    // probability of mutating a single dimension in the ParameterList 
Jmin = 100;  // minimum number of iterations 
Jmax = 1500;  // maximum number of iterations 
Jc = 100 // Sequence length for stopping criterion 
K = .0005; // change threshold for stopping criterion 
for i = 1 to NO_OF_EVALUATIONS do 

oldParameterList = generateRandomParameterList(); 
currentFitness = calculateFitness(oldParameterList, documentSet); 
T = 5;    // initial temperature 
previousFitness = currentFitness;  
iter = 1; 
Converge = FALSE; 
totUnder = 0; 
do 

Alpha = (maximum(previousFitness/currentFitness, 
currentFitness/previousFitness)Theta; 

newParameterList = randomNextParameterList(oldParameterList, Alpha); 
currentFitness = calculateFitness(newParameterList, documentSet); 
log(currentFitness, previousFitness, T, iter)    // save to file          
 
deltaE = currentFitness – previousFitness; 
randomNum = generateRandomRealNumberInRange(0, 1); 
 
if (deltaE<0 OR randomNum <= edeltaE/(T*previousFitness) ) then   
            log(currentFitness);  
          previousFitness = currentFitness;  
            oldParameterList = newParameterList;  
end if 
if (ABS(deltaE) <= K) then totUnder++; 
else totUnder = 0; 
endif 
if (iter > Jmin AND totUnder >= Jc) then Converge == TRUE; 
else Converge = FALSE; 
endif 
 
T = Decay*T; 
iter++; 

while (iter <= Jmax AND Converge == FALSE) 
end for 
 
Method :: randomNextParameterList(oldParameterList, Alpha) 
for i = 0 to NO_OF_PARAMETERS do 
            V[i] = Random(); // get a random value in the interval (0,1) 
end for 
resultList = generateNextParameterList(V, oldParameterList, Alpha); 
return resultList; 
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Method :: generateNextParameterList(V, parameterList, Alpha) 
// This if else is repeated for all 11 parameters (for 11 elements inside V vector) with 
different stepsizes and ranges  
if (V[0] <= Qprob) then 
 Brand = B(Alpha, Alpha);      // random draw from Beta distribution 
 if (Brand <= 0.5) then 
  newParameter1 = 2*Brand*parameter1; 
 else 
  newParameter1 = parameter1 + (2*Brand-1)*(1-parameter1); 
 endif 
endif 
 
Method :: calculateFitness(parameterList, documentSet) 
cumulativeError = evaluateAEPropAlgorithm(parameterList, documentSet); 
fitness = cumulativeError / (size(documentSet)); 
return fitness; 
 

The stopping criterion for simulated annealing included a minimum (100) and maximum (1500) total 
number of iterations as well as a convergence check. The iterative sequence was considered to have 
converged if there was no improvement/modification of the accepted parameter list greater (less) than a 
fitness value of .0005 for 100 iterations. All simulated annealing parameters were fine-tuned during the 
testing phase. 

We scheduled each simulated annealing run to be followed by a modified stochastic hill-climbing 
algorithm to search for optimum parameter sets that would fine-tune the affect propagation algorithm. 
Instead of initializing a random parameter set, the stochastic hill-climber began with the best solution 
from simulated annealing, and then proceeded through a series of 3 step size changes: .001, .01 and .1. 
The parameter list with the highest fitness score, as well as a number of other qualitatively interesting 
solutions, were extracted from the sequence generated during the final optimization run. 
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6. RESULTS OF THE OPTIMIZATION STUDY 
 
 

Fitness score apparently varied as a function of total number of non-zero affective relationships found 
by the affect propagation algorithm. Figure 8 shows fitness score as a function of number of relationships 
from a sample of random searches. Figures 9 and 10 show the same function generated from the output of 
two separate simulated annealing optimization runs. All three plots display the same general pattern of 
fitness increasing from an initial value of 1.0 (obtained by predicting zero affective relations). Fitness 
then increases monotonically with the number of affective relations found, peaking at around 600–1600  
 

 
Fig. 8. Fitness as a function of total number of affective relations from random search. 

