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1. METRIC STATEMENT FOR COMPUTATIONAL EFFECTIVENESS 

1.1 JOULE METRICS 

The Joule Software Metric for Computational Effectiveness is established by Public Authorizations 

PL 95-91, ―Department of Energy Organization Act,‖ and PL 103-62, ―Government Performance and 

Results Act.‖ 

The U.S. Office of Management and Budget (OMB)* oversees the preparation and administration of 

the President’s budget; evaluates the effectiveness of agency programs, policies, and procedures; assesses 

competing funding demands across agencies; and sets the funding priorities for the federal government. 

The OMB has the power of audit and exercises this right annually for each federal agency. According to 

the Government Performance and Results Act of 1993 (GPRA), federal agencies are required to develop 

three planning and performance documents: 

1. Strategic Plan: a broad, 3 year outlook; 

2. Annual Performance Plan: a focused, 1 year outlook of annual goals and objectives that is 

reflected in the annual budget request (What results can the agency deliver as part of its public 

funding?); and 

3. Performance and Accountability Report: an annual report that details the previous fiscal year 

performance (What results did the agency produce in return for its public funding?). 

OMB uses its Performance Assessment Rating Tool (PART) to perform evaluations. PART has seven 

worksheets for seven types of agency functions. The function of Research and Development (R&D) 

programs is included. R&D programs are assessed on the following criteria: 

 Does the R&D program perform a clear role? 

 Has the program set valid long term and annual goals? 

 Is the program well managed? 

 Is the program achieving the results set forth in its GPRA documents? 

In Fiscal Year (FY) 2003, the Department of Energy Office of Science (DOE SC-1) worked directly 

with OMB to come to a consensus on an appropriate set of performance measures consistent with PART 

requirements. The scientific performance expectations of these requirements reach the scope of work 

conducted at the DOE national laboratories. The Joule system emerged from this interaction. Joule 

enables the chief financial officer and senior DOE management to track annual performance on a 

quarterly basis. Joule scores are reported as ―success, goal met‖ (green light in PART), ―mixed results, 

goal partially met‖ (yellow light in PART), and ―unsatisfactory, goal not met‖ (red light in PART). Joule 

links the DOE strategic plan† to the underlying base program targets. 

1.2 FY09 JOULE GOALS FOR THE DOE ASCR PROGRAM 

The DOE Advanced Scientific Computing Research (ASCR)‡ program has the following two annual 

performance measures as part of its PART requirements: 

1. SC GG 3.1/2.5.1—Focus usage of the primary supercomputer at the National Energy Research 

Scientific Computing Center (NERSC) on capability computing, defined as the percentage of the 

computing time used by computations that require at least 1/8 of the total resource. FY09 

performance metric: capability usage is at least 40%. 

                                                 
* http://www.whitehouse.gov/omb 

† http://www.er.doe.gov/about/MissionStrategic.htm 

‡ http://www.sc.doe.gov/ascr/About/about.html 

http://www.whitehouse.gov/omb
http://www.er.doe.gov/about/MissionStrategic.htm
http://www.sc.doe.gov/ascr/About/about.html
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2. SC GG 3.1/2.5.2—Improve computational science capabilities, defined as the average annual 

percentage increase in the computational effectiveness (either by simulating the same problem in 

less time or simulating a larger problem in the same time) of a subset of application codes. FY09 

performance metric: efficiency measure is ≥100%. 

Ensuring compliance with these metrics, which are tracked on a quarterly basis, is an important 

milestone each fiscal year for the DOE ASCR Program Office as well as for the success of the overall 

DOE SC-1 open science computing effort. This document details the results of the effectiveness of the 

computational science capability (SC GG 3.1/2.5.2). 

1.3 QUARTERLY TASKS RELATED TO SC GG 3.1/2.5.2 

The Joule effort to improve computational science capabilities is a year-long effort requiring quarterly 

updates. The quarterly sequence of tasks for exercising this software metric is as follows. 

Quarter One (Q1) Tasks (deadline: December 31). Identify a subset of candidate applications 

(scientific software tools) to be investigated on DOE SC supercomputers. Management (at DOE SC and 

national laboratories) decides upon a short list of applications and computing platforms to be exercised. 

The Advanced Scientific Computing Advisory Committee (ASCAC) approves or rejects the list. The Q1 

milestone is satisfied when a short list of target applications and machines (supercomputers) is approved. 

Quarter Two (Q2) Tasks (deadline: March 31). Problems that each chosen application must 

simulate on the target machines are determined. The science capability (simulation result) and 

computational performance of the implementation are benchmarked and baselined (recorded) on the 

target machines for the defined problems and problem instances. The Q2 milestone is satisfied when 

benchmark data—namely the machine operation count, execution time, and machine instance—is 

collected and explained. If an application is striving to achieve a new science result in addition to 

demonstrating improved performancing, then providing a detailed discussion of its current (prior to Q2) 

capability, a discussion of why the capability is insufficient, and a description of why the new capability 

being developed satisfy the Q2 milestone. 

Quarter Three (Q3) Tasks (deadline: June 30). The application software (its models, algorithms, 

and implementation) is enhanced for efficiency, scalability, science capability, etc. The Q3 milestone is 

satisfied when the status of each application is reported at the Q3 deadline. Corrections to Q2 problem 

statements are submitted at this time. 

Quarter Four (Q4) Tasks (deadline: September 30). Enhancements to the application software 

continue as in Q3. The enhancements are stated and demonstrated on the machines used to generate the 

Q2 baseline information. A comparative analysis of the Q2 and Q4 data is summarized and reported. The 

Q4 milestone is satisfied if the enhancements made to the application software are in accordance with the 

efficiency measure as defined in Q2 (run-time efficiency, scalability, or new result). 
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2. METRIC RESULTS FOR COMPUTATIONAL EFFECTIVENESS 
 

 

Each application is discussed and its baseline and metric problem described in the respective 

application sections. A brief description of the machine used for the application problems is given. A 

summary of measured results for each application is provided. 

2.1 TARGET HPC SYSTEM: JAGUARPF.CCS.ORNL.GOV 

The Cray XT5 high-performance computing (HPC) system, Jaguar/XT5, at the Oak Ridge National 

Laboratory (ORNL) National Center for Computational Sciences (NCCS) is used to exercise the DOE 

ASCR FY09 Joule software metric. 

Jaguar/XT5 has a total of 18,688 XT5 compute nodes. The compute node operating system is a 

variant of Linux (CNL2.0 during the Q2 baseline, CLE2.1 thereafter). The dual-socket compute nodes are 

Quad-Core AMD Opteron Processor 23 (B3) chips operating at 2.3 GHz with 16 gigabytes (GB) of 

unbuffered memory per node, 2 megabytes (MB) of shared L3 cache per chip, 512 kilobytes (KB) of L2 

cache per core, and 64 KB instruction and 64 KB data L1 caches per core. Each socket employs double 

data-rate two (DDR2) dual inline memory modules (DIMMs) at 800 MHz with, in the best case, 

25.6 GB/s of local memory bandwidth per node. 

Jaguar/XT5 has 192 input/output (I/O) and login/service nodes. Each of these nodes consists of a 

2.6 GHz dual-core AMD Opteron chip with 8 GB of memory per node. The I/O and service nodes are 

running a variant of SuSE Linux. Approximately 4 petabytes (PB) of disk space are available in the 

scratch file systems that support massive I/O parallelism through the Lustre file system software.* 

HyperTransport links all nodes to Cray’s proprietary SeaStar2+chips, which are used to construct a 3D 

torus communication network between nodes. There are six switch ports per Cray SeaStar2+ chip, and 

each port has a bandwidth of 9.6 GB/s. The best-case bandwidth between the compute node and the 

SeaStar2+ interconnect chip is 6.4 GB/s. Thus, the injection bandwidth is half this, or 3.2 GB/s. 

For further information, the NCCS website† describes the system and its software stack and is 

sufficiently detailed for the purposes of this report. For information on the Cray XT5 platform, see the 

Cray website.‡ For chip-specific information on the single socket 1000 series, see the AMD website.§ 

2.2 RESULTS SUMMARY 

The FY09 studies demonstrate both strong scaling, where the problem complexity for an application 

is fixed and the time to execute the instance is reduced by demonstrating effective utilization of an 

increased hardware allocation, and weak scaling, where the goal is to compute in the same wall-clock 

time a more complex problem on an increased hardware allocation (e.g., maintaining fixed work per 

processing element). 

The program binary (a compiled/loaded executable constructed from the application source code) is 

the instantiation of the problem on the target machine, and the computational complexity of each problem 

instance is deduced directly by monitoring the values of the various program counters for the various 

functional units (e.g., floating point operations, or flops) activated during program execution. In other 

words, the required resources define the complexity of the problem and the work conducted to actually 

execute it. This measure of work is fairly basic from the hardware perspective and can be derived from 

                                                 
* http://www.lustre.org 

† http://www.nccs.gov/computing-resources/jaguar/ 

‡ http://www.cray.com/Assets/PDF/products/xt/CrayXT5Blade.pdf 

§ http://www.amd.com/us-en/Processors/ProductInformation/0,,3_118_8796_15226,00.html 

http://www.lustre.org/
http://www.nccs.gov/computing-resources/jaguar/
http://www.cray.com/Assets/PDF/products/xt/CrayXT5Blade.pdf
http://www.amd.com/us-en/Processors/ProductInformation/0,,3_118_8796_15226,00.html
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system observables such as number of processing elements (PEs) dedicated to executing the program, 

execution time, total number of instructions executed,* the magnitude of the memory demand, etc. 

2.2.1 VisIt 

In Q2, a 103,716,288 cell, 4,096 domain, and 27 energy group Denovo nuclear power plant energy 

deposition study was executed on 4,096 cores of the Jaguar/XT5 target machine. The resulting run 

generated 4,096 HDF5 formatted files totaling 83.457 GB of storage. During execution of the isosurface 

benchmark, six different isosurfaces were computed at 1,024  1,024 pixel resolution. The rate that VisIt 

computed isocontours was 0.01778 second per isocontour on 4,096 cores. The isosurface benchmark 

required 173,459,136,793 floating point operations to complete. During execution of the volume 

rendering benchmark on 4,096 PEs, 2,000 samples are computed per ray at 1,024  1,024 pixel resolution. 

The average compute time (measured per process) to render was 28.7293 seconds. The volume rendering 

exercise required 178,848,487,657 floating point operations to complete. 

In Q4, a 321,117,696 cell, 12,720 domain, 27 energy group Denovo nuclear power plant energy 

deposition study was executed on 12,720 PEs (cores) of the Jaguar/XT5 target machine. The resulting run 

generated 12,720 HDF5 formatted files totaling 258.391 GB of storage. Again, in the isosurface 

benchmark, six different isosurfaces were computed at 1,024  1,024 pixel resolution. The rate that VisIt 

computed isocontours was 0.01686 second per isocontour on 12,720 cores. The isosurface benchmark 

required 522,908,518,594 floating point operations to complete. During execution of the volume 

rendering benchmark on 12,720 PEs, 2,000 samples are computed per ray at the same resolution as in Q2.  

The average compute time (measured per process) to render was 6.37796 seconds. The volume rendering 

required 502,828,537,797 floating point operations to complete. 

In summary, the total wall-clock times spent in the processing pipeline, discussed in the detailed 

description of VisIt, include overheads not reported in these software benchmarks (such as I/O times in 

Q2 and Q4). The benchmarks performed in FY09 demonstrate the significant capabilities to volume 

render and isosurface large spatial data sets employing parallel computing techniques and resources. The 

isosurface benchmark revealed better than linear weak scaling of the rate to compute isocontours with the 

software. Indeed, a problem composed of 3.1054 more physical domains over a factor of 3.0961 more 

cells requiring a factor of 3.0145 floating point computations was computed at a rate that was 1.0545 

times faster in Q4 than in Q2 on 3.1054 times more PEs of the same target machine. The volume 

rendering benchmark demonstrates substantially much better than linear weak scaling performance. 

Between Q2 and Q4 a performance and scaling bottleneck was identified and fixed in VisIt’s volume 

rendering capability (discussed in the detailed write-up of VisIt). The time to volume render the problem 

composed of a factor of 3.1054 more physical domains over a factor of 3.0961 times more cells requiring 

a factor of 2.8114 floating point computations was computed 4.5044 times faster in Q4 than in Q2. The 

weak scaling results for VisIt are outstanding; hence VisIt met its target Joule metric on weak scaling 

problems in both isosurfacing and volume rendering. 

