

ORNL/TM-2009/322

FY 2009 Annual Report of Joule
Software Metric SC GG 3.1/2.5.2,
Improve Computational Science
Capabilities

December 2009

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy

(DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following

source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE)

representatives, and International Nuclear Information System (INIS) representatives from the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

ORNL/TM-2009/xxx

Center for Computational Sciences

FY 2009 Annual Report of Joule Software Metric SC GG 3.1/2.5.2,

Improve Computational Science Capabilities

Date Published: December 2009

Prepared for

U.S. Department of Energy

Office of Science

Advanced Scientific Computing Research Program

Prepared by

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283

managed by

UT-Battelle, LLC

for the

U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

iii

CREDITS

Application Credits

VisIt

Sean Ahern (Oak Ridge National Laboratory)

URL: http://www.llnl.gov/visit/

CAM

James Hack (Oak Ridge National Laboratory)

URL: http://www.ccsm.ucar.edu/models/atm-cam/

XGC1

Choong-Seock Chang (Courant Institute of Mathematical Sciences, New York University)

URL: http://w3.physics.lehigh.edu/~xgc/, www.cims.nyu.edu/cpes/

RAPTOR

Joseph C. Oefelein (Sandia National Laboratories)

URL: http://public.ca.sandia.gov/crf/research/index.php

Technical Team

VisIt

Dave Pugmire, Sean Ahern, Tom Evans (Oak Ridge National Laboratory); Hank Childs (Lawrence

Berkeley National Laboratory)

CAM

Jim Rosinski, Pat Worley, Kate Evans (Oak Ridge National Laboratory)

XGC1

Scott Klasky, Pat Worley, Ed D’Azevedo (Oak Ridge National Laboratory); Seung-Hoe Ku (Courant

Institute of Mathematical Sciences, New York University); Mark Adams (Columbia University)

RAPTOR

Ramanan Sankaran (Oak Ridge National Laboratory)

Additional Credits

Kenneth Roche (University of Washington)

Ricky Kendall, Doug Kothe (Oak Ridge National Laboratory)

DOE Program Contacts

Christine Chalk (christine.chalk@science.doe.gov)

Barbara Helland (helland@ascr.doe.gov)

Daniel Hitchcock (daniel.hitchcock@science.doe.gov)

Michael Strayer (michael.strayer@science.doe.gov)

Additional Contacts

Douglas B. Kothe (kothe@ornl.gov)

Kenneth Roche (k8r@u.washington.edu)

v

CONTENTS

CREDITS ... iii
LIST OF TABLES .. vii
LIST OF FIGURES ... ix
ABBREVIATED TERMS ... xi

1. METRIC STATEMENT FOR COMPUTATIONAL EFFECTIVENESS 1
 1.1 JOULE METRICS .. 1
 1.2 FY09 JOULE GOALS FOR THE DOE ASCR PROGRAM ... 1
 1.3 QUARTERLY TASKS RELATED TO SC GG 3.1/2.5.2 ... 2

2. METRIC RESULTS FOR COMPUTATIONAL EFFECTIVENESS .. 3
 2.1 TARGET HPC SYSTEM: JAGUARPF.CCS.ORNL.GOV ... 3
 2.2 RESULTS SUMMARY ... 3
 2.2.1 VisIt ... 4
 2.2.2 CAM .. 4
 2.2.3 XGC1 ... 5
 2.3 CONCLUSIONS .. 6

3. OVERVIEW OF COMPUTATIONAL SCIENCE CAPABILITIES AND ANALYSIS

OF METRIC RESULTS .. 8
 3.1 VISIT .. 8
 3.1.1 Introduction ... 8
 3.1.2 Background and Motivation .. 8
 3.1.3 Capability Overview .. 9
 3.1.4 Science Driver for Metric Problem.. 9
 3.1.5 The Model and Algorithm ... 10
 3.1.6 Q2 Baseline Problem Results .. 11
 3.1.7 Computational Performance Gains .. 14
 3.1.8 Q4 Metric Problem Results ... 15
 3.1.9 Interpretation of Results .. 17
 3.1.10 Summary and Conclusions .. 17
 3.2 CAM ... 19
 3.2.1 Introduction ... 19
 3.2.2 Background and Motivation .. 19
 3.2.3 Capability Overview .. 19
 3.2.4 Science Driver for Metric Problem.. 21
 3.2.5 The Model and Algorithm ... 21
 3.2.6 Q2 Baseline Problem Results .. 22
 3.2.7 Computational Performance Gains .. 23
 3.2.8 Q4 Metric Problem Results ... 25
 3.2.9 Interpretation of Results .. 26
 3.2.10 Summary and Conclusions .. 27
 3.3 XGC1 .. 28
 3.3.1 Introduction ... 28
 3.3.2 Background and Motivation .. 29
 3.3.3 Capability Overview .. 29
 3.3.4 Science Driver for Metric Problem.. 31
 3.3.5 Q2 Baseline Problem Results .. 33

vi

 3.3.6 Computational Performance Gains .. 36
 3.3.7 Q4 Metric Problem Results ... 37
 3.3.8 Interpretation of Results .. 41
 3.3.9 Summary and Conclusions .. 42
 3.4 RAPTOR .. 43
 3.4.1 Introduction ... 43
 3.4.2 Background and Motivation .. 43
 3.4.3 Capability Overview .. 46
 3.4.4 Science Driver for Metric Problem.. 47
 3.4.5 Q2 Baseline Problem Results .. 48
 3.4.6 Computational Performance Gains .. 51
 3.4.7 Q4 Metric Problem Results ... 54
 3.4.8 Interpretation of Results .. 57
 3.4.9 Summary and Conclusions .. 58

REFERENCES .. 60

APPENDIXES: BENCHMARK PROBLEM ENVIRONMENTS

APPENDIX A. OVERVIEW .. A-1
 A.1 Parallel Matrix Multiply Example .. A-1
 A.2 Modules Available on the Target Architecture... A-9
 A.3 Compilation for Instrumentation and Execution .. A-14

APPENDIX B. VisIt ... B-1
 B.1 Input Settings .. B-1
 B.2 Compilation .. B-5
 B.3 Batch Script .. B-5
 B.4 Runtime Environment ... B-5

APPENDIX C. CAM .. C-1
 A.1 Input Settings .. C-1
 A.2 Compilation .. C-1
 A.3 Batch Script .. C-2
 C.4 Runtime Environment ... C-2

APPENDIX D. XGC1 .. D-1
 D.1 Input Settings .. D-1
 D.2 Compilation .. D-4
 D.3 Batch Script .. D-11
 D.4 Runtime Environment ... D-12

APPENDIX E. RAPTOR .. E-1
 E.1 Input Settings .. E-1
 E.2 Compilation .. E-3
 E.3 Batch Script .. E-11
 E.4 Runtime Environment ... E-11
 E.5 Comparison of Total Run Time vs Initialization Time ... E-20

vii

LIST OF TABLES

Table Page

 1 FY09 Joule software summary of Q2 baseline and Q4 metric performance simulations

and data ... 7

 2 Per core timings for the Q2 isosurfacing benchmark .. 12

 3 PAPI hardware counter data for the Q2 isosurfacing benchmark ... 12

 4 Per core timings for the Q2 volume rendering baseline .. 13

 5 PAPI hardware counter data collected for the Q2 volume rendering baseline 13

 6 Per core timings for the Q4 isosurfacing benchmark .. 15

 7 PAPI hardware counter data for the Q4 isosurfacing benchmark .. 15

 8 Weak scaling results of the Q4 benchmark ... 15

 9 Per core timing results for the Q4 volume rendering .. 16

10 PAPI hardware counter data collected for the Q4 volume rendering benchmark 16

11 Weak scaling results of the volume rendering benchmark timings ... 16

12 Q2 and Q4 simulation sizes ... 17

13 CAM performance data for the Q2 benchmark run* .. 23

14 CAM performance data for the Q4 modified run* .. 26

15 XGC1 performance data collected on the Q2 benchmark with PAPI hardware counters 35

16 XGC1 performance data collected on the Q4 benchmark with PAPI hardware counters 37

17 Baseline grid sizes for Joule benchmark runs* ... 50

18 Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR 51

19 Summary of measured timings (in seconds) after each set of code revisions using

the 10.3 million cell Q2 test problem and 200 time steps .. 54

20 Counter data acquired from CrayPAT 4.2 for the Q2 benchmark run using RAPTOR 55

21 Summary of results from the Q4 run compared to the Q2 baseline .. 56

22 Counter data acquired from CrayPAT 4.2 for the Q4 run using RAPTOR 56

E.1 Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR E-20

E.2 Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR

but with the integration loop bypassed. ... E-22

ix

LIST OF FIGURES

Figure Page

 1 (a) An isosurface of a Raleigh-Taylor instability problem. (b) A volume rendering

of a turbulence problem. (c) Volume rendering and streamlines of a core collapse

supernova collapse simulation .. 8

 2 Data flow network-processing model. Data flows from the network source

to the network sink .. 9

 3 Nuclear power plant, a PWR facility, set up for the Denovo simulation. ... 10

 4 (a) Extraction of radiation dose contours and (b) a volume rendering from the

nuclear power plant simulation from the Denovo code. Q2 ... 18

 5 (a) Extraction of radiation dose contours and (b) a volume rendering from the

nuclear power plant simulation from the Denovo code. Q4 ... 18

 6 Global average surface temperature in observations, modeled with and without

anthropogenic forcing ... 21

 7 Current CAM strong scaling performance for the T341 mesh on the Jaguar/XT5 platform 27

 8 Schematic of the ITER tokamak, where the first wall of the innermost structure

of the device is shown, with the divertor chamber at the bottom .. 31

 9 (left) Nonlocal nature of the ion temperature (Ti) profile. (right) The cross section

of DIII-D magnetic surface inside the first wall .. 32

10 Early-time plasma density and temperature profiles. ... 34

11 Initial profile of R0/LT = R0|∂ log Ti/∂r| ... 34

12 (a) Relationship between the normalized poloidal flux ψN and real distance in meters

from the magnetic axis (Raxis = Ro) to the flux surface (R) along the midplane.

(b) Radial profile of the safety factor q ... 34

13 Turbulent eddies on the whole poloidal cross-sectional plane at (left) an earlier time

and (right) a later time ... 35

14 Inward propagation of the square root of turbulence intensity Sqrt(I) during the

bursty nonlinear period, where I = < (δφ)2 > ... 36

15 An enlarged image of the turbulence intensity < |δφ|
2
> contour in the radius-time

space in the pedestal area .. 38

16 The same simulation as in Fig. 15 in the localized radial domain, with the usual

particle simulation boundary at r = 0.5 ... 38

17 Heat flux contour in the global space-time space, exhibiting the out-to-in propagation

of the turbulence front ... 39

18 Self-organizing modification of the background temperature profile by the

incoming turbulence .. 39

19 Time behavior of effective ion thermal conductivity (thermal flux divided by

local Ti gradient) from the start of the simulation across ψN = 0.64, which

corresponds to r = 42 cm on the outside midplane.. 40

20 Phase relation between the temperature gradient, heat flux, and EB shearing dynamics

at a radial location ... 40

21 Energy accounting within 0.3 ≤ ψN ≤ 0.7 between the total influx across the inner

boundary (black curve) and the sum of the consumed energy (blue curve) to the

particles, the electric field, and across the outer boundary ... 41

x

22 Key experiments currently being studied using RAPTOR ... 44

23 Photograph and corresponding LES of the DLR-A flame .. 46

24 Baseline flame used for problem scaling .. 48

25 Cross section of the computational domain showing key features of the grid topology 49

26 Comparison of experimentally measured (symbols) and modeled (lines) results

showing acceptable agreement .. 50

27 Performance profile of the original code on 5,952 XT5 cores .. 52

28 Performance profile of RAPTOR on 5,952 cores after reducing global MPI operations 53

29 Performance profile of RAPTOR after software revisions ... 54

xi

ABBREVIATED TERMS

2D, 3D, … two dimensional, three dimensional, …

ADIOS Adaptable I/O System

AGCM atmospheric general circulation model

AMR adaptive mesh refinement

AMWG Atmospheric Model Working Group

ASCAC Advanced Scientific Computing Advisory Committee

ASCR Advanced Scientific Computing Research (DOE program)

BES Basic Energy Sciences (DOE SC program)

CAM Community Atmosphere Model

CCM Community Climate Model

CCSM Community Climate System Model

CLM Common Land Model

CPES Center for Plasma Edge Simulation

CPU central processing unit

CRF Combustion Research Facility

DDR2 double data-rate two

DEMO Demonstration Power Plant (proposed)

DIMM dual inline memory module

DNS direct numerical simulation

DOE SC DOE Office of Science

DOE U.S. Department of Energy

DoF degree of freedom

ECMWF European Centre for Medium-Range Weather Forecasts

EERE Office of Energy Efficiency and Renewable Energy (of DOE)

EFFIS End-to-End Framework for Fusion Integrated Simulation

flop floating point operation

FSP Fusion Simulation Project

GAM geodesic acoustic mode

GPRA Government Performance and Results Act of 1993

GPTL General Purpose Timing Library

HCCI homogenous charge compression ignition

HPC high-performance computing

I/O input/output

IEEE Institute of Electrical and Electronics Engineers

ISCCP International Satellite Cloud Climatology Project

ITER international fusion reactor project

ITG ion temperature gradient

KBA Koch-Baker-Alcouffe

LES large-eddy simulation

MPI Message Passing Interface Standard

NCAR National Center for Atmospheric Research

NCCS National Center for Computational Sciences

NERSC National Energy Research Scientific Computing Center

OMB U.S. Office of Management and Budget

ORNL Oak Ridge National Laboratory

OVT Office of Vehicle Technologies (of DOE EERE)

PAPI Performance Application Programming Interface

PART Performance Assessment Rating Tool

xii

PE processing element

PGI Portland Group

PIC particle in cell

PWR pressurized water reactor

Q1, Q2, … Quarter 1, Quarter 2, …

R&D research and development

RANS Reynolds-Averaged Navier-Stokes

Re Reynolds

SciDAC Scientific Discovery through Advanced Computing (DOE program)

SGS subgrid scale

SMP symmetric multiprocessor

SOC self-organized critical

SPMD single program–multiple data

SST sea surface temperature

TNF turbulent nonpremixed flame

VTK Visualization ToolKit

1

1. METRIC STATEMENT FOR COMPUTATIONAL EFFECTIVENESS

1.1 JOULE METRICS

The Joule Software Metric for Computational Effectiveness is established by Public Authorizations

PL 95-91, ―Department of Energy Organization Act,‖ and PL 103-62, ―Government Performance and

Results Act.‖

The U.S. Office of Management and Budget (OMB)* oversees the preparation and administration of

the President’s budget; evaluates the effectiveness of agency programs, policies, and procedures; assesses

competing funding demands across agencies; and sets the funding priorities for the federal government.

The OMB has the power of audit and exercises this right annually for each federal agency. According to

the Government Performance and Results Act of 1993 (GPRA), federal agencies are required to develop

three planning and performance documents:

1. Strategic Plan: a broad, 3 year outlook;

2. Annual Performance Plan: a focused, 1 year outlook of annual goals and objectives that is

reflected in the annual budget request (What results can the agency deliver as part of its public

funding?); and

3. Performance and Accountability Report: an annual report that details the previous fiscal year

performance (What results did the agency produce in return for its public funding?).

OMB uses its Performance Assessment Rating Tool (PART) to perform evaluations. PART has seven

worksheets for seven types of agency functions. The function of Research and Development (R&D)

programs is included. R&D programs are assessed on the following criteria:

 Does the R&D program perform a clear role?

 Has the program set valid long term and annual goals?

 Is the program well managed?

 Is the program achieving the results set forth in its GPRA documents?

In Fiscal Year (FY) 2003, the Department of Energy Office of Science (DOE SC-1) worked directly

with OMB to come to a consensus on an appropriate set of performance measures consistent with PART

requirements. The scientific performance expectations of these requirements reach the scope of work

conducted at the DOE national laboratories. The Joule system emerged from this interaction. Joule

enables the chief financial officer and senior DOE management to track annual performance on a

quarterly basis. Joule scores are reported as ―success, goal met‖ (green light in PART), ―mixed results,

goal partially met‖ (yellow light in PART), and ―unsatisfactory, goal not met‖ (red light in PART). Joule

links the DOE strategic plan† to the underlying base program targets.

1.2 FY09 JOULE GOALS FOR THE DOE ASCR PROGRAM

The DOE Advanced Scientific Computing Research (ASCR)‡ program has the following two annual

performance measures as part of its PART requirements:

1. SC GG 3.1/2.5.1—Focus usage of the primary supercomputer at the National Energy Research

Scientific Computing Center (NERSC) on capability computing, defined as the percentage of the

computing time used by computations that require at least 1/8 of the total resource. FY09

performance metric: capability usage is at least 40%.

* http://www.whitehouse.gov/omb

† http://www.er.doe.gov/about/MissionStrategic.htm

‡ http://www.sc.doe.gov/ascr/About/about.html

http://www.whitehouse.gov/omb
http://www.er.doe.gov/about/MissionStrategic.htm
http://www.sc.doe.gov/ascr/About/about.html

2

2. SC GG 3.1/2.5.2—Improve computational science capabilities, defined as the average annual

percentage increase in the computational effectiveness (either by simulating the same problem in

less time or simulating a larger problem in the same time) of a subset of application codes. FY09

performance metric: efficiency measure is ≥100%.

Ensuring compliance with these metrics, which are tracked on a quarterly basis, is an important

milestone each fiscal year for the DOE ASCR Program Office as well as for the success of the overall

DOE SC-1 open science computing effort. This document details the results of the effectiveness of the

computational science capability (SC GG 3.1/2.5.2).

1.3 QUARTERLY TASKS RELATED TO SC GG 3.1/2.5.2

The Joule effort to improve computational science capabilities is a year-long effort requiring quarterly

updates. The quarterly sequence of tasks for exercising this software metric is as follows.

Quarter One (Q1) Tasks (deadline: December 31). Identify a subset of candidate applications

(scientific software tools) to be investigated on DOE SC supercomputers. Management (at DOE SC and

national laboratories) decides upon a short list of applications and computing platforms to be exercised.

The Advanced Scientific Computing Advisory Committee (ASCAC) approves or rejects the list. The Q1

milestone is satisfied when a short list of target applications and machines (supercomputers) is approved.

Quarter Two (Q2) Tasks (deadline: March 31). Problems that each chosen application must

simulate on the target machines are determined. The science capability (simulation result) and

computational performance of the implementation are benchmarked and baselined (recorded) on the

target machines for the defined problems and problem instances. The Q2 milestone is satisfied when

benchmark data—namely the machine operation count, execution time, and machine instance—is

collected and explained. If an application is striving to achieve a new science result in addition to

demonstrating improved performancing, then providing a detailed discussion of its current (prior to Q2)

capability, a discussion of why the capability is insufficient, and a description of why the new capability

being developed satisfy the Q2 milestone.

Quarter Three (Q3) Tasks (deadline: June 30). The application software (its models, algorithms,

and implementation) is enhanced for efficiency, scalability, science capability, etc. The Q3 milestone is

satisfied when the status of each application is reported at the Q3 deadline. Corrections to Q2 problem

statements are submitted at this time.

Quarter Four (Q4) Tasks (deadline: September 30). Enhancements to the application software

continue as in Q3. The enhancements are stated and demonstrated on the machines used to generate the

Q2 baseline information. A comparative analysis of the Q2 and Q4 data is summarized and reported. The

Q4 milestone is satisfied if the enhancements made to the application software are in accordance with the

efficiency measure as defined in Q2 (run-time efficiency, scalability, or new result).

3

2. METRIC RESULTS FOR COMPUTATIONAL EFFECTIVENESS

Each application is discussed and its baseline and metric problem described in the respective

application sections. A brief description of the machine used for the application problems is given. A

summary of measured results for each application is provided.

2.1 TARGET HPC SYSTEM: JAGUARPF.CCS.ORNL.GOV

The Cray XT5 high-performance computing (HPC) system, Jaguar/XT5, at the Oak Ridge National

Laboratory (ORNL) National Center for Computational Sciences (NCCS) is used to exercise the DOE

ASCR FY09 Joule software metric.

Jaguar/XT5 has a total of 18,688 XT5 compute nodes. The compute node operating system is a

variant of Linux (CNL2.0 during the Q2 baseline, CLE2.1 thereafter). The dual-socket compute nodes are

Quad-Core AMD Opteron Processor 23 (B3) chips operating at 2.3 GHz with 16 gigabytes (GB) of

unbuffered memory per node, 2 megabytes (MB) of shared L3 cache per chip, 512 kilobytes (KB) of L2

cache per core, and 64 KB instruction and 64 KB data L1 caches per core. Each socket employs double

data-rate two (DDR2) dual inline memory modules (DIMMs) at 800 MHz with, in the best case,

25.6 GB/s of local memory bandwidth per node.

Jaguar/XT5 has 192 input/output (I/O) and login/service nodes. Each of these nodes consists of a

2.6 GHz dual-core AMD Opteron chip with 8 GB of memory per node. The I/O and service nodes are

running a variant of SuSE Linux. Approximately 4 petabytes (PB) of disk space are available in the

scratch file systems that support massive I/O parallelism through the Lustre file system software.*

HyperTransport links all nodes to Cray’s proprietary SeaStar2+chips, which are used to construct a 3D

torus communication network between nodes. There are six switch ports per Cray SeaStar2+ chip, and

each port has a bandwidth of 9.6 GB/s. The best-case bandwidth between the compute node and the

SeaStar2+ interconnect chip is 6.4 GB/s. Thus, the injection bandwidth is half this, or 3.2 GB/s.

For further information, the NCCS website† describes the system and its software stack and is

sufficiently detailed for the purposes of this report. For information on the Cray XT5 platform, see the

Cray website.‡ For chip-specific information on the single socket 1000 series, see the AMD website.§

2.2 RESULTS SUMMARY

The FY09 studies demonstrate both strong scaling, where the problem complexity for an application

is fixed and the time to execute the instance is reduced by demonstrating effective utilization of an

increased hardware allocation, and weak scaling, where the goal is to compute in the same wall-clock

time a more complex problem on an increased hardware allocation (e.g., maintaining fixed work per

processing element).

The program binary (a compiled/loaded executable constructed from the application source code) is

the instantiation of the problem on the target machine, and the computational complexity of each problem

instance is deduced directly by monitoring the values of the various program counters for the various

functional units (e.g., floating point operations, or flops) activated during program execution. In other

words, the required resources define the complexity of the problem and the work conducted to actually

execute it. This measure of work is fairly basic from the hardware perspective and can be derived from

* http://www.lustre.org

† http://www.nccs.gov/computing-resources/jaguar/

‡ http://www.cray.com/Assets/PDF/products/xt/CrayXT5Blade.pdf

§ http://www.amd.com/us-en/Processors/ProductInformation/0,,3_118_8796_15226,00.html

http://www.lustre.org/
http://www.nccs.gov/computing-resources/jaguar/
http://www.cray.com/Assets/PDF/products/xt/CrayXT5Blade.pdf
http://www.amd.com/us-en/Processors/ProductInformation/0,,3_118_8796_15226,00.html

4

system observables such as number of processing elements (PEs) dedicated to executing the program,

execution time, total number of instructions executed,* the magnitude of the memory demand, etc.

2.2.1 VisIt

In Q2, a 103,716,288 cell, 4,096 domain, and 27 energy group Denovo nuclear power plant energy

deposition study was executed on 4,096 cores of the Jaguar/XT5 target machine. The resulting run

generated 4,096 HDF5 formatted files totaling 83.457 GB of storage. During execution of the isosurface

benchmark, six different isosurfaces were computed at 1,024 1,024 pixel resolution. The rate that VisIt

computed isocontours was 0.01778 second per isocontour on 4,096 cores. The isosurface benchmark

required 173,459,136,793 floating point operations to complete. During execution of the volume

rendering benchmark on 4,096 PEs, 2,000 samples are computed per ray at 1,024 1,024 pixel resolution.

The average compute time (measured per process) to render was 28.7293 seconds. The volume rendering

exercise required 178,848,487,657 floating point operations to complete.

In Q4, a 321,117,696 cell, 12,720 domain, 27 energy group Denovo nuclear power plant energy

deposition study was executed on 12,720 PEs (cores) of the Jaguar/XT5 target machine. The resulting run

generated 12,720 HDF5 formatted files totaling 258.391 GB of storage. Again, in the isosurface

benchmark, six different isosurfaces were computed at 1,024 1,024 pixel resolution. The rate that VisIt

computed isocontours was 0.01686 second per isocontour on 12,720 cores. The isosurface benchmark

required 522,908,518,594 floating point operations to complete. During execution of the volume

rendering benchmark on 12,720 PEs, 2,000 samples are computed per ray at the same resolution as in Q2.

The average compute time (measured per process) to render was 6.37796 seconds. The volume rendering

required 502,828,537,797 floating point operations to complete.

In summary, the total wall-clock times spent in the processing pipeline, discussed in the detailed

description of VisIt, include overheads not reported in these software benchmarks (such as I/O times in

Q2 and Q4). The benchmarks performed in FY09 demonstrate the significant capabilities to volume

render and isosurface large spatial data sets employing parallel computing techniques and resources. The

isosurface benchmark revealed better than linear weak scaling of the rate to compute isocontours with the

software. Indeed, a problem composed of 3.1054 more physical domains over a factor of 3.0961 more

cells requiring a factor of 3.0145 floating point computations was computed at a rate that was 1.0545

times faster in Q4 than in Q2 on 3.1054 times more PEs of the same target machine. The volume

rendering benchmark demonstrates substantially much better than linear weak scaling performance.

Between Q2 and Q4 a performance and scaling bottleneck was identified and fixed in VisIt’s volume

rendering capability (discussed in the detailed write-up of VisIt). The time to volume render the problem

composed of a factor of 3.1054 more physical domains over a factor of 3.0961 times more cells requiring

a factor of 2.8114 floating point computations was computed 4.5044 times faster in Q4 than in Q2. The

weak scaling results for VisIt are outstanding; hence VisIt met its target Joule metric on weak scaling

problems in both isosurfacing and volume rendering.

2.2.2 CAM

In both Q2 and Q4, CAM Version 3.5—configured with the spectral Eulerian dynamical core—was

executed in uncoupled mode for a T341 grid (approximately 0.35° in latitude and longitude) with

26 vertical levels on 8,192 processor cores of the target machine for a one-month simulation and constant

time step of 150 seconds (17,856 simulation time steps). The uncoupled mode includes a fully active land

model, and sea surface temperatures and sea ice concentrations are provided by external forcing datasets.

The difference between the Q2 and Q4 execution models of CAM is characterized by changes made after

*

The instruction set is not to be confused with basic operations that are defined in the language of the

instruction set of the chip. For instance, in a single cycle, a single cup-core (1 PE) on Jaguar/XT5 can compute

four double-precision mathematical operations (fused multiply and add).

5

the Q2 benchmark that enabled an improved use of the multicore target architecture for the Q4

benchmark. The details are discussed in Sect. 3.2.

The Q2 benchmark completed execution on 8,192 cores of Jaguar/XT5 in 6,481.724 seconds. The

measured execution time of the main computation phases includes 5,916.475 seconds for the atmosphere

model (with ~4,247 seconds being the dynamical core) and 112.048 seconds for the land model. Writing

the history files (I/O) took 115.024 seconds.

The Q4 benchmark completed execution on 8,192 cores of Jaguar/XT5 in 3,241.144 seconds. In the

main phases of the computation, the atmosphere model took 2,823.365 seconds, the land model took

101.310 seconds, and the I/O phase was 41.302 seconds.

The strong scaling result for CAM is outstanding. The same amount of Jaguar/XT5 resource (same

number of cores) was utilized to compute the same physical problem in both Q2 and Q4, yet the Q4

software executed 2 times faster than the Q2 version. CAM therefore met its target Joule metric by virtue

of its factor of two reduction in execution time on a fixed size problem. Considering only the execution

time of the atmosphere model with the spectral Eulerian dynamical core (which is the portion of the

model where the algorithmic improvements were made), the Q4 variant executed 2.0955 times faster than

the Q2 version. The improvements enable better throughput for climate scientists.

2.2.3 XGC1

The XGC1 magnetic fusion application yields solutions to the gyrokinetic Maxwell’s equations with

a full plasma distribution function. This solution includes both the heat source in the core and particle loss

on the edge (at the wall) for the entire volume of various tokamak geometries. XGC1 simulations include

open and closed magnetic field regions, and the separatrix surface between these regions believed to be of

vital significance to the construction of an ITER-scale tokamak. The science goal behind the XGC1

benchmarks was to study non-local H-mode turbulent coupling driven by free energy in the ion

temperature gradient in a simulation day or less utilizing as much hardware from the target architecture as

possible. In an effort to enable a one-to-one comparison, the DIII-D tokamak geometry with a fixed

number of plasma particles (13.5 billion) was used for both the Q2 benchmark and Q4 baseline

simulations. The existing target architecture did not possess enough hardware (compute cores and

associated memory) to allow ITER geometry computations in Q2 due to XGC1 scaling issues that existed

at that time.

In Q2, XGC1 was executed on 29,952 PEs (cores) of the target machine. The simulation was

executed for 24 hours and terminated after 4,000 physical time steps. While the simulation was unable to

evolve to the desired quasi-steady self-organized state in this time period, the simulation did reach a

nonlinear phase where the turbulence intensity was seen to propagate from the edge to the core, indicating

a nonlocal coupling between the edge and core regions.

In Q4, 119,808 PEs (cores) were utilized to execute 16,000 physical time steps in 21 hours of

simulation time. The Q4 simulation evolved beyond the initial, bursty nonlinear turbulence phase

observed in the results of the Q2 simulation to the quasi-steady self-organized phase characteristic of

experiments. Valuable insights into the nonlocal turbulence propagation and the evolution of the

turbulence and the plasma profile to the quasi-steady self-organized-critical (SOC) state were obtained in

Q4 for the first time through simulation. These results provide invaluable insight into numerous

experiments significant to the design of the ITER.

The performance result for XGC1 is outstanding. In Q4, the software computed 4 times as many

physical time steps with 4 times the number of processes in less time than the Q2 simulation. Indeed the

execution time in Q4 was 0.875 times the execution time in Q2. The enhancements made between Q2 and

Q4 focused on improving several of the particle computations by employing light weight processes and

eliminating essentially one-fourth of the communications in these phases. Precomputing spline

coefficients and performing a table lookup (instead of repeatedly recomputing the coefficients), for

example, were major contributors in the optimization of the particle interpolation scheme. Also, better use

6

was made of partial derivatives required in the interpolation scheme. XGC1 therefore met its target Joule

metric as measured by both “grind time” (simulation time per step) and particle push rate.

RAPTOR. The purpose of the RAPTOR benchmarks is to study the effects of large-eddy simulation

(LES) grid resolution on scalar mixing processes, to try and understand the relationship between the grid

spacing and the measured turbulence length scales using a companion set of experimental data, and to

study the effects of increasing jet Reynolds (Re) number on the dynamics of turbulent scalar mixing. The

benchmark is performed using the experimental DLR-A configuration for validation (see details in the

following sections), which is one of a series of internationally recognized datasets used by the combustion

community. The computational domain includes the entire burner geometry (inside the jet nozzle and the

outer co-flow) plus the downstream space around burner. The inner nozzle has a diameter of 8 mm with

the outer nozzle surface tapered to a sharp edge at the burner exit. There are 110 inner jet diameters in the

axial direction (88 cm length) and 40 jet diameters in the radial direction (32 cm length). In both Q2 and

Q4 simulations, exactly the same physical apparatus and flame were modeled for 50 physical time steps

but at different grid resolutions and Re numbers (starting at 15,200).
In Q2, 10,285,056 cells were used to partition the computational domain. The simulation was

executed in 1,425.761 seconds on 47,616 PEs (cores) of the target Jaguar/XT5 architecture. The time

integration routines (which integrate the Navier-Stokes equations) dominated the cost of RAPTOR

computations. In Q2, time integration required 1,034 seconds. In total, the computation retired

2.059456803 10
17

 total instructions, while executing 3.780249864 10
14

 floating point operations.

In Q4, 24,261,120 cells were used to partition the domain. The simulation completed execution in

1,972.397426 seconds on 112,320 PEs (cores) of Jaguar/XT5. Time integration required 444 seconds.

The Q4 computation retired 6.633655878 10
17

 instructions, while executing 8.928138372 10
14

floating point operations.

The performance results obtained in Q2 and Q4 for RAPTOR can be interpreted as follows. First, the

principal phase of the computation that requires scalability is the cost of an integation time step. The cost

of the initialization phase (problem input and setup) is amortized over the time evolution phase; hence the

initialization time is not included in exercising the Joule metric. Second, the cost to integrate multiple (50)

time steps reveals a remarkable result, namely that the RAPTOR performance metric increases by a factor

of 2.34 beyond the required 1.0 necessary for meeting its Joule metric. The Q4 metric problem requires

2.3617 times more floating point operations on a domain having a factor of 2.3588 more cells on 2.3588

times more PEs than the Q2 benchmark. In particular, the compute time per number of grid cells per

number of time steps (the ―grind time‖) is a generic measure of performance for RAPTOR. In Q2, the

grind time is

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 .

In Q4, the grind time is

(444 s × 112,320 cores) / 24,261,120 cells / 50 time steps = 0.041 .

The ratio between Q4 and Q2 is 2.3414—a truly outstanding weak scaling result. RAPTOR therefore met

its target Joule metric by virtue of a remarkable 2.34 factor reduction in grind time on a weak scaling

problem. The enhancements after the Q2 benchmark that led to this remarkable result are discussed in the

detailed description of RAPTOR.

2.3 CONCLUSIONS

The aggregated machine event information collected while executing the Q2 baseline and Q4 metric

problems is presented in Table 1. This approximates the total computational complexity executed for the

FY09 Joule computational science capabilities measure (all on Jaguar/XT5).

Some of the applications were also improved for efficiency or simply performed better from the

machine perspective when executing a larger problem.

7

Table 1. FY09 Joule software summary of Q2 baseline and Q4 metric performance simulations and data

Application VisIt CAM XGC1 RAPTOR

Metric Simulation time Simulation time Simulation time

Grind time and particle

rate

Time per time step

Particles pushed per

second

Grind time

Time per cell per time

 step

Problem

Isosurface

• 1,024 1,024 pixels

• Iso @ 0.001, 0.01, 0.1, 1.0,

10.0, 100.0

• Q2 dataset: 103.7M cells,

4,096 cores, 27 groups

• Q4 dataset: 321.1M cells,

12,720 cores, 27 groups

Volume render

• 1,024 1,024 pixels

• 2,000 samples per ray

• Q2 dataset: 103.7M cells,

4,096 cores, 27 groups

• Q4 dataset: 321.1M cells,

12,720 cores, 27 groups

1 simulated month

• T341 mesh

• 150 sec time step

• 26 vertical levels

• Spectral Eulerian

core

DIII-D experimental

 tokamak

• 13.5B particles

• Q2: 4000 time steps

• Q4: 16,000 time steps

DLR-A configuration

• 50 time steps

• 110 40 jet diam in

axial and radial

directions

• Q2: 10,285,056 cells

• Q4: 24,261,120 cells

Hardware (cores)

 Q2

 Q4

 4,096

12,720

 4,096

12,720

8,192

8,192

 29,952

119,808

 47,616

112,320

Time (seconds)

 Q2

 Q4

0.01778 per contour

0.01686 per contour

28.729

 6.378

6,481.724

3,241.144

86,400

75,600

1,034.0

 444.0

Metric target Q2:Q4 contour time ≥ 1.0 Q2:Q4 time ≥ 3.10 Q2:Q4 time ≥ 2.0
Q2:Q4 grind time ≥ 1.0

Q2:Q4 particle rate ≥ 4.0
Q2:Q4 grind time ≥ 1.0

Metric result 1.05 4.50 2.10
1.14

4.57
2.34

8

3. OVERVIEW OF COMPUTATIONAL SCIENCE CAPABILITIES

AND ANALYSIS OF METRIC RESULTS

3.1 VISIT

3.1.1 Introduction

VisIt is an open source interactive parallel analysis and visualization tool for scientific data. It can be

used to visualize scalar, vector, and tensor fields defined on 2D and 3D structured and unstructured

meshes. VisIt was designed to handle very large data set sizes in the petascale range and yet can also

handle small data sets in the kilobyte range. It is widely used throughout the scientific community,

including government laboratories, universities, and industry. VisIt won an R&D 100 award in 2005 and

has been downloaded over 100,000 times. Computer scientists at a number of DOE laboratories and

universities have invested approximately 50 person-years of development in VisIt. VisIt is intended for

more than just visualization and is built around five primary use cases: data exploration, quantitative

analysis, comparative analysis, visual debugging, and communication of results. VisIt has a client-server

design for remote visualization, with the server operating in a fully data parallel manner and in a

distributed memory setting. VisIt has been deployed on a variety of computing platforms, including

Linux, Mac OS, Windows, and on a diverse set of high performance computing platforms, including

Cray, Sun, and IBM.

VisIt is built on top of a number of well-established third-party libraries and applications. These

include the Qt widget library for user interface, the Python programming language for a command line

interpreter and scripting capability, and the Visualization ToolKit (VTK) for the data model and many of

the analysis algorithms.

3.1.2 Background and Motivation

As supercomputers become increasingly powerful, the size, scope, and complexity of the simulations

continue to increase. This results in increasingly larger quantities of output data that need to be analyzed

and understood. Effectively and efficiently understanding the results has been a long-standing challenge.

To meet this challenge, postprocessing analysis and visualization tools have been developed which read

in the simulation data, perform various operations, and present the results using visual or quantitative

techniques. A great diversity of quantitative and visual techniques has been developed to give insight

about the data, including isosurface extraction (Fig. 1(a)), volume rendering (Fig. 1(b,c)) and streamline

generation (Figure 1(c)).

Fig. 1. (a) An isosurface of a Raleigh-Taylor instability problem. (b) A volume rendering of a

turbulence problem. (c) Volume rendering and streamlines of a core collapse supernova collapse

simulation.