 
relations found (random search), 1300 to 1500 affective relations found (first simulated annealing run) 
and 1550–1650 affective relations found. Fitness trails off monotonically for higher numbers of 
discovered relations. The total number of affective relations marked non-zero in the benchmark set is 487. 
Peak fitness scores occurred for solutions predicting roughly three times this number of discovered 
relations. In Figs. 9 and 10, the fitness for solutions predicting about 487 relationships was roughly in the 
neighborhood of 1.425. 
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   Fig. 9. Fitness as a function of total number of affective relations from simulated annealing  
optimization (1). 

 

 
   Fig. 10. Fitness as a function of total number of affective relations from simulated annealing  
optimization (2).  
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Simulated annealing successfully discovered many parameter solutions with greater fitness than the 
5000-trial random search, and did so in less than a third the number of iterations. Figure 11 shows the 
performance of the first simulated annealing run. Following an initial phase of seemingly random search 
(where temperature was very high), the algorithm settled into a phase of picking solutions that discovered 
very few relations, resulting in fitness scores at or below 1.0. At about 225 iterations the algorithm 
entered a fast learning phase while simultaneously entertaining solutions that discovered many more 
affective relations. From about 300–1400 iterations the algorithm entered a slow learning phase. The 
second simulated annealing run (Fig. 12) revealed a similar pattern, but skipped the zero-relationship 
solution phase. After 750 iterations the algorithm accomplished a step-increase in fitness where it peaked 
for the remainder of the 1500-iteration run.  

 

 
   Fig. 11. Fitness results from an initial simulated annealing optimization of the affect  
propagation algorithm using 50 selected MPQA document annotations. 
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    Fig. 12. Fitness results from a second simulated annealing optimization of the affect  
propagation algorithm using 50 selected MPQA document annotations. 

 
The best solution obtained from simulated annealing + stochastic hill-climbing achieved a fitness 

score of 1.742; values of the parameter list are in Table 5. Four of five edge weight reduction parameters 
were awarded high values, suggesting that they were not highly effective in regulating spreading 
activation of flow from affect terms to entities. The exception was ‘quote’– apparently affective flow did 
not naturally penetrate a quotation block from either the inside or outside. The alpha parameter was very 
low – this would have the effect of minimizing random jumps back to the affect token and equalizing the 
PageRank scores of all entities close to the start node. Thresholds for binary and unary affects were very 
low; very few affect-entities pairs were dropped due to low associations as measured by the PageRank 
scores. However, the author entity threshold was quite high, effectively removing most affective 
relationships involving the author from consideration. Finally, the root transform constant for distributing 
scores evenly along the (0,1) interval was established at approximately the value for a cube root. 
 

Table 5. Highest Fitness Parameter Values For Affect Algorithm 
Parameter Name Parameter Value 
affectWeightage 0.80841
entityWeightage 0.99590
sentenceEndWeightage 0.98719
commaWeightage 0.75694
quoteWeightage 0.09206
alpha 0.00476
tBinary 0.00939
tUnary 0.05224
tAuthor 0.80871
rootTransformationConstant 0.35432
ghostAuthorRank 0.00010 
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The solution with the highest fitness score generated 1355 non-zero affective relationships. The affective 
structure produced by the best fitness solution was qualitatively compared to the affective structures 
generated by two other solutions with high fitness scores. However, these two solutions were qualitatively 
superior in the sense that the generated numbers of affective relationships that were comparable to the 
benchmark set of documents.  