2.2.2 CAM 

In both Q2 and Q4, CAM Version 3.5—configured with the spectral Eulerian dynamical core—was 

executed in uncoupled mode for a T341 grid (approximately 0.35° in latitude and longitude) with 

26 vertical levels on 8,192 processor cores of the target machine for a one-month simulation and constant 

time step of 150 seconds (17,856 simulation time steps). The uncoupled mode includes a fully active land 

model, and sea surface temperatures and sea ice concentrations are provided by external forcing datasets. 

The difference between the Q2 and Q4 execution models of CAM is characterized by changes made after 

                                                 
*

 
The instruction set is not to be confused with basic operations that are defined in the language of the 

instruction set of the chip.  For instance, in a single cycle, a single cup-core (1 PE) on Jaguar/XT5 can compute 

four double-precision mathematical operations (fused multiply and add). 
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the Q2 benchmark that enabled an improved use of the multicore target architecture for the Q4 

benchmark. The details are discussed in Sect. 3.2. 

The Q2 benchmark completed execution on 8,192 cores of Jaguar/XT5 in 6,481.724 seconds. The 

measured execution time of the main computation phases includes 5,916.475 seconds for the atmosphere 

model (with ~4,247 seconds being the dynamical core) and 112.048 seconds for the land model. Writing 

the history files (I/O) took 115.024 seconds.  

The Q4 benchmark completed execution on 8,192 cores of Jaguar/XT5 in 3,241.144 seconds. In the 

main phases of the computation, the atmosphere model took 2,823.365 seconds, the land model took 

101.310 seconds, and the I/O phase was 41.302 seconds. 

The strong scaling result for CAM is outstanding. The same amount of Jaguar/XT5 resource (same 

number of cores) was utilized to compute the same physical problem in both Q2 and Q4, yet the Q4 

software executed 2 times faster than the Q2 version. CAM therefore met its target Joule metric by virtue 

of its factor of two reduction in execution time on a fixed size problem. Considering only the execution 

time of the atmosphere model with the spectral Eulerian dynamical core (which is the portion of the 

model where the algorithmic improvements were made), the Q4 variant executed 2.0955 times faster than 

the Q2 version. The improvements enable better throughput for climate scientists. 

2.2.3 XGC1 

The XGC1 magnetic fusion application yields solutions to the gyrokinetic Maxwell’s equations with 

a full plasma distribution function. This solution includes both the heat source in the core and particle loss 

on the edge (at the wall) for the entire volume of various tokamak geometries. XGC1 simulations include 

open and closed magnetic field regions, and the separatrix surface between these regions believed to be of 

vital significance to the construction of an ITER-scale tokamak. The science goal behind the XGC1 

benchmarks was to study non-local H-mode turbulent coupling driven by free energy in the ion 

temperature gradient in a simulation day or less utilizing as much hardware from the target architecture as 

possible. In an effort to enable a one-to-one comparison, the DIII-D tokamak geometry with a fixed 

number of plasma particles (13.5 billion) was used for both the Q2 benchmark and Q4 baseline 

simulations. The existing target architecture did not possess enough hardware (compute cores and 

associated memory) to allow ITER geometry computations in Q2 due to XGC1 scaling issues that existed 

at that time. 

In Q2, XGC1 was executed on 29,952 PEs (cores) of the target machine. The simulation was 

executed for 24 hours and terminated after 4,000 physical time steps. While the simulation was unable to 

evolve to the desired quasi-steady self-organized state in this time period, the simulation did reach a 

nonlinear phase where the turbulence intensity was seen to propagate from the edge to the core, indicating 

a nonlocal coupling between the edge and core regions. 

In Q4, 119,808 PEs (cores) were utilized to execute 16,000 physical time steps in 21 hours of 

simulation time. The Q4 simulation evolved beyond the initial, bursty nonlinear turbulence phase 

observed in the results of the Q2 simulation to the quasi-steady self-organized phase characteristic of 

experiments. Valuable insights into the nonlocal turbulence propagation and the evolution of the 

turbulence and the plasma profile to the quasi-steady self-organized-critical (SOC) state were obtained in 

Q4 for the first time through simulation. These results provide invaluable insight into numerous 

experiments significant to the design of the ITER.   

The performance result for XGC1 is outstanding. In Q4, the software computed 4 times as many 

physical time steps with 4 times the number of processes in less time than the Q2 simulation. Indeed the 

execution time in Q4 was 0.875 times the execution time in Q2. The enhancements made between Q2 and 

Q4 focused on improving several of the particle computations by employing light weight processes and 

eliminating essentially one-fourth of the communications in these phases. Precomputing spline 

coefficients and performing a table lookup (instead of repeatedly recomputing the coefficients), for 

example, were major contributors in the optimization of the particle interpolation scheme. Also, better use 
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was made of partial derivatives required in the interpolation scheme. XGC1 therefore met its target Joule 

metric as measured by both “grind time” (simulation time per step) and particle push rate. 

RAPTOR. The purpose of the RAPTOR benchmarks is to study the effects of large-eddy simulation 

(LES) grid resolution on scalar mixing processes, to try and understand the relationship between the grid 

spacing and the measured turbulence length scales using a companion set of experimental data, and to 

study the effects of increasing jet Reynolds (Re) number on the dynamics of turbulent scalar mixing. The 

benchmark is performed using the experimental DLR-A configuration for validation (see details in the 

following sections), which is one of a series of internationally recognized datasets used by the combustion 

community. The computational domain includes the entire burner geometry (inside the jet nozzle and the 

outer co-flow) plus the downstream space around burner. The inner nozzle has a diameter of 8 mm with 

the outer nozzle surface tapered to a sharp edge at the burner exit. There are 110 inner jet diameters in the 

axial direction (88 cm length) and 40 jet diameters in the radial direction (32 cm length). In both Q2 and 

Q4 simulations, exactly the same physical apparatus and flame were modeled for 50 physical time steps 

but at different grid resolutions and Re numbers (starting at 15,200). 
In Q2, 10,285,056 cells were used to partition the computational domain. The simulation was 

executed in 1,425.761 seconds on 47,616 PEs (cores) of the target Jaguar/XT5 architecture. The time 

integration routines (which integrate the Navier-Stokes equations) dominated the cost of RAPTOR 

computations. In Q2, time integration required 1,034 seconds. In total, the computation retired 

2.059456803  10
17

 total instructions, while executing 3.780249864  10
14

 floating point operations. 

In Q4, 24,261,120 cells were used to partition the domain. The simulation completed execution in 

1,972.397426 seconds on 112,320 PEs (cores) of Jaguar/XT5. Time integration required 444 seconds. 

The Q4 computation retired 6.633655878  10
17

 instructions, while executing 8.928138372  10
14

 

floating point operations.  

The performance results obtained in Q2 and Q4 for RAPTOR can be interpreted as follows. First, the 

principal phase of the computation that requires scalability is the cost of an integation time step. The cost 

of the initialization phase (problem input and setup) is amortized over the time evolution phase; hence the 

initialization time is not included in exercising the Joule metric. Second, the cost to integrate multiple (50) 

time steps reveals a remarkable result, namely that the RAPTOR performance metric increases by a factor 

of 2.34 beyond the required 1.0 necessary for meeting its Joule metric. The Q4 metric problem requires 

2.3617 times more floating point operations on a domain having a factor of 2.3588 more cells on 2.3588 

times more PEs than the Q2 benchmark. In particular, the compute time per number of grid cells per 

number of time steps (the ―grind time‖) is a generic measure of performance for RAPTOR.  In Q2, the 

grind time is  

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 .   

In Q4, the grind time is  

(444 s × 112,320 cores) / 24,261,120 cells / 50 time steps = 0.041 .   

The ratio between Q4 and Q2 is 2.3414—a truly outstanding weak scaling result. RAPTOR therefore met 

its target Joule metric by virtue of a remarkable 2.34 factor reduction in grind time on a weak scaling 

problem. The enhancements after the Q2 benchmark that led to this remarkable result are discussed in the 

detailed description of RAPTOR. 

2.3 CONCLUSIONS 

The aggregated machine event information collected while executing the Q2 baseline and Q4 metric 

problems is presented in Table 1. This approximates the total computational complexity executed for the 

FY09 Joule computational science capabilities measure (all on Jaguar/XT5).  

Some of the applications were also improved for efficiency or simply performed better from the 

machine perspective when executing a larger problem. 
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Table 1. FY09 Joule software summary of Q2 baseline and Q4 metric performance simulations and data 

Application VisIt CAM XGC1 RAPTOR 

Metric Simulation time Simulation time Simulation time 

Grind time and particle 

rate 

Time per time step 

Particles pushed per 

second 

Grind time 

Time per cell per time 

    step 

Problem 

Isosurface 

• 1,024 1,024 pixels 

• Iso @ 0.001, 0.01, 0.1, 1.0, 

10.0, 100.0 

• Q2 dataset: 103.7M cells, 

4,096 cores, 27 groups 

• Q4 dataset: 321.1M cells, 

12,720 cores, 27 groups 

Volume render 

• 1,024  1,024 pixels 

• 2,000 samples per ray 

• Q2 dataset: 103.7M cells, 

4,096 cores, 27 groups 

• Q4 dataset: 321.1M cells, 

12,720 cores, 27 groups 

1 simulated month 

• T341 mesh 

• 150 sec time step 

• 26 vertical levels 

• Spectral Eulerian 

core 

DIII-D experimental 

    tokamak 

• 13.5B particles 

• Q2: 4000 time steps 

• Q4: 16,000 time steps  

DLR-A configuration 

• 50 time steps 

• 110  40 jet diam in 

axial and radial 

directions 

• Q2: 10,285,056 cells 

• Q4: 24,261,120 cells 

Hardware (cores) 

   Q2 

   Q4 

 

  4,096 

12,720 

 

  4,096 

12,720 

 

8,192 

8,192 

 

  29,952 

119,808 

 

  47,616 

112,320 

Time (seconds) 

   Q2 

   Q4 

 

0.01778 per contour 

0.01686 per contour 

 

28.729 

  6.378 

 

6,481.724 

3,241.144 

 

86,400 

75,600 

 

1,034.0 

   444.0 

Metric target Q2:Q4 contour time ≥ 1.0 Q2:Q4 time ≥ 3.10 Q2:Q4 time ≥ 2.0 
Q2:Q4 grind time ≥ 1.0 

Q2:Q4 particle rate ≥ 4.0 
Q2:Q4 grind time ≥ 1.0 

Metric result 1.05 4.50 2.10 
1.14 

4.57 
2.34 
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3. OVERVIEW OF COMPUTATIONAL SCIENCE CAPABILITIES  

AND ANALYSIS OF METRIC RESULTS 

3.1 VISIT 

3.1.1 Introduction 

VisIt is an open source interactive parallel analysis and visualization tool for scientific data. It can be 

used to visualize scalar, vector, and tensor fields defined on 2D and 3D structured and unstructured 

meshes. VisIt was designed to handle very large data set sizes in the petascale range and yet can also 

handle small data sets in the kilobyte range. It is widely used throughout the scientific community, 

including government laboratories, universities, and industry. VisIt won an R&D 100 award in 2005 and 

has been downloaded over 100,000 times. Computer scientists at a number of DOE laboratories and 

universities have invested approximately 50 person-years of development in VisIt. VisIt is intended for 

more than just visualization and is built around five primary use cases: data exploration, quantitative 

analysis, comparative analysis, visual debugging, and communication of results. VisIt has a client-server 

design for remote visualization, with the server operating in a fully data parallel manner and in a 

distributed memory setting. VisIt has been deployed on a variety of computing platforms, including 

Linux, Mac OS, Windows, and on a diverse set of high performance computing platforms, including 

Cray, Sun, and IBM. 

VisIt is built on top of a number of well-established third-party libraries and applications. These 

include the Qt widget library for user interface, the Python programming language for a command line 

interpreter and scripting capability, and the Visualization ToolKit (VTK) for the data model and many of 

the analysis algorithms. 

3.1.2 Background and Motivation 

As supercomputers become increasingly powerful, the size, scope, and complexity of the simulations 

continue to increase. This results in increasingly larger quantities of output data that need to be analyzed 

and understood. Effectively and efficiently understanding the results has been a long-standing challenge. 