9

As the size, scope, and complexity of the simulations increase, the capability of the postprocessing

analysis and visualization tools must be able to similarly scale. The failure of these tools to scale will

place unacceptable restrictions on their use, such as operating only on portions or downsampled versions

of the data or taking an inordinate amount of time to complete. These restrictions have enormous negative

impacts on a scientist’s ability to understand and reason about a simulation.

3.1.3 Capability Overview

VisIt's basic execution model is to employ ―data flow networks,‖ a standard model used by

visualization systems for approximately two decades. Data flow networks consist of relatively

independent filters, with each filter corresponding to an analysis algorithm. Filters can have one or more

inputs and one or more outputs. Connecting filters together, attaching sources (file readers), and

connecting the network's final outputs to a rendering algorithm creates data flow networks. An example

of a dataflow network that renders isocontours of a dataset is shown in Fig. 2.

Fig. 2. Data flow network-processing model.

Data flows from the network source to the network sink.

VisIt's large data strategy is to use distributed memory data parallelism. To create a given rendering,

each processor creates an identical data flow network, and the networks are differentiated by the input

data they process, very much in the multiple instruction, multiple data stream (MIMD) model. The input

data set is partitioned across the processors, with each processor owning a different portion. Sometimes

―ghost data‖ is replicated along the boundaries of the partitions to prevent interpolation artifacts and other

problems. Once each processor is assigned its portion of the larger data set, it reads its portion and

executes its data flow network. The reading and the data flow network execution can take place with

communication between the processors or entirely independently, depending on the specifics of the input

data and the algorithms being executed. Once the data flow network is executed, an image is rendered.

This rendering is typically parallelized for large data, which consists of every processor rendering the

geometry for its portion independently, followed by a large communication phase where the individual

images produced by each processor are composited into a final image. More complex rendering strategies

are employed for transparent rendering, shadows, etc.

3.1.4 Science Driver for Metric Problem

In Q2, VisIt was used to perform two important and very common visualization tasks; namely,

isosurface extraction and volume rendering of the output of an important radiation transport code,

Denovo. In Q4, the same visualization tasks were performed on a radiation transport simulation 3 times

the size of the Q2 simulation.

In the baseline and metric problems, VisIt processes datasets from the Denovo simulation code.

Denovo is a new, state-of-the-art, 3D radiation transport code being developed at ORNL. It is currently

being used to study and analyze radiation dose levels in a variety of engineering environments. The

particular problem used for this benchmark involves the reactor core, containment vessel, turbines, and

surrounding buildings in a nuclear power generating plant (a pressurized water reactor [PWR] facility).

The code is currently being used to study the radiation dose levels under normal operating conditions,

with plans to study doses following terrorist attack scenarios in the future. Accurate, high-fidelity

understanding of the dose contours around the core and in the surrounding buildings is critical for health

and safety assessment and cleanup, as well as new plant design and remodeling.

Scalability of this code is critical due to the enormous memory requirements of this type of transport

calculation. High-fidelity 3D calculations using 1,000 energy groups results, for example, in 288,000

File Reader

(Source)
Isocontour

Filter
Render

(Sink)

10

degrees of freedom (DoF) per cell. With a limited amount of memory available per node, massive

parallelism is mandatory for this type of calculation. As codes such as Denovo scale to higher degrees of

parallelism and larger numbers of computational domains, the resulting output files will similarly

increase. It is therefore critical that the capability of the analysis and visualization tool similarly scale to

handle increasingly larger numbers of computational domains.

The example used in the baseline and metric problem

is a steady-state transport calculation of radiation dose in a

PWR facility, as shown in Fig. 3. The model consists of

material components consisting of concrete, reactor fuel,

steel, reduced density steel, and air decomposed over

many spatial domains.

Denovo is a 3D, discrete ordinates (SN) transport code

that utilizes state-of-the-art solution methods to obtain

accurate solutions to the Boltzmann transport equation.

Denovo uses the Koch-Baker-Alcouffe (KBA) parallel

sweep algorithm to obtain high parallel efficiency on

hundreds of processors on block-structured Cartensian

(orthogonal) meshes. As opposed to traditional SN codes

that employ source iteration, Denovo uses nonstationary

Krylov methods to solve the within-group equations.

Krylov methods are far more efficient than stationary

schemes. Additionally, classic acceleration schemes

(Diffusion Synthetic Acceleration) do not suffer from

stability problems when used as a preconditioner to a Krylov solver. Denovo’s generic programming

framework allows multiple spatial discretization schemes and solution methodologies. Denovo currently

provides diamond-difference, theta-weighted diamond difference, linear-discontinuous finite element,

trilinear-discontinuous finite element, and step characteristics spatial differencing schemes. Also, users

have the option of running traditional source iteration instead of Krylov iteration. Multigroup upscatter

problems can be solved using Gauss-Seidel iteration with transport, two-grid acceleration. A parallel first-

collision source is also available. Denovo has been verified against a number of problems, including

several from the Kobayashi benchmark set. Initial parallel performance tests exhibit excellent strong

scaling up to 100 processors and good scaling to 1,000 processors for high-fidelity problems.

3.1.5 The Model and Algorithm

For the analysis and visualization scaling study, two common algorithms will be used, isosurfacing

and volume rendering. An isosurface is the 3D analog of a level set (or ―contour‖). Given a scalar-valued

function, the level set is defined as the set where a function has a specific value, as follows:

In the visualization community, a number of different techniques have been developed for computing

the solution to the level set equation, the most common being the Marching Cubes algorithm [1], which

computes a polygonal approximation to the level set. Isosurface extraction is a very useful visualization

technique as it clearly illustrates interface boundaries of a scalar variable. This is particularly useful in the

numerical quantification of radiation dose level (obtained from Denovo solutions) because it clearly

delineates areas within the computational domain that experience a given dose.

Volume rendering is a technique that produces an image directly from a scalar field in a 3D data set

without producing intermediate geometry. Each value in the scalar field is assigned a color and opacity, as

defined by a user-specified transfer function. After the transfer function has been applied to the scalar

values in the mesh, the resulting color and opacity values are composited in front-to-back order (as

defined by the viewing direction) to form the final image.

Fig. 3. Nuclear power plant, a PWR

facility, set up for the Denovo simulation.

11

There are a number of techniques that have been used to composite color and opacity from scalar

fields, including splatting, texture mapping, and ray casting. Generally, ray-casting techniques are the

most accurate and produce the highest quality images. For the problem set chosen, the ray-casting volume

render algorithm in VisIt is used.

In volume rendering, the amount of work is determined by three factors: the size of the computational

domain (mesh), the size of the final image, and the number of sample points extracted along each ray.

Volume rendering is a powerful tool for analyzing the distribution of scalar values in a volume and

particularly useful to the radiation transport dose solution as a way to see the entirety of the dose levels.

The ray-casting volume renderer in VisIt consists of two fundamental stages. In the first stage, the

algorithm takes as input a large data set that has been partitioned over its processors. The second input to

the algorithm is the definition of the rays, which are determined by the view frustum and image size, with

one ray per image pixel. Then, in parallel, each processor calculates intersections of each of the rays with

its portion of the larger data set. At this point, no processor has enough data to composite the values along

the rays into the final color for the pixel, since the intersections for a given ray will be spread over many

processors. VisIt solves this problem by creating a second parallel partition, which is over all pixels. It

then redistributes the partical ray data from the intersections so that they honor this new partition. This

redistribution phase sends data points using numerous parallel point-to-point communications. Once the

data from the intersections are repartitioned, compositing is trivial, because all of the data for a given ray

is on a single processor. Each processor composites the set of rays, then the resulting image is collected to

processor 0 where it can be displayed to the user.

3.1.6 Q2 Baseline Problem Results

For the Q2 baseline problem, we have selected two common analysis and visualization techniques,

isosurface extraction and volume rendering. These two algorithms are exercised on the output of a

Denovo solution of the radiation dose concentrations around a reactor core in a nuclear power generating

plant. The intent is to demonstrate weak scaling in the analysis and visualization of the radiation dose

transport using two different algorithms, isosurface extraction and ray-casted volume rendering.

The Q2 benchmark consists of a Denovo simulation of 4,096 spatial domains run on 4,096 processor

cores of Jaguar/XT5. The computational mesh contains 103,716,288 cells with scalar flux values for 27

energy groups computed within each zone. The simulation outputs each computational domain to a

separate file (hence 4,096 files) in the binary Silo/HDF5 format using double-precision floating point

values. The cumulative size of all output files is 83.457 GB.

Isosurface Baseline. In this benchmark, contours at dose isovalues of 0.001, 0.01, 0.1, 1.0, 10.0, and

100.0 are computed, extracted, and rendered at a resolution of 1,024 1,024 pixels using VisIt running on

4,096 cores. The radiation dose is computed as part of the data flow network using the expression engine

inside VisIt. VisIt’s expression engine reads in the 27 energy level flux values from the simulation output

files and, using a set of user-defined weights, linearly combines them to create the dose variable that is

ultimately presented to the analyst.

In postproduction analysis and visualization tools such as VisIt, the most important productivity

(hence benchmarking) metric is the time it takes to render a frame to a user display. Under normal use

cases, the user loads the simulation data from disk into memory and then repeatedly interacts with the

data, successively modifying isovalues and observing the results. The metric focus is therefore on the

scalability of the isosurface extraction algorithms and not on the scalability of the one-time expense of

reading simulation data from disk. The data in Tables 2 and 3 summarize the results for the Q2 baseline

run. Pipeline is the execution time for the entire isosurfacing data flow network, excluding I/O. The

timing value for Pipeline includes the following major components: Isosurface, the time to extract the

isosurface geometry; Render, the time to render the geometry; Comp, the time required to composite and

display the resulting image; and Expr, the time required to create the radiation dose variable using the

expression engine. The minimum, maximum, and average times of the 4,096 core timings are reported.

12

Since the result image is not displayed until all cores are finished, the maximum and average pipeline

times determine how quickly results are displayed to the user.

Table 2. Per core timings for the Q2 isosurfacing benchmark

 Minimum Maximum Average

Pipeline

Isosurface 0.0140 0.0270 0.01768

Render 0.0200 0.0650 0.02245

Comp 0.0480 0.0870 0.05193

Expr 0.1810 0.2450 0.21097

Table 3. PAPI hardware counter data for the

Q2 isosurfacing benchmark

PAPI hardware counters Counter value

Total instructions 9.48E+14

FP instructions 1.73E+11

L2 Cache misses 33.83E+10

Real cycles 5.69E+11

Real (µs) 2.47E+08

User cycles 2.63E+11

User (µs) 1.14E+08

Volume Rendering Baseline. In this benchmark, a 1,024 1,024 pixel volume-rendering image of

the radiation dose variable is computed. As in the isosurface benchmark, this variable is computed using

VisIt’s expression engine from the 27 energy group flux values stored in the simulation output files. In

ray-casted volume rendering, the viewpoint has a direct impact on the amount of computational work to

be performed prior to rendering the image. For this reason, the viewpoint is set so that the data is centered

and fills the entire image. This maximizes the amount of work required during pipeline execution.

 As in isosurface extraction, the time to render frames once the data is loaded from disk is the most

relevant metric to the end user. The focus is therefore on the scalability of the volume rendering

algorithms and not on the scalability of the one-time expense of reading simulation data from disk.

Table 4 summarizes the timing data for the Q2 baseline run. Pipeline is the execution time for all

stages in the volume rendering data flow network, excluding I/O. Vol Render is the execution time for the

volume rendering filter, which consists of three major components: S Extract, sample point extraction; S

Comm, sample point communication; and Expr, which is the time required to create the radiation dose

variable using the expression engine. The minimum, maximum, and average times of the 4,096 core

timings are reported. Since the resultant image is not displayed until all cores are finished, the maximum

and average pipeline times determine how quickly results are displayed to the user. The per core timings

and hardware counter results for 500, 1,000, 2,000, and 4,000 samples per ray are given in Tables 4 and 5.

13

Table 4. Per core timings for the Q2 volume rendering baseline

500 1000 2000 4000

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Pipeline 38.9050 38.98100 38.91322 34.51800 34.74800 34.67289 28.91100 29.01800 28.92484 31.47800 31.62200 31.49796

Vol Render 38.7050 38.73800 38.71340 34.31200 34.36000 34.32562 28.71600 28.78000 28.72930 31.27700 31.41100 31.29756

S Extract 0.05900 0.14200 0.11783 0.09900 0.23600 0.19002 0.10000 0.33200 0.25329 0.13400 0.51000 0.40080

S Comm 38.5090 38.56600 38.54388 34.03100 34.11200 34.07852 28.33500 28.46500 28.41073 30.69500 30.90200 30.81717

I Comm 0.00000 0.08800 0.00301 0.00000 0.13000 0.00444 0.00000 0.21500 0.00741 0.00000 0.36800 0.01221

Expr 0.156 0.205 0.16285 0.156 0.199 0.16283 0.156 0.199 0.16275 0.155 0.199 0.16281

Table 5. PAPI hardware counter data collected for the Q2 volume rendering

baseline

 500 1000 2000 4000

Total instructions 1.10E+15 1.18E+15 1.038E+15 1.068E+15

FP instructions 1.33E+11 1.50E+11 1.79E+11 2.01E+11

L2 cache misses 7.11E+10 7.11E+10 6.70E+10 7.20E+10

Real cycles 3.78E+11 4.08E+11 4.47E+11 4.57E+11

Real (µs) 1.64E+08 1.78E+08 1.95E+08 1.99E+08

User cycles 2.31E+11 1.81E+11 2.10E+11 2.16E+11

User (µs) 1.01E+08 7.86E+07 9.14E+07 9.38E+07

14

3.1.7 Computational Performance Gains

The isosurfacing pipeline exhibited excellent weak scaling as implemented and no modifications were

required. However, while performing this work, the volume rendering pipeline was run on more

processors than had previously been attempted. In experimental volume rendering studies, it was

discovered that good scalability was observed up to 1,024 processors, but performance thereafter

dramatically dropped off at 2,048 processors and beyond. Investigation led to the discovery of two

bottlenecks to scalability, one major and one minor.

The major bottleneck was discovered in an O(n
2
) algorithm (n is the number of processors) that

performed an optimization step to minimize communication between processors. Ray-casted volume

rendering is an image space-rendering technique. At each pixel in the output image, a ray located at a

pixel and parallel to the viewing direction is created. This ray is intersected with the data, and a specified

number of samples are extracted along the ray. Each sample along the ray is assigned a color and

transparency according to the user-specified transfer function. To produce a final color at each pixel,

these samples must be combined in a back-to-front compositing step. Performing this operation efficiently

in a parallel, distributed memory setting is very complicated, as described in [2].

The VisIt volume-rendering algorithm executes in two major phases, the first parallelizing across the

mesh and the second parallelizing across the pixels in the final image. In the first phase, the cells in the

mesh are evenly distributed across the processor set, and then each processor generates samples from the

cells it owns from each ray. At the end of this phase, all of the samples along a given ray can be located

on many different processors, so it is not yet possible to calculate the final pixel color. To solve this, the

algorithm enters a second phase, where the data is partitioned such that all of the samples along a given

ray are located on a single processor. Redistributing the sample points requires substantial point-to-point

(arbitrary processor to arbitrary processor) communication. It is in this part of the algorithm where a

barrier to scalability was discovered. There is the potential for a tremendous amount of communication

when the sample points are redistributed. To try and minimize this communication, this phase of the

algorithm examines the distribution of the sample points to processors and then attempts to create an

assignment of pixels to processors in a manner that ―minimizes‖ redistribution communication. That is, if

a processor p already has many of the sample points for pixel q, the algorithm attempts to assign pixel q

to processor p. This is implemented with an all-to-all communication primitive that requires an O(n
2
)

amount of memory. This optimization is effective for small processor counts, but it was found that the

coordination overhead does not scale and, at large enough processor counts, causes VisIt to run out of

memory and fail. The solution is to skip the optimization and simply assign pixels to processors without

concern for the distribution of the sample points. This enables the avoidance of O(n
2
) and even O(n)

buffers. It is possible to revisit this algorithm in an effort to minimize overall communication, but this is

likely to cause the presence of, at a minimum, O(n) buffers and hence would not be cost effective.

Finally, because the data is being partitioned to a finer and finer degree with such a large processor count,

the amount of communication saved becomes progressively smaller as the number of processors rises.

The minor problem encountered is in the VisIt tiling algorithm. When volume rendering a 1,024

1,024 pixel image with 1,000 samples per pixel, the algorithm must manage over one billion (1,024

1,024 1,000) samples. In a serial setting, or with a small number of processors, these samples are more

than can be contained in primary memory. VisIt solves this problem by taking advantage of the fact that

ray-casted volume rendering is an image space-rendering technique. Specifically, the image can be tiled

into a sequence of smaller images. Each tiled image can be treated as an independent volume rendering,

and the resulting tiles can be reassembled to form the final image. In doing this, the memory requirements

are reduced. However, in a parallel setting, this tiling strategy has a very negative side effect. The cells

owned by a given processor are fixed before the volume rendering begins, so it is quite possible for a

processor to have no work to perform on a given tile. And so the processor will wait until the next tile is

ready to volume render, decreasing the parallel efficiency of the algorithm. In effect, the tiling strategy

serializes the volume rendering over tiles, with the benefit of ensuring a lower memory footprint.

15

However, this adaptation is not necessary when running in parallel on many processors. Each processor

will own a portion of the samples, and as the number of cores grows large, the number of samples each

core owns (which is essentially fixed) decreases. After a certain number of processors, the memory

requirement of the sample points is small enough to fit into main memory. At this point, the tiling strategy

can be removed and the volume rendering can be effectively unserialized. The solution was to simply

disable the tiling strategy when running in parallel.

3.1.8 Q4 Metric Problem Results

For the Q4 metric problem, the same isosurface and volume rendering algorithms were run on an

identical Denovo simulation 3 times the size of the Q2 simulation. Specifically, the Q4 benchmark

simulation contained 12,720 spatial domains run on 12,720 processor cores of Jaguar/XT5. The

computational mesh contains 321,117,360 cells with scalar flux values for 27 energy groups computed at

each cell. The simulation outputs each computational domain to a separate file, making 12,720 files,

output in the binary Silo format using double-precision floating points values. The cumulative size of all

output files is 258.391 GB.

The timing results of the isosurface

extraction on the Q4 metric problem are

shown in Table 6 and the PAPI hardware

counting data in Table 7. Weak scaling

results for isosurfacing timings are shown in

Table 8.

The timing results of the ray-casted

volume rendering on the Q4 metric problem

are shown in Table 9 and the PAPI hardware

counting data in Table 10. Weak scaling

results for volume rendering timings are

shown in Table 11.

Table 6. Per core timings for the Q4 isosurfacing

benchmark

 Minimum Maximum Average

Pipeline

Isosurface 0.01411 0.02654 0.01686

Render 0.02079 0.06907 0.02319

SR 0.050 0.0912 0.05274

Expr 0.1933 0.2501 0.22390

Table 7. PAPI hardware counter data

for the Q4 isosurfacing benchmark

PAPI hardware

counters
Counter value

Total instructions 9.12E+14

FP instructions 5.23E+11

L2 cache misses 2.31E+11

Real cycles 1.08E+11

Real (µs) 4.70E+07

User cycles 7.42E+10

User (µs) 3.23E+07

Table 8. Weak scaling results of the Q4 benchmark

 Minimum Maximum Average

Pipeline

Isosurface 0.992 1.0550 1.05456

Render 0.9620 0.95555 0.97187

SR 0.95865 0.95394 0.98483

Expr 0.93636 0.97960 0.94225

16

Table 9. Per core timing results for the Q4 volume rendering

 500 1000 2000 4000

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Pipeline 7.47642 7.57774 7.4826 6.51973 6.63473 6.52798 6.5838 6.73839 6.60026 6.8265 7.04683 6.84922

Vol Render 7.24796 7.30064 7.25474 6.29565 6.36192 6.30441 6.36193 6.46614 6.37796 6.60335 6.77199 6.62592

S Extract 0.01855 0.0453 0.03042 0.02316 0.06854 0.04253 0.0282 0.1014 0.06169 0.03697 0.14928 0.0858

S Comm 7.1393 7.16601 7.15538 6.16343 6.20998 6.19064 6.19944 6.28523 6.24175 6.39171 6.53656 6.46006

Expr 0.1494 0.18839 0.16432 0.14966 0.18698 0.16435 0.14966 0.18803 0.16432 0.14956 0.18697 0.16440

Table 10. PAPI hardware counter data collected for the Q4

volume rendering benchmark

 PAPI Hardware Counters

 500 1000 2000 4000

Total instructions 1.10E+15 1.18E+15 1.038E+15 1.06E+15

FP instructions 1.33E+11 1.50E+11 1.79E+11 2.01E+11

L2 cache Misses 7.11E+10 7.11E+10 6.70E+10 7.20E+10

Real cycles 3.78E+11 4.08E+11 4.47E+11 4.57E+11

Real (µs) 1.64E+08 1.78E+08 1.95E+08 1.99E+08

User cycles 2.31E+11 1.81E+11 2.10E+11 2.16E+11

User (µs) 1.01E+08 7.86E+07 9.14E+07 9.38E+07

Table 11. Weak scaling results of the volume rendering benchmark timings

 500 1000 2000 4000

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Pipeline 5.20 5.14 5.20 5.29 5.24 5.31 4.39 4.31 4.38 4.61 4.49 4.60

Vol Render 5.34 5.31 5.34 5.45 5.40 5.44 4.51 4.45 4.50 4.74 4.64 4.72

S Extract 3.18 3.13 3.87 4.27 3.44 4.47 3.55 3.27 4.11 3.62 3.42 4.67

S Comm 5.39 5.38 5.39 5.52 5.49 5.50 4.57 4.53 4.55 4.80 4.73 4.77

Expr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

17

3.1.9 Interpretation of Results

The Q4 metric problem was run on a Denovo simulation using the identical setup but using a

computational mesh that was roughly 3 times larger than the baseline problem. The simulation was run

with a total of 321,117,696 computational zones across 12,720 spatial domains with scalar flux values for

27 energy groups in each zone. Each spatial domain was output to a separate file, resulting in a total input

file size of 258.391 GB. A comparison of the Q2 and Q4 problems sizes is shown in Table 12.

For the Q4 metric problem, the same isosurface extraction and volume rendering operations were

performed using VisIt running on 12,720 cores.

Table 12. Q2 and Q4 simulation sizes

Problem metric Q2 Problem Q4 Problem
Q2–Q4

Comparison

Number of zones 103,716,288 321,117,696 3.096

Number of domains 4,096 12,720 3.105

Total file size 83.457 GB 258.391 GB 3.105

The isosurface extraction algorithms are a fairly well understood, and scalability was expected. It was

therefore gratifying to find that the framework in VisIt that manages and executes the isosurface

extraction and rendering was able to exhibit very good weak scaling, satisfying the Joule criterion.

3.1.10 Summary and Conclusions

We have run two benchmarks using VisIt, isosurfacing and volume rendering, on two radiation dose

transport simulations from Denovo. The resulting images from the Q2 baseline and the Q4 metric

problem are shown in Figs. 4 and 5, respectively. The isosurfacing metric was shown to exhibit ideal

weak scaling. The Joule metric proved to be particularly useful to the volume rendering as two barriers to

scalability were identified and addressed. The modifications to the volume-rendering algorithm resulting

in significant performance improvements will benefit the entire analysis and visualization community as

simulations continue to grow in size and scope.

The output produced from the VisIt analysis and simulation runs produced expected results that have

been verified with the code developer and are deemed acceptable. We have therefore accepted the results

for the Q2 benchmark runs.

18

(a) (b)

Fig. 4. (a) Extraction of radiation dose contours and (b) a volume rendering from the nuclear

power plant simulation from the Denovo code. Q2

(a) (b)

Fig. 5. (a) Extraction of radiation dose contours and (b) a volume rendering from the nuclear

power plant simulation from the Denovo code. Q4

19

3.2 CAM

3.2.1 Introduction

The Community Atmosphere Model (CAM) [3–5] is the latest in a series of global atmosphere

models developed at the National Center for Atmospheric Research (NCAR) for the weather and climate

research communities. CAM also serves as the atmospheric component of the Community Climate

System Model (CCSM). The latest version of CAM (in its fifth generation) has been designed through a

collaborative effort that includes NCAR, university, and laboratory users and developers, and its contents

are defined by the CCSM Atmospheric Model Working Group (AMWG). Some of the key features in

CAM include updated parameterizations for prognostic cloud water, cloud ice, precipitation, and cloud

fraction; the radiative treatment of atmospheric aerosols (sulfate, dust, sea salt, carbon, and volcanic), the

optional prognostic treatment of sulfate aerosols; improved energy conservation; improvements to the

long-wave radiation interaction with water vapor; updates to the shortwave radiative transfer scheme to

more accurately model trace gas absorption; and an atmosphere-land interface that now supports rain and

snow phases. CAM also includes an optional slab ocean model and incorporates an International Satellite

Cloud Climatology Project (ISCCP) cloud simulator to emulate ISCCP statistical cloud diagnostics.

3.2.2 Background and Motivation

Over the last two decades, NCAR has provided a comprehensive, 3D global atmospheric model to

scientists all over the world for use in the analysis and understanding of global climate. Because of its

widespread use, the model was designated a community tool and given the name Community Climate

Model (CCM). The original versions of the NCAR CCM, CCM0A [6] and CCM0B [7], were based on

the Australian spectral model [8] and an adiabatic, inviscid version of the European Centre for Medium-

Range Weather Forecasts (ECMWF) spectral model [9]. The CCM0B implementation matched the earlier

CCM0A model to within natural variability, but in addition provided a more flexible infrastructure for

conducting medium- and long-range global forecast studies. All aspects of the model in the CCM0B

effort were described in a series of technical notes [10] and a detailed code and algorithm description

[11]. The most recent version of CAM (CAM 3.0) incorporates significant improvements to the physics

package (e.g., generalized cloud overlap for radiation calculations), new capabilities such as the

incorporation of thermodynamic sea ice, and a number of enhancements to the implementation (e.g., clean

separation between physics and dynamics).

3.2.3 Capability Overview

Physical Model. The model implementation is characterized by two computational phases: the

resolved dynamics, which advances the evolution equations for atmospheric flow, and the physics, which

treats subgrid-scale phenomena such as precipitation processes, clouds, long-wave and short-wave

radiation transfer, and turbulent mixing. Control moves between the dynamics and the physics twice

during each model simulation time step. A dynamics–physics coupler moves information between data

structures representing the dynamics state and the physics state.

Numerical Model. CAM includes multiple options for the dynamics, referred to as dynamical cores:

a spectral Eulerian, a spectral semi-Lagrangian, finite volume, and cubed sphere. The spectral and semi-

Lagrangian dynamical cores use the same computational grids. Finite volume and cubed-sphere grids both

differ from these grids due to differences in the mathematical formulations. An explicit interface exists

between the dynamics and the physics, and the physics data structures and parallelization strategies are

independent from those in the dynamics.

Software Implementation. The software design of the CAM model includes a hybrid

(OpenMP/MPI) approach in order to efficiently map to the multiple symmetric multiprocessor (SMP)

node nature of many modern supercomputers, including the Cray XT-series machines at ORNL. The

strategy for parallel decomposition is different in the physical parameterizations vs. the dynamical cores,

20

so a data transpose is necessary twice each model time step: once from the physics grid to the dynamics

grid, and once from the dynamics grid to the physics grid.

Data dependence in the physical parameterizations is only in the z (vertical) dimension. Physical

parameterization data in this dimension is always on-processor in parallel OpenMP threads as well as

Message Passing Interface Standard (MPI) processes, so the parameterizations themselves do no

communication. Data are arranged in sets of (x,y) points called chunks. Each chunk can be thought of as a

set of independent vertical ―pencils,‖ where the computations on each pencil are independent of each

other. A given MPI process is assigned some number of chunks, with per-task parallelism achieved by an

OpenMP loop over the number of chunks. The size of a chunk is a compile-time setting. Most of the

physical parameterizations have an inner loop over the chunk size, which provides opportunities for

vectorization on machines that provide it.

Since no communication is required in the parameterizations, their performance scales well with

increasing thread and process count. The scaling is not perfect, however. There are two key reasons for

this. First, as additional threads are added, the requirements on the memory subsystem increase. CAM is a

memory-intensive code, so memory performance degrades when the nodes are fully populated (8 threads

per node on the current XT5 system at ORNL).

The second reason that the parameterizations do not scale linearly is that there is an inherent load

imbalance imposed by the physics being modeled. As an example of load imbalance, consider that the sun

is above the horizon on only half of the (global) model grid points at any particular time. There is a

shortwave radiation calculation required at sunlit points, which is not done for points that fall below the

terminator. This can cause a substantial load imbalance since the shortwave radiation calculation is

relatively expensive, and the set of points that require it constantly changes as the simulated time of day

changes. An attempt is made to statically load-balance the distribution of points to processors. The

approach involves including points near the North Pole with points near the South Pole in the same

chunk. Therefore, in northern hemisphere winter, for example, a given polar chunk should contain

roughly half southern hemisphere points which are sunlit, and half northern hemisphere points which are

not.

Data decomposition for parallelization of the spectral Eulerian dynamical core is across latitude

bands. Each MPI task is assigned some number of latitudes in the part of the spectral transform that

begins in grid-point space and applies a Fourier transform. If more that a single latitude band is assigned

to a particular MPI task, OpenMP parallelism is applied via a loop over the number of assigned latitudes.

Once in spectral (wave number) space, parallelization is across Fourier wave numbers. To transform back

to grid-point space, a data transpose is applied within the dynamical core to rearrange the data such that

all Fourier wave numbers are contiguous in order to apply a reverse Fourier transform.

The data decomposition in the spectral Eulerian dynamical core is only one dimensional (y direction).

Prior to the advent of massively parallel computational platforms, this did not pose any bottleneck. Also,

at the lower spatial resolutions of earlier simulations, the cost of the spectral dynamics relative to the

physical parameterizations is much less (see next section). Our intent is to address overall performance

and scaling issues mainly related to the spectral Eulerian dynamical core at high resolution.

21

3.2.4 Science Driver for Metric Problem

A current focus area of climate change research is predictability on decadal timescales. These studies

require a numerical model with very high spatial resolution (e.g., on the order of 30 km resolution in

longitude and latitude). Until recently such simulations were not feasible due to the concomitant

computational requirements. Only now with petascale-level platforms possessing adequate per-processor

performance do such studies become tractable.

Specifically, an ongoing atmospheric science

research focus at ORNL involves the use of a

high-resolution global atmospheric general

circulation model (AGCM) to hindcast the

climatic impact of volcanic eruptions (Fig. 6).

An important design aspect of this work

calls for the configuration of a global

atmospheric model and associated land

surface model with forcing datasets that

enable us to address specific science questions

about the response of the climate system to

natural and anthropogenic aerosol forcing.

These forcing datasets employ best estimates

of observed solar variability and greenhouse

gas mixing ratios during the experimental

period. The atmospheric model is configured

at a resolution of approximately 30 km to

ensure adequate representation of regional

features such as the orographic signal of

precipitation. Such high resolution is also

essential for the land model to develop a

realistic soil moisture pattern. Another benefit

from this high-resolution configuration is a

more realistic representation of both extra-

tropical and tropical storms.

The atmospheric model and land model

chosen for this study, along with the spatial

resolution, form the basis of the climate

component of the FY09 Joule exercise. A

description of the models, parallel

decomposition, boundary datasets, and initial

Q2 results are described in the following

sections.

3.2.5 The Model and Algorithm

The Community Atmosphere Model (CAM) version 3.0 is the fifth generation of the National Center

for Atmospheric Research (NCAR) AGCM used in climate studies. The name of the model series was

changed from Community Climate Model to Community Atmosphere Model (CAM) to reflect the role of

CAM 3.0 in the fully coupled Community Climate System Model (CCSM). The CCSM couples CAM

and active land, ocean, and sea ice components together to form a fully interactive climate system model.

CAM is designed through a collaborative process with users and developers in the Atmospheric Model

Working Group (AMWG). The AMWG includes scientists from NCAR, the university community, and

government laboratories and agencies such as ORNL.

Fig. 6. Global average surface temperature in

observations, modeled with and without anthropogenic

forcing. Volcanic eruptions are clearly visible in their rapid

cooling effect. Source: Fourth Assessment Report of the

United Nations Intergovernmental Panel on Climate Change.

22

The CAM configuration for this study runs in uncoupled (stand-alone) mode. This configuration

includes a fully active land model (Common Land Model or CLM), with sea surface temperatures (SSTs)

and sea ice concentrations provided by external forcing datasets. The term ―uncoupled‖ refers to the fact

that there is only one executable image, with communication between component models via a subroutine

interface. In ―coupled‖ mode, boundary flux information is passed between individual models and a

coupler using separate executables that communicate with one another via MPI. CAM can be configured

to use any of four dynamical cores: spectral Eulerian, finite volume, semi-Lagrangian, or cubed sphere.

The spectral Eulerian dynamical core is used for this study because its characteristics and behavior are

well understood. The horizontal model resolution is T341 (see http://vets.ucar.edu/vg/T341), which

results in a transform grid (latitude/longitude) of 1,024 512 points. This represents approximately 0.35°

of latitude and longitude. There are 26 vertical levels.

The CAM model version used in this study is 3.5. CAM 3.5 contains some modifications to the

physical parameterizations beyond CAM 3.0. Details of the mathematical formulations are available in

ref. [5]. Further details on the Eulerian dynamical core and physical parameterizations can also be found

in this section.

A key element in the design and implementation of the numerical methods for the CAM model is the

coupling between the physical parameterizations and the dynamical core (this physics–dynamics coupling

is not the same as the inter-model coupling just described). There are important performance

ramifications of this coupling process as implemented on a parallel architecture. The mathematical

formulation of the coupling is described in Chapter 2 of ref. [5].

3.2.6 Q2 Baseline Problem Results

Since the AGCM used in this study is a global model, traditional application of a weak-scaling

approach to increasing the problem size is not possible given the science needs. This is because increasing

the number of model grid points for a constant physical size domain necessarily shortens the distance

between them. Numerical stability considerations (e.g., CFL constraint) dictate a shorter dynamics time

step as grid points become more tightly spaced. This results in a substantial increase in the amount of

floating-point work performed per core for a given model time integration. The computational cost of the

dynamics part of the calculation as a result of doubling the resolution in both x and y dimensions goes as

the cube of the resolution increase rather than the square. Computational cost of the physics part of the

calculation resulting from this same increase in resolution only goes as the square of the resolution

increase. As a consequence, the cost of the dynamics part of the calculation begins to dominate the cost of

running the entire model as the horizontal resolution is increased.

Scientific demands from climate models do not at this time justify moving to a much finer mesh than

outlined above. Therefore, the CAM Joule metric applied for this exercise is model run time for a T341

configuration at high process count. The model was run for one simulated month. This is the minimal run

time required to accurately represent the relative time taken by various model components for an

arbitrarily long run, including the impact of model I/O.

A total of 8,192 processor cores were used for the model run. On the Jaguar/XT5 system this is

distributed as 1,024 MPI tasks, with 8 OpenMP threads per task. This means one MPI task per eight-

processor node on the system. For the final (Q4) simulation, improvements to the computational

algorithms were devised and implemented to enhance the performance of the model. The algorithms

themselves were not changed in a wholesale manner, but allowance was given for potential numerical

differences at the round-off level in the improved implementation. This approach simplifies the process of

assuring that the model is generating the "right" answers. ―Correct‖ answers are defined by the answers

generated in the baseline (Q2) simulation. The same initial and boundary condition files were used in both

the Q2 and the Q4 runs.

The CAM model can be configured to periodically write a snapshot file of prognostic data that can be

used as an initial conditions file for subsequent runs. This is useful because the model requires a number

of years of simulation time before it settles to a balanced (quasi-equilibrium) state. Fortunately, a run

23

performed with an earlier version of the model produced a number of these files. We chose one of these

as an initial conditions file for this exercise.

SST and sea ice concentration data are prescribed by monthly boundary datasets. These data are read

in each simulated month and then interpolated in time. Monthly ozone and aerosol concentration

bounding data are also prescribed, input to the model and interpolated to current model time as the model

runs.

The CLM requires specification of surface type and characteristics. These are provided by boundary

datasets. Like the atmospheric model, CLM can start from an initial dataset. Although such a dataset is

currently not available at the resolution of this study, the model instead provides the facility to start from

an internally specified initial state. Spinning up to an equilibrium state requires a number of years of

simulation. However, the computational characteristics between a spun-up state and this so-called

"arbitrary" initialization are nearly identical.

The benchmark results reported here are for a one-month simulation on 8,192 processor cores of the

Jaguar/XT5 platform.* A constant time step of 150 seconds was used, with the total integration being

17,856 time steps. The cost of the dynamical core itself was 4,247 seconds, which represents

approximately two-thirds of the total simulation time of 6,482 seconds. The CLM cost was only 112

seconds. The cost of writing CAM history files was similarly small (115 seconds). This is because in

default mode, the model only writes history files once per simulated month. In the Q2 runs a substantial

performance gain was not realized by increasing the processor count from 4,096 to 8,192. This is

primarily due to unexploited opportunities for parallelism in the dynamical core, and the fact that the

relative computational cost of the dynamical core is quite high at a horizontal resolution of T341. In

contrast to the dynamical core, the physical parameterizations in CAM take full advantage of the 2D (x–y)

opportunities for parallelism. Performance data of the benchmark computation are shown in Table 13.

The General Purpose Timing Library (GPTL) [12] was used in conjunction with the Performance

Application Programming Interface (PAPI) to extract the performance data.

Table 13. CAM performance data for the Q2 benchmark run*

 Atmosphere CLM I/O Total

Time (seconds) 5,916.475 112.048 115.024 6,481.724

FP instructions 2.13 10
15

 3.89 10
13

 2.17 10
15

*The 8192-core simulation on Jaguar/XT5 consisted of a 17,856 time step integration

(one month at 150 seconds per step) on a T341 grid (1024 latitude × 512 longitude ×
26 vertical).