Figures 13–16 show the affect-entity relationship diagrams for the benchmark and all three selected 
parameter solutions with respect to MPQA document 20.24.49-8480, an op-ed piece containing some 
fairly direct affective statements. The best fitting parameter solution (Fig. 14) generated an affect-entity 
diagram cluttered with relationships. Some affective relations from the benchmark diagram were captured 
by the affect algorithm generated diagrams. For example, admiration (Fig. 14)  and  reproachfulness 
(Figs. 14–16) of the author toward ‘country’ (Korea) were represented in the algorithm diagrams, as was 
the reproachful attitude of Korea toward the United States (Figs. 14–16), the reproachful attitude of 
author toward the United States (Figs. 14–16), reproach (Figs. 14–16) and hate (Fig. 14) of the author for 
President Bush, and reproach of the international community toward President Bush (Figs. 14–16). The 
algorithm-generated solutions appeared to spread activation of certain affects beyond intended boundaries 
to additional, but unintended, entity sources and targets. For example, the reproachful attitudes of the 
author toward the United States, President Bush and country also spread to the notion of reunification 
(Figs. 14 and 16), the government (Figs. 14 and 16) and the international community (Figs. 14–16). There 
was no evidence of these affective relationships in the document; indeed, they appear to contradict other 
evidence. There was also evidence for an over-abundance of reciprocal affective relationships beyond that 
which was expressed in the benchmark diagram. For example, President Bush and the United States 
reciprocated the reproachful attitude of the author toward them (Figs. 14–16). Some of these additional 
affective relationships may be discoverable through affective inference, but that topic is beyond the scope 
of this report. 
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Fig. 13. Benchmarked affect-entity diagram for document 20.24.49-8480. 

 

 
   Fig. 14. Affect algorithm (highest fitness - 1379 relations) generated affect-entity diagram for 
document 20.24.49-8480. 
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   Fig. 15. Affect algorithm (746 relations) generated affect-entity diagram 
for document 20.24.49-8480. 

 

 
Fig. 16. Affect algorithm (581 relations) generated affect-entity diagram for document 20.24.49-8480. 
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7. FUTURE DIRECTIONS 
 
 

This research represents only the initial stages of the effort to extract detailed affective meaning from 
text. Many tasks and challenges remain before affective computing can claim to be a mature research 
area. The performance of the affect extraction algorithms could be improved significantly by a more 
thorough accounting of context effects in documents. Different sentence constructions such as active vs. 
passive voice ought to exert different influences on the mechanism of affect propagation. Word sense 
disambiguation can also be quite important. For example, the key word “support” functioning as a verb 
could be a synonym for the “admiration” affect category, or denote a structural element functioning as a 
noun. The seed lists currently are annotated by word sense, but the specific word sense is not used during 
the search for affect tokens in documents. The reason for this deficiency is that TEAMSTER does not 
currently have a word disambiguation algorithm, although many techniques have been described in the 
NLP literature. Co-reference resolution among entities, including pronoun references is an important 
feature for improved entity recognition. Effects of conditionals and counterfactual statements should be 
parsed appropriately. Suppose an author writes, “If you do this thing, I will hate you for it.” The author is 
threatening hatred toward a target entity, but it doesn’t have the same force as the present tense “I hate 
you.” Nested sources comprise another area of contextual complexity that is especially prevalent in news 
reporting. An example of a nested source is found in “The White House spokesperson indicated that the 
President feels that this is a bad bill and intends to veto it if passed by Congress.” This text reveals the 
President’s dislike of the bill, but says nothing directly about the opinion of the spokesperson or the 
author. 

A second priority for the improvement of TEAMSTER functionality is to enable full connectivity of 
the seed lists, WordNet and ConceptNet. Currently TEAMSTER searches synsets from WordNet, but 
other graph relations may also be valuable conduits for the diffusion of affective meaning, such as the 
“similar to” relation. We also hope to construct and/or integrate political affective lexicons to leverage 
current political usage of affectively-saturated terms. For example, during the 2008 U. S. Presidential 
election the word “socialist” was frequently employed as a pejorative term in political discourse among 
American conservatives. However, this term would not likely appear in any conventional affect lexicon, 
as the affective tinge is “acquired” by association. 

A final limitation of the affect lexicon is that it is constructed along the lines of the principle of 
centrality or representativeness of concepts with respect to a specific affect category. This is due to the 
application of the PageRank algorithm. The words “adore” and “like” are highly representative of the 
affect category of “love”, and therefore receive high PageRank scores. However, “adore” connotes a more 
intense feeling or depth of affect as compared to “like.” There is a need to find a means to incorporate 
intensity into the word score of terms in the affect lexicon. 