To meet this challenge, postprocessing analysis and visualization tools have been developed which read 

in the simulation data, perform various operations, and present the results using visual or quantitative 

techniques. A great diversity of quantitative and visual techniques has been developed to give insight 

about the data, including isosurface extraction (Fig. 1(a)), volume rendering (Fig. 1(b,c)) and streamline 

generation (Figure 1(c)). 

 

     

Fig. 1. (a) An isosurface of a Raleigh-Taylor instability problem. (b) A volume rendering of a 

turbulence problem. (c) Volume rendering and streamlines of a core collapse supernova collapse 

simulation. 
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As the size, scope, and complexity of the simulations increase, the capability of the postprocessing 

analysis and visualization tools must be able to similarly scale. The failure of these tools to scale will 

place unacceptable restrictions on their use, such as operating only on portions or downsampled versions 

of the data or taking an inordinate amount of time to complete. These restrictions have enormous negative 

impacts on a scientist’s ability to understand and reason about a simulation. 

3.1.3 Capability Overview 

VisIt's basic execution model is to employ ―data flow networks,‖ a standard model used by 

visualization systems for approximately two decades. Data flow networks consist of relatively 

independent filters, with each filter corresponding to an analysis algorithm. Filters can have one or more 

inputs and one or more outputs. Connecting filters together, attaching sources (file readers), and 

connecting the network's final outputs to a rendering algorithm creates data flow networks. An example 

of a dataflow network that renders isocontours of a dataset is shown in Fig. 2. 

 

 

Fig. 2. Data flow network-processing model.  

Data flows from the network source to the network sink. 

 

VisIt's large data strategy is to use distributed memory data parallelism. To create a given rendering, 

each processor creates an identical data flow network, and the networks are differentiated by the input 

data they process, very much in the multiple instruction, multiple data stream (MIMD) model. The input 

data set is partitioned across the processors, with each processor owning a different portion. Sometimes 

―ghost data‖ is replicated along the boundaries of the partitions to prevent interpolation artifacts and other 

problems. Once each processor is assigned its portion of the larger data set, it reads its portion and 

executes its data flow network. The reading and the data flow network execution can take place with 

communication between the processors or entirely independently, depending on the specifics of the input 

data and the algorithms being executed. Once the data flow network is executed, an image is rendered. 

This rendering is typically parallelized for large data, which consists of every processor rendering the 

geometry for its portion independently, followed by a large communication phase where the individual 

images produced by each processor are composited into a final image. More complex rendering strategies 

are employed for transparent rendering, shadows, etc. 

3.1.4 Science Driver for Metric Problem 

In Q2, VisIt was used to perform two important and very common visualization tasks; namely, 

isosurface extraction and volume rendering of the output of an important radiation transport code, 

Denovo. In Q4, the same visualization tasks were performed on a radiation transport simulation 3 times 

the size of the Q2 simulation. 

In the baseline and metric problems, VisIt processes datasets from the Denovo simulation code. 

Denovo is a new, state-of-the-art, 3D radiation transport code being developed at ORNL. It is currently 

being used to study and analyze radiation dose levels in a variety of engineering environments. The 

particular problem used for this benchmark involves the reactor core, containment vessel, turbines, and 

surrounding buildings in a nuclear power generating plant (a pressurized water reactor [PWR] facility). 

The code is currently being used to study the radiation dose levels under normal operating conditions, 

with plans to study doses following terrorist attack scenarios in the future. Accurate, high-fidelity 

understanding of the dose contours around the core and in the surrounding buildings is critical for health 

and safety assessment and cleanup, as well as new plant design and remodeling. 

Scalability of this code is critical due to the enormous memory requirements of this type of transport 

calculation. High-fidelity 3D calculations using 1,000 energy groups results, for example, in 288,000 

File Reader 

(Source) 
Isocontour 

Filter 
Render 

(Sink) 
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degrees of freedom (DoF) per cell. With a limited amount of memory available per node, massive 

parallelism is mandatory for this type of calculation. As codes such as Denovo scale to higher degrees of 

parallelism and larger numbers of computational domains, the resulting output files will similarly 

increase. It is therefore critical that the capability of the analysis and visualization tool similarly scale to 

handle increasingly larger numbers of computational domains. 

The example used in the baseline and metric problem 

is a steady-state transport calculation of radiation dose in a 

PWR facility, as shown in Fig. 3.  The model consists of 

material components consisting of concrete, reactor fuel, 

steel, reduced density steel, and air decomposed over 

many spatial domains. 

Denovo is a 3D, discrete ordinates (SN) transport code 

that utilizes state-of-the-art solution methods to obtain 

accurate solutions to the Boltzmann transport equation. 

Denovo uses the Koch-Baker-Alcouffe (KBA) parallel 

sweep algorithm to obtain high parallel efficiency on 

hundreds of processors on block-structured Cartensian 

(orthogonal) meshes. As opposed to traditional SN codes 

that employ source iteration, Denovo uses nonstationary 

Krylov methods to solve the within-group equations. 

Krylov methods are far more efficient than stationary 

schemes. Additionally, classic acceleration schemes 

(Diffusion Synthetic Acceleration) do not suffer from 

stability problems when used as a preconditioner to a Krylov solver. Denovo’s generic programming 

framework allows multiple spatial discretization schemes and solution methodologies. Denovo currently 

provides diamond-difference, theta-weighted diamond difference, linear-discontinuous finite element, 

trilinear-discontinuous finite element, and step characteristics spatial differencing schemes. Also, users 

have the option of running traditional source iteration instead of Krylov iteration. Multigroup upscatter 

problems can be solved using Gauss-Seidel iteration with transport, two-grid acceleration. A parallel first-

collision source is also available. Denovo has been verified against a number of problems, including 

several from the Kobayashi benchmark set. Initial parallel performance tests exhibit excellent strong 

scaling up to 100 processors and good scaling to 1,000 processors for high-fidelity problems. 

3.1.5 The Model and Algorithm 

For the analysis and visualization scaling study, two common algorithms will be used, isosurfacing 

and volume rendering. An isosurface is the 3D analog of a level set (or ―contour‖). Given a scalar-valued 

function, the level set is defined as the set where a function has a specific value, as follows: 

 

In the visualization community, a number of different techniques have been developed for computing 

the solution to the level set equation, the most common being the Marching Cubes algorithm [1], which 

computes a polygonal approximation to the level set. Isosurface extraction is a very useful visualization 

technique as it clearly illustrates interface boundaries of a scalar variable. This is particularly useful in the 

numerical quantification of radiation dose level (obtained from Denovo solutions) because it clearly 

delineates areas within the computational domain that experience a given dose. 

Volume rendering is a technique that produces an image directly from a scalar field in a 3D data set 

without producing intermediate geometry. Each value in the scalar field is assigned a color and opacity, as 

defined by a user-specified transfer function. After the transfer function has been applied to the scalar 

values in the mesh, the resulting color and opacity values are composited in front-to-back order (as 

defined by the viewing direction) to form the final image.  

 

Fig. 3.  Nuclear power plant, a PWR 

facility, set up for the Denovo simulation. 
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There are a number of techniques that have been used to composite color and opacity from scalar 

fields, including splatting, texture mapping, and ray casting. Generally, ray-casting techniques are the 

most accurate and produce the highest quality images. For the problem set chosen, the ray-casting volume 

render algorithm in VisIt is used.  

In volume rendering, the amount of work is determined by three factors: the size of the computational 

domain (mesh), the size of the final image, and the number of sample points extracted along each ray. 

Volume rendering is a powerful tool for analyzing the distribution of scalar values in a volume and 

particularly useful to the radiation transport dose solution as a way to see the entirety of the dose levels. 

The ray-casting volume renderer in VisIt consists of two fundamental stages. In the first stage, the 

algorithm takes as input a large data set that has been partitioned over its processors. The second input to 

the algorithm is the definition of the rays, which are determined by the view frustum and image size, with 

one ray per image pixel. Then, in parallel, each processor calculates intersections of each of the rays with 

its portion of the larger data set. At this point, no processor has enough data to composite the values along 

the rays into the final color for the pixel, since the intersections for a given ray will be spread over many 

processors. VisIt solves this problem by creating a second parallel partition, which is over all pixels. It 

then redistributes the partical ray data from the intersections so that they honor this new partition. This 

redistribution phase sends data points using numerous parallel point-to-point communications. Once the 

data from the intersections are repartitioned, compositing is trivial, because all of the data for a given ray 

is on a single processor. Each processor composites the set of rays, then the resulting image is collected to 

processor 0 where it can be displayed to the user.  

3.1.6 Q2 Baseline Problem Results 

For the Q2 baseline problem, we have selected two common analysis and visualization techniques, 

isosurface extraction and volume rendering.  These two algorithms are exercised on the output of a 

Denovo solution of the radiation dose concentrations around a reactor core in a nuclear power generating 

plant.  The intent is to demonstrate weak scaling in the analysis and visualization of the radiation dose 

transport using two different algorithms, isosurface extraction and ray-casted volume rendering.  

The Q2 benchmark consists of a Denovo simulation of 4,096 spatial domains run on 4,096 processor 

cores of Jaguar/XT5. The computational mesh contains 103,716,288 cells with scalar flux values for 27 

energy groups computed within each zone. The simulation outputs each computational domain to a 

separate file (hence 4,096 files) in the binary Silo/HDF5 format using double-precision floating point 

values. The cumulative size of all output files is 83.457 GB. 

Isosurface Baseline. In this benchmark, contours at dose isovalues of 0.001, 0.01, 0.1, 1.0, 10.0, and 

100.0 are computed, extracted, and rendered at a resolution of 1,024  1,024 pixels using VisIt running on 

4,096 cores. The radiation dose is computed as part of the data flow network using the expression engine 

inside VisIt.  VisIt’s expression engine reads in the 27 energy level flux values from the simulation output 

files and, using a set of user-defined weights, linearly combines them to create the dose variable that is 

ultimately presented to the analyst. 

In postproduction analysis and visualization tools such as VisIt, the most important productivity 

(hence benchmarking) metric is the time it takes to render a frame to a user display.  Under normal use 

cases, the user loads the simulation data from disk into memory and then repeatedly interacts with the 

data, successively modifying isovalues and observing the results.  The metric focus is therefore on the 

scalability of the isosurface extraction algorithms and not on the scalability of the one-time expense of 

reading simulation data from disk.  The data in Tables 2 and 3 summarize the results for the Q2 baseline 

run. Pipeline is the execution time for the entire isosurfacing data flow network, excluding I/O. The 

timing value for Pipeline includes the following major components: Isosurface, the time to extract the 

isosurface geometry; Render, the time to render the geometry; Comp, the time required to composite and 

display the resulting image; and Expr, the time required to create the radiation dose variable using the 

expression engine. The minimum, maximum, and average times of the 4,096 core timings are reported. 
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Since the result image is not displayed until all cores are finished, the maximum and average pipeline 

times determine how quickly results are displayed to the user. 

 
Table 2. Per core timings for the Q2 isosurfacing benchmark 

 Minimum Maximum Average 

Pipeline    

Isosurface 0.0140 0.0270 0.01768 

Render 0.0200 0.0650 0.02245 

Comp 0.0480 0.0870 0.05193 

Expr 0.1810 0.2450 0.21097 

 

 
Table 3. PAPI hardware counter data for the 

Q2 isosurfacing benchmark 

PAPI hardware counters Counter value 

Total instructions 9.48E+14 

FP instructions 1.73E+11 

L2 Cache misses 33.83E+10 

Real cycles 5.69E+11 

Real (µs) 2.47E+08 

User cycles 2.63E+11 

User (µs) 1.14E+08 

 

Volume Rendering Baseline. In this benchmark, a 1,024  1,024 pixel volume-rendering image of 

the radiation dose variable is computed. As in the isosurface benchmark, this variable is computed using 

VisIt’s expression engine from the 27 energy group flux values stored in the simulation output files. In 

ray-casted volume rendering, the viewpoint has a direct impact on the amount of computational work to 

be performed prior to rendering the image. For this reason, the viewpoint is set so that the data is centered 

and fills the entire image. This maximizes the amount of work required during pipeline execution. 