A few items are worth noting for the CAM benchmark problem and associated collection of

performance data. First, timing for the run is the same across all OpenMP threads and MPI tasks. This is

because of barriers and synchronization necessary for the algorithms. Second, floating-point instruction

data is collected from an equivalent MPI-only simulation (one MPI task per core) in order to avoid having

to aggregate over all OpenMP regions. The MPI-only and hybrid OpenMP/MPI runs yield the exact same

numerical results, so at present the floating-point instruction mix (number and order) for the two runs is

the same although this is not necessarily true in general. Total instruction count data must be interpreted

carefully because extraneous integer instructions executed by a given task can signify a load imbalance

(e.g., spinning in user space waiting for any kind of barrier) rather than actual computational work.

3.2.7 Computational Performance Gains

Modifications implemented to achieve a greater than 2 times speedup for the CAM portion of a one-

month CAM+CLM T341 model run fall in four categories: source code modifications, compiler flags and

improvements, run time configuration flags, and modifications to the I/O subsystem.

* http://www.nccs.gov/jaguar/

http://www.nccs.gov/jaguar/

24

We devised numerous source code modifications to the spectral Eulerian dynamical core in CAM.

The impact was to obtain substantial speedups when run at particularly high resolution. The main theme

of these modifications was to exploit embedded opportunities for parallelism at the OpenMP (threading)

level that did not exist in the standard code base. At T341 resolution, the granularity of the new regions

parallelized was sufficient to overcome the overhead of the threading itself and produce substantial

performance gains. Good performance gains were also the result of the fact that existing MPI parallelism

in the spectral Eulerian dynamics peaks at 512 processes, so additional opportunities (in this case

OpenMP parallelism in the dynamics) needed to be pursued to push the parallelism to 8,192 cores. In

addition, the fact that the cost of the spectral dynamics scales roughly as the cube of the horizontal

resolution, while almost all of the physics scales as the square, meant that the modifications to the spectral

dynamics would have a particularly significant impact at high resolution. Finally, since the XT5 system at

ORNL was upgraded in the past year from four cores per SMP node to eight, this provided an additional

performance boost since these OpenMP code modifications all apply at the node level.

In the category of compiler flags and improvements, we note that the PGI compiler used for all runs

went through two major revision upgrades between the Q2 and Q4 runs, from 7.2.3 to 9.0.1. This change

alone had a beneficial impact of approximately 10% on overall model run time. PGI is the default

compiler on the ORNL Jaguar machines.

One change to default compiler flag settings from that used in the Q2 benchmark runs was to remove

the flag "-Kieee" (the Q2 runs used exactly the same settings as the Jaguar-based Makefile maintained by

NCAR). The impact of this flag was to force strict conformance with the IEEE 754 standard. By

removing it, the compiler was able to utilize certain optimizations to its internal numerics that it would

not otherwise have been able to do. The impact of turning off this flag sped up the CAM execution

somewhat, without a significant impact on the generated solution. The original need for the flag was

historical and it is no longer required.

The flag -Mvect=nosse was changed to -Mvect=sse. The default CAM model Makefile specifies

-Mvect=nosse, which disables vector instructions. Enabling vector instructions increases the theoretical

peak speed of the AMD processor by a factor of 2. The speedup realized by the CAM model when vector

instructions were enabled was more like 20%, which is still a significant number. The reason

-Mvect=nosse was in the original Makefile was for numerical reproducibility across all thread counts

used in OpenMP or hybrid OpenMP/MPI runs. The effect on model answers by enabling this flag was at

roundoff.

Flags -fast and -fastsse were also added to the Makefile. These are general optimization flags that had

a minor impact on performance (though -fast implies an optimization level of at least -O2).

Various compile-time and run-time Fortran name-list settings were tested as modified from their

default values between the Q2 and Q4 runs. These had no impact on model answers but did affect model

performance. The run-time and name-list settings exist to address issues such as cache blocking in the

physical parameterizations, and to optimize the use of MPI primitives as used mostly in the dynamics.

The settings had never been optimized for a T341 resolution, or specifically T341 on the XT5

architecture, so some experimentation was necessary to achieve optimal results. Since there is some

variability in model run time from one execution to the next simply due to issues such as operating

system noise and overall load on the system, multiple runs had to be done to determine the best settings.

This was particularly true of settings that had only a small impact on performance.

Compile-time C-preprocessor variable PCOLS is essentially a cache-blocking parameter. It is the

number columns (or vertical "pencils" using the nomenclature from earlier in this document) in a

―chunk.‖ Recall that the columns defining a chunk need not necessarily be contiguous in physical space,

though many inner loops in the physics do index over this variable. Generally, the best setting is

independent of horizontal resolution. Since cache line sizes generally involve a power of 2, a PCOLS

setting that is likewise a power of 2 is normally the best choice. And indeed it turned out that the default

setting of PCOLS=16 gave the best results. PCOLS=8 was nearly as efficient.

The value of name-list parameter phys_loadbalance was changed from its default value of 0 to 3

between Q2 and Q4 runs. ―0‖ says not to do any load balancing within the physical parameterizations. ―3‖

25

says to find one process to exchange data with when balancing the physics load. For the usual latitude

decomposition, this translates to finding the process with the "mirrored" latitude in the other hemisphere,

and the load balance is usually very good. ―2‖ says to do the optimal remapping, which is essentially an

all-to-all communication. Physics load imbalances typically are not very large, so it is difficult to

amortize the communication cost of option 2. ―3‖ gave the best performance for the Q4 runs.

Name-list parameter dyn_alltoall has possible settings of 0 or 1. If set to ―0,‖ MPI_Alltoall is used for

the transposes within certain routines in the dynamical core. Otherwise a point-to-point implementation is

used. Run-time variability swamped any signal from varying this setting. Therefore, the default setting of

0 was used in the final runs.

Time taken to write the CAM history file was only a small fraction of the total model integration time

in both the Q2 and Q4 runs (less than 2% of the total). However, we found it remarkable that some

combination of current system load, upgrades to the underlying Lustre software, and migration to a new

center-wide external Lustre file server resulted in more than a 2 times improvement in time to perform

this physical I/O. We checked to be certain that exactly the same amount of data were written in both the

Q2 and Q4 runs. Restart (checkpoint) files were not written in order to obtain an accurate measurement of

the relative fraction of time taken to do I/O in both the Q2 and Q4 runs.

3.2.8 Q4 Metric Problem Results

A wide variety of performance analysis tools are available on the Cray XT5 architecture. Our original

intent was to use CrayPat to gather timings and underlying performance statistics such as total floating

point operations. Unfortunately, we could not get believable numbers from this tool when applying it to

hybrid OpenMP/MPI codes such as CAM. So instead we manually instrumented the code utilizing the

GPTL timing library [12]. This library gives consistent, reliable performance data for hybrid

OpenMP/MPI codes and also provides an optional interface to the PAPI library. PAPI provides detailed

low-level hardware performance counter data such as floating point operation count. We double-checked

correct behavior of GPTL+PAPI by constructing a test OpenMP/MPI code with a known floating point

operation count. The floating-point operations (FP_OPS) measured by GPTL/PAPI were extremely

accurate. This GPTL-based approach was very useful for diagnosing fine-grained performance

improvements between Q2 and Q4. As a convenience in generating total floating point operation and

instruction counts across all cores for the full model, we performed an additional simulation in MPI-only

(unthreaded) mode. This allowed us to easily instrument a single code region across all MPI tasks, then

gather the results with a simple post-processing script. Otherwise we would have had to manually

instrument all OpenMP threaded regions (CAM and CLM contain many of these), then sum the results

across all processes and threads. The numerical results in hybrid OpenMP/MPI mode identically match

those of the MPI-only run, so we are confident that the PAPI results reported here are accurate.

Wall-clock times reported in results here were for thread 0 of MPI task 0. Since there are numerous

synchronization points as the model integrates, the total wall-clock time of all MPI tasks will always be

nearly identical. Floating-point operations and instruction counts are summed across all processes in an

MPI-only run (as described above), with a single grand total reported.

For the Q4 run, the wall-clock time for the atmospheric component of the simulation on 8,192 cores

using 1,024 MPI tasks and 8-way threading was 2,823.365 seconds (Table 14). This excludes

initialization time. To aggregate statistics for instruction count and floating point operations, a Perl script

was used to sum these statistics across the output timing data for all threads and tasks. Q4 comparison

results are for the same region specified in the timing output files (―DRIVER_ATM_RUN‖).

The simulation done for Q4 matches that done for Q2 both in problem size (T341) and processor

count (8,192). The distribution of MPI tasks (1,024) and OpenMP threads per task (8) was also the same.

As such, the CAM configuration chosen for this Joule exercise was strictly a strong-scaling problem. The

performance results shown in Table 14 below demonstrate a greater than 2 times speedup in the Q4 CAM

run as compared with the Q2 benchmark run (see Table 13). Comparing the time taken for the column

labeled ―Atmosphere‖ defines a speedup factor of approximately 2.1.

26

Table 14. CAM performance data for the Q4 modified run*

 Atmosphere CLM I/O Total

Time (s) 2,823.365 101.310 41.302 3,241.144

FP instructions 2.31 10
15

 6.09 10
13

 2.38 10
15

*The 8,192-core simulation on Jaguar/XT5 consisted of a 17,856 time step integration

(one month at 150 seconds per step) on a T341 grid (1,024 latitude × 512 longitude × 26
vertical).

The count of floating point instructions executed by CAM differs slightly between the Q2 and Q4

runs (2.13 1,015 vs. 2.31 1,015). This is to be expected and is due to a number of factors, including

compiler upgrades and additional round-off differences introduced as a result of code modifications. The

CLM portion of the simulation was unchanged vs. the Q2 simulation. Thus the 12% speedup observed in

that part of the calculation can be attributed to compiler upgrades and whatever system noise may have

been present. The floating point operation count for CLM is more than an order of magnitude smaller that

that for CAM. As such it does not represent a significant fraction of the total, but it is curious that the

value increased by nearly 50% from the Q2 run to the Q4 run, all without any code changes.

Time spent doing history file I/O decreased dramatically between the Q2 run and the Q4 run. This

result is unrelated to code changes (there were no modifications to the I/O portion of the calculation) but

rather the installation of a new system-wide Luster file system at ORNL. While the time spent writing

history files was not a significant portion of total model time even in the Q2 run, the speedup of more

than 250% observed in writing the same amount of history data is impressive.

The reasons behind these observed results are described in the next section.

3.2.9 Interpretation of Results

The CAM model at T341 scales reasonably well to about 4,096 processor cores. Attempting to

execute this problem across additional cores rapidly reaches a point of diminishing returns. This is

depicted in Fig. 7, where total CAM performance is broken down into dynamics and physics components.

The physics scales well to 8,192 cores, but the performance of the dynamics flattens beyond about

2,000 cores. Since the current climate science goals that are driving the higher resolution CAM runs at

ORNL demand reasonable turnaround (at least 2 simulated years per wall-clock day), there is a clear

benefit realized by improving the strong-scale performance of the model. Figure 7 clearly shows that the

performance of the dynamical core is the primary culprit in limiting scalability.

The definition of metric success with the modified CAM software and run-time environment was to

achieve at least a 2times speedup between Q2 and Q4. We succeeded in meeting this goal. Comparing

the time taken by the CAM model in Q2 vs. Q4 (5,916.475 seconds vs. 2,823.365 seconds), results in a

speedup factor of 2.095. Thus it is now possible to simulate more than 2 years per wall-clock day with the

high resolution Eulerian spectral version of CAM, but in Q2 it was only possible to simulate 1 year per

wall-clock day.

27

Fig. 7. Current CAM strong scaling performance for the T341 mesh on the Jaguar/XT5 platform.

3.2.10 Summary and Conclusions

The Q2 benchmark results translate to an ability to simulate a bit more than one year of model time in

one day of wall-clock time on the XT5 machine at ORNL. Including all the modifications to code, name

lists, and compiler flags described above, as well as upgrades to the compiler and I/O subsystem, the

amount of simulation time increased by more than a factor of 2 for the Q4 runs (or the ability to simulate

more than 2 model years per wall-clock day). The many weeks of computer time required to complete

multi-decadal high-resolution simulations with the spectral Eulerian dynamical core in CAM has now

been reduced to just a few weeks. This increased turnaround efficiency can have a dramatic effect on

scientific productivity.

28

3.3 XGC1

3.3.1 Introduction

Prediction of the plasma transport property in ITER is one of the most urgent research topics in the

thermonuclear fusion program. Hot and dense plasma fuel in the central core must be adequately

confined to produce much higher fusion energy output than the energy input required to operate the

device, and at the same time the plasma in the edge must be cold enough to prevent costly damage to the

material wall.

By utilizing the fundamental property that the charged particles mostly flow along the magnetic field

lines, magnetic field lines in the vicinity of the material wall are designed to intersect special target plates

(diverter plates) in order to prevent the main material wall from damage. At the boundary between the

closed and open magnetic field line regions, magnetic field separatrix surface exists (see Fig. 9 in Sect.

3.3.4). Since the plasma on the open field lines is unconfined, it is naturally cold. The plasma temperature

difference between the hot burning central core radii and the cold open field radii is not a free parameter

for external control but self-determined by radial profile of thermal transport profile, which is mostly

controlled by turbulence phenomena abundantly driven and supported by the temperature difference. If

more heat is injected to the central plasma in an effort to increase the central temperature, greater

temperature difference with the edge plasma drives stronger turbulent transport, hence opposing the rise

of central temperature against the edge temperature. Rise of the central temperature will need to be

accompanied by the rise of the edge temperature, which is, however, not allowed by the heat tolerance

limit of the material wall. One of the formidable early efforts of the fusion plasma physicists was in the

reduction of turbulence transport by an external mean, thus to raise the difference between the edge and

core temperatures. Without such a mean, an economical production of fusion energy was expected to be

difficult.

It was then discovered by experimentalists over a quarter of a century ago that adequately heated

tokamak plasmas can form a thermal barrier in the plasma edge just inside the magnetic separatrix surface

[13], which separates the hot plasma inside the magnetic separatrix surface from the cold plasma outside

it within a thin radial shell (a few centimeters in a DIII-D tokamak). This transport barrier makes the

plasma form a steep pressure pedestal just inside the separatrix surface. Turbulence level within this high

confinement layer (H-mode layer) is reduced to an almost undetectable level. When this happens, the

transport level of the core plasma is improved simultaneously. Thus, the plasma temperature of the

central core is now allowed to rise regardless of the temperature in the open field line region. As a matter

of fact, H-mode plasma allows the central temperature to increase by as much as the incremental ampunt

of the edge pedestal temperature. This H-mode phenomenon occurs spontaneously by self-organization

of plasma in the whole torus, in response to sufficient heat input in the core. Possibility of successful

fusion reactor and ITER were escalated by this self-organization capability of toroidal plasma.

The central core temperature of ITER needs to be predicted for the efficient design of the device and

the systematic planning of the experiments. However, after a quarter century of endeavor, we still do not

have a community understanding of the spontaneous H-mode transition phenomenon in the edge and its

relation to the plasma transport in the core. To get to the bottom of the physics understanding with

predictive capability, a first principles kinetic simulation of the edge plasma has been requested to the

Center for Plasma Edge Simulation (CPES), a SciDac Fusion Simulation Prototype Center. The edge

simulation then needs to be coupled or extended to the core to understand the core temperature behavior

in relation to the edge plasma behavior. The key new capability here is the nonlocal self-organization of

the whole toroidal plasma. Once we obtain such a capability in the near future, the first principles

simulation tool can be used to optimize the fusion yield, engineering requirement, and economy of future

fusion reactors. Such a simulation capability can also help guide the development of the reduced-model

transport codes in the proper direction, which can be used for experimental timescale simulation.

29

3.3.2 Background and Motivation

A preferable simulation method for such a first principles code is the 5D full-function gyrokinetic

scheme without using the delta-f perturbation approximation. This method has been difficult to develop

due to the embedded multiscale interaction between the small-scale turbulence dynamics and the large-

scale background relaxation and evolution, and the necessity of high performance computing. The large-

scale equilibrium drives small-scale turbulence. In return, the small-scale turbulence evolves the large-

scale equilibrium, closing the loop. The experimentally observed plasma is the end result of such self-

organization. Reduced model codes, such as gyrofluid or fluid, are computationally less demanding but

lack the fundamental closure information required to describe such a multiscale self-organization. Delta-f

simulation is efficient when the background is assumed fixed without participating into the multiscale

self-organization dynamics and is virtually impossible in the open magnetic field line region in the edge.

With the availability of petascale computing, it is now possible to attack the most robust and baseline

ion-temperature-gradient turbulence together with the background neoclassical dynamics in the whole-

volume tokamak plasma in full-function gyrokinetic formalism. As the HPC capability grows, the

simulation can be extended to include many other relevant turbulence and heating physics calculation for

first principles prediction of ITER plasma performance.

3.3.3 Capability Overview

XGC1 is a new 5D gyrokinetic particle-in-cell (PIC) code designed to model the whole plasma

dynamics in experimentally realistic device geometry [14]. The main new features in XGC1 are the full-

function (full-f) description of the marker particles, as opposed to the previous perturbative delta-f

description; the inclusion of the magnetic separatrix, magnetic X-point and the conducting material wall;

and the particle/momentum/energy conserving Coulomb collisions. XGC1 allows the background profile

to evolve to a self-organized state. To model more realistic plasma, XGC1 uses a heat source in the core

plasma. The heat then flows to the material wall by a plasma transport process in the code. XGC1 is

presently used to study the electrostatic turbulence, transport, and background plasma profile with full-f

ions and adiabatic electrons. XGC1 will soon be upgraded to simulate electromagnetic turbulence.

XGC1, together with a simplified model version XGC0 [15], is the principal code for the existing

SciDAC CPES project. The main purpose of the XGC1 code development has been to understand and

predict the plasma transport and profile in the edge pedestal around the magnetic separatrix. Edge

pedestal formation is an essential required feature for the success of ITER.* The code also computes

scrape-off and wall loss physics. Due to the unknown nonlocal nature of the plasma turbulence and

transport, XGC1 runs preferably in the full-f mode on the whole-volume toroidal plasma, ranging from

the magnetic axis to the material wall. At the present time, there is no other code in the world fusion

community with this advanced capability.

Marker particles are initiated in the entire toroidal volume in accordance with the initial density and

temperature profiles. A random number generator has been used in the Maxwellian envelope. The

plasma density profile is adjusted by the marker particle weights, while the marker particle density is

spatially uniform. This technique improves the particle noise problem at the low plasma density region.

For PIC executions, fixed grid cells are predesigned for a fixed experimental magnetic equilibrium. Due

to the complexity of geometry in a diverted magnetic field, XGC1 uses an unstructured rectangular grid.

To take advantage of the highly elongated neoclassical and turbulent electric potential structures along the

magnetic field lines, the grid nodes follow the equilibrium magnetic field lines approximately.

* www.iter.org

file:///C:/Users/l6v/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/T0C9S50O/www.iter.org

30

Marker particles are time advanced according to the following Lagrangian equation of motion:

These equations of motion are solved using a 4th or 5th order Predictor-Corrector scheme in a weakly

collisional case, and a mixed 2nd–4th order Runge-Kutta scheme in a strongly collisional case. In the

Runge-Kutta scheme, the new turbulent field is solved in 2nd order and the particle position is solved in

4th order.

At each time advance step, charges are interpolated to the grid node points. The following

gyrokinetic Poisson equation is solved on the grid nodes.

The electric field information is interpolated back to the particle positions to execute another time

advance of the particles in accordance with the above Lagrangian equation of motion. The equilibrium

magnetic field data from the experimental g-eqdsk file is stored on a rectangular mesh. At each particle

position, the magnetic field is evaluated by spatial spline while conserving Div B = 0 [16]. In some

specified time intervals, a linear Monte Carlo collision operation routine is called to execute the Coulomb

collisions in the velocity space. After each collision process, total momentum and energy of the particles

are adjusted to ensure conservation within the colliding particles.

The gyrokinetic Poisson equation is solved by PETSc [17]. The conjugate gradient method is used

with various preconditioners available in PETSc, such as (1) an algebraic mutligrid preconditioner

(HYPRE) for the (elliptic) equilibrium solver and (2) a diagonal preconditioner for the (parabolic)

turbulence solve.Even though the solver is a global operation (hence there are limits to the amount of

parallelism available in the preconditioners), the amount of work by equation solver in XGC1 is fairly

small relatively. In a typical XGC1 run, about 10% of the time is spent in the solver, which includes

global reductions and scatters to assemble the charge vectors and to communicate the potential solution.

One alternative to consider in getting ready for the future extreme-scale parallel machines is to form an

explicit inverse of the matrix.

The ion density at the node point is determined by summation of particle weights located on the

triangles that contain the node point with linear interpolation. A triangle search operation is required to

determine the triangle that contains a given particle and the interpolation coefficient. At the initialization

phase, XGC1 prepares a table of rectangular grid which stores an index of every triangle overlapped. The

triangle search routine uses the particle coordinates to perform geometric hashing into the rectangular grid

to locate the target triangle. An optional preprocessing phase reorders the triangle and vertex labels using

a Hilbert space-filling curve to improve spatial locality and cache performance.

To properly manage the simulation data used for the Joule report, we are using the CPES EFFIS

framework (End-to-End Framework for Fusion Integrated Simulation). This framework consists of the

ADIOS componentized I/O system, the Kepler workflow for monitoring the simulation, and the eSimmon

dashboard system. Each piece of the software stack that we have used is highly flexible and allows us a

framework that makes running XGC1 simulations similar to the concept of running in an end-station.

Researchers from the MIT System Design and Management Program, CPES, Georgia Tech, and ORNL

 eii

Di

i nn
e

2

0

2

2

1

dtnni),(
2

1
ρR

 eee TenTenn /1/exp 00

31

carried out this work. Adaptable I/O System, or ADIOS, is a componentization of the I/O layer. It

provides an easy-to-use programming interface, which can be as simple as Fortran file I/O statements.

ADIOS has been shown to get over 50% of the maximal I/O performance on the Crays when run

properly. ADIOS will be tuned for XGC1 code to the optimal capacity for Q4 petascale computing. The

scientific and performance results will be analyzed using the CPES dashboard for efficient collaboration

among scientists, and with the applied mathematics and computer science collaborators.

3.3.4 Science Driver for Metric Problem

To meet the fusion energy yield goal of

Q = 10, the plasma fuel ions in the central

core of the ITER tokamak (Fig. 8) must

maintain a sufficiently high temperature

(15 keV). At the same time, plasma

temperature near the wall must remain

sufficiently cold (<<1 keV) to avoid

premature plasma damage to the material

wall. Since the global slope of the plasma

temperature is upper bounded by the turbulent

transport in a normal situation, the only way

to increase the core temperature to a burning

level seems to be by making the plasma size

large enough. However, this leads to

utilization of only a small fraction of plasma

volume for fusion and, thus, to an

uneconomical fusion device which cannot

meet the ITER goal. One way to remedy this

problem is to find or invent plasma facing material that can withstand plasma bombardment at

temperature much above 1 keV, which has not been a viable option to date.

Fortunately, experiments in the present-day tokamak devices consistently find that, with sufficient

core heating above a threshold power, plasma bifurcates into a state in which the edge temperature (and

density) abruptly rises from ~100 eV in the open magnetic field region in front of the material wall to ~

keV just inside the last closed magnetic surface (separatrix) region. Thus, in such a bifurcated state, the

core plasma temperature can rise on an ―edge pedestal‖ without the high temperature plasma contacting

the material wall. In this pedestal layer, which occurs just inside the magnetic separatrix, experiments

find that the turbulence level is dramatically lower than the ambient level and that a deep well structure

forms in the radial electric field profile. The density pedestal width is observed to be even narrower than

the ion temperature pedestal width. Mysteriously, the reduction in the turbulence amplitude and the

increase in the ion temperature in the core plasma appear to respond to the edge bifurcation in a much

faster timescale than the radial plasma energy transport timescale. The core ion temperature increases in

proportion to the edge pedestal temperature with its radial slope being ―stiff,‖ independent of the core

heating power and, thus, the edge pedestal temperature (Fig. 9). This type of operation mode is called

―H-mode,‖ meaning a high confinement mode. As observations from other areas of nonlinear science

have shown (e.g., oceanography, climate, economy, sociology, planetary science), the experiments

indicate that there is a strong nonlocal component in the tokamak plasma turbulence dynamics.

Fig. 8. Schematic of the ITER tokamak, where the

first wall of the innermost structure of the device is

shown, with the divertor chamber at the bottom. For more

information, see www.iter.org.

32

Fig. 9. (left) Nonlocal nature of the ion temperature (Ti) profile. As the edge Ti

increases, the core Ti increases together in a stiff shape. (right) The cross section of

DIII-D magnetic surface inside the first wall. Open and closed magnetic surfaces are

shown, with the magnetic separatrix surface in between. For more information on the

DIII-D device see http://web.gat.com/global/DIII-D.

ITER’s performance goal to achieve the fusion yield ratio Q = 10 is based upon the assumption that a

good H-mode operation is to be sustained. However, the reasons why the edge pedestal forms in such a

shape, why a strong core heating is necessary, why there is an instantaneous central Ti and turbulence

improvement after the H-mode bifurcation, why the radial Ti profile is stiff, etc. are yet unknown after

over 25 years of H-mode research. Due to the nonlocal, nonlinear, and multiscale nature of the H-mode

physics, a large-scale first-principles gyrokinetic simulation of the turbulence and background plasma

dynamics in the whole device volume has been a necessary component of the H-mode research.

However, such HPC power has not been available so far and is just beginning to be realized in the United

States. With the aggressive planning of HPC development in the United States, Japan, and possibly

elsewhere, the future of the large-scale H-mode simulation looks brighter.

The whole-volume gyrokinetic simulation must be performed using the full distribution function

(full-f) method, before simplifying it to the popular perturbed distribution function method (delta-f). It

needs to be done in a realistic tokamak geometry since the geometry effect appears to be important in the

experiments, including the open and closed magnetic field regions with the magnetic separatrix surface in

between. It must deal with the heat source in the core and the particle loss to the material wall.

We hope that the Joule metric exercise performed here not only improves our numerical code

capability to scale but also sheds light on the H-mode physics at the first principles level so that it can

help predict the performance of ITER and DEMO reactors.

The science metric of this simulation exercise is to use the full-f gyrokinetic code XGC1 on the

almost full capacity Jaguar/XT5 to study the most robust and large physical scale turbulence, which is

driven by the free energy in the ion temperature gradient (ITG), self-consistently with the neoclassical

equilibrium dynamics in a realistic DIII-D tokamak geometry (Fig. 9(right)). This simulation represents

the first attempt in fusion research to study the nonlocal H-mode coupling physics between the edge and

core turbulences in a realistic tokamak geometry. Smaller physical scale turbulences will be added later

as HPC capability grows in the near future.

The goal is to obtain the physics results in 24 hours or less of Jaguarpf wall-clock time. The Q2

version was not optimized to scale well on much more than 30,000 Jaguarpf XT5 cores. We thus used

33

29,952 XT5 cores (which is 1/5 of the Jaguar capacity). The Q2 XGC1 could take 4,000 time steps in

24 hours. The science we observed in Q2 is the development of the global full-f ITG turbulence to the

nonlinear stage in the whole volume of realistic DIII-D geometry. From the Q2 simulation, we only

observe turbulence intensity propagation from edge to core, which is a sure sign of nonlocal interaction

between edge and core. Initial turbulence intensity is strong and bursty. Interaction of turbulence

intensity bursts with the local EB shearing rate and temperature gradient is clearly demonstrated. The

number of cores is insufficient to reach the quasi-steady self-organized state, which is more relevant to

the experimental observations. In Q4, we used the improved XGC1 to scale up to the maximal number of

XT5 cores and ran the same simulation on 4 × 29,952 = 119,808 cores, which is about 4/5 of the maximal

available Jaguarpf capacity. In 16,000 time steps (which took about 20 wall-clock hours), the peta-scale

Q4 simulation reached a quasi-steady self-organized state, after a long bursty nonlinear turbulent transport

stage. The Q4 simulation results shed light on the key unexplained experimental H-mode phenomena,

including the reasons why strong core heating is necessary, why there is an instantaneous central Ti and

turbulence improvement with the H-mode bifurcation, and why the radial Ti profile is stiff. The Joule

metric provided a significant scientific advance in XGC1.

3.3.5 Q2 Baseline Problem Results

The metric baseline here is the particle processing counts per second. We choose an actual

experimental device for the Q2 benchmark exercise so as to contribute to the progress of a real scientific

program. The experimental device size and the physics grid size (= ion gyro radius i) determine the total

marker particle number used in the simulation. Marker particle number per grid node is set by particle

noise level in the physical observables. For the strong scaling metric between Q2 and Q4, we chose an

ITG turbulence transport study within a day of wall-clock time in the whole-volume DIII-D tokamak at

General Atomics, in realistic physical size and diverted geometry including material wall. The total

number of marker particles thus determined for this problem size is 13.5 billion.

Figure 10 shows our model for the initial plasma density and ion temperature profiles, with the

electron temperature assumed to be equal to the ion temperature. Notice here that the ion temperature

pedestal knee is located at a somewhat smaller minor radius than the density pedestal knee, making the

relative temperature slope high between the two knees. We assume that this is a common feature in

H-mode operation. To date, all the machines, which have adequate ion temperature profile diagnostics in

H-mode, reported this feature. Figure 11 shows the relative ion temperature gradient i R0/LT = R0|∂ log

Ti/∂r|, where R0 is the major radius of the torus. Shown together in the plot is the nonlinear stability

criterion of ITG mode evaluated in the core plasma [18]. It can be seen that the plasma is supposed to be

stable to ITG turbulence at N 0.5 if the turbulence is a local phenomenon. As can be seen from the

relation between the real minor radius in meters and N in Fig. 12(left), N 0.5 constitutes a significant

portion of the core plasma since the half minor radius corresponds to about 0.37N. The temperature

pedestal top is at about 0.8N, and the density pedestal top is at about 0.85N. The right-hand side of

Fig. 12 shows the radial profile of the magnetic safety factor q, which represents the toroidal windings of

the equilibrium magnetic field relative to a poloidal winding. It is shown here because q is an important

indicator of plasma stability. These model initial profiles are common to Q2 and Q4 benchmark runs.

A total of 4.5 MW of heat is added to the ions around the magnetic axis (N 0.04 0–10 cm) to

force a heat flux into the turbulence region. The heating is achieved by raising the particle energy

uniformly in the heating region by a small fraction of kinetic energy while keeping the pitch angle

invariant.

34

Fig. 10. Early-time plasma density and temperature profiles. Electron temperature is assumed to be

equal to ion temperature. Notice that the temperature pedestal knee is located at a somewhat smaller minor

radius than the density pedestal knee, making the relative temperature slope high between the two knees.

Fig. 11. Initial profile of R0/LT = R0|∂ log Ti/∂r|. The horizontal dashed line is the nonlinear stability

criterion of a core plasma.

Fig. 12. (a) Relationship between the normalized poloidal flux ψN and real distance in meters

from the magnetic axis (Raxis = Ro) to the flux surface (R) along the midplane. (b) Radial profile of

the safety factor q.

35

The Q2 baseline benchmark was run on 29,952 XT5 cores on Jaguarpf, which is about 1/5 of the

maximal available Jaguarpf configuration at the present time. Much above this number of cores, the

XGC1 version at the time of Q2 execution

does not scale well. Eight MPI processes

were used per node. The Q2 run was

performed in two parts. An initial run was

made for 2,000 time steps without saving

the performance data to separate out the

initialization cost. The simulation was

then continued using a checkpoint file for

another 2,000 time steps, and the

performance data was recorded. The

second run gets into the nonlinear

turbulence stage in the DIII-D benchmark

plasma. The total wall-clock time spent was about 24 hours. Table 15 shows operation counts during the

second run from the hardware performance counters, obtained using the PAPI performance data

collection interface.

Figure 13 shows the nonlinear turbulent eddies of the electrostatic potential over the whole poloidal

cross section. The image at left is at an earlier time, showing turbulence generation in the edge. The

image at right is at the end of the Q2 run, showing that the edge turbulence has propagated to core. At the

central core, the heat-source enhanced ITG turbulence can be seen, while the rest of the plasma is

occupied with turbulent activities propagated from the edge. Stronger turbulence eddies are observed at

the weaker magnetic field side due to the toroidal ballooning effect. Figure 14 shows the inward

propagation of turbulence intensity in the initial nonlinear period Q2 simulation. We note again here that

the nonlinear turbulence and plasma in Q2 are not in a quasi-steady state yet. Our Q4 goal was to obtain

the quasi-steady self-organized nonlinear stage in 4 times more time steps as in Q2 by increasing the

number of processor cores by factor of 4.

Fig. 13. Turbulent eddies on the whole poloidal cross-sectional plane at (left) an

earlier time and (right) a later time. The nonliear turbulence and the plasma are not in a

quasi-steady state, yet.

Table 15. XGC1 performance data collected on the Q2

benchmark with PAPI hardware counters

Number of processing elements 29,952

Cycles per second per processor 2,255.35 × 10
6

Instructions executed per second per processor 2,293.69 × 10
6

Instructions per cycle 1.02

Floating point operations executed per second

 per processor

222.65 × 10
6

Particles pushed per second 0.628 × 10
9

36

Fig. 14. Inward propagation of the square root of

turbulence intensity Sqrt(I) during the bursty nonlinear

period, where I = < (δφ)2 >. Each plot is drawn in

0.08 millisecond interval, and the total propagation time is

only 0.4 millisecond.

The simulation result is rejected when the particle noise dominates the simulation, which can be

detected by comparing the effective turbulent ion thermal conductivity with a noise-driven thermal

conductivity level (0.05 m
2
/s). We have also investigated the convergence of the solution in particle

numbers. The simulation is also rejected when a numerical oscillation dominates the turbulent

fluctuation. We have observed that this could happen if the ion temperature in the open magnetic field

region (scrape-off plasma) is much higher than that observed experimentally.

3.3.6 Computational Performance Gains

There is sufficient work in processing the particles in this experiment to use hundreds of thousands of

processors, even when holding the problem size fixed while increasing the number of processors (strong

scaling). The primary inhibitor to scaling is the MPI communication overhead arising in the solution of

the Poisson problem and in the reassignment of particles to processes as the result of the time advance.

Studies in the fall of 2008 indicated that OpenMP parallelization might improve the scalability by

allowing us to decrease the number of MPI processes used for a fixed number of processors, thereby

decreasing some of the MPI communication overhead. In particular, on the Cray XT5, up to four

OpenMP threads could be used efficiently to parallelize the processing of the particles. Using more than

four is not useful currently due to the nonuniform memory access characteristics in the XT5 compute

node. Beginning in 2009, OpenMP parallelism was implemented in XGC1, allowing the use of 1/4 as

many MPI processes as would otherwise be required in the Q4 simulations. This not only contributed to

achieving the Joule performance metric but is also a critical capability for scaling to even larger processor

counts.

The other major performance enhancement that occurred between the Q2 and Q4 experiments was the

optimization of the interpolation scheme used in the evaluation of the magnetic field (and elsewhere). By

precomputing many of the spline coefficients and by taking advantage of common partial results in the

computation of derivatives, the number of required floating operations is decreased, resulting in

significant reductions in run time. As described in the next section, this has the seemingly anomalous

effect of decreasing the achieved computation rate, but it decreased the amount of computation even

more, improving throughput by approximately 30% in addition to the improvement achieved through

OpenMP parallelism.

37

There are also other improvements made in XGC1, which include higher parallelization of particle

operations, increased cache efficiency, and I/O speed improvement in ADIOS.

3.3.7 Q4 Metric Problem Results

In Q4 the number of XT5 processor cores was increased by 4 times to 119,808, which is about 4/5 of

the maximal allowed number of cores in Jaguarpf. The total number of time steps was also increased to

4 times longer (16,000 steps), in proportion to the number of processors. As in Q2, the Q4 runs were

performed in two consecutive runs using restart file, and the performance data were obtained during the

second run to avoid the initialization counts.

Two performance enhancements described in the previous section (OpenMP parallelism and

interpolation scheme optimization) enabled the performance to improve by a factor of 4.6 between the Q2

and Q4 experiments, reducing the execution time per model time step from 21.6 seconds to 4.7 seconds.

The Q4 experiment used 4 times as many processors, so this reflects superlinear speedup compared to the

Q2 experiment. To reiterate, the OpenMP parallelism enhanced the ability to use efficiently 4 times as

many processors, while the interpolation scheme optimization decreased the amount of work required in

the Q4 experiment. It is this latter performance enhancement that led to the more than ideal linear speedup

for this fixed-size problem. Due to the superlinear speedup, the total wall-clock time has decreased from

24 hours to about 21 hours.

Table 16 shows Q4 operation counts during the second run from the hardware performance counters,

obtained using the PAPI performance data collection interface. Q2 operation counts are shown together

for a direct comparison.

Table 16. XGC1 performance data collected on the Q4 benchmark

with PAPI hardware counters

 Q2 Q4

Number of processing elements 29,952 119,808

Cycles per second per processor 2,255.35 × 10
6
 1,622.65 × 10

6

Instructions executed per second per processor 2,293.69 × 10
6
 1,399.46 × 10

6

Instructions per cycle 1.02 0.86

Floating point operations executed per second

 per processor

222.65 × 10
6
 151.23 × 10

6

Particles pushed per second 0.628 × 10
9
 2.87 × 10

9

Increasing the number of processor cores by 4 times to 119,808 enabled the improved XGC1 to

execute the simulation to 4 times longer physical time steps within a day from the 29,952 core Q2

simulation. As a result, while the Q2 simulation went only into the initial bursty nonlinear turbulence

phase, the Q4 simulation was carried to the self-organized quasi-steady phase where the real experimental

plasmas stay. Valuable information on the overall picture of the nonlocal turbulence propagation and the

settling down of the turbulence and the plasma profile to the quasi-steady SOC state was thus obtained.