An important goal of this research is to extend the analysis from single to multiple documents. The 
evolution of affective relationships can be tracked by performing change detection on the structure of the 
affect-entity relation network over time-ordered multiple texts from a single source. Entities can also be 
clustered on the basis of affective similarity. A dynamic analysis of the affect-induced entity space 
displayed in an evolution panel could provide insightful indications of formation and/or dissolution of 
social/political groups with shared affect. 

Finally, an exciting area of future research is affective inference. Inferring affect from text implies 
going beyond the denotative and connotative meaning of a text. Affective inference reads between lines 
of text to discover what additional statements could be made about affective relationships among entities 
discussed in a text. For example, the sample text specifies that “The U.S. maintains strong support and 
liking for Israel” and later states that “Israel harbors a deep animosity and fear of Iran…” A reader might 
conclude solely from these two propositions in evidence that “The U. S. harbors animosity of fear of 
Iran.” We are not aware of any substantial experimental or theoretical literature on the topic of affective 
inference, but we predict it could become an important area of research in the future. 
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8. CONCLUSION 
 
 
In this report we introduced a new method for extracting specific affect words at the sentence and 

paragraph level and for attributing affective meaning to specific documents. We extended affective 
meaning to include affective relationships between entities extracted from texts. We have also developed 
a technique for building large collections of affect words and phrases using seed word lists and the 
common sense built into such open source resources as WordNet and ConceptNet.  Finally, we 
incorporated these algorithms into a software prototype called TEAMSTER. 

The affect propagation algorithm was validated using a high-affect 50-document subset of the MPQA 
corpus. These documents were manually annotated for affects, entities and affective relationships. Eleven 
free parameters in the algorithm were optimized using a simulated annealing cooling schedule. The 
optimized affect propagation algorithm was found to perform 74% better than comparable random guess 
models.  

The results demonstrate that our affect propagation algorithm represents a good start to computer-
mediated extraction of affective meaning from text, but significant progress is still needed before it can 
approach the accuracy of human judgment. 
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APPENDIX A.  MATRIX NORMALIZATION OF G AND GT TO 
ACCOUNT FOR FRACTIONAL OUTLET EDGE WEIGHTS 

 
 
The adjacency matrices must be row-normalized for the random walk with restart algorithm. 

Typically row values sum to unity after normalization, except in case (1) where there are no outlinks from 
a node. For the case where all edges have a value of 0 or 1, normalization is a simple procedure where 
each weight is divided by the sum of the row. However, owing to modifications to edge weights due to 
affect terms, entity terms, and punctuation, some adjacency matrix values are fractions in the interval 
[0,1].  Fractional values increase the complexity of the normalization process. There are four cases we 
must consider during normalization. 
 

Case 1: The values of the entire row i are zero and node i is a terminal node. All normalized values 
are set to zero. The rwr function recognizes terminal nodes and handles them appropriately. [First 
condition in Eq. (A.1).] 

Case 2: An edge weight is less than 1. Fractional weights are set to a value equal to the normalized 
value that would be obtained if all row entries greater than zero were 1, followed by a multiplication of 
the result by the fractional value itself. This procedure is a rescaling of the traditional normalization. 
[Third condition in Eq. (A.1).] 

Case 3: Unity edge weights. Unity weights are incremented beyond their traditional normalized values 
to absorb the probability mass freed up by downsizing fractional weights in the row. [Fourth condition in 
Fig. (A.1).] 

Case 4: Zero self-referential weight when only fractional weights exist in the row. A positive value in 
the self-referential loop absorbs the loss of probability mass obtained by setting fractional weights values. 
[Second condition in Eq. (A.1).] 

 
The following algorithm was developed to complete normalization of the adjacency matrix while 

accounting for all four cases described above.  
 

ADJACENCY MATRIX NORMALIZATION 
 

Do for each row (i) for G  and GT : 
 

1. Calculate the sum of all weights in the row  j iji wp  

2. Calculate the number of non-zero weights in the row   
j iji wq 0 . If qi = 0, then node i is a 

       terminal node. 