 As in isosurface extraction, the time to render frames once the data is loaded from disk is the most 

relevant metric to the end user. The focus is therefore on the scalability of the volume rendering 

algorithms and not on the scalability of the one-time expense of reading simulation data from disk.  

Table 4 summarizes the timing data for the Q2 baseline run. Pipeline is the execution time for all 

stages in the volume rendering data flow network, excluding I/O. Vol Render is the execution time for the 

volume rendering filter, which consists of three major components: S Extract, sample point extraction; S 

Comm, sample point communication; and Expr, which is the time required to create the radiation dose 

variable using the expression engine. The minimum, maximum, and average times of the 4,096 core 

timings are reported. Since the resultant image is not displayed until all cores are finished, the maximum 

and average pipeline times determine how quickly results are displayed to the user. The per core timings 

and hardware counter results for 500, 1,000, 2,000, and 4,000 samples per ray are given in Tables 4 and 5. 
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Table 4. Per core timings for the Q2 volume rendering baseline 

 
500 1000 2000 4000 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Pipeline 38.9050  38.98100 38.91322 34.51800  34.74800 34.67289 28.91100  29.01800 28.92484 31.47800  31.62200 31.49796 

Vol Render 38.7050  38.73800 38.71340 34.31200  34.36000 34.32562 28.71600  28.78000 28.72930 31.27700  31.41100 31.29756 

S Extract 0.05900   0.14200 0.11783 0.09900  0.23600 0.19002 0.10000  0.33200 0.25329 0.13400  0.51000 0.40080 

S Comm 38.5090  38.56600 38.54388 34.03100  34.11200 34.07852 28.33500  28.46500 28.41073 30.69500  30.90200 30.81717 

I Comm 0.00000   0.08800 0.00301 0.00000   0.13000 0.00444 0.00000   0.21500 0.00741 0.00000  0.36800 0.01221 

Expr 0.156 0.205 0.16285 0.156 0.199 0.16283 0.156 0.199 0.16275 0.155 0.199 0.16281 

 

 

 
Table 5. PAPI hardware counter data collected for the Q2 volume rendering 

baseline 

 500 1000 2000 4000 

Total instructions 1.10E+15 1.18E+15 1.038E+15 1.068E+15 

FP instructions 1.33E+11 1.50E+11 1.79E+11 2.01E+11 

L2 cache misses 7.11E+10 7.11E+10 6.70E+10 7.20E+10 

Real cycles 3.78E+11 4.08E+11 4.47E+11 4.57E+11 

Real (µs) 1.64E+08 1.78E+08 1.95E+08 1.99E+08 

User cycles 2.31E+11 1.81E+11 2.10E+11 2.16E+11 

User (µs) 1.01E+08 7.86E+07 9.14E+07 9.38E+07 
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3.1.7 Computational Performance Gains 

The isosurfacing pipeline exhibited excellent weak scaling as implemented and no modifications were 

required. However, while performing this work, the volume rendering pipeline was run on more 

processors than had previously been attempted. In experimental volume rendering studies, it was 

discovered that good scalability was observed up to 1,024 processors, but performance thereafter 

dramatically dropped off at 2,048 processors and beyond. Investigation led to the discovery of two 

bottlenecks to scalability, one major and one minor. 

The major bottleneck was discovered in an O(n
2
) algorithm (n is the number of processors) that 

performed an optimization step to minimize communication between processors.  Ray-casted volume 

rendering is an image space-rendering technique. At each pixel in the output image, a ray located at a 

pixel and parallel to the viewing direction is created. This ray is intersected with the data, and a specified 

number of samples are extracted along the ray. Each sample along the ray is assigned a color and 

transparency according to the user-specified transfer function. To produce a final color at each pixel, 

these samples must be combined in a back-to-front compositing step. Performing this operation efficiently 

in a parallel, distributed memory setting is very complicated, as described in [2].    

The VisIt volume-rendering algorithm executes in two major phases, the first parallelizing across the 

mesh and the second parallelizing across the pixels in the final image. In the first phase, the cells in the 

mesh are evenly distributed across the processor set, and then each processor generates samples from the 

cells it owns from each ray. At the end of this phase, all of the samples along a given ray can be located 

on many different processors, so it is not yet possible to calculate the final pixel color. To solve this, the 

algorithm enters a second phase, where the data is partitioned such that all of the samples along a given 

ray are located on a single processor. Redistributing the sample points requires substantial point-to-point 

(arbitrary processor to arbitrary processor) communication. It is in this part of the algorithm where a 

barrier to scalability was discovered. There is the potential for a tremendous amount of communication 

when the sample points are redistributed. To try and minimize this communication, this phase of the 

algorithm examines the distribution of the sample points to processors and then attempts to create an 

assignment of pixels to processors in a manner that ―minimizes‖ redistribution communication. That is, if 

a processor p already has many of the sample points for pixel q, the algorithm attempts to assign pixel q 

to processor p. This is implemented with an all-to-all communication primitive that requires an O(n
2
) 

amount of memory. This optimization is effective for small processor counts, but it was found that the 

coordination overhead does not scale and, at large enough processor counts, causes VisIt to run out of 

memory and fail.  The solution is to skip the optimization and simply assign pixels to processors without 

concern for the distribution of the sample points.  This enables the avoidance of O(n
2
) and even O(n) 

buffers.  It is possible to revisit this algorithm in an effort to minimize overall communication, but this is 

likely to cause the presence of, at a minimum, O(n) buffers and hence would not be cost effective.  

Finally, because the data is being partitioned to a finer and finer degree with such a large processor count, 

the amount of communication saved becomes progressively smaller as the number of processors rises. 

The minor problem encountered is in the VisIt tiling algorithm. When volume rendering a 1,024  

1,024 pixel image with 1,000 samples per pixel, the algorithm must manage over one billion (1,024  

1,024  1,000) samples.  In a serial setting, or with a small number of processors, these samples are more 

than can be contained in primary memory.  VisIt solves this problem by taking advantage of the fact that 

ray-casted volume rendering is an image space-rendering technique. Specifically, the image can be tiled 

into a sequence of smaller images. Each tiled image can be treated as an independent volume rendering, 

and the resulting tiles can be reassembled to form the final image. In doing this, the memory requirements 

are reduced. However, in a parallel setting, this tiling strategy has a very negative side effect.  The cells 

owned by a given processor are fixed before the volume rendering begins, so it is quite possible for a 

processor to have no work to perform on a given tile. And so the processor will wait until the next tile is 

ready to volume render, decreasing the parallel efficiency of the algorithm. In effect, the tiling strategy 

serializes the volume rendering over tiles, with the benefit of ensuring a lower memory footprint.  
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However, this adaptation is not necessary when running in parallel on many processors. Each processor 

will own a portion of the samples, and as the number of cores grows large, the number of samples each 

core owns (which is essentially fixed) decreases.  After a certain number of processors, the memory 

requirement of the sample points is small enough to fit into main memory. At this point, the tiling strategy 

can be removed and the volume rendering can be effectively unserialized.  The solution was to simply 

disable the tiling strategy when running in parallel. 

3.1.8 Q4 Metric Problem Results 

For the Q4 metric problem, the same isosurface and volume rendering algorithms were run on an 

identical Denovo simulation 3 times the size of the Q2 simulation. Specifically, the Q4 benchmark 

simulation contained 12,720 spatial domains run on 12,720 processor cores of Jaguar/XT5. The 

computational mesh contains 321,117,360 cells with scalar flux values for 27 energy groups computed at 

each cell. The simulation outputs each computational domain to a separate file, making 12,720 files, 

output in the binary Silo format using double-precision floating points values. The cumulative size of all 

output files is 258.391 GB.  

The timing results of the isosurface 

extraction on the Q4 metric problem are 

shown in Table 6 and the PAPI hardware 

counting data in Table 7. Weak scaling 

results for isosurfacing timings are shown in 

Table 8. 

The timing results of the ray-casted 

volume rendering on the Q4 metric problem 

are shown in Table 9 and the PAPI hardware 

counting data in Table 10.  Weak scaling 

results for volume rendering timings are 

shown in Table 11. 

 

 

 

 

 

Table 6. Per core timings for the Q4 isosurfacing 

benchmark 

 Minimum Maximum Average 

Pipeline    

Isosurface 0.01411 0.02654 0.01686 

Render 0.02079 0.06907 0.02319 

SR 0.050 0.0912 0.05274 

Expr 0.1933 0.2501 0.22390 

    

Table 7. PAPI hardware counter data  

for the Q4 isosurfacing benchmark 

PAPI hardware 

counters 
Counter value 

Total instructions 9.12E+14 

FP instructions 5.23E+11 

L2 cache misses 2.31E+11 

Real cycles 1.08E+11 

Real (µs) 4.70E+07 

User cycles 7.42E+10 

User (µs) 3.23E+07 

Table 8. Weak scaling results of the Q4 benchmark 

 Minimum Maximum Average 

Pipeline    

Isosurface 0.992 1.0550 1.05456 

Render 0.9620 0.95555 0.97187 

SR 0.95865 0.95394 0.98483 

Expr 0.93636 0.97960 0.94225 
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Table 9. Per core timing results for the Q4 volume rendering 

 500 1000 2000 4000 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Pipeline 7.47642 7.57774 7.4826 6.51973 6.63473 6.52798 6.5838 6.73839 6.60026 6.8265 7.04683 6.84922 

Vol Render 7.24796 7.30064 7.25474 6.29565 6.36192 6.30441 6.36193 6.46614 6.37796 6.60335 6.77199 6.62592 

S Extract 0.01855 0.0453 0.03042 0.02316 0.06854 0.04253 0.0282 0.1014 0.06169 0.03697 0.14928 0.0858 

S Comm 7.1393 7.16601 7.15538 6.16343 6.20998 6.19064 6.19944 6.28523 6.24175 6.39171 6.53656 6.46006 

Expr 0.1494 0.18839 0.16432 0.14966 0.18698 0.16435 0.14966 0.18803 0.16432 0.14956 0.18697 0.16440 

 

 
Table 10. PAPI hardware counter data collected for the Q4  

volume rendering benchmark 

 PAPI Hardware Counters 

 500 1000 2000 4000 

Total instructions 1.10E+15 1.18E+15 1.038E+15 1.06E+15 

FP instructions 1.33E+11 1.50E+11 1.79E+11 2.01E+11 

L2 cache Misses 7.11E+10 7.11E+10 6.70E+10 7.20E+10 

Real cycles 3.78E+11 4.08E+11 4.47E+11 4.57E+11 

Real (µs) 1.64E+08 1.78E+08 1.95E+08 1.99E+08 

User cycles 2.31E+11 1.81E+11 2.10E+11 2.16E+11 

User (µs) 1.01E+08 7.86E+07 9.14E+07 9.38E+07 

 

 
Table 11. Weak scaling results of the volume rendering benchmark timings 

 500 1000 2000 4000 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Pipeline 5.20 5.14 5.20 5.29 5.24 5.31 4.39 4.31 4.38 4.61 4.49 4.60 

Vol Render 5.34 5.31 5.34 5.45 5.40 5.44 4.51 4.45 4.50 4.74 4.64 4.72 

S Extract 3.18 3.13 3.87 4.27 3.44 4.47 3.55 3.27 4.11 3.62 3.42 4.67 

S Comm 5.39 5.38 5.39 5.52 5.49 5.50 4.57 4.53 4.55 4.80 4.73 4.77 

Expr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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3.1.9 Interpretation of Results 

The Q4 metric problem was run on a Denovo simulation using the identical setup but using a 

computational mesh that was roughly 3 times larger than the baseline problem. The simulation was run 

with a total of 321,117,696 computational zones across 12,720 spatial domains with scalar flux values for 

27 energy groups in each zone. Each spatial domain was output to a separate file, resulting in a total input 

file size of 258.391 GB. A comparison of the Q2 and Q4 problems sizes is shown in Table 12. 

For the Q4 metric problem, the same isosurface extraction and volume rendering operations were 

performed using VisIt running on 12,720 cores. 

 
Table 12. Q2 and Q4 simulation sizes 

Problem metric Q2 Problem Q4 Problem 
Q2–Q4 

Comparison 

Number of zones 103,716,288 321,117,696 3.096 

Number of domains 4,096 12,720 3.105 

Total file size 83.457 GB 258.391 GB 3.105 

 

The isosurface extraction algorithms are a fairly well understood, and scalability was expected. It was 

therefore gratifying to find that the framework in VisIt that manages and executes the isosurface 

extraction and rendering was able to exhibit very good weak scaling, satisfying the Joule criterion. 