38

Figure 15 is an enlarged image

of the turbulence intensity <||
2
>

contour in the radius-time space in

the pedestal area. It can be clearly

seen that the turbulence starts around

the temperature pedestal knee (N

0.83) and propagates inward

(outward propagation is much

weaker). A localized simulation in

the small radial domain can distort

the propagating turbulence dynamics

due to the artificial inner boundary

condition. A global simulation is

needed to study the nonlocal

turbulence dynamics. Figure 16 is

the result of the localized simulation

with a simulation boundary at

r = 0.5 m and indeed shows a highly

different result from the global

simulation result of Fig. 15. A minor

radius of 0.52 m in Fig. 16

corresponds to about N = 0.89 in

Fig. 15.

Fig. 15. An enlarged image of the turbulence intensity < |δφ|
2
>

contour in the radius-time space in the pedestal area.

Fig. 16. The same simulation as in Fig. 15 in the localized

radial domain, with the usual particle simulation boundary at

r = 0.5.

39

Figure 17 is the heat flux contour in the

global space-time space, which indeed shows

that the out-to-in propagation of the

turbulence front is all the way to the plasma

core. As the turbulence front arrives (solid

arrow), heat bursts appear radially outward

(dotted arrows). The inward propagation

stops when the edge-originated turbulence

meets the strongly sheared central turbulence

at t 150 R/vi (0.6 millisecond). In the

pedestal region, both the turbulence intensity

and the heat flux remain small, which is

characteristic of H-mode plasma. Turbulence

in the edge pedestal may be better described

by electromagnetic effect. However, the

weak turbulence intensity and heat flux of the

electrostatic ITG turbulence in the pedestal

area suffice the present purpose of

investigating the nonlocal edge-core relation.

Another remarkable observation made

from the simulation is the self-organizing

modification of the background temperature

profile by the incoming turbulence, as can be

seen in Fig. 18. Before the arrival of the

edge originated turbulence, the ion

temperature gradient was below the nonlinear

ITG criticality (dotted horizontal line) [18].

However, arrival of the edge-generated

turbulence raises the local temperature

gradient above the nonlinear criticality. The

ion thermal conductivity is then self-

regulated to a new criticality by the self-

generated EB shearing. In other words, the

turbulence criticality is nonlocally self-

organized by the edge turbulence source.

This state is maintained by the out-flowing

heat flux. Combination of the low heat

thermal conductivity near the magnetic

separatrix surface and the large heat flux

from the core keeps the i value at the Ti knee well above the nonlinear criticality, continuously supplying

the ITG turbulence energy to maintain the new self-organized criticality. Without the strong heat flux

from the core, the i value at the Ti knee would collapse and the driver for the new SOC state would be

lost. In other words, the heat flux from the core is a ―fuel‖ to the edge turbulence energy source. The

present simulation reveals that this is how the global ITG turbulence maintains an H-mode profile, if ITG

is the strongest global turbulence transport mechanism. We have examined a few different heating power

levels and have found that the i profile shown here is ―stiff‖ with respect to the change of heating power,

which is consistent with the experimental findings.

Fig. 17. Heat flux contour in the global space-time

space, exhibiting the out-to-in propagation of the

turbulence front.

Fig. 18. Self-organizing modification of the

background temperature profile by the incoming

turbulence. The horizontal line represents the

nonlinear criticality in the core plasma.

40

Figure 19 is the time behavior of

effective ion thermal conductivity (thermal

flux divided by local Ti gradient) from the

start of the simulation across N = 0.64,

which corresponds to r = 42 cm on the

outside midplane. The short initial jittering

of high frequency is the large amplitude

GAM oscillations during the self-

organization of the toroidal plasma in the

initial local Maxwellian loading and is

subdued at about 30 ~ vi/R. At about 60 vi/R,

ITG modes start to grow. It is well known

that unless the jittering from the initial GAM

activities is subdued, ITG turbulence does not

grow in a full-f simulation [19]. The total

simulation time is about twice the ion 90
o

collision time. The Q2 run corresponds to

1/4 of the time length.

In Fig. 19, after the arrival of the

turbulence front at the radial location, there is

a distinctive bursty type of heat flux behavior

in the initial stage of nonlinear turbulent

transport until about t = 240 R/vi. This

behavior corresponds to the heat bursts in

Fig. 17. The inter-burst period is much

greater than the initial GAM period. The

radial speed of the ballistic motion of heat

burst is about Vr (1/5) i vi/R (1/30) i

vi/LT, which is similar to the analytic

intensity burst estimates reported in refs. [20]

through [22].

Figure 20 shows interplay between the

temperature gradient, heat flux, and the EB

shearing dynamics during the bursty heat flux

at a radial location r = 42 cm. Arrival of the

turbulence front is first noticed by the

steepening of local temperature gradient and

increase in heat flux (turbulence intensity), followed by time delayed increase in the local EB shearing

rate. Increase of the local EB shearing rate then suppresses turbulence until the turbulence-driven

sheared flow is reduced. The burst cycle continues until a steady turbulence is reached at the end, where

the turbulence shows a 1/f avalanche type of power law. This is a textbook demonstration on the

interplay between EB shearing, turbulence intensity, and local temperature gradient, which is possible

only in a full-f simulation.

Fig. 19. Time behavior of effective ion thermal

conductivity (thermal flux divided by local Ti gradient)

from the start of the simulation across ψN = 0.64, which

corresponds to r = 42 cm on the outside midplane. The

self-organizing process is bursty.

Fig. 20. Phase relation between the temperature

gradient, heat flux, and EB shearing dynamics at a

radial location.

41

Energy conservation has been investigated

within the volume 0.3 N 0.7. Between the

total energy flowing into the volume across

the inner surface N = 0.3, the sum of the

particle energy change, the field energy

created, and the out-flowing energy across the

outer surface N = 0.7 shows about 2% error

in the total energy conservation (Fig. 21). The

energy conservation error in a full-f code does

not grow unless numerical errors grow.

3.3.8 Interpretation of Results

A fusion experiment measures its

performance in quasi-steady-state operation.

Study of the transient behavior is important

for physics understanding. However, a

simulation will have to reach a quasi-steady

state for an eventual understanding and

prediction of the experimental performance.

The goal of this metric is designed to obtain

the initial transient nonlinear turbulence

behavior in the realistic whole-volume DIII-D geometry in Q2, and to achieve the quasi-steady self-

organized turbulent state in Q4 within a day of wall-clock time. The original XGC1 did not scale too well

much above 30,000 processor cores. We thus chose 29,952 Jaguar/XT5 cores for the Q2 metric base.

The improved XGC1 (OpenMP parallelism and interpolation scheme optimization) scales super-linearly

to the Q4 metric base of 199,808 cores, which is 4 times the Q2 number of cores, and enabled the

performance of XGC1 to improve by a factor of 4.5 between the Q2 and Q4 experiments, reducing the

execution time per model time step from 21 seconds to 4.7 seconds.

Improvement of the physics capability as a result of the above Joule metric exercise is significant. In

Q2 the propagation of the nonlinear edge turbulence into the core was observed within a day of wall-

clock time, which provides an exciting evidence for nonlocal edge effect on the core turbulence and

confinement in realistic DIII-D geometry. However, in order to produce an experimentally relevant

result, the nonlinear simulation has to be carried through the quasi-steady self-organized stage, while

keeping the multiscale dynamics self-consistently. The improved XGC1 performance in Q4 is good

enough to reach to the quasi-steady self-organized stage within a day of wall-clock time. As a result,

many new physics results have been obtained to shed light on the over 25 year old H-mode plasma

physics mysteries, which ITER is heavily relying upon for its success.

As the computing power increases, we will be able to include more physics into XGC1 code, en route

to the whole-physics modeling in first principles.

OpenMP parallelism was implemented in XGC1, allowing the use of 1/4 as many MPI processes as

would otherwise be required in the Q4 simulations. This not only contributed to achieving the Joule

performance metric but is also a critical capability for scaling to even larger processor counts.

The other major performance enhancement that occurred between the Q2 and Q4 experiments was the

optimization of the interpolation scheme used in the evaluation of the magnetic field (and elsewhere). By

precomputing many of the spline coefficients and by taking advantage of common partial results in the

computation of derivatives, the number of required floating operations is decreased, resulting in

significant reductions in run time. This has the seemingly anomalous effect of decreasing the achieved

computation rate, but it decreased the amount of computation even more, improving throughput by

approximately 30% in addition to the improvement achieved through OpenMP parallelism.

Fig. 21. Energy accounting within 0.3 ≤ ψN ≤ 0.7

between the total influx across the inner boundary

(black curve) and the sum of the consumed energy (blue

curve) to the particles, the electric field, and across the

outer boundary. Red line shows sum of black and blue

curves. About 2% error is noticed.

42

Other improvements have also contributed, to lesser degrees, to Q4 enhancements of the

performance, which include higher parallelization of particle operations, increased cache efficiency, and

I/O speed improvement in ADIOS.

3.3.9 Summary and Conclusions

A fusion experiment measures its performance in quasi-steady state operation. Study of the transient

behavior is important for physics understanding. However, a simulation will have to reach a quasi-steady

state for an eventual understanding and prediction of the experimental performance. The goal of this

metric is designed to obtain the initial transient nonlinear turbulence behavior in the realistic whole-

volume DIII-D geometry in Q2, and to achieve the quasi-steady self-organized turbulent state in Q4

within a day of wall-clock time. The original XGC1 did not scale too well much above 30,000 processor

cores. We thus chose 29,952 Jaguar/XT5 cores for the Q2 metric base. The improved XGC1 (OpenMP

parallelism and interpolation scheme optimization) scales super-linearly to the Q4 metric base of 199,808

cores, which is 4 times the Q2 number of cores, and enabled the performance of XGC1 to improve by a

factor of 4.5 between the Q2 and Q4 experiments, reducing the execution time per model time step from

21 seconds to 4.7 seconds.

Improvement of the physics capability as a result of the above Joule metric exercise is significant. In

Q2 the propagation of the nonlinear edge turbulence into the core was observed within a day of wall-

clock time, which provides an exciting evidence for nonlocal edge effect on the core turbulence and

confinement in realistic DIII-D geometry. However, in order to produce an experimentally relevant

result, the nonlinear simulation has to be carried through the quasi-steady self-organized stage, while

keeping the multiscale dynamics self-consistently. The improved XGC1 performance in Q4 was good

enough to reach to the quasi-steady self-organized stage within a day of wall-clock time. As a result,

many new physics results have been obtained to shed light on the over 25 year old H-mode plasma

physics mysteries, which ITER is heavily relying upon for its success.

As the computing power increases, we will be able to include more physics into XGC1 code, en route

to the whole-physics modeling in first principles.

43

3.4 RAPTOR

3.4.1 Introduction

Turbulent combustion processes are prevalent in a wide variety of propulsion and power systems,

including internal combustion engines, gas turbines, and liquid rockets. As such, development and

rigorous validation of science-based predictive models for turbulent combustion have long been

recognized as important priorities in research, and there are a variety of challenges. Turbulent flows

involving heterogeneous chemically reacting and/or multiphase mixtures (as is the case for all propulsion

and power systems) have a variety of complicating factors, including highly nonlinear chemical kinetics,

small-scale velocity and scalar mixing, turbulence–chemistry interactions, compressibility effects

(volumetric changes induced by changes in pressure), and variable inertia effects (volumetric changes

induced by variable composition or heat addition). Coupling between processes occurs over a wide range

of time and length scales, many being smaller than can be resolved in a numerically feasible manner.

Further complications arise when multiple phases are present due to the introduction of dynamically

evolving interface boundaries and the complex exchange processes that occur as a consequence. At the

device level, high performance, dynamic stability, low pollutant emissions, and low soot formation must

be achieved simultaneously in highly confined geometries that generate extremely complex flow and

acoustic patterns. Flow and combustion processes are highly turbulent (i.e., integral-scale Reynolds

numbers of O(10
5
) or greater), and geometry or various operating transients inherently dominate the

turbulence dynamics. In many cases operating pressures approach or exceed the thermodynamic critical

pressure of the fuel or oxidizer. Operation at elevated pressures significantly increases the system

Reynolds number(s) and inherently broaden the range of spatial and temporal turbulence scales over

which interactions occur.

No one experimental or numerical technique is capable of providing a complete description of the

processes described above. The highest quality experimental diagnostics provide only partial information

from highly idealized flows relative to a given application. Modeling and simulation of these processes

has historically been limited by computational power. Even with peta-scale computing (and beyond),

Direct Numerical Simulation (DNS) of the fully coupled equations of fluid motion, transport, and

chemical reaction can only be applied over a limited range of turbulence scales, in the high wave number,

low Reynolds number, diffusive regime of turbulence. Thus, simulating these phenomena almost always

begins with some form of formal filtering of the governing conservation equations. The Reynolds-

Averaged Navier-Stokes (RANS) approximation, for example, employs filtering in time to derive the

governing conservation equations for the mean state. For this approach all dynamic degrees of freedom

smaller than the largest energy-containing eddies in a flow are averaged, and no information exists to

describe interactions between the small scales. The Large Eddy Simulation (LES) technique, on the other

hand, has historically employed spatial filtering to split the field variables into time-dependent resolved-

scale and subgrid-scale (SGS) components. For this approach the large energetic scales are resolved and

SGS quantities are modeled to provide a complete, time-accurate representation of dynamic processes

over the full range of multidimensional scales in a turbulent reacting flow. RAPTOR is a massively

parallel flow solver that has been optimized for application of LES to turbulent, chemically reacting

and/or multiphase flows in complex geometries, with emphasis placed on propulsion and power systems.

3.4.2 Background and Motivation

The limitations and challenges associated with turbulent combustion research require that a hierarchy

of approaches be taken to fully understand key processes and work toward predictive models. The

primary challenge is to bridge the gap between basic research and the conditions of interest in typical

applications. As part of the Reacting Flow Research and Advanced Engine Combustion programs at

Sandia National Laboratories’ Combustion Research Facility (CRF), two complementary projects have

been established to achieve this goal. The first is funded under the DOE SC Basic Energy Sciences (BES)

program and focuses on the LES of turbulence–chemistry interactions in reacting multiphase flows. The

44

second is funded under the DOE Office of Energy Efficiency and Renewable Energy (EERE), Office of

Vehicle Technologies (OVT) program and focuses on the application of LES to combustion research on

high-pressure, low-temperature internal combustion engines. Figure 22 shows the key experiments

currently being studied under these two projects using RAPTOR. A subset of experiments associated with

the Reacting Flow Research Program is shown on the left. A subset of experiments associated with the

Advanced Engine Combustion Program is shown on the right. Objectives and milestones for both projects

are aimed at establishing high-fidelity computational benchmarks that identically match the geometry and

operating conditions of key target experiments using a single unified theoretical-numerical framework

(i.e., RAPTOR). The projects are complementary in that the DOE SC BES activity provides the basic

science foundation for detailed model development and that the EERE-OVT activity provides the applied

component for advanced engine research.

Fig. 22. Key experiments currently being studied using RAPTOR. (left) A subset of

experiments associated with the Reacting Flow Research program (a,b: simple jet flames; c,d:

piloted jet flames; e: bluff-body; f: bluff-body with swirl). (right) A subset of experiments

associated with the Advanced Engine Combustion program (g: Constant-Volume Diesel

combustion facility; h: typical single-cylinder optically accessible internal combustion engine).

Flames studied under Reacting Flow Research (see a–f in Fig. 22, for example) are internationally

recognized benchmarks that provide some of the most detailed experimental data available for model

validation. Using these data, significant collaborations with key modeling groups worldwide have been

established as part of the International Workshop on Measurement and Computation of Turbulent

Nonpremixed Flames (see Barlow et al. [23] for details). The TNF Workshop is an ongoing collaboration

among experimental and computational researchers. A central theme of the series has been to use detailed

comparisons of results from experiments and multiple modeling approaches to quantify state-of-the-art

modeling capabilities and identify future research needs toward a predictive capability. As part of this

activity, RAPTOR has been used to provide benchmark simulations that reach beyond the capabilities and

resources of most universities and industry in a manner consistent with a national laboratory’s role of

using high-performance computing. We have two primary objectives. The first is to establish a set of

high-fidelity computational benchmarks that identically match the geometry and operating conditions of

selected experimental target flames. The second is to establish a scientific foundation for advanced model

45

development. The benchmark simulations provide a direct one-to-one correspondence between measured

and modeled results at conditions unattainable using DNS by performing simulations that represent the

fully coupled dynamic behavior of a reacting flow with detailed chemistry and realistic levels of

turbulence. After achieving an adequate level of validation, results from these simulations provide

fundamental information not measurable directly that is imperative for model development and provides a

strong link between theory, canonical studies, experiments, and critical applications.

In contrast to the turbulent nonpremixed flames (TNFs), research activities related to Advanced

Engine Combustion are focused on internal combustion engines. Needs and milestones related to

RAPTOR have been established in three critical areas: (1) perform a progression of LES studies focused

on the CRF optically accessible hydrogen-fueled internal combustion engine (see h in Fig. 22),

(2) establish a parallel task focused on homogeneous charge compression ignition (HCCI) engines, and

(3) perform a series of supporting studies focused on the development and validation of multiphase

injection and combustion models with emphasis placed on direct-injection processes in IC-engines (see g

in Fig. 22). The integrated set of research includes an optimal combination of in-cylinder and canonical

(out-of-engine) studies to validate and understand key phenomenological processes that are present in

internal combustion engine flow environments. These milestones are being facilitated in collaboration

with ORNL as part of the 2009 INCITE project entitled ―High-Fidelity Simulations for Clean and

Efficient Combustion for Alternative Fuels.‖ RAPTOR is being used to provide benchmark simulations in

a manner identical to that described above for the TNFs. However, there are two key distinctions that

must be made. Compared to the TNFs, the phenomenological and geometric complexities of device scale

systems (such as internal combustion engines) reduce the level and fidelity of the experimental diagnostic

techniques that can be applied. They also preclude the use of canonical DNS studies since appropriate

initial and boundary conditions for such studies are largely unknown and unverified. Operating pressures

are much greater, system Reynolds numbers are orders of magnitude higher, the flow fields associated

with these devices are extremely complex, and a much broader range of dynamically evolving time and

length scales need to be considered. To maximize the benefits of our fundamental and research efforts

under these types of conditions, there is a clear need to understand what changes phenomenologically in

various systems when one scales from laboratory conditions at atmospheric pressure (or equivalently

lower Reynolds numbers) to application-relevant conditions at high pressures and Reynolds numbers.

Given the importance of Reynolds number scaling and its relation to combustion modeling and the

INCITE calculations, our focal point for the Joule metric using RAPTOR will be the flames studied under

the Reacting Flow Research program. A related set of experiments focused on passive scalar mixing will

also be considered. Figure 23 shows a photograph of the baseline flame (known as DLR-A) along with an

instantaneous image from LES. This flame corresponds to that shown in Fig. 22(left, b). The photograph

was taken in the Turbulent Combustion Laboratory at the CRF. The corresponding LES was performed

using RAPTOR. In general, the integral-scale Reynolds numbers for the TNFs (which correspond to the

jet Reynolds number here) are of O(10
4
), whereas those associated with internal combustion engines and

related injection processes are of O(10
5
) or greater. The jet Reynolds number for this case is 15,200.

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related

scalar-mixing processes requires significant increases in CPU resources and is directly aligned with the

need for weak scaling. Here, we will simultaneously study the related issues of Reynolds number scaling

and resolution requirements for LES by successively increasing the problem size. A range of jet Reynolds

numbers, starting from 15,200, will be considered. We will perform a series of weak scaling studies to

demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Initial

benchmark runs will be performed using 47,616 cores. Subsequent runs will be performed by

systematically increasing the total CPU time required (i.e., total number of floating point operations per

case) by factors of 2 as a function of increasing jet Reynolds number. The Joule metric will be

accomplished by demonstrating we can simulate successively larger problems in the same amount of

time.

46

Fig. 23. Photograph and corresponding LES of the DLR-A flame (corresponds to b in Fig. 22).

3.4.3 Capability Overview

Physical Model. RAPTOR is a massively parallel flow solver designed specifically for application of

the LES technique to turbulent, chemically reacting, multiphase flows. It solves the fully coupled

conservation equations of mass, momentum, total energy, and species for a chemically reacting flow

system (gas or liquid) in complex geometries. It also accounts for detailed chemistry, thermodynamics,

and transport processes at the molecular level and uses detailed chemical mechanisms. The code is

sophisticated in its ability to handle complex geometries and a generalized subgrid-scale model

framework. It is capable of treating spray combustion processes and multiphase flows using a

Lagrangian-Eulerian formulation. The numerical formulation treats the compressible form of the

conservation equations but can be evaluated in the incompressible limit. The theoretical framework

handles both multicomponent and mixture-averaged systems. The baseline formulation also employs a

general treatment of the equation of state, thermodynamics, and transport properties that accommodates

real gas or liquids with detailed chemistry (i.e., not constrained to ideal gas applications). Details are

given by Oefelein [24].

Numerical Method. The temporal integration scheme employs an all Mach number formulation

using the dual time stepping technique with generalized preconditioning. The approach is fourth-order

accurate in time and provides a fully implicit solution using a fully explicit (highly scalable) multistage

scheme in ―pseudo time.‖ Preconditioning is applied in the inner pseudo time loop and coupled to local

time-stepping techniques to minimize convective, diffusive, geometric, and source term anomalies (i.e.,

stiffness) in an optimal manner. This maximizes convergence rates as the system is advanced in time. The

formulation is A-stable, which allows one to set the physical time step based solely on accuracy

considerations. This attribute typically provides a 2 to 3 order-of-magnitude increase in the allowable

integration time step compared to compressible flow solvers in the incompressible, low Mach number

limit.

The spatial scheme is designed using nondissipative, discretely conservative, staggered, finite volume

differencing stencils. The discretization is formulated in generalized curvilinear (i.e., body-fitted)

47

coordinates and employs a general R-refinement adaptive mesh (AMR) capability. This allows us to

account for the inherent effects of geometry on turbulence over the full range of relevant scales while

significantly reducing the total number of grid cells required in the computational domain. Treating the

full range of scales is a critical requirement since turbulence–chemistry interactions are inherently

coupled through a cascade of nonlinear interactions between the largest and smallest scales of the flow.

The differencing methodology has been specifically designed for LES. In particular, the second-order

accurate staggered grid formulation, where we store scalar values at cell centers and velocity components

at respective cell faces, fulfills two key accuracy requirements. First, it is spatially nondissipative, which

eliminates numerical contamination of the subgrid-scale models due to artificial dissipation. Second, the

stencils provide discrete conservation of mass, momentum, total energy, and species, which is an

imperative requirement for LES. This eliminates the artificial buildup of velocity and scalar energy at the

high wave numbers, which causes both accuracy problems and numerical instabilities in turbulent flow

calculations. The algorithm includes appropriate switches to handle shocks, detonations, flame fronts, and

contact discontinuities. It has also been designed using a generalized treatment for boundary conditions

based on the method of characteristics.

Software Implementation. The RAPTOR code framework is massively parallel and has been

optimized to provide excellent parallel scalability attributes using a distributed multiblock domain

decomposition with a generalized connectivity scheme. Distributed memory message passing is

performed using MPI and the Single Program–Multiple Data (SPMD) model. It accommodates complex

geometric features and time varying meshes with generalized hexahedral cells while maintaining the high

accuracy attributes of structured spatial stencils. The numerical framework has been ported to all major

platforms and provides highly efficient coarse- and fine-grain (i.e., weak and strong) scalability attributes.

The code is fully vectorized and has been optimized for both vector and commodity architectures. Further

optimization is currently in progress to account for new issues associated with state-of-the-art multicore

technology. The complete package is fully modular, self-contained, and written in ANSI standard Fortran

90. The complete theoretical–numerical framework (i.e., governing equations, physical submodels,

numerics, and parallel efficiency) has been extensively validated over the course of the last 16 years.

Representative results can be found in refs. [25] through [30].

3.4.4 Science Driver for Metric Problem

Given the importance of Reynolds number scaling and its relation to combustion modeling, our focal

point for the Joule metric using RAPTOR are the flames studied under the Reacting Flow Research

program at Sandia National Laboratories. A related set of experiments focused on passive scalar mixing

will also be used. Figure 24 shows a photograph of the baseline flame (known as DLR-A) along with an

instantaneous image from LES. The photograph was taken in the Turbulent Combustion Laboratory at the

CRF. The corresponding LES was performed using RAPTOR. In general, the integral-scale Reynolds

numbers for the TNFs (which correspond to the jet Reynolds number here) are of O(10
4
), whereas those

associated with internal combustion engines and related injection processes are of O(10
5
) or greater. The

jet Reynolds number for this case is 15,200. Quantifying the effects of increasing Reynolds number on

turbulent flame dynamics and the related scalar-mixing processes requires significant increases in CPU

resources. Here, we will study the related issues of Reynolds number scaling and resolution requirements

for LES by successively increasing the problem size. A range of jet Reynolds numbers, starting from

15,200, will be considered. We will perform a series of weak scaling studies to demonstrate the effects of

increasing Reynolds number on the dynamics of scalar mixing. Initial benchmark runs will be performed

using 47,616 cores. Subsequent runs will be performed by systematically increasing the total CPU time

required (i.e., total number of floating point operations per case) by factors of approximately 2 as a

function of increasing jet Reynolds number. The Joule metric will be accomplished by demonstrating we

can simulate successively larger problems in the same amount of time.

48

Fig. 24. Baseline flame used for problem scaling. (left) Photograph and (center) corresponding LES

of the DLR-A flame. (right) Representative comparisons between experimentally measured (symbols) and

modeled (lines) results showing acceptable agreement.

3.4.5 Q2 Baseline Problem Results

Our Q2 benchmark established the initial baseline for a series of weak scaling studies that

demonstrate the combined computational effectiveness of the ORNL NCCS Jaguar/XT5 platform and

RAPTOR. We simultaneously studied the related issues of Reynolds number scaling and resolution

requirements for LES by successively refining the grid and temporal resolution of the DLR-A

configuration shown in Fig. 23. A range of jet Reynolds numbers, starting from 15,200, were considered.

The three primary objectives were to (1) study the effects of LES grid resolution on scalar-mixing

processes, (2) understand the relationship between the grid spacing and the measured turbulence length

scales from a companion set of experimental data, and (3) study the effects of increasing jet Reynolds

number on the dynamics of turbulent scalar mixing. The initial benchmark was run using 47,616 cores.

Subsequent runs were performed by systematically increasing the total CPU time required (i.e., total

number of floating point operations per case) by factors of approximately 2 as a function of increasing jet

Reynolds number.

Figure 25 shows a cross section of the computational domain that highlights key features of the

optimized curvilinear grid topology. To eliminate ambiguities associated with boundary conditions, the

computational domain includes the entire burner geometry (inside the jet nozzle and the outer co-flow)

and extends downstream over a span that covers the same dimensions as the experimental test section.

The nozzle geometry corresponds to that shown in Fig. 23. The inner nozzle diameter is 8.0 mm. The

outer nozzle surface is tapered to a sharp edge at the burner exit. The overall dimensions of the

computational domain are 110 inner jet diameters in the axial direction and 40 jet diameters in the radial

direction (88 cm by 32 cm, respectively). Flow inside the jet nozzle is simulated by assuming that the

turbulent flow dynamics far upstream are fully developed. Using this assumption we impose a time-

dependent inflow condition 10 jet diameters upstream of the nozzle exit (i.e., at the base of the image

shown in Fig. 23) and allow it to evolve in a time accurate manner to the nozzle exit. The outer co-flow is

imposed in a similar manner. A far field force-free pressure condition is applied at the downstream and

transverse boundaries.

49

Fig. 25. Cross section of the computational domain showing key features of the

grid topology. The domain includes the entire burner geometry, as shown in Fig. 23. To

the right are single-shot measurements of mixture fraction and scalar dissipation. The jet

Reynolds number is 15,200.

A novel feature of our approach is to design respective grids using the dissipation spectrum cutoff

length scales measured from the companion experiments. These scales represent the average thickness of

the scalar mixing layers (i.e., the structural dimensions of the turbulent scalar eddies). Example images of

both mixture fraction and the scalar dissipation layers are shown in Fig. 25. The white boxes on the grid

indicate the experimental interrogation windows at x/d = 5, 10, and 20. Elongated filaments of high

dissipation reveal the convoluted inhomogeneous structure of the fine-scale scalar mixing processes. Data

similar to that shown in Fig. 25 were used to design a set of optimally stretched curvilinear grids that

provided a consistent level of resolution in all three coordinate directions relative to the local physical

mixing layers in the flow. A representative set of grid sizes are listed in Table 17. Grid 3 was established

as an initial arbitrary baseline by sizing cells such that the local spacing throughout the domain was

nominally the same size as the cutoff length scales. Grids 2 and 1 were obtained by successively

coarsening Grid 3 by a factor of 2 in each coordinate direction while maintaining the curvilinear topology

shown in Fig. 25. Using these three grids, we have performed an initial series of calculations that

identically match the experimental flow conditions. Calculations were carried out on Grid 1 first to

determine what the appropriate time step was. For the case considered, a time step of 1 μs was found to

give an appropriate level of time accuracy. The Q2 benchmark case was performed using Grid 2 with a

corresponding time step of 0.5 μs. Other relevant run parameters are listed in Figs. 24 and 25.

50

Table 17. Baseline grid sizes for Joule benchmark runs*

Grid Number Total Cells ∆t (Red = 15,200)

1 1,285,632 1.00 µs

2 10,285,056 0.50 µs

3 82,280,448 0.25 µs

*Respective grids are successively refined by a factor of 2 in

each coordinate direction while maintaining the curvilinear

topology shown in Fig. 23. The corresponding integration time

steps (∆t) are incremented by factors of 2 in a manner consistent

with the spatial refinement.

To acquire the appropriate performance statistics, the DLR-A configuration described above was run

for 50 physical time steps. The physical results were validated using the experimental data provided by

Barlow et al. [23]. A representative set of results are given in Fig. 26, which shows comparisons between

numerical results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data (symbols).

Here we show mean and RMS profiles. These results, coupled with similar comparisons performed

throughout the domain, provide a validated level of confidence in the accuracy of the solution. The

computational performance was simultaneously evaluated by using the CrayPAT instrumented executable

in place of the original executable. The program was instrumented to provide hardware performance

counter information from start to finish. The simulation was performed using 47,616 processor cores on

the Cray XT5 system. The CrayPAT output was postprocessed using pat report, as shown in Table 18. On

average, each processor core performed 7.94 billion floating point operations, leading to an aggregate of

378 trillion floating-point operations being performed by the 47,616 cores. We measure the computational

performance of RAPTOR for a given problem using the metric

Fig. 26. Comparison of experimentally measured (symbols) and modeled (lines) results showing

acceptable agreement.

51

Performance = CPU time / number of grid cells / number of time steps ,

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time

integrator portion of the solver and (2) the number of processor cores occupied by the job while the

program was executing.

For the benchmark run, the code’s internal timers reported that the time integration through 50 time

steps took 1,034 seconds. The remaining time (approximately 300 seconds) was consumed by the

initialization step when the computational mesh and initial condition information were read from the disk

and the software prepared itself for the simulation. Therefore, the performance of RAPTOR during the

benchmark simulation was

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 .

This indicates that it cost 96 milliseconds of processor time per cell per time step to simulate the

problem on 47,616 cores. Subsequent runs will be performed by systematically increasing the total CPU

time required (i.e., total number of floating point operations per case) by approximate factors of 2 as a

function of increasing jet Reynolds number. The Joule metric will be accomplished by demonstrating we

can simulate successively larger problems in the same amount of time.

Table 18. Counter data acquired from CrayPAT 4.2 for Q2

benchmark run using RAPTOR

Time% 100.0%

Time 1425.761880 secs

Imb.Time -- secs

Imb.Time% --

Calls 0.0 /sec 4.0 calls

PAPI_L1_DCM 20.674M/sec 26457314029 misses

PAPI_TOT_INS 3379.668M/sec 4325136094614 instr

PAPI_L1_DCA 1348.943M/sec 1726311709236 refs

PAPI_FP_OPS 6.204M/sec 7939032813 ops

User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time

Average Time per Call 356.440470 sec

CrayPat Overhead : Time 0.0%

HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP)

HW FP Ops / WCT 5.568M/sec

HW FP Ops / Inst 0.2%

Computational intensity 0.00 ops/cycle 0.00 ops/ref

Instr per cycle 1.47 inst/cycle

MIPS 160926295.28M/sec

MFLOPS (aggregate) 295389.35M/sec

Instructions per LD & ST 39.9% refs 2.51 inst/ref

D1 cache hit,miss ratios 98.5% hits 1.5% misses

D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses

3.4.6 Computational Performance Gains

During Q3 the performance of RAPTOR on the model problem was studied and the software was

revised to obtain better computational performance. To obtain a quick turn-around time in the queues and

for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 cores.

The performance profiles obtained on 5,952 cores were then used to guide the tuning. The results of code

changes were tested by measuring the execution time on 5,952 and 47,616 cores.

CrayPAT was used to obtain a performance profile of the 10.3 million cell Q2 model problem on

5,952 cores. Figure 27 shows a budget of the time spent in the code. Given the inherent fine-grain nature

52

of the problem, a significant amount of time was being spent in MPI calls for this case and only 20% of

the time was being spent in the Fortran routines.

Fig. 27. Performance profile of the original code on 5,952 XT5 cores.

It was found that the largest amount of time was being spent in MPI_Barrier and MPI_Allreduce.

MPI_Barrier was being called from the user routine dbsh, which provides the time-dependent inflow

boundary condition for the case. The inflow boundary condition is read as a function of time (i.e., at the

beginning of each time step in the integrator) from a file, and when the end of file is reached, the file is

rewound and the boundary condition was recycled at the inlet. One of the tasks performed by subroutine

dbsh was to check the end of the inlet boundary condition and rewind the file accordingly. This portion of

the routine was rewritten such that it calls a MPI_barrier only when a file rewind was necessary.

MPI_Allreduce was being called from the subroutine norm, which is used to monitor convergence

rates of respective residuals in the dual-time integrator. This routine provides the convergence of the

solution vector using either a L_2 or L_infinite (max) norm. The computed norm was then compared

against the error criterion to determine when to terminate the inner pseudo time step iteration and proceed

to the next physical time step. A global MPI_allreduce was necessary for computing the error norm. Since

MPI_allreduce affects the scalability of the software, the convergence test was modified taking into

account the fact that the number of pseudo time iterations necessary to obtain convergence will not vary

drastically between consecutive time steps. In the revised routine, the last pseudo time step in which

convergence was achieved in the previous physical time step is saved in a static variable, say Nc. In the

next physical time step, the convergence check is deferred until Nc – 1 pseudo time steps. This way the

solver would perform a few extra iterations occasionally while avoiding the expensive convergence check

after each iteration.

A profile of the revised code after the above-mentioned changes to global MPI operations is shown in

Fig. 28. It is seen that the MPI barrier and allreduce costs have decreased. However, a significant amount

of time is still being spent in the MPI communication routines, especially point-to-point send/receives and

related waits.

54%

14%

5%

5%

2%

20%

MPI_Barrier

MPI_Waitall

MPI_Recv

MPI_Allreduce

Other MPI

Fortran routines

53

Fig. 28. Performance profile of RAPTOR on 5,952 cores after reducing global MPI operations.

RAPTOR uses halo communications to build a ghost zone around the problem domain in each MPI

rank. The halo communications are performed between the nearest neighbors within the 3D grid topology.

The MPI cost in performing the nearest neighbor communication was reduced through a rewrite of three

main halo exchange routines—halo, halo_dqv, and halo_flx. The MPI communications in these routines

were rearranged with the following principles: (1) prepost all receives as the first operation in the routine,

(2) post the sends as soon as the data is available, and (3) postpone the waits on send operations until the

end of the routine. Nonblocking sends and receives are used throughout, both before and after these

modifications.

A last set of modifications was aimed at reducing wait times due to load imbalances induced at the

boundaries and grid centerline. It was also noticed that any load imbalance in routines prior to halo

exchanges led to increased MPI wait times. The main source of this imbalance was due to treatment of the

boundaries and centerline where only the MPI ranks at these respective locations were assigned work and

the remaining ranks did not perform any computation. A prime candidate for tuning in this respect was

subroutine pole, which handles the singularity associated with the swept grid design. This routine was

tuned by creating separate subcommunicators consisting of the centerline ranks at various axial planes.

Then the required velocity averaging was implemented using MPI_allreduce on the subcommunicator

instead of send/receive operations. This was found to reduce the time taken by this routine and thereby

lead to better load balance and lower MPI wait times.

The current performance profile of the code with all revisions made to date is shown in Fig. 29.

Table 19 shows the net reductions in time to solution on 5,952 and 47,616 cores as a result of the code

changes.

49%

26%

13%

7%

2%

3%

Fortran routines

MPI_Waitall

MPI_Recv

MPI_Barrier

MPI_Allreduce

Other MPI

54

Fig. 29. Performance profile of RAPTOR after software revisions.

Table 19. Summary of measured timings (in seconds) after each set

of code revisions using the 10.3 million cell Q2 test problem

and 200 time steps

 5,952 cores 47,616 cores

Original Q2 software 1,414 4,136

After revising dbsh (less barrier) 555 315

After revising norm (less allreduce) 510 242

Revised halo and pole (better point to point) 450 192

3.4.7 Q4 Metric Problem Results

RAPTOR was compiled using the default PGI Fortran compiler. Output from the compilation is

included in the Appendix and is identical for both the Q2 benchmark and Q4 metric. Here we show only

the skeletal output, which includes the options used for optimization of the code. Note that the complete

output, which includes all information related to the optimization, is also available but spans 21,807 lines

and has thus been omitted in the interest of space. In all cases the code was profiled using CrayPAT 4.2

using the following recipe to build the executable

module load xt-craypat

make

pat_build -w -Drtenv=PAT_RT_HWPC=0 DTMS.out DTMS_pat.out .

The instrumented executable (DTMS pat.out) was run using the batch script listed in the Appendix.

Here we show the script used for Q2. The corresponding run time environment is also listed and

essentially identical for both the Q2 and Q4 cases except for the different number of cores used for each.