3. Calculate the number of weights in the row equal to one   
j iji wr 1  

4. Normalize as follows: 
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APPENDIX B. PSYCHOMETRIC SCALING OF QUALIFIER TERMS 
 
 

Qualifiers modify the intensity of an affect term in the local context of a document. A list of 142 
common qualifier terms was assembled and scaled to specific intensity values in the range (-1, 1) using 
the function k. Reducers were assigned negative qualifier values by k, whereas enhancers had positive 
qualifier values. The scaling procedure is described as follows. First, we summarized qualifiers into six 
categories: (1) quantity; (2) temporal; (3) emphasis; (4) sureness; (5) size; and (6) intent. The qualifier 
terms in each category were sorted into reducers and enhancers. For example, the quantity category 
contained the terms abundant, all, extra, few, less, little, many, minimal, more, much, only, scarcely and 
some. The enhancers were identified as abundant, all, extra, many, more, much and only. The reducer set 
was few, less, little, minimal, scarcely and some. Next both reducers and enhancers from each category 
were rank-ordered by intensity from neutral to extreme; ties were permitted. The qualifier term values 
were evenly distributed across the range (-1,0) for reducers and (0,1) for enhancers. The first step from 

zero is a half-step such that whole steps are equal to  122  ns  where n is the total number of 

enhancers in a category, and  122  ms where m equals the number of reducers in a category. Thus, 

the set of enhancers is 
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 . Figure B1 illustrates the distribution of intensity scores over the 

entire (-1,1) range. 
 

 
Fig. B1.  Qualifier terms scaled in the (-1,1) interval. 
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APPENDIX C.  AFFECT-ENTITY RELATIONSHIP DIAGRAMS 
 

 
This appendix contains diagrammatic evidence for affective relationships from the algorithm-

generated solutions along with the benchmarks. A complete set of diagrams for MPQA document 
20.24.49-8480 is shown in Figs. 13a–13d in Sect. 6. Full diagrammatic contents are reproduced here 
for three additional MPQA documents: 21.07.24-24231 (Figs. C1–C4), 21.50.57-15245 (Figs. C5–
C8) and 23.18.15-25073 (Figs. C9–C12). These examples display properties similar to those 
discussed in Section 5: (1) many benchmarked affective relationships discovered; (2) many affective 
relationships discovered not documented in the benchmark diagram; (3) symmetric affective 
relationships; and (4) over-diffusive spreading of affect through the documents. 

 

 
Fig. C1. Benchmark affect-entity diagram for document 21.07.24-24231. 
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   Fig. C2. Affect-entity diagram generated by highest-fitness affect propagation algorithm  

             (1379 relations) for document 21.07.24-24231. 
 

 
   Fig. C3. Affect-entity diagram generated by affect propagation algorithm (746 relations) for  

             document 21.07.24-24231.
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       Fig. C4. Affect-entity diagram generated by affect propagation algorithm  
(581 relations) for document 21.07.24-24231. 

 
Fig. C5. Benchmark affect-entity diagram for document 21.50.57-15245.  
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Fig. C6. Affect-entity diagram generated by highest-fitness affect propagation algorithm  

        (1379 relations) for document 21.50.57-15245. 
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Fig. C7. Affect-entity diagram generated by affect propagation algorithm (746 relations) for  

          document 21.50.57-15245. 
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Fig. C8. Affect-entity diagram generated by affect propagation algorithm (581 relations) for 

         document 21.50.57-15245. 
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Fig. C9. Benchmark affect-entity diagram for document 23.18.15-25073. 

 
 

 
Fig. C10. Affect-entity diagram generated by highest-fitness affect propagation algorithm  

          (1379 relations) for document 23.18.15-25073. 
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   Fig. C11. Affect-entity diagram generated by affect propagation algorithm (746 relations) 
for document 23.18.15-25073. 
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Fig. C12. Affect-entity diagram generated by affect propagation algorithm (581 relations) 

          for document 23.18.15-25073. 