3.1.10 Summary and Conclusions 

We have run two benchmarks using VisIt, isosurfacing and volume rendering, on two radiation dose 

transport simulations from Denovo. The resulting images from the Q2 baseline and the Q4 metric 

problem are shown in Figs. 4 and 5, respectively. The isosurfacing metric was shown to exhibit ideal 

weak scaling.  The Joule metric proved to be particularly useful to the volume rendering as two barriers to 

scalability were identified and addressed. The modifications to the volume-rendering algorithm resulting 

in significant performance improvements will benefit the entire analysis and visualization community as 

simulations continue to grow in size and scope. 

The output produced from the VisIt analysis and simulation runs produced expected results that have 

been verified with the code developer and are deemed acceptable. We have therefore accepted the results 

for the Q2 benchmark runs. 

 

  



 

18 

  
(a) (b) 

Fig.  4. (a) Extraction of radiation dose contours and (b) a volume rendering from the nuclear 

power plant simulation from the Denovo code. Q2 

 

 

 

  
(a) (b) 

Fig.  5. (a) Extraction of radiation dose contours and (b) a volume rendering from the nuclear 

power plant simulation from the Denovo code. Q4 
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3.2 CAM 

3.2.1 Introduction 

The Community Atmosphere Model (CAM) [3–5] is the latest in a series of global atmosphere 

models developed at the National Center for Atmospheric Research (NCAR) for the weather and climate 

research communities. CAM also serves as the atmospheric component of the Community Climate 

System Model (CCSM). The latest version of CAM (in its fifth generation) has been designed through a 

collaborative effort that includes NCAR, university, and laboratory users and developers, and its contents 

are defined by the CCSM Atmospheric Model Working Group (AMWG). Some of the key features in 

CAM include updated parameterizations for prognostic cloud water, cloud ice, precipitation, and cloud 

fraction; the radiative treatment of atmospheric aerosols (sulfate, dust, sea salt, carbon, and volcanic), the 

optional prognostic treatment of sulfate aerosols; improved energy conservation; improvements to the 

long-wave radiation interaction with water vapor; updates to the shortwave radiative transfer scheme to 

more accurately model trace gas absorption; and an atmosphere-land interface that now supports rain and 

snow phases. CAM also includes an optional slab ocean model and incorporates an International Satellite 

Cloud Climatology Project (ISCCP) cloud simulator to emulate ISCCP statistical cloud diagnostics.  

3.2.2 Background and Motivation 

Over the last two decades, NCAR has provided a comprehensive, 3D global atmospheric model to 

scientists all over the world for use in the analysis and understanding of global climate. Because of its 

widespread use, the model was designated a community tool and given the name Community Climate 

Model (CCM). The original versions of the NCAR CCM, CCM0A [6] and CCM0B [7], were based on 

the Australian spectral model [8] and an adiabatic, inviscid version of the European Centre for Medium-

Range Weather Forecasts (ECMWF) spectral model [9]. The CCM0B implementation matched the earlier 

CCM0A model to within natural variability, but in addition provided a more flexible infrastructure for 

conducting medium- and long-range global forecast studies. All aspects of the model in the CCM0B 

effort were described in a series of technical notes [10] and a detailed code and algorithm description 

[11]. The most recent version of CAM (CAM 3.0) incorporates significant improvements to the physics 

package (e.g., generalized cloud overlap for radiation calculations), new capabilities such as the 

incorporation of thermodynamic sea ice, and a number of enhancements to the implementation (e.g., clean 

separation between physics and dynamics).  

3.2.3 Capability Overview 

Physical Model. The model implementation is characterized by two computational phases: the 

resolved dynamics, which advances the evolution equations for atmospheric flow, and the physics, which 

treats subgrid-scale phenomena such as precipitation processes, clouds, long-wave and short-wave 

radiation transfer, and turbulent mixing. Control moves between the dynamics and the physics twice 

during each model simulation time step. A dynamics–physics coupler moves information between data 

structures representing the dynamics state and the physics state. 

Numerical Model. CAM includes multiple options for the dynamics, referred to as dynamical cores: 

a spectral Eulerian, a spectral semi-Lagrangian, finite volume, and cubed sphere. The spectral and semi-

Lagrangian dynamical cores use the same computational grids. Finite volume and cubed-sphere grids both 

differ from these grids due to differences in the mathematical formulations. An explicit interface exists 

between the dynamics and the physics, and the physics data structures and parallelization strategies are 

independent from those in the dynamics. 

Software Implementation. The software design of the CAM model includes a hybrid 

(OpenMP/MPI) approach in order to efficiently map to the multiple symmetric multiprocessor (SMP) 

node nature of many modern supercomputers, including the Cray XT-series machines at ORNL. The 

strategy for parallel decomposition is different in the physical parameterizations vs. the dynamical cores, 
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so a data transpose is necessary twice each model time step: once from the physics grid to the dynamics 

grid, and once from the dynamics grid to the physics grid. 

Data dependence in the physical parameterizations is only in the z (vertical) dimension. Physical 

parameterization data in this dimension is always on-processor in parallel OpenMP threads as well as 

Message Passing Interface Standard (MPI) processes, so the parameterizations themselves do no 

communication. Data are arranged in sets of (x,y) points called chunks. Each chunk can be thought of as a 

set of independent vertical ―pencils,‖ where the computations on each pencil are independent of each 

other. A given MPI process is assigned some number of chunks, with per-task parallelism achieved by an 

OpenMP loop over the number of chunks. The size of a chunk is a compile-time setting. Most of the 

physical parameterizations have an inner loop over the chunk size, which provides opportunities for 

vectorization on machines that provide it. 

Since no communication is required in the parameterizations, their performance scales well with 

increasing thread and process count. The scaling is not perfect, however. There are two key reasons for 

this. First, as additional threads are added, the requirements on the memory subsystem increase. CAM is a 

memory-intensive code, so memory performance degrades when the nodes are fully populated (8 threads 

per node on the current XT5 system at ORNL). 

The second reason that the parameterizations do not scale linearly is that there is an inherent load 

imbalance imposed by the physics being modeled. As an example of load imbalance, consider that the sun 

is above the horizon on only half of the (global) model grid points at any particular time. There is a 

shortwave radiation calculation required at sunlit points, which is not done for points that fall below the 

terminator. This can cause a substantial load imbalance since the shortwave radiation calculation is 

relatively expensive, and the set of points that require it constantly changes as the simulated time of day 

changes. An attempt is made to statically load-balance the distribution of points to processors. The 

approach involves including points near the North Pole with points near the South Pole in the same 

chunk. Therefore, in northern hemisphere winter, for example, a given polar chunk should contain 

roughly half southern hemisphere points which are sunlit, and half northern hemisphere points which are 

not. 

Data decomposition for parallelization of the spectral Eulerian dynamical core is across latitude 

bands. Each MPI task is assigned some number of latitudes in the part of the spectral transform that 

begins in grid-point space and applies a Fourier transform. If more that a single latitude band is assigned 

to a particular MPI task, OpenMP parallelism is applied via a loop over the number of assigned latitudes. 

Once in spectral (wave number) space, parallelization is across Fourier wave numbers. To transform back 

to grid-point space, a data transpose is applied within the dynamical core to rearrange the data such that 

all Fourier wave numbers are contiguous in order to apply a reverse Fourier transform. 

The data decomposition in the spectral Eulerian dynamical core is only one dimensional (y direction). 

Prior to the advent of massively parallel computational platforms, this did not pose any bottleneck. Also, 

at the lower spatial resolutions of earlier simulations, the cost of the spectral dynamics relative to the 

physical parameterizations is much less (see next section). Our intent is to address overall performance 

and scaling issues mainly related to the spectral Eulerian dynamical core at high resolution. 
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3.2.4 Science Driver for Metric Problem 

A current focus area of climate change research is predictability on decadal timescales. These studies 

require a numerical model with very high spatial resolution (e.g., on the order of 30 km resolution in 

longitude and latitude). Until recently such simulations were not feasible due to the concomitant 

computational requirements. Only now with petascale-level platforms possessing adequate per-processor 

performance do such studies become tractable. 

Specifically, an ongoing atmospheric science 

research focus at ORNL involves the use of a 

high-resolution global atmospheric general 

circulation model (AGCM) to hindcast the 

climatic impact of volcanic eruptions (Fig. 6). 

An important design aspect of this work 

calls for the configuration of a global 

atmospheric model and associated land 

surface model with forcing datasets that 

enable us to address specific science questions 

about the response of the climate system to 

natural and anthropogenic aerosol forcing. 

These forcing datasets employ best estimates 

of observed solar variability and greenhouse 

gas mixing ratios during the experimental 

period. The atmospheric model is configured 

at a resolution of approximately 30 km to 

ensure adequate representation of regional 

features such as the orographic signal of 

precipitation. Such high resolution is also 

essential for the land model to develop a 

realistic soil moisture pattern. Another benefit 

from this high-resolution configuration is a 

more realistic representation of both extra-

tropical and tropical storms. 

The atmospheric model and land model 

chosen for this study, along with the spatial 

resolution, form the basis of the climate 

component of the FY09 Joule exercise. A 

description of the models, parallel 

decomposition, boundary datasets, and initial 

Q2 results are described in the following 

sections. 

3.2.5 The Model and Algorithm 

The Community Atmosphere Model (CAM) version 3.0 is the fifth generation of the National Center 

for Atmospheric Research (NCAR) AGCM used in climate studies. The name of the model series was 

changed from Community Climate Model to Community Atmosphere Model (CAM) to reflect the role of 

CAM 3.0 in the fully coupled Community Climate System Model (CCSM). The CCSM couples CAM 

and active land, ocean, and sea ice components together to form a fully interactive climate system model. 

CAM is designed through a collaborative process with users and developers in the Atmospheric Model 

Working Group (AMWG). The AMWG includes scientists from NCAR, the university community, and 

government laboratories and agencies such as ORNL. 

 

Fig. 6. Global average surface temperature in 

observations, modeled with and without anthropogenic 

forcing. Volcanic eruptions are clearly visible in their rapid 

cooling effect. Source: Fourth Assessment Report of the 

United Nations Intergovernmental Panel on Climate Change. 
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The CAM configuration for this study runs in uncoupled (stand-alone) mode. This configuration 

includes a fully active land model (Common Land Model or CLM), with sea surface temperatures (SSTs) 

and sea ice concentrations provided by external forcing datasets. The term ―uncoupled‖ refers to the fact 

that there is only one executable image, with communication between component models via a subroutine 

interface. In ―coupled‖ mode, boundary flux information is passed between individual models and a 

coupler using separate executables that communicate with one another via MPI. CAM can be configured 

to use any of four dynamical cores: spectral Eulerian, finite volume, semi-Lagrangian, or cubed sphere. 

The spectral Eulerian dynamical core is used for this study because its characteristics and behavior are 

well understood. The horizontal model resolution is T341 (see http://vets.ucar.edu/vg/T341), which 

results in a transform grid (latitude/longitude) of 1,024  512 points. This represents approximately 0.35° 

of latitude and longitude. There are 26 vertical levels. 

The CAM model version used in this study is 3.5. CAM 3.5 contains some modifications to the 

physical parameterizations beyond CAM 3.0. Details of the mathematical formulations are available in 

ref. [5].  Further details on the Eulerian dynamical core and physical parameterizations can also be found 

in this section. 

A key element in the design and implementation of the numerical methods for the CAM model is the 

coupling between the physical parameterizations and the dynamical core (this physics–dynamics coupling 

is not the same as the inter-model coupling just described). There are important performance 

ramifications of this coupling process as implemented on a parallel architecture.  The mathematical 

formulation of the coupling is described in Chapter 2 of ref. [5]. 

3.2.6 Q2 Baseline Problem Results 

Since the AGCM used in this study is a global model, traditional application of a weak-scaling 

approach to increasing the problem size is not possible given the science needs. This is because increasing 

the number of model grid points for a constant physical size domain necessarily shortens the distance 

between them. Numerical stability considerations (e.g., CFL constraint) dictate a shorter dynamics time 

step as grid points become more tightly spaced. This results in a substantial increase in the amount of 

floating-point work performed per core for a given model time integration. The computational cost of the 

dynamics part of the calculation as a result of doubling the resolution in both x and y dimensions goes as 

the cube of the resolution increase rather than the square. Computational cost of the physics part of the 

calculation resulting from this same increase in resolution only goes as the square of the resolution 

increase. As a consequence, the cost of the dynamics part of the calculation begins to dominate the cost of 

running the entire model as the horizontal resolution is increased. 