Performance data was generated by issuing the commands

module load xt-craypat

pat_report DTMS_pat.out+xxxyyy > report.out ,

63%

20%

6%

5%
2% 3% 1% Fortran routines

MPI_Waitall

MPI_Barrier

MPI_Isend

MPI_Allreduce

MPI_Recv

Other MPI

55

where DTMS pat.out+xxxyyy is the name of the directory created by CrayPAT after the run completed.

Table 20 lists the resultant set of data.

To acquire the appropriate performance statistics, the DLR-A configuration described above was run

for 50 physical time steps. The physical results were validated using the experimental data provided by

Barlow et al. [23], where a representative set of results is given in Fig. 4, which shows comparisons

between numerical results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data

(symbols). Here we show mean and RMS profiles. These results, coupled with similar comparisons

performed throughout the domain, provide a validated level of confidence in the accuracy of the solution.

The computational performance was simultaneously evaluated by using the CrayPAT instrumented

executable in place of the original executable. The program was instrumented to provide hardware

performance counter information from start to finish. The simulation was performed using 47,616

processor cores on the Cray XT5 system. The CrayPAT output was post processed using pat report, as

shown in Table 20. On average, each processor core performed 7.94 billion floating point operations,

leading to an aggregate of 378 trillion floating point operations being performed by the 47,616 cores. We

measure the computational performance of RAPTOR for a given problem using the metric

Performance = CPU time / number of grid cells / number of time steps ,

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time

integrator portion of the solver, and (2) the number of processor cores occupied by the job while the

program was executing.

For the Q2 benchmark run, the code’s internal timers reported that the time integration through

50 time steps took 1,034 seconds. The remaining time (approximately 300 seconds) was consumed by the

initialization step for CrayPAT and when the computational mesh and initial condition information were

read from the disk. Therefore, the performance of RAPTOR during the benchmark simulation was

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 .

It cost 96 milliseconds of processor time per cell per time step to simulate the problem on 47,616

cores. Using this benchmark, our Q4 metric was performed by increasing the total CPU time required

(i.e., total number of floating point operations per case) by factors of approximately 2 as a function of

increasing jet Reynolds number. The Joule goal metric was accomplished by demonstrating we can

simulate successively larger problems in the same amount of time.

Table 20. Counter data acquired from CrayPAT 4.2 for the Q2 benchmark run using RAPTOR

Time% 100.0%

Time 1425.761880 secs

Imb.Time -- secs

Imb.Time% --

Calls 0.0 /sec 4.0 calls

PAPI_L1_DCM 20.674M/sec 26457314029 misses

PAPI_TOT_INS 3379.668M/sec 4325136094614 instr

PAPI_L1_DCA 1348.943M/sec 1726311709236 refs

PAPI_FP_OPS 6.204M/sec 7939032813 ops

User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time

Average Time per Call 356.440470 sec

CrayPat Overhead : Time 0.0%

HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP)

HW FP Ops / WCT 5.568M/sec

HW FP Ops / Inst 0.2%

Computational intensity 0.00 ops/cycle 0.00 ops/ref

Instr per cycle 1.47 inst/cycle

MIPS 160926295.28M/sec

56

MFLOPS (aggregate) 295389.35M/sec

Instructions per LD & ST 39.9% refs 2.51 inst/ref

D1 cache hit,miss ratios 98.5% hits 1.5% misses

D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses

For the Q4 benchmark, we modified the DLR-A model problem run in Q2 by systematically

increasing the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest

turbulence scales in the flow and thus increases the range of scales that must be considered in the

calculation. To account for this increase, both the grid resolution and physical time step must be refined

appropriately (i.e., linear scaling in the weak sense must be achieved to keep the total time required for

the calculation the same as Q2). To demonstrate the performance of RAPTOR, we increased the total

CPU time required (i.e., the total number of floating point operations per case) and total number of cores

used by a factor of 2.359. The final Q4 case used 24,261,120 grid cells and 112,320 cores (compared to

10,285,056 cells and 47,616 cores for Q2). The resultant run was analyzed in a manner identical to the Q2

run. The final results are shown in Table 21. Weak scaling from Q2 to Q4 was near linear. In addition to

scaling linearly, we were able to achieve an additional net improvement in the overall code performance

of 2.329 beyond the linear metric due to the above-mentioned code improvements.

Table 21. Summary of results from the Q4 run compared to the Q2 baseline

 Q2 Q4

Grid size 10.3 million 24.3 million

Number of XT5 cores 47,616 112,320

Time taken for integrating 50 time steps 1,034 seconds 444 seconds

Number of floating point operations 378 × 10
12

 893 × 10
12

Flop rate sustained by the unsteady solver 0.36 TF/second 2.0 TF/second

Cost per grid point per time step 0.096 seconds 0.041 seconds

Performance statistics summarized in Table 21 were acquired in a manner identical to the Q2 run. The

DLR-A configuration was run for 50 physical time steps at a higher Reynolds number to study issues

related to scalar mixing and the related structural dynamics of the flow. The computational performance

was evaluated by using a CrayPAT instrumented executable in place of the original executable and

configured to give hardware performance counter information from start to finish. The CrayPAT output

was postprocessed using pat report and is given in Table 22.

Table 22. Counter data acquired from CrayPAT 4.2 for the Q4 run using RAPTOR

Time% 100.0%

Time 1972.397426 secs

Imb.Time secs

Imb.Time% --

Calls 0.0 /sec 4.0 calls

PAPI_L1_DCM 17.939M/sec 30225838071 misses

PAPI_TOT_INS 3505.170M/sec 5906032655453 instr

PAPI_L1_DCA 1400.128M/sec 2359144379197 refs

PAPI_FP_OPS 4.718M/sec 7948841143 ops

User time (approx) 1684.949 secs 3875382374683 cycles 85.4%Time

Average Time per Call 493.099356 sec

CrayPat Overhead : Time 0.0%

HW FP Ops / User time 4.718M/sec 7948841143 ops 0.1%peak(DP)

HW FP Ops / WCT 4.030M/sec

57

HW FP Ops / Inst 0.1%

Computational intensity 0.00 ops/cycle 0.00 ops/ref

Instr per cycle 1.52 inst/cycle

MIPS 393700725.39M/sec

MFLOPS (aggregate) 529875.93M/sec

Instructions per LD & ST 39.9% refs 2.50 inst/ref

D1 cache hit,miss ratios 98.7% hits 1.3% misses

D1 cache utilization (M) 78.05 refs/miss 9.756 avg uses

In running the Q4 case, we observed an anomaly associated with the time required for the

initialization stage of the calculation (which is not compute intensive) compared to the integration stage

(which is compute intensive). This anomaly was traced to CrayPAT. In all cases, our executables that

were instrumented with CrayPAT exhibited a wide range of initialization times compared to those that

were not. In the results for Q2, for example, the total run time reported by CrayPAT was 1,423 seconds.

However, the time spent in the integration part of the calculation was only 1,034 seconds. Similarly, the

Q4 calculation took a total of 1,972 seconds for both initialization and integration; however, only

444 seconds were spent in the integration part. To verify this we performed several additional tests. First,

we reran the Q2 case with the integration loop bypassed to isolate the time associated with initialization.

Results from this run are provided in Appendix E, Sect. E.5 and compared to the original Q2 counter data

shown in Fig. 27. These data verify that a negligible amount of floating point operations occur during

initialization, and also that the internal clock used to measure the amount of time spent in the integrator

was accurate, as reported in Table 21 above. As a second test, we ran both cases without CrayPAT

installed and verified that the initialization times for both became negligible (i.e., less than 10 percent of

the total integration time). The combined set of tests confirms that the integration times and estimated

floating point operation rates reported are accurate.

For the Q4 run, the code’s internal timers reported that the time integration through 50 time steps took

444 seconds. Here the code performed 7.94 billion floating point operations on each core (as in Q2),

leading to an aggregate of 893 trillion floating point operations being performed by the 112,320 cores.

The remaining time was consumed by the initialization step required for CrayPAT and when the

computational mesh and initial condition information were read from the disk. Thus, the performance of

RAPTOR for Q4, which includes the performance enhancements described in the last section, was

(444 seconds × 112,320 cores) / 24,261,120 cells / 50 time steps = 0.041 ,

which is a factor of 2.3 improvement in speed beyond the linear weak-scaling metric specified as our

target.

3.4.8 Interpretation of Results

The selected Joule goal metric described here has established an initial baseline for a series of weak

scaling studies aimed at demonstrating the combined computational effectiveness of the ORNL NCCS

Jaguar/XT5 platform and RAPTOR. Given the importance of Reynolds number scaling and its relation to

combustion modeling, our focal point for the Joule metric is the experimental flames studied under the

Reacting Flow Research program at Sandia National Laboratories. These flames are internationally

recognized as important benchmarks for model validation and provide a significant amount of high

quality data for model development. A key issue, however, is that the integral-scale Reynolds number for

these flames (which corresponds to the jet Reynolds number here) is of O(10
4
), whereas those associated

with several important applications are of O(10
5
) or greater. Thus, it is necessary to understand the

phenomenological changes that occur as a function of Reynolds number when one scales to device-level

conditions.

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related

scalar mixing processes requires significant increases in CPU resources and is directly aligned with the

need for highly efficient weak scaling attributes. Here our goal is to study the related issues of Reynolds

58

number scaling and resolution requirements for LES by successively increasing the problem size. A range

of jet Reynolds numbers, starting from 15,200, was considered. We will perform a series of weak scaling

studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Our

initial Q2 benchmark runs were performed using 47,616 cores. Subsequent runs were performed by

systematically increasing the total CPU time required (i.e., total number of floating point operations per

case) by factors of approximately 2 as a function of increasing jet Reynolds number. The Joule metric was

accomplished by demonstrating we can simulate successively larger problems in the same amount of

time.

Our initial Q2 benchmark run was performed using 47,616 cores on the Cray XT5 system. On

average, each processor core performed 7.94 billion floating point operations, leading to an aggregate of

378 trillion floating point operations. We measured the computational performance of RAPTOR using the

metric

Performance = CPU time / number of grid cells / number of time steps ,

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time

integrator portion of the solver and (2) the number of processor cores occupied by the job while the

program was executing (i.e., the ―grind time‖). For the benchmark run, the code’s internal timers reported

that the time integration through 50 time steps took 1,034 seconds. Therefore, the benchmark

performance of RAPTOR was calculated as 0.096 (i.e., it cost 96 milliseconds of processor time per cell

per time step to simulate the problem on 47,616 cores).

During Q3 the performance of RAPTOR on the model problem was studied and the software was

revised to obtain better computational performance. To obtain a quick turn-around time in the queues and

for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 cores.

The performance profiles obtained on 5,952 cores were then used to guide the tuning. The results of code

changes were tested by measuring the execution time on 5,952 and 47,616 cores. The collective efforts

led to a net increase in the time spent by the Fortran routines from 20 percent to 63 percent (i.e., latency

due to fine-grain communication overhead was reduced from 80 percent to 37 percent for the selected

model problem), which provided a significant net speedup in the performance of RAPTOR.

For the Q4 benchmark, we modified the DLR-A configuration run in Q2 by systematically increasing

the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest turbulence

scales in the flow and thus increases the range of scales that must be considered in the calculation. To

account for this increase, both the grid resolution and physical time step must be refined appropriately

(i.e., linear scaling in the weak sense must be achieved to keep the total time required for the calculation

the same as Q2). To demonstrate the performance of RAPTOR, we increased the total CPU time required

(i.e., the total number of floating point operations per case) and total number of cores used by a factor of

2.359. The final Q4 case used 24,261,120 grid cell and 112,320 cores. The resultant run was analyzed in a

manner identical to the Q2 run. The code’s internal timers reported that the time integration through

50 time steps took 444 seconds. The remaining time was consumed by both the initialization step when

the computational mesh and initial condition information were read from the disk and the CrayPAT

instrumentation in the software. Thus, the performance of RAPTOR for Q4 (which includes the

performance enhancements performed as part of Q3 activities) was calculated to be 0.041 (compared to

0.096 for Q2), which is a factor of 2.3 improvement in speed beyond the linear weak-scaling metric

specified as our target.

3.4.9 Summary and Conclusions

The Joule metric selected here was designed to establish a baseline for a series of weak scaling

studies aimed at demonstrating the combined computational effectiveness of the ORNL NCCS

Jaguar/XT5 platform and RAPTOR. Given the importance of Reynolds number scaling and its relation to

combustion modeling, our focal point for the Joule metric is the experimental flames studied under the

Reacting Flow Research program at Sandia National Laboratories. These flames are internationally

recognized as important benchmarks for model validation and provide a significant amount of high

59

quality data for model development. A key issue, however, is that the integral-scale Reynolds number for

these flames (which corresponds to the jet Reynolds number here) is of O(10
4
), whereas those associated

with several important applications are of O(10
5
) or greater. Thus, it is necessary to understand the

phenomenological changes that occur as a function of Reynolds number when one scales to device-level

conditions.

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related

scalar mixing processes requires significant increases in CPU resources and is directly aligned with the

need for highly efficient weak scaling attributes. Here our goal is to study the related issues of Reynolds

number scaling and resolution requirements for LES by successively increasing the problem size. A range

of jet Reynolds numbers, starting from 15,200, was considered. We performed a series of weak scaling

studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Our

initial Q2 benchmark was performed using 47,616 cores on the Cray XT5 system. On average, each

processor core performed 7.94 billion floating point operations, leading to an aggregate of 378 trillion

floating point operations. We measured the computational performance of RAPTOR using the metric

Performance = CPU time / number of grid cells / number of time steps ,

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time

integrator portion of the solver and (2) the number of processor cores occupied by the job while the

program was executing (i.e., the ―grind time‖). For the benchmark run, the code’s internal clock reported

that the time integration through 50 time steps took 1,034 seconds. Therefore, the benchmark

performance of RAPTOR was calculated as 0.096 (i.e., it costs 96 milliseconds of processor time per cell

per time step to simulate the problem on 47,616 cores).

During Q3 the performance of RAPTOR on the DLR-A model problem was studied and the software

was revised to obtain better computational performance. To obtain a quick turn-around time in the queues

and for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952

cores. The performance profiles were then used to guide the tuning. The changes were tested by

measuring the execution time on 5,952 and 47,616 cores. The collective efforts led to a net increase in the

time spent by the Fortran routines from 20 percent to 63 percent (i.e., latency due to fine-grain

communication overhead was reduced from 80 percent to 37 percent for the selected model problem),

which provided a significant net speedup in the performance of RAPTOR.

For the Q4 benchmark, we modified the DLR-A case considered in Q2 by systematically increasing

the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest turbulence

scales in the flow and thus increases the range of scales that must be considered in the calculation. To

account for this increase, both the grid resolution and physical time step must be refined appropriately

(i.e., linear scaling in the weak sense must be achieved to keep the total time required for the calculation

the same as Q2). To demonstrate the performance of RAPTOR, we increased the total CPU time required

(i.e., the total number of floating point operations per case) and total number of cores used by a factor of

2.359. The final Q4 case used 24,261,120 grid cells and 112,320 cores.

Results from the Q4 run were analyzed in a manner identical to the Q2 run. The code’s internal clocks

reported that the time integration through 50 time steps took 444 seconds. The remaining time was

consumed by the initialization routines for CrayPAT, reading the computational mesh from the disk and

setting the initial conditions. Thus, the performance of RAPTOR for the Q4 benchmark (which includes

the performance enhancements made as part of the Q3 activities) was calculated to be 0.041 (compared to

0.096 for Q2). This represents a factor of 2.3 improvement in speed beyond the linear weak scaling metric

specified as our target.

60

REFERENCES

1. W. Lorensen, H. Cline: Marching Cubes: A High Resolution 3D Surface Construction Algorithm,

Computer Graphics, Vol. 21, Nr. 4, July 1987

2. H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J. Whitlock, and N. Max, A

contract-based system for large data visualization, in Proceedings of IEEE Visualization, pp. 190–

198, 2005.

3. The Intergovernmental Panel on Climate Change Working Group I (WGI) Report, Climate Change

2007: The Physical Basis (http://ipcc-wg1.ucar.edu/wg1/wg1-report.html).

4. The Community Atmosphere Model (CAM) (http://www.ccsm.ucar.edu/models/atm-cam).

5. W. D. Collins et al., A Description of the NCAR Community Atmosphere Model (CAM 3.0), Technical

Report NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado, 2004.

6. W. M. Washington, Documentation for the Community Climate Model (CCM), Version 0, National

Center for Atmospheric Research, Boulder, Colorado, NTIS No. PB82 194192, 1982.

7. D. L. Williamson, Description of NCAR Community Climate Model (CCM0B), Technical Report

NCAR/TN-210+STR, National Center for Atmospheric Research, Boulder, Colorado, NTIS No.

PB83 23106888, 1983.

8. W. Bourke, B. McAvaney, K. Puri, and R. Thurling, ―Global modeling of atmospheric flow by

spectral methods,‖ in Methods in Computational Physics, Vol. 17, 267–324, Academic Press, New

York, 1977.

9. A. P. M. Baede, M. Jarraud, and U. Cubasch, Adiabatic Formulation and Organization of ECMWF’s

Model, Technical Report 15, ECMWF, Reading, U.K., 1979.

10. R. K. Sato, L. M. Bath, D. L. Williamson, and G. S. Williamson, User’s Guide to NCAR CCMOB,

Technical Report NCAR/TN-211+IA, National Center for Atmospheric Research, Boulder, Colorado,

1983.

11. D. L. Williamson, L. M. Bath, R. K. Sato, T. A. Mayer, and M. L. Kuhn, Documentation of NCAR

CCM0B Program Modules, Technical Report NCAR/TN-212+IA, National Center for Atmospheric

Research, Boulder, Colorado, NTIS No. PB83 263996, 1983.

12. J. Rosinski, The General Purpose Timing Library (www.burningserver.net/rosinski/gptl).

13. F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).

14. C.S. Chang, S. Ku, P. Diamond, et al., Phys. Plasmas, accepted for publication (2009).

15. C. S. Chang and S. Ku, Phys. Plasmas 11, 2649 (2004); Contrib. Plasma Phys. 46, 496 (2006).

16. D. McCune, PSPLINE: Princeton Spline and Hermite Cubic Interpolation Routines, Princeton

Plasma Physics Laboratory (http://w3.pppl.gov/ntcc/PSPLINE/).

17. B. Smith et al., PETSc: Portable, Extensible Toolkit for Scientific Computation, Argonne National

Laboratory (http://www.mcs.anl.gov/petsc/petsc-as/).

18. A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E.

Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J.

Redd, D. E.Shumaker, R. Sydora, and J. Weiland, Phys. Plasmas 7, 969 (2000).

19. G. Dif-pradalier, V. Grandgirard, Y. Sarazin, X. Garbet, Ph. Ghendrih, and P. Angelino, Phys.

Plasma 15, 042314 (2008).

20. X. Garbet, Y. Sarazin, F. Imbeaux, P. Ghendrih, O. D. Gurcan C. Bourdelle, and P. H. Diamond,

Phys. Plasmas 14, 122305 (2007).

21. D. Gurcan, P. H. Diamond, and T. S. Hahm, Phys. Plasmas 14, 055902 (2007).

22. T. S. Hahm, P. H. Diamond, and Z. Lin, Phys. Plasmas 12, 090903 (2005).

23. R. S. Barlow, International Workshop on Measurement and Computation of Turbulent Nonpremixed

Flames, Combustion Research Facility, Sandia National Laboratories, www.ca.sandia.gov/TNF,

1996–2009.

24. J. C. Oefelein, ―Large eddy simulation of turbulent combustion processes in propulsion and power

systems,‖ Progress in Aerospace Sciences 42(1), 2–37 (2006).

http://ipcc-wg1.ucar.edu/wg1/wg1-report.html
http://www.ccsm.ucar.edu/models/atm-cam
http://www.burningserver.net/rosinski/gptl
http://w3.pppl.gov/ntcc/PSPLINE/
http://www.mcs.anl.gov/petsc/petsc-as/

61

25. J. C. Oefelein, ―Thermophysical characteristics of LOX–H2 flames at supercritical pressure,‖

Proceedings of the Combustion Institute 30, 2929–2937 (2005).

26. J. C. Oefelein, ―Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at

supercritical pressure,‖ Combustion Science and Technology 178(1–3), 229–252 (2006).

27. J. C. Oefelein, R. W. Schefer, and R. W. Barlow, ―Toward validation of LES for turbulent

combustion,‖ AIAA Journal 44(3), 418–433 (2006).

28. J. C. Oefelein, V. Sankaran, and T. G. Drozda, ―Large eddy simulation of swirling particle-laden flow

in a model axisymmetric combustor,‖ Proceedings of the Combustion Institute 31, 2291–2299 (2007).

29. T. G. Drozda and J. C. Oefelein, ―Large eddy simulation of direct injection processes for hydrogen

and LTC engine applications,‖ Paper 2008-01-0939, SAE World Congress, Detroit, Michigan,

April 14–17, 2008.

30. H. Childs, M. Duchanieau, and K-L. Ma, ―A Scalable, Hybrid Scheme for Volume Rendering

Massive Data Sets,‖ pp. 153–162 in Proceedings of Eurographics Symposium on Parallel Graphics

and Visualization, May 2006.

62

APPENDIXES: BENCHMARK PROBLEM ENVIRONMENTS

A-1

APPENDIX A. OVERVIEW

We present in this appendix detailed information about the build and run time environments for the

various benchmarks executed in Q2 on the Cray XT5 system at ORNL’s NCCS. An example follows

where the source code is presented as well as the build and execution process invoked to execute

instrumented (direct or automated) code on the target machine.

A.1 PARALLEL MATRIX MULTIPLY EXAMPLE

The acceptability of computed results is defined by the problem. In ASCR’s Joule software exercises,

the complexity of executing a problem is directly deduced according to machine events measured with

supported system software on the target platform. The number of total instructions retired, the number of

floating point instructions executed, the total number of processes (assuming a one-to-one relationship

between processes and processor cores—not the case for various thread models), and the total execution

time are the events we typically return in this report.

The target architecture has a well-developed set of tools designed for tracing and sampling analysis of

a variety of machine events of interest. The vendor tools have the capability to instrument a compiled

binary via recompiling, and to postanalyze the performance data captured during execution (CrayPAT,

Apprentice2 tools). The degree of granularity can be controlled by the user and ranges from exhaustive

fine-grain tracing (which can introduce large wall-clock time overhead) to a small set of hardware events

that introduce only noise in the execution time. Alternatively, the PAPI tool can be used to instrument the

application source code (C, Fortran API exists) and enables the user to declare the events of interest and

pinpoint specified regions of their codes. The consistency of the approaches has been checked for a

handful of scenarios on the benchmarked platform with exceptional agreement on common test problems

prior to the Q2 benchmarks.

A detailed example may help here. Suppose our application problem is to have a computer program

that executes (on Jaguar/XT5) the common math operation C AB + C

where A,B,C are all rank two

arrays of double precision, complex numbers with dimensions A [m,n], B [n,p], C [m,p], and ,

are double precision, complex numbers. The problem, P(m,n p), has complexity that is well described by

the storage demands, mn + np + mp + 2 complex numbers, and floating point operation count, P(m,n,p) ~

8mpn + 13mp.This problem’s complexity (like all program instances) can be calibrated with machine

capabilities (even if we did not have a theoretical estimate) by counting the instructions and specifically

floating point instructions completed to execute an instance on Jaguar/XT5.

To further simplify, let m = n = p. In this case the theoretical complexity of P(n) is ~3n
2
 + 2 complex

numbers and ~8n
3
 + 13n

2
 floating point operations. (In the real number case, the problem floating point

complexity for m = n = p is P(n) ~ 2n
3
 + 2n

2
 and the storage becomes 3n

2
 + 2 real numbers.)

For now, let’s check the quality of the counts returned by the approaches on the target hardware.

First, consider P(n = 16,384). The theoretical complexity of this instance (within the significant digits

offered by a handheld calculator) is P(16,384) = 35,187,861,750,000 floating point operations, the PAPI

tool measured 36,560,640,672,864 floating point instructions as accumulated over 56 processes given the

parallel implementation of the kernel. The relative difference is 3.9%. For the exact same problem

parameters, the CrayPAT tool was used to automatically instrument the binary. Two different

compilations were used for instrumentation with increased granularity. As an example of a low overhead

glimpse into what happened, a floating point instruction count per process was sampled for a fraction of

the processes from which we deduced the total floating point instruction count to be

36,563,861,900,000—the relative difference computed against theory is here 3.91%. Since we do not

investigate how the chipset actually computes the various complex algebraic terms in the implementation,

the agreement to theory is very good.

A-2

Let us also report one other consistency check. Here we wish to understand if increasing the number

of processes we throw at a fixed problem instance introduces a large error into the machine event data

collection process. To this end, the kernel P(24,576) is executed first on 120 PEs and next on 256 PEs of

the target system. The theoretical complexity for the complex representation is P(24,576) =

113,555,757,096,871 floating point operations. The measured (PAPI in this example) count on 120 PEs

was 123,390,048,340,380 floating point operations in 165.22 seconds, yielding a relative difference of

8.6% from the complexity model. The measured count on 256 PEs was 123,390,048,343,296 floating

point operations in 81.33 seconds, yielding a relative difference of 8.6% from the complexity model. The

results are essentially identical. As a last note, the speedup between runs was 2.03; ideally this number

would be 2.133. The following is the source code used in the example.

/* rochekj@ornl.gov */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <complex.h>

#include <mpi.h>

#ifdef KRP

#include <papi.h>

/*

PAPI

 _TOT_IIS

 _TOT_INS

 _INT_INS

 _FP_INS

 _FMA_INS

 _VEC_INS

 _L2_DCM

*/

#define NUM_PAPI_EVENTS 4

#endif

/* BLACS , ScaLAPACK */

/*

void Cblacs_pinfo(int * , int *) ;

void Cblacs_setup(int * , int *) ;

void Cblacs_get(int , int , int *) ;

void Cblacs_gridinit(int * , char * , int , int) ;

void Cblacs_gridinfo(int , int * , int * , int * , int *) ;

void Cblacs_exit(int) ;

void Cdgesd2d(int , int , int , double * , int , int , int) ;

void Cdgerv2d(int , int , int , double * , int , int , int) ;

void Cigebs2d(int ictxt , char * scope , char * top , int m , int n , int

* A , int lda) ;

void Cigebr2d(int ictxt , char * scope , char * top , int m , int n , int

* A , int lda , int rsrc , int csrc) ;

void pzgemm_(char * , char * , int * , int * , int * , double complex * ,

double complex * , int * , int * , int * , double complex *

, int * , int * , int * , double complex * , double complex * , int * ,

int * , int *) ;

*/

A-3

/* home spun support routines */

void get_num_rows(int iamprow , int nprows , int ma , int mblk , int *

nrow)

{

 int mydist , nrows , np ;

 int srcproc , extrarows ;

 srcproc = 0 ; /* assume that the process(0,0) owns the first element(s)

*/

 mydist = (nprows + iamprow - srcproc) % nprows ;

 nrows = ma / mblk ;

 np = (nrows / nprows) * mblk ;

 extrarows = nrows % nprows ;

 if (mydist < extrarows) np += mblk ;

 else if (mydist == extrarows) np += ma % mblk ;

 *nrow = np ;

}

void get_num_columns(int iampcol , int npcols , int na , int nblk , int *

ncol)

{

 int mydist , ncols , np ;

 int srcproc , extracols ;

 srcproc = 0 ; /* assume that the process(0,0) owns the first element(s)

*/

 mydist = (npcols + iampcol - srcproc) % npcols ;

 ncols = na / nblk ;

 np = (ncols / npcols) * nblk ;

 extracols = ncols % npcols ;

 if (mydist < extracols) np += nblk ;

 else if (mydist == extracols) np += na % nblk ;

 *ncol = np ;

}

void get_mem_req_blk_cyc (int ip , int iq , int np , int nq , int ma ,

int na , int mblk , int nblk , int * nip , int * niq)

{

 get_num_rows(ip , np , ma , mblk , nip) ;

 get_num_columns(iq , nq , na , nblk , niq) ;

}

void get_mem_req_blk_cyc (int ip , int iq , int np , int nq , int ma ,

int na , int mblk , int nblk , int * nip , int * niq) ;

int main(int argc , char ** argv)

{

#ifdef KRP

 /* PAPI */

 int hw_counters ;

 const PAPI_hw_info_t *hwinfo = NULL ;

 int papi_events[NUM_PAPI_EVENTS] ;

 long long int papi_values[NUM_PAPI_EVENTS + 4] ;

 long long int papi_real_cyc_0 , papi_virt_cyc_0 , papi_real_usec_0 ,

papi_virt_usec_0 ;

A-4

 char * papi_event_name[] = { "PAPI_TOT_INS" , "PAPI_FP_INS" ,

"PAPI_FP_OPS" , "PAPI_L2_DCM" } ;

 long long int * llbuf , llval ;

#endif

 /* for the kernel */

 int i , j ;

 double complex * a , * b , * c ;

 double complex zone = 1. + I * 1. ; double complex zmone = -1. + I * 1.

;

 int np , p , q ; /* np ~ p q , np := number of processes , p := number

of process rows , q := number of process columns */

 int ip , iq , nip , niq ; /* id (ip,iq) in (p,q) rectangular , virtual

process grid owns (nip,niq) elements */

 int ma , na , nb , nblk ; /* matrix dimensions [ma,na][na,nb]+[ma,nb] ,

block size */

 int iam , npmpi ;

 int DESCA[9] , DESCB[9] , DESCC[9]; /* array descriptors */

 int info , doneflag ;

 char *b_order, *scope ;

 int b_val ;

 int ione = 1 , mone = -1 , zero = 0 ;

 int iam_blacs , ictxt , nprocs_blacs ;

#ifdef VERBOSE

 int namelen ;

 char myname[MPI_MAX_PROCESSOR_NAME] ;

#endif

 /* blacs */

 b_val = zero ;

 b_order = "R" ;

 scope = "All" ;

 /* initialize the MPI communicator MPI_COMM_WORLD */

 MPI_Init(&argc , &argv) ;

 MPI_Comm_size(MPI_COMM_WORLD , &npmpi) ;

 MPI_Comm_rank(MPI_COMM_WORLD , &iam) ;

 /* parse the command line */

 if (argc != 7) {

 printf("usage: %s ma na nb nblk p q\n" , argv[0]) ;

 MPI_Finalize();

 return (EXIT_SUCCESS) ;

 }

 ma = atoi(argv[1]) ; /* problem size data */

 na = atoi(argv[2]) ; /* problem size data */

 nb = atoi(argv[3]) ; /* problem size data */

 nblk = atoi(argv[4]) ; /* block buffer data */

 p = atoi(argv[5]) ;

 q = atoi(argv[6]) ;

 np = p * q ;

 /* initialize the BLACS grid */

A-5

#ifdef VERBOSE

 printf("[%d] prior to blacs_pinfo\n" , iam) ;

#endif

 Cblacs_pinfo(&iam_blacs , &nprocs_blacs) ;

 if (nprocs_blacs < 1) Cblacs_setup(&iam_blacs , &nprocs_blacs) ;

 Cblacs_get(mone , zero , &ictxt) ;

 Cblacs_gridinit(&ictxt , b_order , p , q) ; /* 'Row-Major' */

 Cblacs_gridinfo(ictxt , &p , &q , &ip , &iq) ; /* ip,iq: the process

row,column id */

 /* determine memory demands for the matrix A[ma,na] */

 get_mem_req_blk_cyc (ip , iq , p , q , ma , na , nblk , nblk , &nip ,

&niq) ;

#ifdef VERBOSE

 printf("A\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip ,

iq , nip * niq , (unsigned long long) sizeof(double comple

x) * nip * niq) ;

#endif

 if ((a = malloc(sizeof(double complex) * nip * niq)) == NULL)

 {

 fprintf(stderr , "[%d,%d]error: cannot malloc() a\n...exiting\n",

ip , iq) ;

 MPI_Finalize() ;

 return(EXIT_SUCCESS) ;

 }

 /* generate the matrix elements randomly */

 srand(iam + 1) ; /* seed the prng the for initial use */

 for (i = 0 ; i < nip * niq ; i++)

 a[i] = 0.5 - (double) rand() / (double) RAND_MAX + I * (0.5 -

(double) rand() / (double) RAND_MAX) ;

 /* the array descriptor for local_A */

 DESCA[0] = 1 ; /* descriptor type (1=global) */

 DESCA[1] = ictxt ; /* blacs process grid used for distribution */

 DESCA[2] = ma ; /* rows in global A */

 DESCA[3] = na ; /* columns in global A */

 DESCA[4] = nblk ; /* row block factor */

 DESCA[5] = nblk ; /* column block factor */

 DESCA[6] = 0 ; /* row source in the pgrid */

 DESCA[7] = 0 ; /* column source in the pgrid */

 DESCA[8] = nip ; /* local leading dimension of A */

 /* determine memory demands for the matrix B[na,nb] */

 get_mem_req_blk_cyc (ip , iq , p , q , na , nb , nblk , nblk , &nip ,

&niq) ;

#ifdef VERBOSE

 printf("B\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip ,

iq , nip * niq , (unsigned long long) sizeof(double comple

A-6

x) * nip * niq) ;

#endif

 if ((b = malloc(sizeof(double complex) * nip * niq)) == NULL)

 {

 fprintf(stderr , "[%d,%d]error: cannot malloc() b\n...exiting\n",

ip , iq) ;

 MPI_Finalize() ;

 return(EXIT_SUCCESS) ;

 }

 for (i = 0 ; i < nip * niq ; i++) b[i] = 0.5 - (double) rand() / (

double) RAND_MAX + I * (0.5 - (double) rand() / (double

) RAND_MAX) ;

 /* the array descriptor for local_B */

 DESCB[0] = 1 ; /* descriptor type (1=global) */

 DESCB[1] = ictxt ; /* blacs process grid used for distribution */

 DESCB[2] = na ; /* rows in global B */

 DESCB[3] = nb ; /* columns in global B */

 DESCB[4] = nblk ; /* row block factor */

 DESCB[5] = nblk ; /* column block factor */

 DESCB[6] = 0 ; /* row source in the pgrid */

 DESCB[7] = 0 ; /* column source in the pgrid */

 DESCB[8] = nip ; /* local leading dimension of B */

 /* determine memory demands for the matrix C[ma,nb] */

 get_mem_req_blk_cyc (ip , iq , p , q , ma , nb , nblk , nblk , &nip ,

&niq) ;

#ifdef VERBOSE

 printf("C\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip ,

iq , nip * niq , (unsigned long long) sizeof(double comple

x) * nip * niq) ;

#endif

 if ((c = malloc(sizeof(double complex) * nip * niq)) == NULL) {

 fprintf(stderr , "[%d,%d]error: cannot malloc() c\n...exiting\n", ip

, iq) ;

 MPI_Finalize() ;

 return(EXIT_SUCCESS) ;

 }

 for (i = 0 ; i < nip * niq ; i++) c[i] = 0.5 - (double) rand() / (

double) RAND_MAX + I * (0.5 - (double) rand() / (double

) RAND_MAX) ;

 /* the array descriptor for local_C */

 DESCC[0] = 1 ; /* descriptor type (1=global) */

 DESCC[1] = ictxt ; /* blacs process grid used for distribution */

 DESCC[2] = ma ; /* rows in global C */

 DESCC[3] = nb ; /* columns in global C */

 DESCC[4] = nblk ; /* row block factor */

 DESCC[5] = nblk ; /* column block factor */

 DESCC[6] = 0 ; /* row source in the pgrid */

A-7

 DESCC[7] = 0 ; /* column source in the pgrid */

 DESCC[8] = nip ; /* local leading dimension of C */

#ifdef VERBOSE

 MPI_Get_processor_name(myname , &namelen) ;

 printf("[%d , %d][%s] prior to pgemm \n" , ip , iq , myname) ;

#endif

#ifdef VERBOSE

 if (ip == 0) {

 printf("a[1,1]= (%f , %f)\n" , creal(a[0]) , cimag(a[0]))

;

 printf("b[1,1]= (%f , %f)\n" , creal(b[0]) , cimag(b[0]))

;

 printf("c[1,1]= (%f , %f)\n" , creal(c[0]) , cimag(c[0]))

;

 }

#endif

 MPI_Barrier(MPI_COMM_WORLD);

#ifdef KRP

 /* learn something about the system here */

 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)

 exit(1) ;

 if ((hwinfo = PAPI_get_hardware_info()) == NULL)

 exit(1) ;

 if (iam == 0)

 {

 printf("\t\tTotPEs(jagpf)[%d]\n" , hwinfo->totalcpus) ;

 printf("\t\tMhz[%g]\n" , hwinfo->mhz) ;

 printf("\t\tnCPU-SMPnode(jagpf)[%d]\n" , hwinfo->ncpu); /* Number

of CPU's in SMP Node */

 printf("\t\tnSMPnodes(jagpf)[%d]\n" , hwinfo->nnodes);

 printf("\t\t\tvendor string cpu[%s}\n" , hwinfo->vendor_string);

 printf("\t\t\tmodel string cpu[%s}\n" , hwinfo->model_string);

 printf("\t\t\tmodel number[%d]\n\n" , hwinfo->model);

 }

 char * eventname[] = { PAPI_FP_OPS , PAPI_FP_INS } ;

 int eventcode ;

 PAPI_event_info_t pinfo ;

 if (ip == 0)

 {

 for (i = 0 ; i < 2 ; i++)

 {

 PAPI_event_name_to_code(eventname[i] , &eventcode) ;

 if (PAPI_get_event_info(eventcode , &pinfo) != PAPI_OK)

 {

 fprintf(stderr , "error: papi event[%s]\n" , eventcode[i]

) ;

 }

 printf("papi event[%s]\n" , papi_event_name[i]) ;

 }

A-8

 }

#endif

 /* begin PAPI profiling here */

 hw_counters = PAPI_num_counters() ;

 for (i = 0 ; i < (int) NUM_PAPI_EVENTS ; i++)

 {

 if (PAPI_event_name_to_code(papi_event_name[i] , &papi_events[i

]) != PAPI_OK)

 {

 fprintf(stderr , "papi error[%s]\n" , papi_event_name[i]) ;

 if (hw_counters > i) hw_counters = i ;