Scientific demands from climate models do not at this time justify moving to a much finer mesh than 

outlined above. Therefore, the CAM Joule metric applied for this exercise is model run time for a T341 

configuration at high process count. The model was run for one simulated month.  This is the minimal run 

time required to accurately represent the relative time taken by various model components for an 

arbitrarily long run, including the impact of model I/O. 

A total of 8,192 processor cores were used for the model run. On the Jaguar/XT5 system this is 

distributed as 1,024 MPI tasks, with 8 OpenMP threads per task. This means one MPI task per eight-

processor node on the system. For the final (Q4) simulation, improvements to the computational 

algorithms were devised and implemented to enhance the performance of the model. The algorithms 

themselves were not changed in a wholesale manner, but allowance was given for potential numerical 

differences at the round-off level in the improved implementation. This approach simplifies the process of 

assuring that the model is generating the "right" answers. ―Correct‖ answers are defined by the answers 

generated in the baseline (Q2) simulation. The same initial and boundary condition files were used in both 

the Q2 and the Q4 runs. 

The CAM model can be configured to periodically write a snapshot file of prognostic data that can be 

used as an initial conditions file for subsequent runs. This is useful because the model requires a number 

of years of simulation time before it settles to a balanced (quasi-equilibrium) state. Fortunately, a run 
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performed with an earlier version of the model produced a number of these files. We chose one of these 

as an initial conditions file for this exercise. 

SST and sea ice concentration data are prescribed by monthly boundary datasets. These data are read 

in each simulated month and then interpolated in time. Monthly ozone and aerosol concentration 

bounding data are also prescribed, input to the model and interpolated to current model time as the model 

runs. 

The CLM requires specification of surface type and characteristics. These are provided by boundary 

datasets. Like the atmospheric model, CLM can start from an initial dataset. Although such a dataset is 

currently not available at the resolution of this study, the model instead provides the facility to start from 

an internally specified initial state. Spinning up to an equilibrium state requires a number of years of 

simulation. However, the computational characteristics between a spun-up state and this so-called 

"arbitrary" initialization are nearly identical. 

The benchmark results reported here are for a one-month simulation on 8,192 processor cores of the 

Jaguar/XT5 platform.* A constant time step of 150 seconds was used, with the total integration being 

17,856 time steps. The cost of the dynamical core itself was 4,247 seconds, which represents 

approximately two-thirds of the total simulation time of 6,482 seconds. The CLM cost was only 112 

seconds. The cost of writing CAM history files was similarly small (115 seconds). This is because in 

default mode, the model only writes history files once per simulated month. In the Q2 runs a substantial 

performance gain was not realized by increasing the processor count from 4,096 to 8,192. This is 

primarily due to unexploited opportunities for parallelism in the dynamical core, and the fact that the 

relative computational cost of the dynamical core is quite high at a horizontal resolution of T341. In 

contrast to the dynamical core, the physical parameterizations in CAM take full advantage of the 2D (x–y) 

opportunities for parallelism. Performance data of the benchmark computation are shown in Table 13. 

The General Purpose Timing Library (GPTL) [12] was used in conjunction with the Performance 

Application Programming Interface (PAPI) to extract the performance data. 

 
Table 13. CAM performance data for the Q2 benchmark run* 

 Atmosphere CLM I/O Total 

Time (seconds) 5,916.475 112.048 115.024 6,481.724 

FP instructions 2.13  10
15

 3.89  10
13

  2.17  10
15

 

*The 8192-core simulation on Jaguar/XT5 consisted of a 17,856 time step integration 

(one month at 150 seconds per step) on a T341 grid (1024 latitude × 512 longitude ×  
26 vertical). 

 

A few items are worth noting for the CAM benchmark problem and associated collection of 

performance data. First, timing for the run is the same across all OpenMP threads and MPI tasks. This is 

because of barriers and synchronization necessary for the algorithms. Second, floating-point instruction 

data is collected from an equivalent MPI-only simulation (one MPI task per core) in order to avoid having 

to aggregate over all OpenMP regions. The MPI-only and hybrid OpenMP/MPI runs yield the exact same 

numerical results, so at present the floating-point instruction mix (number and order) for the two runs is 

the same although this is not necessarily true in general. Total instruction count data must be interpreted 

carefully because extraneous integer instructions executed by a given task can signify a load imbalance 

(e.g., spinning in user space waiting for any kind of barrier) rather than actual computational work. 

3.2.7 Computational Performance Gains 

Modifications implemented to achieve a greater than 2 times speedup for the CAM portion of a one-

month CAM+CLM T341 model run fall in four categories: source code modifications, compiler flags and 

improvements, run time configuration flags, and modifications to the I/O subsystem. 

                                                 
* http://www.nccs.gov/jaguar/ 

http://www.nccs.gov/jaguar/
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We devised numerous source code modifications to the spectral Eulerian dynamical core in CAM. 

The impact was to obtain substantial speedups when run at particularly high resolution. The main theme 

of these modifications was to exploit embedded opportunities for parallelism at the OpenMP (threading) 

level that did not exist in the standard code base. At T341 resolution, the granularity of the new regions 

parallelized was sufficient to overcome the overhead of the threading itself and produce substantial 

performance gains. Good performance gains were also the result of the fact that existing MPI parallelism 

in the spectral Eulerian dynamics peaks at 512 processes, so additional opportunities (in this case 

OpenMP parallelism in the dynamics) needed to be pursued to push the parallelism to 8,192 cores. In 

addition, the fact that the cost of the spectral dynamics scales roughly as the cube of the horizontal 

resolution, while almost all of the physics scales as the square, meant that the modifications to the spectral 

dynamics would have a particularly significant impact at high resolution. Finally, since the XT5 system at 

ORNL was upgraded in the past year from four cores per SMP node to eight, this provided an additional 

performance boost since these OpenMP code modifications all apply at the node level. 

In the category of compiler flags and improvements, we note that the PGI compiler used for all runs 

went through two major revision upgrades between the Q2 and Q4 runs, from 7.2.3 to 9.0.1. This change 

alone had a beneficial impact of approximately 10% on overall model run time. PGI is the default 

compiler on the ORNL Jaguar machines. 

One change to default compiler flag settings from that used in the Q2 benchmark runs was to remove 

the flag "-Kieee" (the Q2 runs used exactly the same settings as the Jaguar-based Makefile maintained by 

NCAR). The impact of this flag was to force strict conformance with the IEEE 754 standard. By 

removing it, the compiler was able to utilize certain optimizations to its internal numerics that it would 

not otherwise have been able to do. The impact of turning off this flag sped up the CAM execution 

somewhat, without a significant impact on the generated solution. The original need for the flag was 

historical and it is no longer required. 

The flag -Mvect=nosse was changed to -Mvect=sse. The default CAM model Makefile specifies 

-Mvect=nosse, which disables vector instructions. Enabling vector instructions increases the theoretical 

peak speed of the AMD processor by a factor of 2. The speedup realized by the CAM model when vector 

instructions were enabled was more like 20%, which is still a significant number. The reason 

-Mvect=nosse was in the original Makefile was for numerical reproducibility across all thread counts 

used in OpenMP or hybrid OpenMP/MPI runs. The effect on model answers by enabling this flag was at 

roundoff. 

Flags -fast and -fastsse were also added to the Makefile. These are general optimization flags that had 

a minor impact on performance (though -fast implies an optimization level of at least -O2). 

Various compile-time and run-time Fortran name-list settings were tested as modified from their 

default values between the Q2 and Q4 runs. These had no impact on model answers but did affect model 

performance. The run-time and name-list settings exist to address issues such as cache blocking in the 

physical parameterizations, and to optimize the use of MPI primitives as used mostly in the dynamics. 

The settings had never been optimized for a T341 resolution, or specifically T341 on the XT5 

architecture, so some experimentation was necessary to achieve optimal results. Since there is some 

variability in model run time from one execution to the next simply due to issues such as operating 

system noise and overall load on the system, multiple runs had to be done to determine the best settings. 

This was particularly true of settings that had only a small impact on performance. 

Compile-time C-preprocessor variable PCOLS is essentially a cache-blocking parameter. It is the 

number columns (or vertical "pencils" using the nomenclature from earlier in this document) in a 

―chunk.‖ Recall that the columns defining a chunk need not necessarily be contiguous in physical space, 

though many inner loops in the physics do index over this variable. Generally, the best setting is 

independent of horizontal resolution. Since cache line sizes generally involve a power of 2, a PCOLS 

setting that is likewise a power of 2 is normally the best choice. And indeed it turned out that the default 

setting of PCOLS=16 gave the best results. PCOLS=8 was nearly as efficient. 

The value of name-list parameter phys_loadbalance was changed from its default value of 0 to 3 

between Q2 and Q4 runs. ―0‖ says not to do any load balancing within the physical parameterizations. ―3‖ 
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says to find one process to exchange data with when balancing the physics load. For the usual latitude 

decomposition, this translates to finding the process with the "mirrored" latitude in the other hemisphere, 

and the load balance is usually very good. ―2‖ says to do the optimal remapping, which is essentially an 

all-to-all communication. Physics load imbalances typically are not very large, so it is difficult to 

amortize the communication cost of option 2. ―3‖ gave the best performance for the Q4 runs. 

Name-list parameter dyn_alltoall has possible settings of 0 or 1. If set to ―0,‖ MPI_Alltoall is used for 

the transposes within certain routines in the dynamical core. Otherwise a point-to-point implementation is 

used. Run-time variability swamped any signal from varying this setting. Therefore, the default setting of 

0 was used in the final runs. 

Time taken to write the CAM history file was only a small fraction of the total model integration time 

in both the Q2 and Q4 runs (less than 2% of the total). However, we found it remarkable that some 

combination of current system load, upgrades to the underlying Lustre software, and migration to a new 

center-wide external Lustre file server resulted in more than a 2 times improvement in time to perform 

this physical I/O. We checked to be certain that exactly the same amount of data were written in both the 

Q2 and Q4 runs. Restart (checkpoint) files were not written in order to obtain an accurate measurement of 

the relative fraction of time taken to do I/O in both the Q2 and Q4 runs. 

3.2.8 Q4 Metric Problem Results 

A wide variety of performance analysis tools are available on the Cray XT5 architecture. Our original 

intent was to use CrayPat to gather timings and underlying performance statistics such as total floating 

point operations. Unfortunately, we could not get believable numbers from this tool when applying it to 

hybrid OpenMP/MPI codes such as CAM. So instead we manually instrumented the code utilizing the 

GPTL timing library [12]. This library gives consistent, reliable performance data for hybrid 

OpenMP/MPI codes and also provides an optional interface to the PAPI library. PAPI provides detailed 

low-level hardware performance counter data such as floating point operation count. We double-checked 

correct behavior of GPTL+PAPI by constructing a test OpenMP/MPI code with a known floating point 

operation count. The floating-point operations (FP_OPS) measured by GPTL/PAPI were extremely 

accurate. This GPTL-based approach was very useful for diagnosing fine-grained performance 

improvements between Q2 and Q4. As a convenience in generating total floating point operation and 

instruction counts across all cores for the full model, we performed an additional simulation in MPI-only 

(unthreaded) mode. This allowed us to easily instrument a single code region across all MPI tasks, then 

gather the results with a simple post-processing script. Otherwise we would have had to manually 

instrument all OpenMP threaded regions (CAM and CLM contain many of these), then sum the results 

across all processes and threads. The numerical results in hybrid OpenMP/MPI mode identically match 

those of the MPI-only run, so we are confident that the PAPI results reported here are accurate. 

Wall-clock times reported in results here were for thread 0 of MPI task 0. Since there are numerous 

synchronization points as the model integrates, the total wall-clock time of all MPI tasks will always be 

nearly identical. Floating-point operations and instruction counts are summed across all processes in an 

MPI-only run (as described above), with a single grand total reported. 