 }

 }

 if(hw_counters > NUM_PAPI_EVENTS) hw_counters = NUM_PAPI_EVENTS ;

 papi_real_cyc_0 = PAPI_get_real_cyc() ;

 papi_real_usec_0 = PAPI_get_real_usec() ;

 papi_virt_cyc_0 = PAPI_get_virt_cyc() ;

 papi_virt_usec_0 = PAPI_get_virt_usec() ;

 PAPI_start_counters(papi_events , hw_counters) ;

#endif

 /*

 extern void p*gemm_(char *TRANSA, char *TRANSB, int * M, int * N, int

* K, double * ALPHA,

 double * A, int * IA, int * JA, int * DESCA, double * B, int * IB, int

* JB, int * DESCB,

 double * BETA, double * C, int * IC, int * JC, int * DESCC);

 */

 pzgemm_("N" , "N" , &ma , &nb , &na , &zone , a , &ione , &ione , DESCA

, b , &ione , &ione , DESCB , &zmone , c , &ione , &ione , D

ESCC) ;

#ifdef VERBOSE

 printf("[%d , %d] return from pgemm \n" , ip , iq) ;

 if (ip == 0) {

 printf("a[1,1]= (%f , %f)\n" , creal(a[0]) , cimag(a[0]))

;

 printf("b[1,1]= (%f , %f)\n" , creal(b[0]) , cimag(b[0]))

;

 printf("c[1,1]= (%f , %f)\n" , creal(c[0]) , cimag(c[0]))

;

 }

#endif

 free (a) ; free(b) ; free(c) ;

#ifdef KRP

 /* PAPI exit results */

 PAPI_stop_counters(papi_values , hw_counters) ;

 papi_values[hw_counters] = PAPI_get_real_cyc() - papi_real_cyc_0 ;

 papi_values[hw_counters + 1] = PAPI_get_real_usec() - papi_real_usec_0

;

 papi_values[hw_counters + 2] = PAPI_get_virt_cyc() - papi_virt_cyc_0 ;

 papi_values[hw_counters + 3] = PAPI_get_virt_usec() - papi_virt_usec_0

;

A-9

 if (iam == 0)

 {

 if ((llbuf = malloc(sizeof(long long int) * npmpi)) == NULL)

 {

 fprintf(stderr , "[%d,%d]error: cannot malloc()

llbuf\n...exiting\n", ip , iq) ;

 MPI_Finalize() ;

 return(EXIT_SUCCESS) ;

 }

 }

 for (i = 0 ; i < hw_counters ; i++)

 {

 llval = 0LL ;

 MPI_Gather(&papi_values[i] , 1 , MPI_LONG_LONG , llbuf , 1 ,

MPI_LONG_LONG , 0 , MPI_COMM_WORLD) ;

 if (iam == 0)

 { /* report some profile information */

 for (j = 0 ; j < npmpi ; j++)

 llval += llbuf[j] ;

 printf("%s :\tTot[%lld]\tRt[%lld]\n", papi_event_name[i] ,

llval , papi_values[i]) ;

 }

 MPI_Barrier(MPI_COMM_WORLD) ;

 }

 if (iam == 0)

 {

 printf("PAPI_real_cyc = %lld\n" , papi_values[hw_counters]) ;

 printf("PAPI_real_usec = %lld\n" , papi_values[hw_counters + 1])

;

 printf("PAPI_user_cyc = %lld\n" , papi_values[hw_counters + 2])

;

 printf("PAPI_user_usec = %lld\n" , papi_values[hw_counters + 3])

;

 free (llbuf) ;

 }

#endif

 MPI_Barrier(MPI_COMM_WORLD) ;

#ifdef VERBOSE

 printf("...[%d][%d]clean exit\n" , ip , iq) ;

#endif

 MPI_Finalize() ;

 return (EXIT_SUCCESS) ;

}

A.2 MODULES AVAILABLE ON THE TARGET ARCHITECTURE

--------------------- /opt/cray/xt-asyncpe/2.0/modulefiles --------------

xtpe-quadcore xtpe-target-native

------------------------------- /opt/modulefiles ------------------------

Base-opts/2.1.27HD

Base-opts/2.1.27HD.lusrelsave

A-10

Base-opts/2.1.29HD

Base-opts/2.1.29HD.lusrelsave

Base-opts/2.1.41HD

Base-opts/2.1.41HD.lusrelsave

Base-opts/2.1.50HD(default)

Base-opts/2.1.50HD.lusrelsave

MySQL/5.0.45

PrgEnv-cray/1.0.0(default)

PrgEnv-gnu/2.1.27HD

PrgEnv-gnu/2.1.29HD

PrgEnv-gnu/2.1.41HD

PrgEnv-gnu/2.1.50HD(default)

PrgEnv-pathscale/2.1.27HD

PrgEnv-pathscale/2.1.29HD

PrgEnv-pathscale/2.1.41HD

PrgEnv-pathscale/2.1.50HD(default)

PrgEnv-pgi/2.1.27HD

PrgEnv-pgi/2.1.29HD

PrgEnv-pgi/2.1.41HD

PrgEnv-pgi/2.1.50HD(default)

acml/4.0.1a

acml/4.1.0(default)

acml/4.2.0

apprentice2/4.3.0

apprentice2/4.4.0(default)

apprentice2/4.4.0.1

blcr/0.7.3

cce/7.0.0(default)

cce/7.0.1

cce/7.0.2

cray/audit/1.0.0-1.0000.15784.0

dwarf/8.2.0

dwarf/8.4.0

dwarf/8.6.0

dwarf/8.8.0(default)

elf/0.8.10(default)

fftw/2.1.5

fftw/3.1.1(default)

fftw/3.2.0

gcc/4.1.2

gcc/4.2.0.quadcore(default)

gcc/4.2.3

gcc/4.2.4

gcc-catamount/3.3

gnet/2.0.5

iobuf/1.0.6(default)

java/jdk1.6.0_05(default)

java/jdk1.6.0_11

libfast/1.0(default)

libfast/1.0.2

libscifft-pgi/1.0.0(default)

moab/5.2.3

moab/5.2.4(default)

moab/5.3.0

A-11

modules/3.1.6(default)

pathscale/3.2(default)

petsc/2.3.3a(default)

petsc/3.0.0

petsc-complex/2.3.3a(default)

petsc-complex/3.0.0

pgi/6.2.5

pgi/7.0.7

pgi/7.1.6

pgi/7.2.3

pgi/7.2.4

pgi/7.2.5(default)

pgi/8.0.1

pgi/8.0.2

pgi/8.0.3

pkgconfig/0.15.0(default)

torque/2.3.2-snap.200807092141(default)

xt-asyncpe/1.0c

xt-asyncpe/1.1

xt-asyncpe/1.2

xt-asyncpe/2.0(default)

xt-asyncpe/2.0.34

xt-asyncpe/2.1

xt-boot/2.1.27HD

xt-boot/2.1.29HD

xt-boot/2.1.41HD

xt-boot/2.1.50HD

xt-catamount/2.1.27HD

xt-catamount/2.1.29HD

xt-catamount/2.1.41HD

xt-catamount/2.1.50HD

xt-craypat/4.3.1

xt-craypat/4.3.3

xt-craypat/4.4.0

xt-craypat/4.4.0.2

xt-craypat/4.4.0.4(default)

xt-craypat/4.4.1

xt-libc/2.1.27HD

xt-libc/2.1.29HD

xt-libc/2.1.41HD

xt-libc/2.1.50HD

xt-libsci/10.2.1

xt-libsci/10.3.0

xt-libsci/10.3.1(default)

xt-libsci/10.3.2

xt-lustre-ss/2.1.27HD_1.6.5

xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5

xt-lustre-ss/2.1.29HD_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5

A-12

xt-lustre-ss/2.1.41HD_1.6.5

xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5

xt-lustre-ss/2.1.50HD_1.6.5

xt-lustre-ss/2.1.50HD_PS04_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5

xt-mpt/2.1.27HD

xt-mpt/2.1.29HD

xt-mpt/2.1.41HD

xt-mpt/2.1.50HD

xt-mpt/3.0.1

xt-mpt/3.0.2

xt-mpt/3.0.4

xt-mpt/3.1.0(default)

xt-mpt/3.1.0.4

xt-mpt/3.1.0.6

xt-mpt/3.1.0.7

xt-mpt/3.1.1

xt-os/2.1.27HD

xt-os/2.1.29HD

xt-os/2.1.41HD

xt-os/2.1.50HD

xt-papi/3.5.99c

xt-papi/3.6

xt-papi/3.6.1a

xt-papi/3.6.2(default)

xt-pe/2.1.27HD

xt-pe/2.1.29HD

xt-pe/2.1.41HD

xt-pe/2.1.50HD

xt-service/2.1.27HD

xt-service/2.1.29HD

xt-service/2.1.41HD

xt-service/2.1.50HD

xtgdb/1.0.0(default)

xtpe-target-catamount

xtpe-target-cnl

--------------------------- /opt/modules/3.1.6 ---------------------------

modulefiles/modules/dot modulefiles/modules/modules

modulefiles/modules/module-cvs modulefiles/modules/null

modulefiles/modules/module-info modulefiles/modules/use.own

----------------------------- /sw/xt5/modulefiles --------------------

DefApps lapack/3.1.1-dualcore

MiscApps lapack/3.1.1-fPIC

adios/0.9.8(default) liblut/0.9.6

arpack/2008.03.11 m4/1.4.11

atlas/3.8.2 matlab/7.5

A-13

atlas/3.8.2-fPIC-dualcore mercurial/1.0.2

autoconf/2.63 metis/4.0

automake/1.10.1 mpe2/1.0.6

aztec/2.1 mpip/3.1.2

blas/ref(default) mumps/4.7.3_par

blas/ref-dualcore namd/2.6

bugget/2.0 ncl/5.0.0

cmake/2.6.1(default) nco/3.9.4

cmake/2.6.2 ncview/1.93c

cpmd/3.13.1 nedit/5.5

cpmd/3.13.2 netcdf/3.6.2(default)

doxygen/1.5.6 netcdf/4.0.0

doxygen/1.5.8 netcdf/4.0.0_par

ferret/6.1 ompi/ADTR65

fftpack/5-r4i4 ompi/ADTR77

fftpack/5-r8i4 ompi/ADTR78

fftpack/5-r8i8 ompi/DTR56

fftw/3.1.2 ompi/DTR59

fftw/3.1.2-dualcore ompi/routing-pgi

fftw/3.2 p-netcdf/1.0.2(default)

fftw/3.2-dualcore p-netcdf/1.0.3

fpmpi/1.0 parmetis/3.1

fpmpi/1.1 petsc/2.3.3-debug

fpmpi_papi/1.0 petsc-complex/2.3.3-debug

fpmpi_papi/1.1 pgplot/5.2

gamess/2008Mar04 pspline/1.0

git/1.6.0 python/2.5.2

git/1.6.0.4 python/2.5.2-netcdf

globalarrays/4.0.8 qt/4.3.4

gnuplot/4.2.3 ruby/1.8.7

gnuplot/4.2.4(default) ruby/1.9.1

gptl/3.4.1 spdcp/0.3.6

gptl/3.4.3 sprng/2.0b

gptl/3.4.7(default) stagesub/1.0.2

grace/5.1.21 stagesub/1.0.3(default)

gromacs/3.3.3 subversion/1.4.6

gsl/1.11 subversion/1.5.0(default)

gsl/1.11-dualcore sundials/2.3.0

hdf5/1.6.7(default) superlu/3.0

hdf5/1.6.7_par superlu_dist/2.2

hdf5/1.6.8 swig/1.3.36

hdf5/1.6.8_par szip/2.1

hdf5/1.8.1 tau/2.17.2

hdf5/1.8.1_par tau/2.17.3

hdf5/1.8.2 tkdiff/4.1.4

hdf5/1.8.2_par totalview/8.6.0-1(default)

hypre/2.0.0 trilinos/8.0.3

idl/6.4 udunits/1.12.4

imagemagick/6.4.2(default) udunits/1.12.9

java-jdk/1.5.0.06 umfpack/5.1.1

java-jdk/1.6.0.06 valgrind/3.3.1

java-jre/1.5.0.06 vim/7.1

lammps/4Mar08 vim/7.2

lammps/May08 visit/1.11.1

A-14

lapack/3.1.1(default)

A.3 COMPILATION FOR INSTRUMENTATION AND EXECUTION

PAPI instrumented case (example)

 Prepare the environment

module load xt-papi .

jaguarpf-login2 roche/chk-perf> env | grep PAPI

PE_PRODUCT_LIST=ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW:PAPI

PAPI_POST_LINK_OPTS= -L/opt/xt-tools/papi/3.6.2/v23/linux/lib -lpapi -lpfm

PAPI_INCLUDE_OPTS=-I/opt/xt-

tools/papi/3.6.2/v23/$XTPE_COMPILE_TARGET/include

PAPI_VERSION=3.6.2

 Compile the code

cc -c -DKRP ${PAPI_INCLUDE_OPTS} kr-cpblas-tst.c ; cc -o xcpbls kr-

cpblastst.o ${PAPI_POST_LINK_OPTS} –lsci -lm

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

 The run script

#PBS -V

#PBS -l walltime=00:30:00,size=256

#PBS -A csc053

#PBS -N cpbls

#PBS -j oe

cd ${PBS_O_WORKDIR}

aprun -n 256 ./xcpbls 24576 24576 24576 80 16 16

 The output of the example

TotPEs(jagpf)[8]

Mhz[2300]

nCPU-SMPnode(jagpf)[8]

nSMPnodes(jagpf)[1]

vendor string cpu[AuthenticAMD}

model string cpu[Quad-Core AMD Opteron(tm) Processor 23 (B3)}

model number[16]

PAPI_TOT_INS : Tot[111540195796692] Rt[449702700723]

PAPI_FP_INS : Tot[123390048343296] Rt[522995200021]

PAPI_FP_OPS : Tot[123390048343296] Rt[522995200021]

PAPI_L2_DCM : Tot[84401033569] Rt[248334396]

PAPI_real_cyc = 187063030672

PAPI_real_usec = 81331753

PAPI_user_cyc = 187036000000

PAPI_user_usec = 81320000

Application 107259 resources: utime 16225, stime 129

A-15

Automatically instrumented case (example)

 Prepare the environment

module load xt-craypat .

 Check the modules

module list

Currently Loaded Modulefiles:

1) modules/3.1.6 4) moab/5.2.4

7) xt-service/2.1.50HD 10) xt-boot/2.1.50HD

13) Base-opts/2.1.50HD 16) xt-libsci/10.3.1

19) xt-asyncpe/2.0

2) DefApps 5) xtpe-quadcore

8) xt-libc/2.1.50HD 11) xt-lustre-ss/2.1.50HD_PS04_1.6.5

14) pgi/7.2.5 17) xt-mpt/3.1.0

20) PrgEnv-pgi/2.1.50HD

3) torque/2.3.2-snap.200807092141 6) MySQL/5.0.45

9) xt-os/2.1.50HD 12) xtpe-target-cnl

15) fftw/3.1.1 18) xt-pe/2.1.50HD

21) xt-craypat/4.4.0.4

 Compile the code

cc -c kr-cpblas-tst.c ; cc -o xcpbls-cp kr-cpblas-tst.o -lsci -lm

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

 Build the instrumented binary

pat_build -Drtenv=PAT_RT_HWPC=0 -g mpi -w –o xcpbls-cp+apa ./xcpbls-cp

 The run script

#PBS -V

#PBS -l walltime=00:30:00,size=56

#PBS -A csc053

#PBS -N cpbls

#PBS -j oe

cd ${PBS_O_WORKDIR}

aprun -n 56 ./xcpbls-cp+apa 16384 16384 16384 80 7 8

 Run the code

qsub qscr-joule-apa

 Build the automated performance report

pat_report -o apa-report.txt

xcpbls-cp+apa+25678-20623tdt.xf

 Actual output of the automatically generated performance report

A-16

CrayPat/X: Version 4.4.0 Revision 2195 (xf 2119) 10/29/08 14:13:53

Number of PEs (MPI ranks): 56

Number of Threads per PE: 1

Number of Cores per Processor: 4

Execution start time: Tue Mar 3 02:31:12 2009

System type and speed: x86_64 2300 MHz

Current path to data file:

 /tmp/work/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.ap2 (RTS)

 /tmp/work/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.xf (RTS)

Notes for table 1:

 Table option:

 -O profile_pe_th-h

 Options implied by table option:

 -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE

 Options for related tables not shown by default:

 -O profile_pe.th -O callers

 -O profile_th_pe -O callers+src

 -O profile+src -O calltree

 -O load_balance -O calltree+src

 The Total value for each of Time, Calls is the sum of the Group values.

 The Group value for each of Time, Calls is the sum of the Function

values.

 The Function value for each of Time, Calls is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Time% > 0.95.

 (To set thresholds to zero, specify: -T)

 Percentages at each level are of the Total for the program.

 (For percentages relative to next level up, specify:

 -s percent=r[elative])

Table 1: Profile by Function Group and Function (no hwpc)

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 110.941610 | -- | -- | 5109.3 |Total

|---

| 88.9% | 98.575756 | -- | -- | 2.0 |USER

||--

|| 88.9% | 98.575642 | 4.527489 | 4.5% | 1.0 |main

||==

A-17

| 11.1% | 12.313924 | -- | -- | 5105.3 |MPI

||--

|| 4.8% | 5.370178 | 1.467647 | 21.9% | 1.0 |MPI_Comm_create

|| 3.6% | 3.938757 | 3.694346 | 49.3% | 930.2 |MPI_Recv

|| 2.7% | 2.980756 | 3.777156 | 56.9% | 930.2 |MPI_Send

|===

Notes for table 2:

 Table option:

 -O profile

 Options implied by table option:

 -d ti%@0.95,ti,imb_ti,imb_ti%,tr,P -b gr,fu,pe=HIDE

 Options for related tables not shown by default:

 -O profile_pe.th -O callers

 -O profile_th_pe -O callers+src

 -O profile+src -O calltree

 -O load_balance -O calltree+src

 The Total value for each data item is the sum of the Group values.

 The Group value for each data item is the sum of the Function values.

 The Function value for each data item is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 'D1 cache utilization (M)' is based on data size 8B, and refills caused

by

 misses.

 This table shows only lines with Time% > 0.95.

 (To set thresholds to zero, specify: -T)

 Percentages at each level are of the Total for the program.

 (For percentages relative to next level up, specify:

 -s percent=r[elative])

Table 2: Profile by Function Group and Function

Group / Function / PE='HIDE'

==

Totals for program

--

 Time% 100.0%

 Time 110.941610 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 46.3 /sec 5109.3 calls

 PAPI_L1_DCM 11.761M/sec 1297073220 misses

 PAPI_TOT_INS 5392.251M/sec 594676118362 instr

 PAPI_L1_DCA 2267.168M/sec 250031159666 refs

 PAPI_FP_OPS 5920.436M/sec 652926106258 ops

 User time (approx) 110.283 secs 253651943657 cycles 99.4%Time

A-18

 Average Time per Call 0.021714 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 5920.436M/sec 652926106258 ops 64.4%peak(DP)

 HW FP Ops / WCT 5885.313M/sec

 HW FP Ops / Inst 109.8%

 Computational intensity 2.57 ops/cycle 2.61 ops/ref

 Instr per cycle 2.34 inst/cycle

 MIPS 301966.08M/sec

 MFLOPS (aggregate) 331544.40M/sec

 Instructions per LD & ST 42.0% refs 2.38 inst/ref

 D1 cache hit,miss ratios 99.5% hits 0.5% misses

 D1 cache utilization (M) 192.77 refs/miss 24.096 avg uses

==

USER

--

 Time% 88.9%

 Time 98.575756 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.0 /sec 2.0 calls

 PAPI_L1_DCM 11.002M/sec 1082508371 misses

 PAPI_TOT_INS 5613.815M/sec 552364281560 instr

 PAPI_L1_DCA 2370.347M/sec 233227344737 refs

 PAPI_FP_OPS 6635.850M/sec 652926105327 ops

 User time (approx) 98.394 secs 226305620820 cycles 99.8%Time

 Average Time per Call 49.287878 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 6635.850M/sec 652926105327 ops 72.1%peak(DP)

 HW FP Ops / WCT 6623.597M/sec

 HW FP Ops / Inst 118.2%

 Computational intensity 2.89 ops/cycle 2.80 ops/ref

 Instr per cycle 2.44 inst/cycle

 MIPS 314373.63M/sec

 MFLOPS (aggregate) 371607.57M/sec

 Instructions per LD & ST 42.2% refs 2.37 inst/ref

 D1 cache hit,miss ratios 99.5% hits 0.5% misses

 D1 cache utilization (M) 215.45 refs/miss 26.931 avg uses

==

USER / main

--

 Time% 88.9%

 Time 98.575642 secs

 Imb.Time 4.527489 secs

 Imb.Time% 4.6%

 Calls 0.0 /sec 1.0 calls

 PAPI_L1_DCM 11.002M/sec 1082507665 misses

 PAPI_TOT_INS 5613.824M/sec 552364180392 instr

 PAPI_L1_DCA 2370.351M/sec 233227289198 refs

 PAPI_FP_OPS 6635.862M/sec 652926105327 ops

 User time (approx) 98.394 secs 226305210179 cycles 99.8%Time

 Average Time per Call 98.575642 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 6635.862M/sec 652926105327 ops 72.1%peak(DP)

 HW FP Ops / WCT 6623.605M/sec

A-19

 HW FP Ops / Inst 118.2%

 Computational intensity 2.89 ops/cycle 2.80 ops/ref

 Instr per cycle 2.44 inst/cycle

 MIPS 314374.14M/sec

 MFLOPS (aggregate) 371608.25M/sec

 Instructions per LD & ST 42.2% refs 2.37 inst/ref

 D1 cache hit,miss ratios 99.5% hits 0.5% misses

 D1 cache utilization (M) 215.45 refs/miss 26.931 avg uses

==

MPI

--

 Time% 11.1%

 Time 12.313924 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 431.2 /sec 5105.3 calls

 PAPI_L1_DCM 18.020M/sec 213344554 misses

 PAPI_TOT_INS 3557.995M/sec 42123083365 instr

 PAPI_L1_DCA 1412.942M/sec 16727808051 refs

 PAPI_FP_OPS 79 /sec 930.161 ops

 User time (approx) 11.839 secs 27229688194 cycles 96.1%Time

 Average Time per Call 0.002412 sec

 CrayPat Overhead : Time 0.1%

 HW FP Ops / User time 79 /sec 930.161 ops 0.0%peak(DP)

 HW FP Ops / WCT 76 /sec

 HW FP Ops / Inst 0.0%

 Computational intensity 0.00 ops/cycle 0.00 ops/ref

 Instr per cycle 1.55 inst/cycle

 MIPS 199247.71M/sec

 MFLOPS (aggregate) 0.00M/sec

 Instructions per LD & ST 39.7% refs 2.52 inst/ref

 D1 cache hit,miss ratios 98.7% hits 1.3% misses

 D1 cache utilization (M) 78.41 refs/miss 9.801 avg uses

==

MPI / MPI_Comm_create

--

 Time% 4.8%

 Time 5.370178 secs

 Imb.Time 1.467647 secs

 Imb.Time% 22.3%

 Calls 0.2 /sec 1.0 calls

 PAPI_L1_DCM 19.450M/sec 104448581 misses

 PAPI_TOT_INS 3657.179M/sec 19639696959 instr

 PAPI_L1_DCA 1453.390M/sec 7804962080 refs

 PAPI_FP_OPS 0 ops

 User time (approx) 5.370 secs 12351406681 cycles 100.0%Time

 Average Time per Call 5.370178 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 0 ops 0.0%peak(DP)

 HW FP Ops / WCT

 HW FP Ops / Inst 0.0%

 Computational intensity 0.00 ops/cycle 0.00 ops/ref

 Instr per cycle 1.59 inst/cycle

 MIPS 204802.01M/sec

A-20

 MFLOPS (aggregate) 0.00M/sec

 Instructions per LD & ST 39.7% refs 2.52 inst/ref

 D1 cache hit,miss ratios 98.7% hits 1.3% misses

 D1 cache utilization (M) 74.73 refs/miss 9.341 avg uses

==

MPI / MPI_Recv

--

 Time% 3.6%

 Time 3.938757 secs

 Imb.Time 3.694346 secs

 Imb.Time% 50.2%

 Calls 267.3 /sec 930.2 calls

 PAPI_L1_DCM 16.915M/sec 58867999 misses

 PAPI_TOT_INS 3516.575M/sec 12238748109 instr

 PAPI_L1_DCA 1395.848M/sec 4857975146 refs

 PAPI_FP_OPS 0 ops

 User time (approx) 3.480 secs 8004697555 cycles 88.4%Time

 Average Time per Call 0.004234 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 0 ops 0.0%peak(DP)

 HW FP Ops / WCT

 HW FP Ops / Inst 0.0%

 Computational intensity 0.00 ops/cycle 0.00 ops/ref

 Instr per cycle 1.53 inst/cycle

 MIPS 196928.21M/sec

 MFLOPS (aggregate) 0.00M/sec

 Instructions per LD & ST 39.7% refs 2.52 inst/ref

 D1 cache hit,miss ratios 98.8% hits 1.2% misses

 D1 cache utilization (M) 82.52 refs/miss 10.315 avg uses

==

MPI / MPI_Send

--

 Time% 2.7%

 Time 2.980756 secs

 Imb.Time 3.777156 secs

 Imb.Time% 57.9%

 Calls 313.2 /sec 930.2 calls

 PAPI_L1_DCM 16.804M/sec 49901153 misses

 PAPI_TOT_INS 3444.843M/sec 10229767713 instr

 PAPI_L1_DCA 1366.745M/sec 4058671524 refs

 PAPI_FP_OPS 313 /sec 930.161 ops

 User time (approx) 2.970 secs 6830054698 cycles 99.6%Time

 Average Time per Call 0.003205 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 313 /sec 930.161 ops 0.0%peak(DP)

 HW FP Ops / WCT 312 /sec

 HW FP Ops / Inst 0.0%

 Computational intensity 0.00 ops/cycle 0.00 ops/ref

 Instr per cycle 1.50 inst/cycle

 MIPS 192911.20M/sec

 MFLOPS (aggregate) 0.02M/sec

 Instructions per LD & ST 39.7% refs 2.52 inst/ref

 D1 cache hit,miss ratios 98.8% hits 1.2% misses

 D1 cache utilization (M) 81.33 refs/miss 10.167 avg uses

A-21

==

Notes for table 3:

 Table option:

 -O load_balance_m

 Options implied by table option:

 -d ti%@0.95,ti,Mc,Mm,Mz -b gr,pe=[mmm]

 Options for related tables not shown by default:

 -O load_balance_sm -O load_balance_cm

 The Total value for each data item is the sum of the Group values.

 The Group value for each data item is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Time% > 0.95.

 (To set thresholds to zero, specify: -T)

 Percentages at each level are of the Total for the program.

 (For percentages relative to next level up, specify:

 -s percent=r[elative])

Table 3: Load Balance with MPI Message Stats

 Time % | Time | MPI |MPI Msg Bytes |Avg MPI Msg |Group

 | | Msg | | Size | PE[mmm]

 | | Count | | |

 100.0% | 110.949027 | 930.2 | 997045979.0 | 1071907.21 |Total

|---

| 88.8% | 98.575759 | -- | -- | -- |USER

||--

|| 1.7% | 103.103247 | -- | -- | -- |pe.1

|| 1.6% | 99.183271 | -- | -- | -- |pe.43

|| 1.5% | 95.192528 | -- | -- | -- |pe.22

||==

| 11.1% | 12.321335 | 930.2 | 997045979.0 | 1071907.21 |MPI

||--

|| 0.3% | 17.008587 | 932.0 | 981012480.0 | 1052588.50 |pe.39

|| 0.2% | 12.790484 | 927.0 | 999014400.0 | 1077685.44 |pe.32

|| 0.0% | 2.468221 | 929.0 | 1015193600.0 | 1092781.05 |pe.1

|===

Notes for table 4:

 Table option:

 -O mpi_callers

 Options implied by table option:

 -d Mm,Mc@,Mb1..7 -b fu,ca,pe=[mmm]

 Options for related tables not shown by default:

 -O mpi_sm_callers -O mpi_coll_callers

A-22

 The Total value for each data item is the sum of the Function values.

 The Function value for each data item is the sum of the Caller values.

 The Caller value for each data item is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with MPI Msg Count > 0.

Table 4: MPI Message Stats by Caller

MPI Msg Bytes | MPI | 64KB<= | 1MB<= |Function

 | Msg | MsgSz | MsgSz | Caller

 | Count | <1MB | <16MB | PE[mmm]

 | | Count | Count |

 997045979.0 | 930.2 | 243.1 | 687.0 |Total

|--

| 997045979.0 | 930.2 | 243.1 | 687.0 |MPI_Send

| | | | | pzgemm_

3 | | | | main

||||---

4||| 1015808000.0 | 926.0 | 82.0 | 844.0 |pe.3

4||| 998711296.0 | 930.0 | 500.0 | 430.0 |pe.14

4||| 978452480.0 | 930.0 | 507.0 | 423.0 |pe.55

|==

Notes for table 6:

 Table option:

 -O program_time

 Options implied by table option:

 -d pt,hm -b pe=[mmm]

 The Total value for each of Process Time, Process HiMem (MBytes) is the

avg

 of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

Table 6: Program Wall Clock Time, Memory High Water Mark

 Process | Process |PE[mmm]

 Time | HiMem |

 | (MBytes) |

 114.987871 | 313 |Total

|------------------------------

| 115.521469 | 320.918 |pe.9

| 114.982404 | 313.098 |pe.28

| 114.475464 | 313.090 |pe.20

|==============================

========= Additional details ============================

Experiment: trace

A-23

Original path to data file:

 /lustre/scratch/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.xf (RTS)

Original program: /lustre/scratch/roche/chk-perf/./xcpbls-cp

Instrumented with:

 pat_build -Drtenv=PAT_RT_HWPC=0 -g mpi -w -o xcpbls-cp+apa \

 ./xcpbls-cp

Instrumented program: ./xcpbls-cp+apa

Program invocation: ./xcpbls-cp+apa 16384 16384 16384 80 7 8

Exit Status: 0 PEs: 0-55

Memory pagesize: 4096

Runtime environment variables:

 MPICHBASEDIR=/opt/mpt/3.1.0/xt

 PAT_RT_HWPC=0

 MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi

Report time environment variables:

 CRAYPAT_ROOT=/opt/xt-tools/craypat/4.4.0.4/v23/cpatx

Report command line options: -o apa-report.txt

Operating system:

 Linux 2.6.16.54-0.2.12_1.0000.3997.0-cnl #1 SMP Mon Jan 26 13:41:57 PST

2009

Hardware performance counter events:

 PAPI_L1_DCM Level 1 data cache misses

 CYCLES_USER User Cycles (approx, from clock ticks)

 PAPI_L1_DCA Level 1 data cache accesses

 PAPI_TOT_INS Instructions completed

 PAPI_FP_OPS Floating point operations

Estimated minimum overhead per call of a traced function,

 which was subtracted from the data shown in this report

 (for raw data, use the option: -s overhead=include):

 PAPI_L1_DCM 10.653 misses

 PAPI_TOT_INS 2019.045 instr

 PAPI_L1_DCA 1192.191 refs

 PAPI_FP_OPS 0.000 ops

 CYCLES_USER 4107.143 cycles

 Time 1.452 microseconds

Number of traced functions: 104

 (To see the list, specify: -s traced_functions=show)

GNU compilation/execution process plus automatic instrumentation

A-24

 Instrument the code (from a bash shell)

<yourcode>c via GNU gcc compiler

 Load the GNU environment

module swap PrgEnv-pgi PrgEnv-gnu .

 Load the correct tools

Module load xt-craypat .

 Set the environment variables to capture intended metrics

export PAT_RT_HWPC=PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_FP_INS .

 Instrument the source code by compiling with code generation hooks in the original code that

CrayPAT will utilize

cc -c -finstrument-functions <yourcode>.c .

 Build the binary including the instrumentation hooks

cc -o x<yourcodebinary><yourcode>.o .

 Build the instrumentation (tracing example) binary

x<yourcodebinary>+pat : pat_build -w

x<yourcodebinary>x<yourcodebinary>+pat .

 Execute the instrumented binary

aprun -n <n> ./x<yourcodebinary>+pat .

 Build a simplistic performance report for the run

pat_report -o <yourreport>.txt x<yourcodebinary>+pat+<processlabels>.xf .

 Report is in the text file, which will include output similar to below (note that the profiled program

did essentially no floating point computations)

==

 Totals for program

 --

 Time% 100.0%

 Time 0.548266 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 9.1 /sec 5.0 calls

 PAPI_TOT_INS 3648.979M/sec 1997187152 instr

 PAPI_FP_INS 0 /sec 0.018 ops

 PAPI_TOT_CYC 0.547 secs 1258853693 cycles

 User time (approx) 0.548 secs 1260482143 cycles 99.8%Time

 Average Time per Call 0.109653 sec

 CrayPat Overhead : Time 0.0%

A-25

 HW FP Ops / Cycles 0.00 ops/cycle

 HW FP Ops / User time 0 /sec 0.018 ops 0.0%peak(DP)

 HW FP Ops / WCT 0 /sec

 HW FP Ops / Inst 0.0%

 Instr per cycle 1.59 inst/cycle

 MIPS 204342.81M/sec

 MFLOPS (aggregate) 0.00M/sec

 ==

 USER

 --

 Time% 100.0%

 Time 0.548263 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 5.5 /sec 3.0 calls

 PAPI_TOT_INS 3648.992M/sec 1997186185 instr

 PAPI_FP_INS 0 /sec 0.018 ops

 PAPI_TOT_CYC 0.547 secs 1258848387 cycles

 User time (approx) 0.548 secs 1260482143 cycles 99.8%Time

 Average Time per Call 0.182754 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / Cycles 0.00 ops/cycle

 HW FP Ops / User time 0 /sec 0.018 ops 0.0%peak(DP)

 HW FP Ops / WCT 0 /sec

 HW FP Ops / Inst 0.0%

 Instr per cycle 1.59 inst/cycle

 MIPS 204343.58M/sec

 MFLOPS (aggregate) 0.00M/sec

 ==

 USER / main

 --

 Time% 100.0%

 Time 0.548163 secs

 Imb.Time 0.565060 secs

 Imb.Time% 52.6%

 Calls 3.7 /sec 2.0 calls

 PAPI_TOT_INS 3649.078M/sec 1997092099 instr

 PAPI_FP_INS 0 /sec 0.018 ops

 PAPI_TOT_CYC 0.547 secs 1258759596 cycles

 User time (approx) 0.548 secs 1260482143 cycles 99.8%Time

 Average Time per Call 0.274082 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / Cycles 0.00 ops/cycle

 HW FP Ops / User time 0 /sec 0.018 ops 0.0%peak(DP)

 HW FP Ops / WCT 0 /sec

 HW FP Ops / Inst 0.0%

 Instr per cycle 1.59 inst/cycle

 MIPS 204348.36M/sec

 MFLOPS (aggregate) 0.00M/sec

 ==

B-1

APPENDIX B. VISIT

B.1 INPUT SETTINGS

The VisIt test runs were launched using the python API using the isosurface and volume rendering

scripts as given below.

Isosurface script

import sys

OpenDatabase("/lustre/scratch/pugmire/proj/joule/denovo/forward_out.silo",

0)

expr = "scalar_flux_0 *1.6151E-04"

expr = expr + "+ scalar_flux_1 *1.4451E-04"

expr = expr + "+ scalar_flux_2 *1.2704E-04"

expr = expr + "+ scalar_flux_3 *1.2811E-04"

expr = expr + "+ scalar_flux_4 *1.2984E-04"

expr = expr + "+ scalar_flux_5 *1.0343E-04"

expr = expr + "+ scalar_flux_6 *5.2655E-05"

expr = expr + "+ scalar_flux_7 *1.2861E-05"

expr = expr + "+ scalar_flux_8 *3.7358E-06"

expr = expr + "+ scalar_flux_9 *3.7198E-06"

expr = expr + "+ scalar_flux_10 *4.0086E-06"

expr = expr + "+ scalar_flux_11 *4.2945E-06"

expr = expr + "+ scalar_flux_12 *4.4731E-06"

expr = expr + "+ scalar_flux_13 *4.5656E-06"

expr = expr + "+ scalar_flux_14 *4.5597E-06"

expr = expr + "+ scalar_flux_15 *4.5210E-06"

expr = expr + "+ scalar_flux_16 *4.4873E-06"

expr = expr + "+ scalar_flux_17 *4.4660E-06"

expr = expr + "+ scalar_flux_18 *4.4342E-06"

expr = expr + "+ scalar_flux_19 *4.3316E-06"

expr = expr + "+ scalar_flux_20 *4.2028E-06"

expr = expr + "+ scalar_flux_21 *4.0974E-06"

expr = expr + "+ scalar_flux_22 *3.8398E-06"

expr = expr + "+ scalar_flux_23 *3.6748E-06"

expr = expr + "+ scalar_flux_24 *3.6748E-06"

expr = expr + "+ scalar_flux_25 *3.6748E-06"

expr = expr + "+ scalar_flux_26 *3.6748E-06"

DefineScalarExpression("dose", "%s" % expr)

AddPlot("Contour", "dose", 1, 1)

ContourAtts = ContourAttributes()

ContourAtts.contourMethod = ContourAtts.Value

ContourAtts.contourValue = (.001, .01, .1, 1, 10, 100)

SetPlotOptions(ContourAtts)

AddPlot("Contour", "dose", 1, 1)

ContourAtts = ContourAttributes()

ContourAtts.contourMethod = ContourAtts.Value

ContourAtts.contourValue = (.001, .01, .1, 1, 10, 100)

SetPlotOptions(ContourAtts)

s = SaveWindowAttributes()

s.width, s.height = (1024,1024)

B-2

SetSaveWindowAttributes(s)

DrawPlots()

SaveWindow()

sys.exit()

The Q4 problem script was identitcal to the Q2 script except that it references the new Q4 file.

Namely:

OpenDatabase("/lustre/scratch/pugmire/proj/joule/denovo/forward_out.silo",

0)

Was replaced with:

OpenDatabase("/lustre/widow1/scratch/pugmire/proj/joule/denovo/medbig_forw

ard_out.silo", 0)

Volume Rendering script:

import sys

RestoreSession("/lustre/scratch/pugmire/proj/joule/benchmark0/vr/VR-

4000samp.session", 0)

s = SaveWindowAttributes()

s.width, s.height = (1024,1024)

SetSaveWindowAttributes(s)

DrawPlots()

SaveWindow()

sys.exit()

The Q4 problem script was identical to the Q2 script, except that it references the new Q4 data file.

Namely:

RestoreSession("/lustre/scratch/pugmire/proj/joule/benchmark0/vr/VR-

4000samp.session", 0)

Was replaced with:

RestoreSession(

"/lustre/widow1/scratch/pugmire/proj/joule/benchmark1/vr/VR-

4000samp.session", 0)

Denvo was run on Jaguar/XT5 on 4096 cores and 4096 domains with the input deck given below.
eq_set: sc

input: pwr_in

Pn_order: 3

Sn_order: 16

num_blocks_i: 64

num_blocks_j: 64

num_z_blocks: 27

silo_output: forward_out

pwr_in is a binary file specifying the problem setup.

The simulation output is as follows:

B-3

Tue Dec 16 23:18:29 EST 2008

>>> Finished reading problem database.

>>> Finished partitioning problem.

>>> Finished reading material database.

>>> Finished reading source database.

>>> Finished building solvers.

Database for hpc_input has:

 12 integer entries

 1 double entries

 2 bool entries

 4 string entries

 0 vector<int> entries

 5 vector<double> entries

 1 nested database entries

===================================

Entries in hpc_input database

===================================

integer entries

--

 Pn_order 3

 Sn_order 16

 aztec_diag 0

 aztec_kspace 20

 aztec_output 0

 first_group 0

 last_group 26

 max_itr 1000

 num_blocks_i 64

 num_blocks_j 64

 num_groups 46

 num_z_blocks 27

double entries

--

 tolerance 1e-06

bool entries

--

 adjoint 0

 downscatter 1

string entries

--

 boundary vacuum

 input pwr_in

 problem_name pwr

 within_group_solver GMRES

===================================

Entries in silo database

===================================

bool entries

--

 silo_out_current 0

 silo_out_sigma 0

B-4

string entries

--

 silo_output forward_out

Denovo Setup complete, ready to solve using SC spatial differencing

option.

--

-

>>> Forward group 0 finished in 8 GMRES iterations.

>>> Forward group 1 finished in 9 GMRES iterations.

>>> Forward group 2 finished in 9 GMRES iterations.

>>> Forward group 3 finished in 9 GMRES iterations.

>>> Forward group 4 finished in 12 GMRES iterations.

>>> Forward group 5 finished in 17 GMRES iterations.

>>> Forward group 6 finished in 23 GMRES iterations.

>>> Forward group 7 finished in 21 GMRES iterations.

>>> Forward group 8 finished in 27 GMRES iterations.

>>> Forward group 9 finished in 26 GMRES iterations.

>>> Forward group 10 finished in 27 GMRES iterations.

>>> Forward group 11 finished in 23 GMRES iterations.

>>> Forward group 12 finished in 20 GMRES iterations.

>>> Forward group 13 finished in 20 GMRES iterations.

>>> Forward group 14 finished in 15 GMRES iterations.

>>> Forward group 15 finished in 13 GMRES iterations.

>>> Forward group 16 finished in 9 GMRES iterations.

>>> Forward group 17 finished in 8 GMRES iterations.

>>> Forward group 18 finished in 10 GMRES iterations.

>>> Forward group 19 finished in 14 GMRES iterations.

>>> Forward group 20 finished in 9 GMRES iterations.

>>> Forward group 21 finished in 10 GMRES iterations.

>>> Forward group 22 finished in 13 GMRES iterations.

>>> Forward group 23 finished in 9 GMRES iterations.

>>> Forward group 24 finished in 8 GMRES iterations.

>>> Forward group 25 finished in 9 GMRES iterations.

>>> Forward group 26 finished in 8 GMRES iterations.

===================

Final Timing Report

===================

 Routine Max Fraction Min Fraction

==

 Build_solver 1.5522e-05 5.1841e-06

 Output 9.5824e-02 4.0892e-04

 Setup 3.6749e-01 3.6746e-01

 Solver 5.3672e-01 5.3669e-01

 Sweep 5.1994e-01 4.8821e-01

 Within_group_solver 5.3672e-01 5.3669e-01

==

Total execution time : 4.1919e+03 seconds.

Application 1843223 resources: utime 0, stime 7

B-5

B.2 COMPILATION

Compilation of VisIt was done on the currently released version of VisIt, 1.11.1 using the g++

compiler (in /opt/gcc/4.2.0.quadcore/bin/g++).The following compiler options were used:

CC="gcc"

CXX="g++"

CFLAGS=" -m64 -fPIC -DMPICH_IGNORE_CXX_SEEK -DPAPI"

CXXFLAGS=" -m64 -fPIC -DMPICH_IGNORE_CXX_SEEK -DPAPI"

#Get these via CC -v

LDFLAGS="-L/opt/fftw/3.1.1/cnos/lib $LDFLAGS"

LDFLAGS="-L/opt/mpt/3.1.0/xt/mpich2-gnu/lib $LDFLAGS"

LDFLAGS="-L/opt/xt-libsci/10.3.1/gnu/snos64/lib $LDFLAGS"

LDFLAGS="-L/opt/mpt/3.1.0/xt/sma/lib $LDFLAGS"

LDFLAGS="-L/opt/mpt/3.1.0/xt/util/lib $LDFLAGS"

LDFLAGS="-L/opt/mpt/3.1.0/xt/pmi/lib $LDFLAGS"

LDFLAGS="-L/opt/xt-pe/2.1.41HD/lib/snos64 $LDFLAGS"

LDFLAGS="-L/opt/xt-service/2.1.41HD/lib/snos64 $LDFLAGS"

LDFLAGS="-L/opt/mpt/3.1.0/xt/mpich2-gnu/lib $LDFLAGS"

CPPFLAGS="-I/opt/mpt/3.1.0/xt/mpich2-gnu/include -I/opt/xt-

tools/papi/3.6.2/v23/linux/include $CPPFLAGS"

MPI_LIBS="-Bstatic -lfftw3 -lfftw3f -lsci_quadcore -lsci -lfftw3 -lfftw3f

/opt/mpt/3.1.0/xt/sma/lib/libsma.a /opt/mpt/3.1.0/xt/mpich2-

gnu/lib/libmpichcxx.a /opt/mpt/3.1.0/xt/mpich2-gnu/lib/libmpich.a -lrt

--start -lpct /opt/mpt/3.1.0/xt/pmi/lib/libpmi.a /opt/xt-

mpt/2.1.41HD/lib/snos64/libalpslli.a /opt/xt-

mpt/2.1.41HD/lib/snos64/libalpsutil.a /opt/xt-

service/2.1.41HD/lib/snos64/libportals.a /opt/xt-

tools/papi/3.6.2/v23/linux/lib/libpapi.a /opt/xt-

tools/papi/3.6.2/v23/linux/lib/libpfm.a -lpthread -lm --end -lm -lgcc -

lgcc_eh -lc -lgcc -lgcc_eh -lc"

The VisIt parallel engine links to the Silo, python, VTK, mesa and HDF5 libraries:

silo/4.6.1/linux-x86_64_gcc-4.2.0

python/2.5/linux-x86_64_gcc-4.2.0

vtk/5.0.0c/linux-x86_64_gcc-4.2.0

mesa/5.0/linux-x86_64_gcc-4.2.0

hdf5/1.6.5/linux-x86_64_gcc-4.2.0

B.3 BATCH SCRIPT

The batch script is available upon request.

B.4 RUNTIME ENVIRONMENT

Modules used:

PrgEnv-gnu

xt-papi

B-6

B-7

C-1

APPENDIX C. CAM

Here we report the important elements of the software environment at the time of the Q2 run. This

includes version specification of the operating system, compiler, and required software libraries. We also

report important settings in the Makefile and other parts of the model build procedure (configuration and

compilation), including optimization flags passed to the compiler. Finally, the model run script and

critical Fortran name-list settings are also included. We have archived all these files and settings locally

(along with the model source code), in order to isolate what was changed between Q2 and Q4. We did not

include full Makefile, name list, or ―make‖ output here due to the vast volume of data inclusion that

would be required.

A.1 INPUT SETTINGS

Shown below are performance tuning settings from the input Fortran name-list that were applied in

the Q2 and Q4 runs. Changes in the Q4 settings are as a result of exploring optimal values, and the fact

that the optimal values can change based on code changes.

&cam_inparm

 phys_loadbalance = 2

 phys_alltoall = 1

/

Q4 settings:

&cam_inparm

 phys_loadbalance = 3

/

A.2 COMPILATION

The following are the critical settings from the model Makefile used in the Q2 and Q4 runs,

respectively.

Q2 Makefile:

MODEL_EXEDIR:=/autofs/na1_home/rosinski/cam3.5.55/models/atm/cam/joulebase

INC_NETCDF := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include

LIB_NETCDF := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib

MOD_NETCDF := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include

USER_CPPDEFS := -DHAVE_PAPI -DFORTRANUNDERSCORE \

 -DTROPCHEM -DCOUP_DOM -DPLON=1024 \

 -DPLAT=512 -DPLEV=26 -DPCNST=3 -DPCOLS=16 \

 -DPTRM=341 -DPTRN=341 -DPTRK=341

FORTRAN_OPTIMIZATION := -fast -Mvect=nosse –Kieee

Q4 Makefile:

MODEL_EXEDIR:=/autofs/na1_home/rosinski/cam3.5.55/models/atm/cam/joulebase

INC_NETCDF := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/include

C-2

LIB_NETCDF := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/lib

MOD_NETCDF := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/include

USER_CPPDEFS := -DHAVE_PAPI -DFORTRANUNDERSCORE \

 -DTROPCHEM -DCOUP_DOM -DPLON=1024 \

 -DPLAT=512 -DPLEV=26 -DPCNST=3 -DPCOLS=16 \

 -DPTRM=341 -DPTRN=341 -DPTRK=341

FORTRAN_OPTIMIZATION := -fast -fastsse -Mvect=sse

A.3 BATCH SCRIPT

The following is the Q2 model run script, minus the Fortran name lists.

!/bin/csh -fvx

#PBS -N jb8192

#PBS -V

#PBS -A CSC053CAM

#PBS -j oe

#PBS -l walltime=3:00:00

#PBS -l size=8192

#PBS -q batch

##PBS -q debug

setenv OMP_NUM_THREADS 8

setenv MPSTKZ 384M

setenv MPICH_UNEX_BUFFER_SIZE 250M

cd /tmp/work/rosinski/cam3.5.55.t341.withmods.adv3/joulebase || exit 1

set iter = 2

set dir = npes8192.iter$iter

mkdir $dir

cd $dir

cp /ccs/home/rosinski/cam3.5.55/models/atm/cam/joulebase/cam .

aprun -n 1024 -d $OMP_NUM_THREADS ./cam >&! out.init

exit 0

Paths to model source and run directories were different for the Q4 runs. But there were no changes to

environment variables or other aspects of the build system.

C.4 RUNTIME ENVIRONMENT

The runtime environment is available in an archived file on the Jaguar/XT5 file system.

D-1

APPENDIX D. XGC1

D.1 INPUT SETTINGS

Input namelist file

&sml_param

sml_machine=1 ! 0 circular, 1:D3D,

sml_node_file='d3d_g096333_2mm_16_mr10.1.node'

sml_ele_file='d3d_g096333_2mm_16_mr10.1.ele'

sml_use_pade=.true.

sml_bfollow=1

sml_bfollow_read=0

sml_special=0 ! 0: normal simulation, 1: single particle

simulation

sml_dt=0.002 ! delta-t for one time step - unit of toroidal

transit time.

sml_mstep=500 ! totoal time step

sml_deltaf=0 ! delta-f simulation switch - incomplete

sml_turb_efield=1

sml_electron_on=0

sml_nphi_total=16

sml_canonical_maxwell=0 ! cononical maxwellian initial loading switch -

incomplete

sml_bounce=0 ! Particle motion boundary condition

 ! 1 for edge simulation (including open field

line region)

 ! 2 for core simulation (excluding open field

line region)

sml_limiter=0 ! Limiter on/off

sml_fem_matrix=1

sml_inpsi=0.0d0 ! inner boundary of simulation - unit of

eq_x_psi

sml_outpsi=1.10d0 ! outter boundary of simulation - unit of

eq_x_psi

sml_push_mode=3

sml_pc_order=2

sml_restart_write_period=500

sml_restart=0

sml_zero_inner_bd=0

sml_guess_table_size=1500

sml_no_00_efield=0

sml_input_file_dir='../XGC1_inputs/'

sml_bd_ext_delta2=-0.01

sml_bd_ext_delta1=-0.003

sml_bd_ext_delta3=0.001

sml_bd_ext_delta4=0.03

sml_max_mat_width=300

sml_bd_Te_mode=0

sml_bd_Te_width=0.01D0

sml_sheath_mode=0

sml_sheath_init_pot_factor=2.5

D-2

sml_rgn1_pot0_only=.true.

sml_add_pot0=1

sml_add_pot0_file='pot0_0327_d3d_g096333_2mm_16_mr10_177236_fac.5.dat'

sml_zero_out_total_charge=.false.

sml_pol_decomp=.false.

sml_heat_on=.true.

sml_iter_solver=.false.

sml_iter_solver_niter=3

sml_bt_sign=1

/

&ptl_param

ptl_mass_au=2D0 ! 1 for hydrogen, 2 for deutron

ptl_charge_eu=1D0 ! ion charge

ptl_num=450000 ! number of particle for simulation

ptl_maxnum=550000

/

&eq_param ! Initial equilibrium profile - Tanh profile

eq_filename='d3d096333.eqd'

eq_den_shape=-1

eq_den_edge=4.0D20 ! inside value of density m^-3

eq_den_out=0.5D20 ! outside value of density m^-3

eq_den_ped_c=0.96D0 ! pedestal center

eq_den_ped_width=0.09D0 ! pedestal width

eq_den_val3=6.0D20

eq_den_psi3=0D0

eq_tempi_shape=-1

eq_tempe_shape=-1

eq_tempi_ped_c=0.91D0

eq_tempe_ped_c=0.91D0

eq_tempi_ped_width=0.14D0

eq_tempe_ped_width=0.14D0

eq_tempi_ev_edge=1D3 ! ion temperature (inside) - eV

eq_tempi_ev_out=5d1 ! ion temperature (outside) - eV

eq_tempe_ev_edge=1D3

eq_tempe_ev_out=5D1

eq_tempi_val3=4.5D3

eq_tempi_psi3=0D0

eq_tempe_val3=4.5D3

eq_tempe_psi3=0D0

eq_den_file='d3d_white_pop_2008_den.prf'

eq_tempi_file='d3d_white_pop_2008_tempi.prf'

eq_tempe_file='d3d_white_pop_2008_tempe.prf'

/

&efld_param ! E-field calculation

efld_mode=2 ! 0 zero efield, 1 static efield, 2 self-

consistent

efld_cutoff=0

/

D-3

&col_param ! Collision

col_mode=3 ! 0 : off , 1 monte-carlo (non-conserving) 2: monte-carlo

(conserving)

col_accel=.true.

col_accel_n=1

col_accel_factor1=10.

col_accel_pout1=0.08

/

&diag_param ! diagnosis

diag_f_on=0

diag_tracer_period=1

diag_tracer_n=1

diag_binout_period=10

diag_pot_period=200000

diag_ptl_on=0

diag_ptl_begin=10

diag_ptl_num=1000

diag_gam_on=0

diag_avg_on=1

diag_avg_outperiod=10

diag_flow_period=10

diag_rect_rmin=1.7

diag_rect_rmax=2.3

diag_rect_zmin=-0.03

diag_rect_zmax=0.03

diag_rect_nr=100

diag_rect_nz=3

diag_stress_on=.true.

/

&neu_param ! neutral collision

neu_col_mode=0

/

&lim_param ! limiter

/

&smooth_param

smooth_mode_in=0

smooth_n_in=2

smooth_H_mode_in=2

smooth_H_n_in=2

smooth_r1_n_in=-1

smooth_r1_d0_in=0.0042

smooth_r1_type_in=1

smooth_diag_mode_in=-1

/

&tbl_param

/

D-4

&heat_param

heat_narea=1

heat_power=50D6

heat_period=10

heat_outpsi=0.04

heat_decay_width=0.05

/

&mon_param

mon_flush_count=100

/

&prof_inparam

profile_papi_enable=.true.

profile_outpe_num = -1

profile_single_file = .false.

/

&papi_inparam

papi_ctr1_str="PAPI_TOT_CYC"

papi_ctr2_str="PAPI_TOT_INS"

papi_ctr3_str="PAPI_FP_INS"

/

PETSc input

-log_summary

-pc_type hypre

%-pc_type jacobi

-ksp_type cg

-pc_hypre_type boomeramg

-mat_partitioning_type current

-s2_mat_partitioning_type current

-s2_ksp_type cg

-s2_pc_type hypre

-s2_pc_hypre_type boomeramg

D.2 COMPILATION

/usr/bin/make all-am

make[1]: Entering directory

`/autofs/na1_home/shku/xgc/trunk/XGC1/jaguarpf'

source='../../camtimers/GPTLget_memusage.c' object='libtimers_wpapi_a-

GPTLget_memusage.o' libtool=no \

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

libtimers_wpapi_a-GPTLget_memusage.o `test -f

'../../camtimers/GPTLget_memusage.c' || echo

'../'`../../camtimers/GPTLget_memusage.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

source='../../camtimers/GPTLprint_memusage.c' object='libtimers_wpapi_a-

GPTLprint_memusage.o' libtool=no \

D-5

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

libtimers_wpapi_a-GPTLprint_memusage.o `test -f

'../../camtimers/GPTLprint_memusage.c' || echo

'../'`../../camtimers/GPTLprint_memusage.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

source='../../camtimers/GPTLutil.c' object='libtimers_wpapi_a-GPTLutil.o'

libtool=no \

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

libtimers_wpapi_a-GPTLutil.o `test -f '../../camtimers/GPTLutil.c' ||

echo '../'`../../camtimers/GPTLutil.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

source='../../camtimers/f_wrappers.c' object='libtimers_wpapi_a-

f_wrappers.o' libtool=no \

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

libtimers_wpapi_a-f_wrappers.o `test -f '../../camtimers/f_wrappers.c'

|| echo '../'`../../camtimers/f_wrappers.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

source='../../camtimers/gptl.c' object='libtimers_wpapi_a-gptl.o'

libtool=no \

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

libtimers_wpapi_a-gptl.o `test -f '../../camtimers/gptl.c' || echo

'../'`../../camtimers/gptl.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

source='../../camtimers/gptl_papi.c' object='libtimers_wpapi_a-

gptl_papi.o' libtool=no \

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

libtimers_wpapi_a-gptl_papi.o `test -f '../../camtimers/gptl_papi.c' ||

echo '../'`../../camtimers/gptl_papi.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

PGC-W-0095-Type cast required for this conversion

(../../camtimers/gptl_papi.c: 952)

PGC/x86-64 Linux 7.2-5: compilation completed with warnings

source='../../camtimers/threadutil.c' object='libtimers_wpapi_a-

threadutil.o' libtool=no \

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \

cc -DHAVE_CONFIG_H -I. -I.. -I. -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o

D-6

libtimers_wpapi_a-threadutil.o `test -f '../../camtimers/threadutil.c'

|| echo '../'`../../camtimers/threadutil.c

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -Mfree -i4 -Mdalign -Mextend -

byteswapio -DLINUX -DFORTRANUNDERSCORE -DSPMD -DHAVE_NANOTIME -DBIT64 -

I../../camtimers -DHAVE_PAPI -I/opt/xt-tools/papi/3.6.2/v23/xt-

cnl/include -fastsse -Kieee -mp -c -o libtimers_wpapi_a-perf_utils.o

`test -f '../../camtimers/perf_utils.F90' || echo

'../'`../../camtimers/perf_utils.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -Mfree -i4 -Mdalign -Mextend -

byteswapio -DLINUX -DFORTRANUNDERSCORE -DSPMD -DHAVE_NANOTIME -DBIT64 -

I../../camtimers -DHAVE_PAPI -I/opt/xt-tools/papi/3.6.2/v23/xt-

cnl/include -fastsse -Kieee -mp -c -o libtimers_wpapi_a-perf_mod.o

`test -f '../../camtimers/perf_mod.F90' || echo

'../'`../../camtimers/perf_mod.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

rm -f libtimers_wpapi.a

/usr/bin/ar crus libtimers_wpapi.a libtimers_wpapi_a-GPTLget_memusage.o

libtimers_wpapi_a-GPTLprint_memusage.o libtimers_wpapi_a-GPTLutil.o

libtimers_wpapi_a-f_wrappers.o libtimers_wpapi_a-gptl.o

libtimers_wpapi_a-gptl_papi.o libtimers_wpapi_a-threadutil.o

libtimers_wpapi_a-perf_utils.o libtimers_wpapi_a-perf_mod.o

/usr/bin/ranlib libtimers_wpapi.a

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-module.o `test -f 'module.F90' || echo '../'`module.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-search.o `test -f 'search.F90' || echo '../'`search.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-charge.o `test -f 'charge.F90' || echo '../'`charge.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

D-7

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-read.o `test -f 'read.F90' || echo '../'`read.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-pol_decomp.o `test -f 'pol_decomp.F90' || echo

'../'`pol_decomp.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-push.o `test -f 'push.F90' || echo '../'`push.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-setup.o `test -f 'setup.F90' || echo '../'`setup.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-efield.o `test -f 'efield.F90' || echo '../'`efield.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-diagnosis.o `test -f 'diagnosis.F90' || echo '../'`diagnosis.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-limiter.o `test -f 'limiter.F90' || echo '../'`limiter.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

D-8

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-bounce.o `test -f 'bounce.F90' || echo '../'`bounce.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-diagnosis2.o `test -f 'diagnosis2.F90' || echo

'../'`diagnosis2.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-collision.o `test -f 'collision.F90' || echo '../'`collision.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-collision2.o `test -f 'collision2.F90' || echo

'../'`collision2.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-diagnosis-f.o `test -f 'diagnosis-f.F90' || echo '../'`diagnosis-

f.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-heat.o `test -f 'heat.F90' || echo '../'`heat.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

D-9

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-turbulence.o `test -f 'turbulence.F90' || echo

'../'`turbulence.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-neutral.o `test -f 'neutral.F90' || echo '../'`neutral.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-neutral2.o `test -f 'neutral2.F90' || echo '../'`neutral2.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-linearsolver.o `test -f 'linearsolver.F90' || echo

'../'`linearsolver.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-therm2d.o `test -f 'therm2d.F90' || echo '../'`therm2d.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-poisson.o `test -f 'poisson.F90' || echo '../'`poisson.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-taus88.o `test -f 'taus88.F90' || echo '../'`taus88.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

D-10

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-derf.o `test -f 'derf.F90' || echo '../'`derf.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-datanh.o `test -f 'datanh.F90' || echo '../'`datanh.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-fmin.o `test -f 'fmin.F90' || echo '../'`fmin.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-bspline90_22.o `test -f 'bspline90_22.F90' || echo

'../'`bspline90_22.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-mpi.o `test -f 'mpi.F90' || echo '../'`mpi.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-interpolation.o `test -f 'interpolation.F90' || echo

'../'`interpolation.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

D-11

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-load.o `test -f 'load.F90' || echo '../'`load.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -DHAVE_CONFIG_H -I. -I.. -I. -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o

xgc1-main.o `test -f 'main.F90' || echo '../'`main.F90

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

ftn -fastsse -Kieee -mp -o xgc1 xgc1-module.o xgc1-search.o xgc1-

charge.o xgc1-read.o xgc1-pol_decomp.o xgc1-push.o xgc1-setup.o xgc1-

efield.o xgc1-diagnosis.o xgc1-limiter.o xgc1-bounce.o xgc1-

diagnosis2.o xgc1-collision.o xgc1-collision2.o xgc1-diagnosis-f.o

xgc1-heat.o xgc1-turbulence.o xgc1-neutral.o xgc1-neutral2.o xgc1-

linearsolver.o xgc1-therm2d.o xgc1-poisson.o xgc1-taus88.o xgc1-derf.o

xgc1-datanh.o xgc1-fmin.o xgc1-bspline90_22.o xgc1-mpi.o xgc1-

interpolation.o xgc1-load.o xgc1-main.o -

L/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib -ladios -lmxml -

I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -

L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5 -

L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz -L. -ltimers_wpapi -

L/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/lib -lpspline -lezcdf -lportlib -

L/sw/xt/netcdf/3.6.2/sles9.2_pgi7.0.7/lib -lnetcdf -

L/sw/xt/netcdf/3.6.2/sles9.2_pgi7.0.7/lib -lnetcdf

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used

/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib/libadios.a(libadios_a-

adios_socket.o): In function `adios_set_socket_address':

/autofs/na1_sw/xt5/adios/0.9.8/cnl2.1_pgi8.0.3/adios-

0.9.8/src/adios_socket.c:46: warning: Using 'gethostbyaddr' in

statically linked applications requires at runtime the shared libraries

from the glibc version used for linking

/autofs/na1_sw/xt5/adios/0.9.8/cnl2.1_pgi8.0.3/adios-

0.9.8/src/adios_socket.c:41: warning: Using 'gethostbyname' in

statically linked applications requires at runtime the shared libraries

from the glibc version used for linking

make[1]: Leaving directory `/autofs/na1_home/shku/xgc/trunk/XGC1/jaguarpf

D.3 BATCH SCRIPT

#PBS -N pf9

#PBS -l walltime=24:00:00,size=29952

#PBS -j eo

##PBS -q debug

#PBS -A csc053xgc1

cd $PBS_O_WORKDIR

date

rm finished.sim

mkdir restart_dir

lfs setstripe restart_dir -s 39845888 -c 40 -i -1

D-12

aprun -n 29952 ../xgc1exe/xgc1+apa3 >& output.out

date

touch finished.sim

D.4 RUNTIME ENVIRONMENT

FFTW_POST_LINK_OPTS= -L/opt/fftw/3.1.1/cnos/lib -lfftw3 -lfftw3f

MODULE_VERSION_STACK=3.1.6

LESSKEY=/etc/lesskey.bin

PAPI_POST_LINK_OPTS= -L/opt/xt-tools/papi/3.6.2/v23/linux/lib -lpapi -lpfm

NNTPSERVER=news

INFODIR=/usr/local/info:/usr/share/info:/usr/info

MANPATH=/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/man:/opt/petsc/2.3.3a/man:/opt/xt-

tools/papi/3.6.2/man:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/share/man:/sw/

xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/share/man:/sw/xt5/subversion/1.5.0/s

les10.1_gnu4.2.4/share/man:/opt/xt-

pe/2.1.50HD/papi/man:/opt/mpt/3.1.0/xt/man:/opt/xt-

libsci/10.3.1/man:/opt/fftw/3.1.1/cnos/man:/opt/pgi/7.2.5/linux86-

64/7.2/man:/opt/xt-lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/man:/opt/xt-

os/2.1.50HD/cnselect/man:/opt/xt-os/2.1.50HD/ros/man:/opt/xt-

libc/2.1.50HD/xt3_glibc/man:/opt/MySQL/5.0.45/man:/opt/moab/man:/opt/to

rque/default/man:/sw/xt5/man:/usr/local/man:/usr/share/man:/usr/X11R6/m

an:/opt/gnome/share/man:/opt/xt-pe/2.1.50HD/pe/man

HOSTNAME=jaguarpf-login1

GNOME2_PATH=/usr/local:/opt/gnome:/usr

XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB

PAPI_VERSION=3.6.2

PE_ENV=PGI

PATHSCALE_POST_COMPILE_OPTS= -march=barcelona

MODULESBEGINENV=/ccs/home/shku/.modulesbeginenv.jaguarpf-login1

HOST=jaguarpf-login1

TERM=xterm

SHELL=/bin/bash

XTOS_VERSION=2.1.50HD

PROFILEREAD=true

HISTSIZE=1000

TOTALVIEW_VERSION=8.6.0-1

PETSC_ARCH=cray-xt

PERFMON_VERSION=v23

SSH_CLIENT=128.122.81.37 40601 22

LIBRARY_PATH=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib:/sw/xt5/netcdf/3.6.2/

sles10.1_pgi7.2.3/lib:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/lib

MPT_DIR=/opt/mpt/3.1.0/xt

FFTW_INC=/opt/fftw/3.1.1/cnos/include

MORE=-sl

BOOT_DIR=/opt/xt-boot/2.1.50HD

QTDIR=/usr/lib/qt3

INCLUDE_PATH=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod:/sw/xt5/netcdf/3.6.2/

sles10.1_pgi7.2.3/include:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/in

clude

D-13

PRGENV_DIR=/opt/xt-prgenv/2.1.50HD

SSH_TTY=/dev/pts/26

TVMEMDEBUG_POST_LINK_OPTS= -L/sw/xt/totalview/8.6.0-

1/sles10.1_binary/linux-x86-64/lib -ltvheap_cnl_static

PSPLINE_INCLUDE_OPTS=-I/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod

FFTW_DIR=/opt/fftw/3.1.1/cnos/lib

ASYNCPE_DIR=/opt/cray/xt-asyncpe/2.0

BUILD_OPTS=/opt/cray/xt-asyncpe/2.0/bin/build-opts

GROFF_NO_SGR=yes

JRE_HOME=/usr/lib/jvm/jre

USER=shku

LD_LIBRARY_PATH=/opt/xt-

tools/papi/3.6.2/v23/linux/lib:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib:

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib:/sw/xt5/subversion/1.5.0/sle

s10.1_gnu4.2.4/lib:/opt/xt-

pe/2.1.50HD/lib:/opt/fftw/3.1.1/cnos/lib:/opt/pgi/7.2.5/linux86-

64/7.2/libso:/opt/pgi/7.2.5/linux86-64/7.2/lib:/opt/xt-

os/2.1.50HD/lib:/opt/xt-

libc/2.1.50HD/amd64/lib:/opt/MySQL/5.0.45/lib/mysql

LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so=01;35:do=01;35:bd=40;3

3;01:cd=40;33;01:or=41;33;01:ex=00;32:*.cmd=00;32:*.exe=01;32:*.com=01;

32:*.bat=01;32:*.btm=01;32:*.dll=01;32:*.tar=00;31:*.tbz=00;31:*.tgz=00

;31:*.rpm=00;31:*.deb=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.zip=0

0;31:*.zoo=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:*.tb2=00;31

:*.tz2=00;31:*.tbz2=00;31:*.avi=01;35:*.bmp=01;35:*.fli=01;35:*.gif=01;

35:*.jpg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=0

1;35:*.pbm=01;35:*.pgm=01;35:*.png=01;35:*.ppm=01;35:*.tga=01;35:*.tif=

01;35:*.xbm=01;35:*.xpm=01;35:*.dl=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=

00;32:*.au=00;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc=00;32:*.wav=

00;32:

LC_PE_ENV=pgi

TVDSVRLAUNCHCMD=ssh

XNLSPATH=/usr/X11R6/lib/X11/nls

PGI_VERS_STR=7.2.5

MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi

ENV=/etc/bash.bashrc

GOTO_NUM_THREADS=1

HOSTTYPE=x86_64

RCLOCAL_PRGENV=true

MPT_VERSION=3.1.0

PE_PRODUCT_LIST=TOTALVIEW:TOTALVIEW-

SUPPORT:PSPLINE:ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW:PAPI

:PETSC

FROM_HEADER=

PGI_VERSION=7.2

FFTW_SYSTEM_WISDOM_DIR=/opt/xt-libsci/10.3.1

PAGER=less

PAPI_INCLUDE_OPTS= -I/opt/xt-

tools/papi/3.6.2/v23/${XTPE_COMPILE_TARGET}/include

OS_DIR=/opt/xt-os/2.1.50HD

CSHEDIT=emacs

PSPLINE_DIR=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3

MPICHBASEDIR=/opt/mpt/3.1.0/xt

XDG_CONFIG_DIRS=/usr/local/etc/xdg/:/etc/xdg/:/etc/opt/gnome/xdg/

D-14

PGI=/opt/pgi/7.2.5

MINICOM=-c on

PETSC_INCLUDE_OPTS= -

I/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET} -

I/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET}/include

YOD_LOGFILE=syslog

MODULE_VERSION=3.1.6

MAIL=/var/mail/shku

PATH=/sw/xt5/totalview/8.6.0-1/sles10.1_binary/totalview-

support/1.0.6/bin:/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/bin:/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/bin2:/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/bin:/opt/xt-

tools/papi/3.6.2/v23/linux/bin:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/bin:

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/bin:/sw/xt5/hdf5/1.6.8/cnl2.1_pg

i7.2.3_par/bin:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/bin:/opt/cray

/xt-asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/linux/64/bin:/opt/fftw/3.1.1/cnos/bin:/opt/pgi/7.2.5/l

inux86-64/7.2/bin:/opt/xt-lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/sbin:/opt/xt-lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/bin:/opt/xt-

boot/2.1.50HD/bin/snos64:/opt/xt-os/2.1.50HD/bin/snos64:/opt/xt-

service/2.1.50HD/bin/snos64:/opt/xt-

prgenv/2.1.50HD/bin:/opt/MySQL/5.0.45/etc:/opt/MySQL/5.0.45/libexec:/op

t/MySQL/5.0.45/bin:/opt/moab/bin:/opt/torque/default/bin:/sw/xt5/bin:/o

pt/modules/3.1.6/bin:/ccs/home/shku/bin:/usr/local/bin:/usr/bin:/usr/X1

1R6/bin:/bin:/usr/games:/opt/bin:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/

jvm/jre/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin:/opt/pathscale/bin:.:/us

r/lib/qt3/bin:/opt/bin:/opt/public/bin:/ccs/proj/e2e/wf/bin:/ccs/proj/e

2e/wf/Workflows/XGC/monitor:/ccs/proj/e2e/wf/bin:/ccs/proj/e2e/wf/Workf

lows/XGC/monitor

HDF5_CLIB=-I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -

L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5 -

L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz

CPU=x86_64

JAVA_BINDIR=/usr/lib/jvm/jre/bin

SSH_SENDS_LOCALE=yes

OCTAVE=sku@depot.cims.nyu.edu:octave

ASYNCPE_VERSION=2.0

GNU_POST_COMPILE_OPTS= -march=barcelona

XTPE_COMPILE_TARGET=linux

RCLOCAL_MYSQL=true

INPUTRC=/etc/inputrc

PWD=/ccs/home/shku/joule/Q2

LMFILES=/opt/modulefiles/modules/3.1.6:/sw/xt5/modulefiles/DefApps:/opt/

modulefiles/torque/2.3.2-

snap.200807092141:/opt/modulefiles/moab/5.2.4:/opt/cray/xt-

asyncpe/2.0/modulefiles/xtpe-

quadcore:/opt/modulefiles/MySQL/5.0.45:/opt/modulefiles/xt-

service/2.1.50HD:/opt/modulefiles/xt-libc/2.1.50HD:/opt/modulefiles/xt-

os/2.1.50HD:/opt/modulefiles/xt-boot/2.1.50HD:/opt/modulefiles/xt-

lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5:/opt/modulefiles/xtpe-

target-cnl:/opt/modulefiles/Base-

opts/2.1.50HD:/opt/modulefiles/pgi/7.2.5:/opt/modulefiles/fftw/3.1.1:/o

D-15

pt/modulefiles/xt-libsci/10.3.1:/opt/modulefiles/xt-

mpt/3.1.0:/opt/modulefiles/xt-pe/2.1.50HD:/opt/modulefiles/xt-

asyncpe/2.0:/opt/modulefiles/PrgEnv-

pgi/2.1.50HD:/sw/xt5/modulefiles/subversion/1.5.0:/sw/xt5/modulefiles/h

df5/1.6.8_par:/sw/xt5/modulefiles/netcdf/3.6.2:/sw/xt5/modulefiles/pspl

ine/1.0:/opt/modulefiles/xt-

papi/3.6.2:/opt/modulefiles/petsc/2.3.3a:/sw/xt5/modulefiles/adios/0.9.