For the Q4 run, the wall-clock time for the atmospheric component of the simulation on 8,192 cores 

using 1,024 MPI tasks and 8-way threading was 2,823.365 seconds (Table 14). This excludes 

initialization time. To aggregate statistics for instruction count and floating point operations, a Perl script 

was used to sum these statistics across the output timing data for all threads and tasks. Q4 comparison 

results are for the same region specified in the timing output files (―DRIVER_ATM_RUN‖). 

The simulation done for Q4 matches that done for Q2 both in problem size (T341) and processor 

count (8,192). The distribution of MPI tasks (1,024) and OpenMP threads per task (8) was also the same. 

As such, the CAM configuration chosen for this Joule exercise was strictly a strong-scaling problem. The 

performance results shown in Table 14 below demonstrate a greater than 2 times speedup in the Q4 CAM 

run as compared with the Q2 benchmark run (see Table 13). Comparing the time taken for the column 

labeled ―Atmosphere‖ defines a speedup factor of approximately 2.1.  
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Table 14. CAM performance data for the Q4 modified run* 

 Atmosphere CLM I/O Total 

Time (s) 2,823.365 101.310 41.302 3,241.144 

FP instructions 2.31  10
15

 6.09  10
13

  2.38  10
15

 

*The 8,192-core simulation on Jaguar/XT5 consisted of a 17,856 time step integration 

(one month at 150 seconds per step) on a T341 grid (1,024 latitude × 512 longitude × 26 
vertical). 

 

The count of floating point instructions executed by CAM differs slightly between the Q2 and Q4 

runs (2.13  1,015 vs. 2.31  1,015). This is to be expected and is due to a number of factors, including 

compiler upgrades and additional round-off differences introduced as a result of code modifications. The 

CLM portion of the simulation was unchanged vs. the Q2 simulation. Thus the 12% speedup observed in 

that part of the calculation can be attributed to compiler upgrades and whatever system noise may have 

been present. The floating point operation count for CLM is more than an order of magnitude smaller that 

that for CAM. As such it does not represent a significant fraction of the total, but it is curious that the 

value increased by nearly 50% from the Q2 run to the Q4 run, all without any code changes. 

Time spent doing history file I/O decreased dramatically between the Q2 run and the Q4 run. This 

result is unrelated to code changes (there were no modifications to the I/O portion of the calculation) but 

rather the installation of a new system-wide Luster file system at ORNL. While the time spent writing 

history files was not a significant portion of total model time even in the Q2 run, the speedup of more 

than 250% observed in writing the same amount of history data is impressive. 

The reasons behind these observed results are described in the next section. 

3.2.9 Interpretation of Results 

The CAM model at T341 scales reasonably well to about 4,096 processor cores. Attempting to 

execute this problem across additional cores rapidly reaches a point of diminishing returns. This is 

depicted in Fig. 7, where total CAM performance is broken down into dynamics and physics components. 

The physics scales well to 8,192 cores, but the performance of the dynamics flattens beyond about 

2,000 cores. Since the current climate science goals that are driving the higher resolution CAM runs at 

ORNL demand reasonable turnaround (at least 2 simulated years per wall-clock day), there is a clear 

benefit realized by improving the strong-scale performance of the model. Figure 7 clearly shows that the 

performance of the dynamical core is the primary culprit in limiting scalability.  

The definition of metric success with the modified CAM software and run-time environment was to 

achieve at least a 2times speedup between Q2 and Q4. We succeeded in meeting this goal. Comparing 

the time taken by the CAM model in Q2 vs. Q4 (5,916.475 seconds vs. 2,823.365 seconds), results in a 

speedup factor of 2.095. Thus it is now possible to simulate more than 2 years per wall-clock day with the 

high resolution Eulerian spectral version of CAM, but in Q2 it was only possible to simulate 1 year per 

wall-clock day. 
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Fig. 7. Current CAM strong scaling performance for the T341 mesh on the Jaguar/XT5 platform. 

 

3.2.10 Summary and Conclusions 

The Q2 benchmark results translate to an ability to simulate a bit more than one year of model time in 

one day of wall-clock time on the XT5 machine at ORNL. Including all the modifications to code, name 

lists, and compiler flags described above, as well as upgrades to the compiler and I/O subsystem, the 

amount of simulation time increased by more than a factor of 2 for the Q4 runs (or the ability to simulate 

more than 2 model years per wall-clock day). The many weeks of computer time required to complete 

multi-decadal high-resolution simulations with the spectral Eulerian dynamical core in CAM has now 

been reduced to just a few weeks. This increased turnaround efficiency can have a dramatic effect on 

scientific productivity. 
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3.3 XGC1 

3.3.1 Introduction 

Prediction of the plasma transport property in ITER is one of the most urgent research topics in the 

thermonuclear fusion program.   Hot and dense plasma fuel in the central core must be adequately 

confined to produce much higher fusion energy output than the energy input required to operate the 

device, and at the same time the plasma in the edge must be cold enough to prevent costly damage to the 

material wall.  

By utilizing the fundamental property that the charged particles mostly flow along the magnetic field 

lines, magnetic field lines in the vicinity of the material wall are designed to intersect special target plates 

(diverter plates) in order to prevent the main material wall from damage. At the boundary between the 

closed and open magnetic field line regions, magnetic field separatrix surface exists (see Fig. 9 in Sect. 

3.3.4). Since the plasma on the open field lines is unconfined, it is naturally cold. The plasma temperature 

difference between the hot burning central core radii and the cold open field radii is not a free parameter 

for external control but self-determined by radial profile of thermal transport profile, which is mostly 

controlled by turbulence phenomena abundantly driven and supported by the temperature difference. If 

more heat is injected to the central plasma in an effort to increase the central temperature, greater 

temperature difference with the edge plasma drives stronger turbulent transport, hence opposing the rise 

of central temperature against the edge temperature.  Rise of the central temperature will need to be 

accompanied by the rise of the edge temperature, which is, however, not allowed by the heat tolerance 

limit of the material wall.  One of the formidable early efforts of the fusion plasma physicists was in the 

reduction of turbulence transport by an external mean, thus to raise the difference between the edge and 

core temperatures. Without such a mean, an economical production of fusion energy was expected to be 

difficult. 

It was then discovered by experimentalists over a quarter of a century ago that adequately heated 

tokamak plasmas can form a thermal barrier in the plasma edge just inside the magnetic separatrix surface 

[13], which separates the hot plasma inside the magnetic separatrix surface from the cold plasma outside 

it within a thin radial shell (a few centimeters in a DIII-D tokamak).  This transport barrier makes the 

plasma form a steep pressure pedestal just inside the separatrix surface. Turbulence level within this high 

confinement layer (H-mode layer) is reduced to an almost undetectable level. When this happens, the 

transport level of the core plasma is improved simultaneously.  Thus, the plasma temperature of the 

central core is now allowed to rise regardless of the temperature in the open field line region. As a matter 

of fact, H-mode plasma allows the central temperature to increase by as much as the incremental ampunt 

of the edge pedestal temperature.   This H-mode phenomenon occurs spontaneously by self-organization 

of plasma in the whole torus, in response to sufficient heat input in the core. Possibility of successful 

fusion reactor and ITER were escalated by this self-organization capability of toroidal plasma. 

The central core temperature of ITER needs to be predicted for the efficient design of the device and 

the systematic planning of the experiments. However, after a quarter century of endeavor, we still do not 

have a community understanding of the spontaneous H-mode transition phenomenon in the edge and its 

relation to the plasma transport in the core.  To get to the bottom of the physics understanding with 

predictive capability, a first principles kinetic simulation of the edge plasma has been requested to the 

Center for Plasma Edge Simulation (CPES), a SciDac Fusion Simulation Prototype Center.  The edge 

simulation then needs to be coupled or extended to the core to understand the core temperature behavior 

in relation to the edge plasma behavior. The key new capability here is the nonlocal self-organization of 

the whole toroidal plasma.  Once we obtain such a capability in the near future, the first principles 

simulation tool can be used to optimize the fusion yield, engineering requirement, and economy of future 

fusion reactors.  Such a simulation capability can also help guide the development of the reduced-model 

transport codes in the proper direction, which can be used for experimental timescale simulation. 
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3.3.2 Background and Motivation 

A preferable simulation method for such a first principles code is the 5D full-function gyrokinetic 

scheme without using the delta-f perturbation approximation. This method has been difficult to develop 

due to the embedded multiscale interaction between the small-scale turbulence dynamics and the large-

scale background relaxation and evolution, and the necessity of high performance computing. The large-

scale equilibrium drives small-scale turbulence. In return, the small-scale turbulence evolves the large-

scale equilibrium, closing the loop.  The experimentally observed plasma is the end result of such self-

organization.  Reduced model codes, such as gyrofluid or fluid, are computationally less demanding but 

lack the fundamental closure information required to describe such a multiscale self-organization. Delta-f 

simulation is efficient when the background is assumed fixed without participating into the multiscale 

self-organization dynamics and is virtually impossible in the open magnetic field line region in the edge. 

With the availability of petascale computing, it is now possible to attack the most robust and baseline 

ion-temperature-gradient turbulence together with the background neoclassical dynamics in the whole-

volume tokamak plasma in full-function gyrokinetic formalism.  As the HPC capability grows, the 

simulation can be extended to include many other relevant turbulence and heating physics calculation for 

first principles prediction of ITER plasma performance. 

3.3.3 Capability Overview 

XGC1 is a new 5D gyrokinetic particle-in-cell (PIC) code designed to model the whole plasma 

dynamics in experimentally realistic device geometry [14].  The main new features in XGC1 are the full-

function (full-f) description of the marker particles, as opposed to the previous perturbative delta-f 

description; the inclusion of the magnetic separatrix, magnetic X-point and the conducting material wall; 

and the particle/momentum/energy conserving Coulomb collisions. XGC1 allows the background profile 

to evolve to a self-organized state.  To model more realistic plasma, XGC1 uses a heat source in the core 

plasma. The heat then flows to the material wall by a plasma transport process in the code. XGC1 is 

presently used to study the electrostatic turbulence, transport, and background plasma profile with full-f 

ions and adiabatic electrons. XGC1 will soon be upgraded to simulate electromagnetic turbulence. 

XGC1, together with a simplified model version XGC0 [15], is the principal code for the existing 

SciDAC CPES project. The main purpose of the XGC1 code development has been to understand and 

predict the plasma transport and profile in the edge pedestal around the magnetic separatrix.  Edge 

pedestal formation is an essential required feature for the success of ITER.* The code also computes 

scrape-off and wall loss physics. Due to the unknown nonlocal nature of the plasma turbulence and 

transport, XGC1 runs preferably in the full-f mode on the whole-volume toroidal plasma, ranging from 

the magnetic axis to the material wall. At the present time, there is no other code in the world fusion 

community with this advanced capability. 

Marker particles are initiated in the entire toroidal volume in accordance with the initial density and 

temperature profiles.  A random number generator has been used in the Maxwellian envelope.  The 

plasma density profile is adjusted by the marker particle weights, while the marker particle density is 

spatially uniform. This technique improves the particle noise problem at the low plasma density region. 

For PIC executions, fixed grid cells are predesigned for a fixed experimental magnetic equilibrium. Due 

to the complexity of geometry in a diverted magnetic field, XGC1 uses an unstructured rectangular grid.  

To take advantage of the highly elongated neoclassical and turbulent electric potential structures along the 

magnetic field lines, the grid nodes follow the equilibrium magnetic field lines approximately. 

                                                 
* www.iter.org 

file:///C:/Users/l6v/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/T0C9S50O/www.iter.org
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Marker particles are time advanced according to the following Lagrangian equation of motion: 

  

These equations of motion are solved using a 4th or 5th order Predictor-Corrector scheme in a weakly 

collisional case, and a mixed 2nd–4th order Runge-Kutta scheme in a strongly collisional case.  In the 

Runge-Kutta scheme, the new turbulent field is solved in 2nd order and the particle position is solved in 

4th order.

 

At each time advance step, charges are interpolated to the grid node points.  The following 

gyrokinetic Poisson equation is solved on the grid nodes. 

 

 

 

The electric field information is interpolated back to the particle positions to execute another time 

advance of the particles in accordance with the above Lagrangian equation of motion. The equilibrium 

magnetic field data from the experimental g-eqdsk file is stored on a rectangular mesh.  At each particle 

position, the magnetic field is evaluated by spatial spline while conserving Div B = 0 [16]. In some 

specified time intervals, a linear Monte Carlo collision operation routine is called to execute the Coulomb 

collisions in the velocity space.  After each collision process, total momentum and energy of the particles 

are adjusted to ensure conservation within the colliding particles. 