8:/sw/xt5/modulefiles/totalview/8.6.0-1

JAVA_HOME=/usr/lib/jvm/jre

EDITOR=vi

FFTW_INCLUDE_OPTS= -I/opt/fftw/3.1.1/cnos/include

C_DIR=/opt/xt-libc/2.1.50HD

SYSTEM_USERDIR=/tmp/work/shku

LANG=en_US.UTF-8

MODULEPATH=/opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/mod

ulefiles

PYTHONSTARTUP=/etc/pythonstart

ADIOS_LIB=-L/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib -ladios -lmxml

PETSC_FORTRAN_INCPATH_CNL=-lmpichf90

LOADEDMODULES=modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-

service/2.1.50HD:xt-libc/2.1.50HD:xt-os/2.1.50HD:xt-boot/2.1.50HD:xt-

lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5:xtpe-target-

cnl:Base-opts/2.1.50HD:pgi/7.2.5:fftw/3.1.1:xt-libsci/10.3.1:xt-

mpt/3.1.0:xt-pe/2.1.50HD:xt-asyncpe/2.0:PrgEnv-

pgi/2.1.50HD:subversion/1.5.0:hdf5/1.6.8_par:netcdf/3.6.2:pspline/1.0:x

t-papi/3.6.2:petsc/2.3.3a:adios/0.9.8:totalview/8.6.0-1

PGI_POST_COMPILE_OPTS= -tp barcelona-64

LM_LICENSE_FILE=/sw/sources/totalview/license.dat:/opt/pgi/7.2.5/license.d

at

XTPE_QUADCORE_ENABLED=ON

MPICH_PTL_UNEX_EVENTS=400000

DEPOT1=sku@depot.cims.nyu.edu:svn/xgc/trunk/XGC1

TEXINPUTS=:/ccs/home/shku/.TeX:/usr/share/doc/.TeX:/usr/doc/.TeX

NETCDF_CLIB=-I/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

L/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib -lnetcdf

QT_SYSTEM_DIR=/usr/share/desktop-data

SHLVL=1

HOME=/ccs/home/shku

ADIOS_DIR=/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3

NETCDF_DIR=/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3

PTL_SNOS_NAL=SS

PGI_PATH=/opt/pgi/7.2.5

LESS_ADVANCED_PREPROCESSOR=no

OSTYPE=linux

SE_DIR=/opt/xt-service/2.1.50HD

LIBLUSTRE_DEBUG_CONSOLE=0

LS_OPTIONS=-N --color=tty -T 0

WINDOWMANAGER=

GTK_PATH=/usr/local/lib/gtk-2.0:/opt/gnome/lib/gtk-2.0:/usr/lib/gtk-2.0

PSPLINE_LIB=-I/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod -

L/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib -lpspline -lezcdf -lportlib

G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252

D-16

LESS=-M -I

MACHTYPE=x86_64-suse-linux

LOGNAME=shku

CIMS=sku@access.cims.nyu.edu:data

GTK_PATH64=/usr/local/lib64/gtk-2.0:/opt/gnome/lib64/gtk-

2.0:/usr/lib64/gtk-2.0

CVS_RSH=ssh

XDG_DATA_DIRS=/usr/local/share/:/usr/share/:/etc/opt/kde3/share/:/opt/kde3

/share/:/opt/gnome/share/

ACLOCAL_FLAGS=-I /opt/gnome/share/aclocal

SSH_CONNECTION=128.122.81.37 40601 160.91.205.194 22

PETSC_POST_LINK_OPTS= -L

/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET}/lib -lcraypetsc

-lHYPRE -lparmetis -lmetis -lcmumps -ldmumps -lsmumps -lzmumps -lpord -

lsuperlu_3.0 -lsci -lmpich

MODULESHOME=/opt/modules/3.1.6

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/local/share/pkgconfig:/usr/l

ib64/pkgconfig:/usr/share/pkgconfig:/opt/kde3/lib64/pkgconfig:/opt/gnom

e/lib64/pkgconfig:/opt/gnome/lib64/pkgconfig:/opt/gnome/share/pkgconfig

LESSOPEN=lessopen.sh %s

LIBSCI_BASE_DIR=/opt/xt-libsci/10.3.1

TOTALVIEW_SUPPORT_LIB=/sw/xt5/totalview/8.6.0-1/sles10.1_binary/totalview-

support/1.0.6/lib

HDF5_FLIB=-module . -module /sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -

I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -

L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5_fortran -lhdf5 -

L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz

LIBSCI_VERSION=10.3.1

INFOPATH=/opt/MySQL/5.0.45/info:/usr/local/info:/usr/share/info:/usr/info:

/opt/gnome/share/info

TV_EXTRA_OPTIONS=-use_interface ss

NETCDF_FLIB=-module . -module

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

I/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

L/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib -lnetcdf

DISPLAY=localhost:25.0

ADIOS_INC=-I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include

PSPLINE_POST_LINK_OPTS=-L/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib -lpspline

-lezcdf -lportlib

XAUTHLOCALHOSTNAME=jaguarpf-login1

PETSC_DIR=/opt/petsc/2.3.3a/real/PGI/linux

PE_DIR=/opt/xt-pe/2.1.50HD

LIBSCI_POST_LINK_OPTS= -lsci_quadcore

LESSCLOSE=lessclose.sh %s %s

DEPOT=sku@depot.cims.nyu.edu:scratch/tmp

G_BROKEN_FILENAMES=1

LUSTRE_DIR=/opt/xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5

JAVA_ROOT=/usr/lib/jvm/jre

COLORTERM=1

OLDPWD=/ccs/home/shku/joule

_=/usr/bin/env

Loaded module

Currently Loaded Modulefiles:

D-17

 1) modules/3.1.6

 2) DefApps

 3) torque/2.3.2-snap.200807092141

 4) moab/5.2.4

 5) xtpe-quadcore

 6) MySQL/5.0.45

 7) xt-service/2.1.50HD

 8) xt-libc/2.1.50HD

 9) xt-os/2.1.50HD

 10) xt-boot/2.1.50HD

 11) xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5

 12) xtpe-target-cnl

 13) Base-opts/2.1.50HD

 14) pgi/7.2.5

 15) fftw/3.1.1

 16) xt-libsci/10.3.1

 17) xt-mpt/3.1.0

 18) xt-pe/2.1.50HD

 19) xt-asyncpe/2.0

 20) PrgEnv-pgi/2.1.50HD

 21) subversion/1.5.0

 22) hdf5/1.6.8_par

 23) netcdf/3.6.2

 24) pspline/1.0

 25) xt-papi/3.6.2

 26) petsc/2.3.3a

 27) adios/0.9.8

 28) totalview/8.6.0-1

E-1

APPENDIX E. RAPTOR

E.1 INPUT SETTINGS

&solvr

 cfl = 0.1000000000000000e+00,

 vnn = 0.0100000000000000e+00,

 ptf = 1.0000000000000000e+00,

 sor = 1.0000000000000000e+00,

 src = 1.0000000000000000e+00,

 tme = 0.0000000000000000e+00,

 dtm = 0.0010000000000000e+00,

 nrtitr = 100,

 nrtout = 100,

 nrtprt = 1,

 nrtrew = 5000,

 nptitr = 20,

 nptout = 1,

 nptprt = 1,

 nmpitr = 1000,

 nmpout = 1,

 nmpprt = 1,

 nblkio = 1,

 /

&vtmvl

 cfl_t = 1.0000000000000000e+00,

 vnn_t = 0.1000000000000000e+00,

 rtf_t = 1.0000000000000000e+00,

 dtm_x = 0.0100000000000000e+00,

 /

&lhsqv

 idtrk = 0,

 irkms = 0,

 irkcy = 0,

 iomga = 0,

 islib = 1,

 ivtme = 0,

 inorm = 0,

 iscvc = 0,

 idecc = 0,

 imecp = 0,

 /

&rhsqv

 iturb = 0,

 isgsm = 0,

 ichem = 0,

 ispry = 0,

 ihsrc = 0,

 itvgm = 0,

 iflux = 0,

 ilmeq = 1,

 ilmtr = 2,

E-2

 icsrc = 1,

 ivisc = 1,

 /

&flags

 irsrt = 0,

 ishot = 0,

 ibcnd = 000001,

 ibcwf = 0,

 ilfnc = 333333,

 idbsh = 1,

 itmsh = 1,

 itset = 0,

 iarch = 000000,

 idata = 0,

 ianim = 0,

 istsh = 0,

 ipost = 0,

 icsys = 0,

 /

&refvl

 p_ref = 99300.000000000000e+00,

 T_ref = 294.00000000000000e+00,

 rho_ref = 1.7912921543918080e+00,

 U_ref = 8.0240600000000000e+00,

 L_ref = 8.0000000000000000e-03,

 mu_ref = 8.0402554092161456e-06,

 Cp_ref = 1648.3392027401540e+00,

 c_ref = 250.19015210483540e+00,

 g_ref = 9.8100000000000000e+00,

 /

&refbc

 u_ave = 0.0000000000000000e+00,

 v_ave = 0.0000000000000000e+00,

 w_ave = 0.0000000000000000e+00,

 u_rms = 0.0000000000000000e+00,

 v_rms = 0.0000000000000000e+00,

 w_rms = 0.0000000000000000e+00,

 m_dot = 785.39810000000000e-03,

 S_fac = 0.0000000000000000e+00,

 qwall = 0.0000000000000000e+00,

 f_sto = 0.0000000000000000e+00,

 T_sto = 0.0000000000000000e+00,

 p_tot = 0.0000000000000000e+00,

 T_tot = 0.0000000000000000e+00,

 Rmgas = 0.0000000000000000e+00,

 gCpCv = 0.0000000000000000e+00,

 c_rf0 = 0.0000000000000000e+00,

 M_rf1 = 0.0000000000000000e+00,

 M_rf2 = 0.0000000000000000e+00,

 /

&rftme

 tme_1 = 0.0000000000000000e+00,

 tme_2 = 0.0000000000000000e+00,

 tme_3 = 0.0000000000000000e+00,

E-3

 tme_4 = 0.0000000000000000e+00,

 tme_5 = 0.0000000000000000e+00,

 tme_6 = 0.0000000000000000e+00,

 /

&rftol

 epsilon_tau = 1.0000000000000000e-04,

 epsilon_inv = 0.1000000000000000e-04,

 epsilon_vis = 0.1000000000000000e-08,

 epsilon_sor = 1.0000000000000000e-16,

 epsilon_tol = 1.0000000000000000e-16,

 epsilon_src = 1.0000000000000000e-16,

 epsilon_chm = 1.0000000000000000e-99,

 /

E.2 COMPILATION

RAPTOR was compiled using the default Portland Group Fortran compiler. Output from the

compilation is included in Sect. 3.4.7. Here we show only the skeletal output, which includes the options

used for optimization of the code. Note that the complete output, which includes all information related to

the optimization, is also available but spans 21,807 lines and has thus been omitted in the interest of

space. The code was profiled using CrayPAT 4.2 using the following recipe to build the executable:

module load xt-craypat

make

pat_build -w -Drtenv=PAT_RT_HWPC=0 DTMS.out DTMS_pat.out.

The instrumented executable (DTMS pat.out) was run using the batch script listed in Sect. E.3. The

corresponding run time environment is listed in Sect. E.4. Performance data was generated by issuing the

commands

module load xt-craypat

pat_report DTMS_pat.out+xxxyyy > report.out,

where DTMS pat.out+xxxyyy is the name of the directory created by CrayPAT after the run completed.

Output from the build is shown below. Here we show only the skeletal output, which includes the options

used for optimization of the code. Note that the complete output, which includes all information related to

the optimization, is also available but spans 21,807 lines and has thus been omitted in the interest of

space.

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c MDLS.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c DTMS.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c abrt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_grid.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_xyzh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcch.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcuh.f90

E-4

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcvh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcwh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_main.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_halo.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_lpsh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c allocate_bcwf.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c grid_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c gdim.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c mtrc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c mtrc_scg.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tvgm.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tvgm_vlp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tvgm_spk.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c pole.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c pole_jcc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c qref.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c qref_aux.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c init.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c init_aux.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c rsrt_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c rsrt_aux.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c anim_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c arch_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c arch_ascii_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c arch_ascii_opt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c qvbt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dtdt.f90

E-5

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c vtme.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dtme.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dtau.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c norm.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_dqv.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_flx.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcu.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcv.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcw.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_qmp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_sgs.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_qvp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_src.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c halo_xyz.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_aux.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_dqv.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_flx.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcu.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcv.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcw.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_qmp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_sgs.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_qvp.f90

E-6

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_src.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_xyz.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcdq.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bctd.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c inlt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c inlt_aux.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c estr.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c estr_lib.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c estr_mix.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c estr_Z.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dqvc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dsgs.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_c.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_m.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_r.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_t.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bcwf.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tble.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tbls.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c upyp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c urms.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c ures.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c sgsh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c rk_1.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c rk_4.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c rk_4J.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c rk_5J.f90

E-7

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dqdt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dddt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dflx.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lmtr.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c scvc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c sidq.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c sidd.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c mask.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c mocQ.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_M.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_C.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_tvg.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_L.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_D.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_D0.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxM_P.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxP_C.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxQ.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_K.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_C.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_tvg.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_L.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_D.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcM.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcM_C.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcM_tvg.f90

E-8

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcM_tvg_ddt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcM_D.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcP.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcP_C.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcQ.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcQ_hv.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c srcQ_tvg.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dqmp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tmsh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lgfc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c dbsh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c stsh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_ascii_MPI.ftn -

target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -

Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_ascii_opt.ftn -target=linux

-Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -

DPARALLEL -DSPECIES -c stgp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c stlp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpsh.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lptd.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpdt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpqs.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lphx.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lphxM.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lphxQ.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpli.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpdf.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lprk.f90

E-9

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpdq.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpcf.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpbc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lppk.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpcm.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_MPI.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_ascii_MPI.ftn -

target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -

Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_ascii_opt.ftn -target=linux

-Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -

DPARALLEL -DSPECIES -c frmp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c prof.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c tdst.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c zdst.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c ydis.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bisc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bnbk.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c bndc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c circ.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c conv.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c cube.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c cycl.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c diam.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c hunt.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c inth.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c li_1.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c li_2.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c li_3.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c lubk.f90

E-10

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c ludc.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c ndev.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c sfcn.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c simp.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c spln.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c thms.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -c udev.f90

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast

-Minfo=all -DPARALLEL -DSPECIES -o DTMS.out MDLS.o DTMS.

E-11

E.3 BATCH SCRIPT (IDENTICAL FOR BOTH Q2 AND Q4 EXCEPT FOR CORE SIZE)

#== #

Oak Ridge National Laboratories NCCS Systems. ================= #

#== #

#PBS -A CSC057

#PBS -N RAPTOR

#PBS -M oefelei@sandia.gov

#PBS -m abe

#PBS -o Std.out

#PBS -e Std.err

#PBS -l walltime=04:00:00,size=47616

set -x

source /opt/modules/default/init/bash

cd $PBS_O_WORKDIR

date

export PAT_RT_HWPC=0

export MPICH_ENV_DISPLAY=1

export MPICH_VERSION_DISPLAY=1

module list

module avail

env

aprun -n 47616 ./dtms.e

#== #

#== #

#== #

E.4 RUNTIME ENVIRONMENT

LESSKEY=/etc/lesskey.bin

MODULE_VERSION_STACK=3.1.6

FFTW_POST_LINK_OPTS= -L/opt/fftw/3.1.1/cnos/lib -lfftw3 -lfftw3f

MANPATH=/opt/xt-pe/2.1.50HD/papi/man:/opt/mpt/3.1.0/xt/man:/opt/xt-

libsci/10.3.1/man:/opt/fftw/3.1.1/cnos/man:/opt/pgi/7.2.5/linux86-

INFODIR=/usr/local/info:/usr/share/info:/usr/info

NNTPSERVER=news

HOSTNAME=jaguarpf-batch4

XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB

GNOME2_PATH=/usr/local:/opt/gnome:/usr

MODULESBEGINENV=/ccs/home/oefelei/.modulesbeginenv

PATHSCALE_POST_COMPILE_OPTS= -march=barcelona

PE_ENV=PGI

SHELL=/bin/bash

HOST=jaguarpf-batch4

BATCH_ALLOC_COOKIE=0

HISTSIZE=1000

PROFILEREAD=true

XTOS_VERSION=2.1.50HD

PBS_JOBNAME=RAPTOR

MPT_DIR=/opt/mpt/3.1.0/xt

FFTW_INC=/opt/fftw/3.1.1/cnos/include

BATCH_JOBID=71541

E-12

PBS_ENVIRONMENT=PBS_BATCH

MORE=-sl

OLDPWD=/autofs/na1_home/oefelei

QTDIR=/usr/lib/qt3

BOOT_DIR=/opt/xt-boot/2.1.50HD

PBS_O_WORKDIR=/ccs/home/oefelei/scratch/FY09JouleQ2

PRGENV_DIR=/opt/xt-prgenv/2.1.50HD

FFTW_DIR=/opt/fftw/3.1.1/cnos/lib

USER=oefelei

PBS_TASKNUM=1

JRE_HOME=/usr/lib/jvm/jre

GROFF_NO_SGR=yes

BUILD_OPTS=/opt/cray/xt-asyncpe/2.0/bin/build-opts

ASYNCPE_DIR=/opt/cray/xt-asyncpe/2.0

LS_COLORS=

LD_LIBRARY_PATH=/opt/xt-

pe/2.1.50HD/lib:/opt/fftw/3.1.1/cnos/lib:/opt/pgi/7.2.5/linux86-

64/7.2/libso:/opt/pgi/7.2.5/linux86-64/7.2/PBS_O_HOME=/ccs/home/oefelei

LC_PE_ENV=pgi

XNLSPATH=/usr/X11R6/lib/X11/nls

TVDSVRLAUNCHCMD=ssh

PBS_NNODES=47616

ENV=/etc/bash.bashrc

MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi

PGI_VERS_STR=7.2.5

HOSTTYPE=x86_64

GOTO_NUM_THREADS=1

RCLOCAL_PRGENV=true

PBS_MOMPORT=15003

FROM_HEADER=

PE_PRODUCT_LIST=ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW

MPT_VERSION=3.1.0

PAGER=less

FFTW_SYSTEM_WISDOM_DIR=/opt/xt-libsci/10.3.1

PGI_VERSION=7.2

CSHEDIT=emacs

OS_DIR=/opt/xt-os/2.1.50HD

PBS_O_QUEUE=batch

XDG_CONFIG_DIRS=/usr/local/etc/xdg/:/etc/xdg/:/etc/opt/gnome/xdg/

MPICHBASEDIR=/opt/mpt/3.1.0/xt

MINICOM=-c on

PGI=/opt/pgi/7.2.5

PATH=/opt/cray/xt-asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/linux/64/bin:/opt/fftw/3.1.1/cnos/bin:/opt/PBS_O_LOGNA

ME=oefelei

MAIL=/var/spool/mail/oefelei

MODULE_VERSION=3.1.6

YOD_LOGFILE=syslog

PBS_O_LANG=en_US.UTF-8

CPU=x86_64

PBS_JOBCOOKIE=C036D87E89EB27BDBAA67C293634D3AC

JAVA_BINDIR=/usr/lib/jvm/jre/bin

GNU_POST_COMPILE_OPTS= -march=barcelona

ASYNCPE_VERSION=2.0

E-13

PWD=/ccs/home/oefelei/scratch/FY09JouleQ2

INPUTRC=/etc/inputrc

RCLOCAL_MYSQL=true

XTPE_COMPILE_TARGET=linux

JAVA_HOME=/usr/lib/jvm/jre

LMFILES=/opt/modulefiles/modules/3.1.6:/sw/xt5/modulefiles/DefApps:/opt/

modulefiles/torque/2.3.2-

snap.200807092141:/opt/modulefiles/MPICH_VERSION_DISPLAY=1

C_DIR=/opt/xt-libc/2.1.50HD

FFTW_INCLUDE_OPTS= -I/opt/fftw/3.1.1/cnos/include

LANG=en_US.UTF-8

PBS_NODENUM=0

SYSTEM_USERDIR=/tmp/work/oefelei

PYTHONSTARTUP=/etc/pythonstart

MODULEPATH=/opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/mod

ulefiles

LOADEDMODULES=modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-

service/2.1.50HD:xt-libc/PBS_O_SHELL=/bin/bash

PGI_POST_COMPILE_OPTS= -tp barcelona-64

PBS_SERVER=jaguarpf-login2.ccs.ornl.gov

PBS_JOBID=71541.nid17924

XTPE_QUADCORE_ENABLED=ON

LM_LICENSE_FILE=/opt/pgi/7.2.5/license.dat

PAT_RT_HWPC=0

ENVIRONMENT=BATCH

TEXINPUTS=:/ccs/home/oefelei/.TeX:/usr/share/doc/.TeX:/usr/doc/.TeX

HOME=/ccs/home/oefelei

SHLVL=2

QT_SYSTEM_DIR=/usr/share/desktop-data

OSTYPE=linux

LESS_ADVANCED_PREPROCESSOR=no

PGI_PATH=/opt/pgi/7.2.5

PTL_SNOS_NAL=SS

PBS_O_HOST=jaguarpf-login2.ccs.ornl.gov

XCURSOR_THEME=Industrial

LS_OPTIONS=-N --color=none -T 0

LIBLUSTRE_DEBUG_CONSOLE=0

SE_DIR=/opt/xt-service/2.1.50HD

WINDOWMANAGER=

MPICH_ENV_DISPLAY=1

PBS_VNODENUM=0

GTK_PATH=/usr/local/lib/gtk-2.0:/opt/gnome/lib/gtk-2.0:/usr/lib/gtk-2.0

LOGNAME=oefelei

MACHTYPE=x86_64-suse-linux

LESS=-M -I

G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252

CVS_RSH=ssh

GTK_PATH64=/usr/local/lib64/gtk-2.0:/opt/gnome/lib64/gtk-

2.0:/usr/lib64/gtk-2.0

BATCH_PARTITION_ID=1

PBS_QUEUE=batch

ACLOCAL_FLAGS=-I /opt/gnome/share/aclocal

E-14

XDG_DATA_DIRS=/usr/local/share/:/usr/share/:/etc/opt/kde3/share/:/opt/kde3

/share/:/opt/gnome/share/

MODULESHOME=/opt/modules/3.1.6

PBS_O_MAIL=/var/mail/oefelei

LESSOPEN=lessopen.sh %s

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/local/share/pkgconfig:/usr/l

ib64/pkgconfig:/usr/share/pkgconfig:/opt/kde3/lib64/pkgconfig:/

LIBSCI_BASE_DIR=/opt/xt-libsci/10.3.1

INFOPATH=/opt/MySQL/5.0.45/info:/usr/local/info:/usr/share/info:/usr/info:

/opt/gnome/share/info

LIBSCI_VERSION=10.3.1

LESSCLOSE=lessclose.sh %s %s

LIBSCI_POST_LINK_OPTS= -lsci_quadcore

PE_DIR=/opt/xt-pe/2.1.50HD

PBS_NODEFILE=/var/spool/torque/aux//71541.nid17924

G_BROKEN_FILENAMES=1

PBS_O_PATH=/opt/xt-tools/craypat/4.4.0.4/v23/bin:/opt/cray/xt-

asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/COLORTERM=1

JAVA_ROOT=/usr/lib/jvm/jre

LUSTRE_DIR=/opt/xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5

_=/usr/bin/env

--

++ source /opt/modules/default/init/bash

+++ ’[’ 3.1.6 = ’’ ’]’

+++ MODULE_VERSION_STACK=3.1.6

+++ export MODULE_VERSION_STACK

+++ MODULESHOME=/opt/modules/3.1.6

+++ export MODULESHOME

+++ ’[’ modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-

service/2.1.50HD:xt-libc/2.1.50HD:+++ ’[’ /opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/mod

ulefiles = ’’ ’]’

++ cd /ccs/home/oefelei/scratch/FY09JouleQ2

++ date

++ export PAT_RT_HWPC=0

++ PAT_RT_HWPC=0

++ export MPICH_ENV_DISPLAY=1

++ MPICH_ENV_DISPLAY=1

++ export MPICH_VERSION_DISPLAY=1

++ MPICH_VERSION_DISPLAY=1

++ module list

+++ /opt/modules/3.1.6/bin/modulecmd bash list

Currently Loaded Modulefiles:

1) modules/3.1.6

2) DefApps

3) torque/2.3.2-snap.200807092141

4) moab/5.2.4

5) xtpe-quadcore

6) MySQL/5.0.45

7) xt-service/2.1.50HD

8) xt-libc/2.1.50HD

E-15

9) xt-os/2.1.50HD

10) xt-boot/2.1.50HD

11) xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5

12) xtpe-target-cnl

13) Base-opts/2.1.50HD

14) pgi/7.2.5

15) fftw/3.1.1

16) xt-libsci/10.3.1

17) xt-mpt/3.1.0

18) xt-pe/2.1.50HD

19) xt-asyncpe/2.0

20) PrgEnv-pgi/2.1.50HD

++ eval

++ module avail

+++ /opt/modules/3.1.6/bin/modulecmd bash avail

------------------ /opt/cray/xt-asyncpe/2.0/modulefiles ------------------

xtpe-quadcore xtpe-target-native

---------------------------- /opt/modulefiles ----------------------------

Base-opts/2.1.27HD

Base-opts/2.1.27HD.lusrelsave

Base-opts/2.1.29HD

Base-opts/2.1.29HD.lusrelsave

Base-opts/2.1.41HD

Base-opts/2.1.41HD.lusrelsave

Base-opts/2.1.50HD(default)

Base-opts/2.1.50HD.lusrelsave

MySQL/5.0.45

PrgEnv-cray/1.0.0(default)

PrgEnv-gnu/2.1.27HD

PrgEnv-gnu/2.1.29HD

PrgEnv-gnu/2.1.41HD

PrgEnv-gnu/2.1.50HD(default)

PrgEnv-pathscale/2.1.27HD

PrgEnv-pathscale/2.1.29HD

PrgEnv-pathscale/2.1.41HD

PrgEnv-pathscale/2.1.50HD(default)

PrgEnv-pgi/2.1.27HD

PrgEnv-pgi/2.1.29HD

PrgEnv-pgi/2.1.41HD

PrgEnv-pgi/2.1.50HD(default)

acml/4.0.1a

acml/4.1.0(default)

acml/4.2.0

apprentice2/4.3.0

apprentice2/4.4.0(default)

apprentice2/4.4.0.1

blcr/0.7.3

cce/7.0.0(default)

cce/7.0.1

cray/audit/1.0.0-1.0000.15784.0

dwarf/8.2.0

dwarf/8.4.0

dwarf/8.6.0

dwarf/8.8.0(default)

E-16

elf/0.8.10(default)

fftw/2.1.5

fftw/3.1.1(default)

gcc/4.1.2

gcc/4.2.0.quadcore(default)

gcc/4.2.3

gcc/4.2.4

gcc-catamount/3.3

gnet/2.0.5

iobuf/1.0.6(default)

java/jdk1.6.0_05(default)

libfast/1.0(default)

libfast/1.0.2

libscifft-pgi/1.0.0(default)

moab/5.2.3

moab/5.2.4(default)

moab/5.3.0

modules/3.1.6(default)

pathscale/3.2(default)

petsc/2.3.3a(default)

petsc-complex/2.3.3a(default)

pgi/6.2.5

pgi/7.0.7

pgi/7.1.6

pgi/7.2.3

pgi/7.2.4

pgi/7.2.5(default)

pgi/8.0.1

pgi/8.0.2

pkgconfig/0.15.0(default)

torque/2.3.2-snap.200807092141(default)

xt-asyncpe/1.0c

xt-asyncpe/1.1

xt-asyncpe/1.2

xt-asyncpe/2.0(default)

xt-asyncpe/2.0.34

xt-boot/2.1.27HD

xt-boot/2.1.29HD

xt-boot/2.1.41HD

xt-boot/2.1.50HD

xt-catamount/2.1.27HD

xt-catamount/2.1.29HD

xt-catamount/2.1.41HD

xt-catamount/2.1.50HD

xt-craypat/4.3.1

xt-craypat/4.3.3

xt-craypat/4.4.0

xt-craypat/4.4.0.2

xt-craypat/4.4.0.4(default)

xt-libc/2.1.27HD

xt-libc/2.1.29HD

xt-libc/2.1.41HD

xt-libc/2.1.50HD

xt-libsci/10.2.1

E-17

xt-libsci/10.3.0

xt-libsci/10.3.1(default)

xt-libsci/10.3.2

xt-lustre-ss/2.1.27HD_1.6.5

xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5

xt-lustre-ss/2.1.29HD_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5

xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5

xt-lustre-ss/2.1.41HD_1.6.5

xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5

xt-lustre-ss/2.1.50HD_1.6.5

xt-lustre-ss/2.1.50HD_PS04_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5

xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5

xt-mpt/2.1.27HD

xt-mpt/2.1.29HD

xt-mpt/2.1.41HD

xt-mpt/2.1.50HD

xt-mpt/3.0.1

xt-mpt/3.0.2

xt-mpt/3.0.4

xt-mpt/3.1.0(default)

xt-mpt/3.1.0.4

xt-mpt/3.1.0.6

xt-mpt/3.1.0.7

xt-os/2.1.27HD

xt-os/2.1.29HD

xt-os/2.1.41HD

xt-os/2.1.50HD

xt-papi/3.5.99c

xt-papi/3.6

xt-papi/3.6.1a

xt-papi/3.6.2(default)

xt-pe/2.1.27HD

xt-pe/2.1.29HD

xt-pe/2.1.41HD

xt-pe/2.1.50HD

xt-service/2.1.27HD

xt-service/2.1.29HD

xt-service/2.1.41HD

xt-service/2.1.50HD

xtgdb/1.0.0(default)

xtpe-target-catamount

xtpe-target-cnl

--------------------------- /opt/modules/3.1.6 ---------------------------

E-18

modulefiles/modules/dot modulefiles/modules/modules

modulefiles/modules/module-cvs modulefiles/modules/null

modulefiles/modules/module-info modulefiles/modules/use.own

-------------------------- /sw/xt5/modulefiles ---------------------------

DefApps lapack/3.1.1-dualcore

MiscApps lapack/3.1.1-fPIC

adios/0.9.8(default) liblut/0.9.6

arpack/2008.03.11 m4/1.4.11

atlas/3.8.2 matlab/7.5

atlas/3.8.2-fPIC-dualcore mercurial/1.0.2

autoconf/2.63 metis/4.0

automake/1.10.1 mpe2/1.0.6

aztec/2.1 mpip/3.1.2

blas/ref(default) mumps/4.7.3_par

blas/ref-dualcore namd/2.6

bugget/2.0 ncl/5.0.0

cmake/2.6.1(default) nco/3.9.4

cmake/2.6.2 ncview/1.93c

cpmd/3.13.1 nedit/5.5

cpmd/3.13.2 netcdf/3.6.2(default)

doxygen/1.5.6 netcdf/4.0.0

doxygen/1.5.8 netcdf/4.0.0_par

ferret/6.1 ompi/ADTR65

fftpack/5-r4i4 ompi/ADTR77

fftpack/5-r8i4 ompi/ADTR78

fftpack/5-r8i8 ompi/DTR56

fftw/3.1.2 ompi/DTR59

fftw/3.1.2-dualcore ompi/routing-pgi

fftw/3.2 p-netcdf/1.0.2(default)

fftw/3.2-dualcore p-netcdf/1.0.3

fpmpi/1.0 parmetis/3.1

fpmpi/1.1 petsc/2.3.3-debug

fpmpi_papi/1.0 petsc-complex/2.3.3-debug

fpmpi_papi/1.1 pgplot/5.2

gamess/2008Mar04 pspline/1.0

git/1.6.0 python/2.5.2

git/1.6.0.4 python/2.5.2-netcdf

globalarrays/4.0.8 qt/4.3.4

gnuplot/4.2.3 ruby/1.8.7

gnuplot/4.2.4(default) ruby/1.9.1

gptl/3.4.1 spdcp/0.3.6

gptl/3.4.3 sprng/2.0b

gptl/3.4.7(default) stagesub/1.0.2

grace/5.1.21 stagesub/1.0.3(default)

gromacs/3.3.3 subversion/1.4.6

gsl/1.11 subversion/1.5.0(default)

gsl/1.11-dualcore sundials/2.3.0

hdf5/1.6.7(default) superlu/3.0

hdf5/1.6.7_par superlu_dist/2.2

hdf5/1.6.8 swig/1.3.36

hdf5/1.6.8_par szip/2.1

hdf5/1.8.1 tau/2.17.2

hdf5/1.8.1_par tau/2.17.3

hdf5/1.8.2 tkdiff/4.1.4

E-19

hdf5/1.8.2_par totalview/8.6.0-1(default)

hypre/2.0.0 trilinos/8.0.3

idl/6.4 udunits/1.12.4

imagemagick/6.4.2(default) udunits/1.12.9

java-jdk/1.5.0.06 umfpack/5.1.1

java-jdk/1.6.0.06 valgrind/3.3.1

java-jre/1.5.0.06 vim/7.1

lammps/4Mar08 vim/7.2

lammps/May08 visit/1.11.1

lapack/3.1.1(default)

++ eval

++ env

++ aprun -n 47616 ./dtms.e

MPI VERSION : CRAY MPICH2 XT version 3.1.0 (ANL base 1.0.6)

BUILD INFO : Built Thu Nov 20 11:14:12 2008 (svn rev 7246)

PE 0: MPICH environment settings:

PE 0: MPICH_ENV_DISPLAY = 1

PE 0: MPICH_VERSION_DISPLAY = 1

PE 0: MPICH_ABORT_ON_ERROR = 0

PE 0: MPICH_CPU_YIELD = 0

PE 0: MPICH_RANK_REORDER_METHOD = 1

PE 0: MPICH_RANK_REORDER_DISPLAY = 0

PE 0: MPICH_MAX_THREAD_SAFETY = single

PE 0: MPICH_MSGS_PER_PROC = 16384

PE 0: MPICH/SMP environment settings:

PE 0: MPICH_SMP_OFF = 0

PE 0: MPICH_SMPDEV_BUFS_PER_PROC = 32

PE 0: MPICH_SMP_SINGLE_COPY_SIZE = 131072

PE 0: MPICH_SMP_SINGLE_COPY_OFF = 0

PE 0: MPICH/PORTALS environment settings:

PE 0: MPICH_MAX_SHORT_MSG_SIZE = 4301

PE 0: MPICH_UNEX_BUFFER_SIZE = 142848000

PE 0: MPICH_PTL_UNEX_EVENTS = 104755

PE 0: MPICH_PTL_OTHER_EVENTS = 11904

PE 0: MPICH_VSHORT_OFF = 0

PE 0: MPICH_MAX_VSHORT_MSG_SIZE = 1024

PE 0: MPICH_VSHORT_BUFFERS = 32

PE 0: MPICH_PTL_EAGER_LONG = 0

PE 0: MPICH_PTL_MATCH_OFF = 0

PE 0: MPICH_PTL_SEND_CREDITS = 0

PE 0: MPICH/COLLECTIVE environment settings:

PE 0: MPICH_FAST_MEMCPY = 0

PE 0: MPICH_COLL_OPT_OFF = 0

PE 0: MPICH_COLL_SYNC = 0

PE 0: MPICH_BCAST_ONLY_TREE = 1

PE 0: MPICH_ALLTOALL_SHORT_MSG = 1024

PE 0: MPICH_REDUCE_SHORT_MSG = 65536

PE 0: MPICH_ALLREDUCE_LARGE_MSG = 262144

PE 0: MPICH_ALLGATHER_VSHORT_MSG = 2048

PE 0: MPICH_ALLTOALLVW_FCSIZE = 32

PE 0: MPICH_ALLTOALLVW_SENDWIN = 20

PE 0: MPICH_ALLTOALLVW_RECVWIN = 20

PE 0: MPICH/MPIIO environment settings:

PE 0: MPICH_MPIIO_HINTS_DISPLAY = 0

E-20

PE 0: MPICH_MPIIO_CB_ALIGN = 0

PE 0: MPICH_MPIIO_HINTS = NULL

CrayPat/X: Version 4.4.0 Revision 2195 10/29/08 14:13:53

Experiment data directory written:

/lustre/scratch/oefelei/FY09JouleQ2/dtms.e+25388-13808tdt

E.5 COMPARISON OF TOTAL RUN TIME VS INITIALIZATION TIME

In running the Q4 case, we observed an anomaly associated with the time required for the

initialization stage of the calculation (which is not compute intensive) compared to the integration stage

(which is compute intensive). This anomaly was traced to CrayPAT. In all cases, executables that were

instrumented with CrayPAT exhibited a wide range of initialization times compared to those that were

not. In the results for Q2, for example, the total run time reported by CrayPAT was 1,423 seconds, as

shown in Table E.1. However, the time spent in the integration part of the calculation, as given by the

internal timer in the code was only 1,034 seconds, which implies that approximately 389 seconds were

required for initialization. To verify this we reran the Q2 case with the integration loop bypassed to isolate

the time associated with initialization. Results from this run are provided shown in Table E.2. Comparing

these data verifies that a negligible amount of floating point operations occurred during initialization for

the selected cases and that the internal timer used to measure the amount of time spent in the integrator

was accurate. As a second test, we ran both the Q2 benchmark and Q4 cases without CrayPAT installed

and verified that the initialization times for both became negligible (i.e., less than 10 percent of the total

integration time). The combined set of tests confirmed that the integration times and estimated floating

point operation rates reported are accurate.

Table E.1. Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR

Totals for program

--

 Time% 100.0%

 Time 1425.761880 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.0 /sec 4.0 calls

 PAPI_L1_DCM 20.674M/sec 26457314029 misses

 PAPI_TOT_INS 3379.668M/sec 4325136094614 instr

 PAPI_L1_DCA 1348.943M/sec 1726311709236 refs

 PAPI_FP_OPS 6.204M/sec 7939032813 ops

 User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time

 Average Time per Call 356.440470 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP)

 HW FP Ops / WCT 5.568M/sec

 HW FP Ops / Inst 0.2%

 Computational intensity 0.00 ops/cycle 0.00 ops/ref

 Instr per cycle 1.47 inst/cycle

 MIPS 160926295.28M/sec

 MFLOPS (aggregate) 295389.35M/sec

 Instructions per LD & ST 39.9% refs 2.51 inst/ref

 D1 cache hit,miss ratios 98.5% hits 1.5% misses

E-21

 D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses

E-22

Table E.2. Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR

but with the integration loop bypassed

Totals for program

--

 Time% 100.0%

 Time 398.057434 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.0 /sec 4.0 calls

 PAPI_L1_DCM 23.802M/sec 8862182513 misses

 PAPI_TOT_INS 3505.363M/sec 1305131854712 instr

 PAPI_L1_DCA 1393.542M/sec 518849673837 refs

 PAPI_FP_OPS 0.002M/sec 574298 ops

 User time (approx) 372.324 secs 856345890248 cycles 93.5%Time

 Average Time per Call 99.514358 sec

 CrayPat Overhead : Time 0.0%

 HW FP Ops / User time 0.002M/sec 574298 ops 0.0%peak(DP)

 HW FP Ops / WCT 0.001M/sec

 HW FP Ops / Inst 0.0%

 Computational intensity 0.00 ops/cycle 0.00 ops/ref

 Instr per cycle 1.52 inst/cycle

 MIPS 166911368.33M/sec

 MFLOPS (aggregate) 73.45M/sec

 Instructions per LD & ST 39.8% refs 2.52 inst/ref

 D1 cache hit,miss ratios 98.3% hits 1.7% misses

 D1 cache utilization (M) 58.55 refs/miss 7.318 avg uses