The gyrokinetic Poisson equation is solved by PETSc [17]. The conjugate gradient method is used 

with various preconditioners available in PETSc, such as (1) an algebraic mutligrid preconditioner 

(HYPRE) for the (elliptic) equilibrium solver and (2) a diagonal preconditioner for the  (parabolic) 

turbulence solve.Even though the solver is a global operation (hence there are limits to the amount of 

parallelism available in the preconditioners), the amount of work by equation solver in XGC1 is fairly 

small relatively. In a typical XGC1 run, about 10% of the time is spent in the solver, which includes 

global reductions and scatters to assemble the charge vectors and to communicate the potential solution. 

One alternative to consider in getting ready for the future extreme-scale parallel machines is to form an 

explicit inverse of the matrix. 

The ion density at the node point is determined by summation of particle weights located on the 

triangles that contain the node point with linear interpolation. A triangle search operation is required to 

determine the triangle that contains a given particle and the interpolation coefficient. At the initialization 

phase, XGC1 prepares a table of rectangular grid which stores an index of every triangle overlapped. The 

triangle search routine uses the particle coordinates to perform geometric hashing into the rectangular grid 

to locate the target triangle. An optional preprocessing phase reorders the triangle and vertex labels using 

a Hilbert space-filling curve to improve spatial locality and cache performance. 

To properly manage the simulation data used for the Joule report, we are using the CPES EFFIS 

framework (End-to-End Framework for Fusion Integrated Simulation). This framework consists of the 

ADIOS componentized I/O system, the Kepler workflow for monitoring the simulation, and the eSimmon 

dashboard system. Each piece of the software stack that we have used is highly flexible and allows us a 

framework that makes running XGC1 simulations similar to the concept of running in an end-station.  

Researchers from the MIT System Design and Management Program, CPES, Georgia Tech, and ORNL 
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carried out this work. Adaptable I/O System, or ADIOS, is a componentization of the I/O layer. It 

provides an easy-to-use programming interface, which can be as simple as Fortran file I/O statements. 

ADIOS has been shown to get over 50% of the maximal I/O performance on the Crays when run 

properly. ADIOS will be tuned for XGC1 code to the optimal capacity for Q4 petascale computing. The 

scientific and performance results will be analyzed using the CPES dashboard for efficient collaboration 

among scientists, and with the applied mathematics and computer science collaborators. 

3.3.4 Science Driver for Metric Problem 

To meet the fusion energy yield goal of 

Q = 10, the plasma fuel ions in the central 

core of the ITER tokamak (Fig. 8) must 

maintain a sufficiently high temperature 

(15 keV). At the same time, plasma 

temperature near the wall must remain 

sufficiently cold (<<1 keV) to avoid 

premature plasma damage to the material 

wall.  Since the global slope of the plasma 

temperature is upper bounded by the turbulent 

transport in a normal situation, the only way 

to increase the core temperature to a burning 

level seems to be by making the plasma size 

large enough.  However, this leads to 

utilization of only a small fraction of plasma 

volume for fusion and, thus, to an 

uneconomical fusion device which cannot 

meet the ITER goal.  One way to remedy this 

problem is to find or invent plasma facing material that can withstand plasma bombardment at 

temperature much above 1 keV, which has not been a viable option to date. 

Fortunately, experiments in the present-day tokamak devices consistently find that, with sufficient 

core heating above a threshold power, plasma bifurcates into a state in which the edge temperature (and 

density) abruptly rises from ~100 eV in the open magnetic field region in front of the material wall to ~ 

keV just inside the last closed magnetic surface (separatrix) region.  Thus, in such a bifurcated state, the 

core plasma temperature can rise on an ―edge pedestal‖ without the high temperature plasma contacting 

the material wall.  In this pedestal layer, which occurs just inside the magnetic separatrix, experiments 

find that the turbulence level is dramatically lower than the ambient level and that a deep well structure 

forms in the radial electric field profile. The density pedestal width is observed to be even narrower than 

the ion temperature pedestal width. Mysteriously, the reduction in the turbulence amplitude and the 

increase in the ion temperature in the core plasma appear to respond to the edge bifurcation in a much 

faster timescale than the radial plasma energy transport timescale.  The core ion temperature increases in 

proportion to the edge pedestal temperature with its radial slope being ―stiff,‖ independent of the core 

heating power and, thus, the edge pedestal temperature (Fig. 9). This type of operation mode is called 

―H-mode,‖ meaning a high confinement mode.  As observations from other areas of nonlinear science 

have shown (e.g., oceanography, climate, economy, sociology, planetary science), the experiments 

indicate that there is a strong nonlocal component in the tokamak plasma turbulence dynamics. 

 

Fig.  8. Schematic of the ITER tokamak, where the 

first wall of the innermost structure of the device is 

shown, with the divertor chamber at the bottom. For more 

information, see www.iter.org. 
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Fig.  9. (left) Nonlocal nature of the ion temperature (Ti) profile. As the edge Ti 

increases, the core Ti increases together in a stiff shape. (right) The cross section of 

DIII-D magnetic surface inside the first wall. Open and closed magnetic surfaces are 

shown, with the magnetic separatrix surface in between.  For more information on the 

DIII-D device see http://web.gat.com/global/DIII-D. 

 

ITER’s performance goal to achieve the fusion yield ratio Q = 10 is based upon the assumption that a 

good H-mode operation is to be sustained.  However, the reasons why the edge pedestal forms in such a 

shape, why a strong core heating is necessary, why there is an instantaneous central Ti and turbulence 

improvement after the H-mode bifurcation, why the radial Ti profile is stiff, etc. are yet unknown after 

over 25 years of H-mode research. Due to the nonlocal, nonlinear, and multiscale nature of the H-mode 

physics, a large-scale first-principles gyrokinetic simulation of the turbulence and background plasma 

dynamics in the whole device volume has been a necessary component of the H-mode research.  

However, such HPC power has not been available so far and is just beginning to be realized in the United 

States.  With the aggressive planning of HPC development in the United States, Japan, and possibly 

elsewhere, the future of the large-scale H-mode simulation looks brighter.   

The whole-volume gyrokinetic simulation must be performed using the full distribution function 

(full-f) method, before simplifying it to the popular perturbed distribution function method (delta-f).  It 

needs to be done in a realistic tokamak geometry since the geometry effect appears to be important in the 

experiments, including the open and closed magnetic field regions with the magnetic separatrix surface in 

between.  It must deal with the heat source in the core and the particle loss to the material wall. 

We hope that the Joule metric exercise performed here not only improves our numerical code 

capability to scale but also sheds light on the H-mode physics at the first principles level so that it can 

help predict the performance of ITER and DEMO reactors. 

The science metric of this simulation exercise is to use the full-f gyrokinetic code XGC1 on the 

almost full capacity Jaguar/XT5 to study the most robust and large physical scale turbulence, which is 

driven by the free energy in the ion temperature gradient (ITG), self-consistently with the neoclassical 

equilibrium dynamics in a realistic DIII-D tokamak geometry (Fig. 9(right)). This simulation represents 

the first attempt in fusion research to study the nonlocal H-mode coupling physics between the edge and 

core turbulences in a realistic tokamak geometry.  Smaller physical scale turbulences will be added later 

as HPC capability grows in the near future. 

The goal is to obtain the physics results in 24 hours or less of Jaguarpf wall-clock time.  The Q2 

version was not optimized to scale well on much more than 30,000 Jaguarpf XT5 cores.  We thus used 
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29,952 XT5 cores (which is 1/5 of the Jaguar capacity). The Q2 XGC1 could take 4,000 time steps in 

24 hours.  The science we observed in Q2 is the development of the global full-f ITG turbulence to the 

nonlinear stage in the whole volume of realistic DIII-D geometry.  From the Q2 simulation, we only 

observe turbulence intensity propagation from edge to core, which is a sure sign of nonlocal interaction 

between edge and core. Initial turbulence intensity is strong and bursty.  Interaction of turbulence 

intensity bursts with the local EB shearing rate and temperature gradient is clearly demonstrated.  The 

number of cores is insufficient to reach the quasi-steady self-organized state, which is more relevant to 

the experimental observations.  In Q4, we used the improved XGC1 to scale up to the maximal number of 

XT5 cores and ran the same simulation on 4 × 29,952 = 119,808 cores, which is about 4/5 of the maximal 

available Jaguarpf capacity.  In 16,000 time steps (which took about 20 wall-clock hours), the peta-scale 

Q4 simulation reached a quasi-steady self-organized state, after a long bursty nonlinear turbulent transport 

stage.  The Q4 simulation results shed light on the key unexplained experimental H-mode phenomena, 

including the reasons why strong core heating is necessary, why there is an instantaneous central Ti and 

turbulence improvement with the H-mode bifurcation, and why the radial Ti profile is stiff.  The Joule 

metric provided a significant scientific advance in XGC1. 

3.3.5 Q2 Baseline Problem Results 

The metric baseline here is the particle processing counts per second. We choose an actual 

experimental device for the Q2 benchmark exercise so as to contribute to the progress of a real scientific 

program. The experimental device size and the physics grid size (= ion gyro radius i) determine the total 

marker particle number used in the simulation. Marker particle number per grid node is set by particle 

noise level in the physical observables.  For the strong scaling metric between Q2 and Q4, we chose an 

ITG turbulence transport study within a day of wall-clock time in the whole-volume DIII-D tokamak at 

General Atomics, in realistic physical size and diverted geometry including material wall. The total 

number of marker particles thus determined for this problem size is 13.5 billion.  

Figure 10 shows our model for the initial plasma density and ion temperature profiles, with the 

electron temperature assumed to be equal to the ion temperature. Notice here that the ion temperature 

pedestal knee is located at a somewhat smaller minor radius than the density pedestal knee, making the 

relative temperature slope high between the two knees.  We assume that this is a common feature in 

H-mode operation.  To date, all the machines, which have adequate ion temperature profile diagnostics in 

H-mode, reported this feature.  Figure 11 shows the relative ion temperature gradient i  R0/LT = R0|∂ log 

Ti/∂r|, where R0 is the major radius of the torus.  Shown together in the plot is the nonlinear stability 

criterion of ITG mode evaluated in the core plasma [18].  It can be seen that the plasma is supposed to be 

stable to ITG turbulence at N  0.5 if the turbulence is a local phenomenon.  As can be seen from the 

relation between the real minor radius in meters and N in Fig. 12(left), N  0.5 constitutes a significant 

portion of the core plasma since the half minor radius corresponds to about 0.37N. The temperature 

pedestal top is at about 0.8N, and the density pedestal top is at about 0.85N.  The right-hand side of 

Fig. 12 shows the radial profile of the magnetic safety factor q, which represents the toroidal windings of 

the equilibrium magnetic field relative to a poloidal winding.  It is shown here because q is an important 

indicator of plasma stability.  These model initial profiles are common to Q2 and Q4 benchmark runs. 

A total of 4.5 MW of heat is added to the ions around the magnetic axis (N  0.04 0–10 cm) to 

force a heat flux into the turbulence region. The heating is achieved by raising the particle energy 

uniformly in the heating region by a small fraction of kinetic energy while keeping the pitch angle 

invariant. 
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Fig. 10. Early-time plasma density and temperature profiles. Electron temperature is assumed to be 

equal to ion temperature. Notice that the temperature pedestal knee is located at a somewhat smaller minor 

radius than the density pedestal knee, making the relative temperature slope high between the two knees. 

 

 

Fig. 11. Initial profile of R0/LT = R0|∂ log Ti/∂r|. The horizontal dashed line is the nonlinear stability 

criterion of a core plasma. 

 

 

 

Fig. 12. (a) Relationship between the normalized poloidal flux ψN and real distance in meters 

from the magnetic axis (Raxis = Ro) to the flux surface (R) along the midplane. (b) Radial profile of 

the safety factor q. 
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The Q2 baseline benchmark was run on 29,952 XT5 cores on Jaguarpf, which is about 1/5 of the 

maximal available Jaguarpf configuration at the present time.  Much above this number of cores, the 

XGC1 version at the time of Q2 execution 

does not scale well. Eight MPI processes 

were used per node.  The Q2 run was 

performed in two parts. An initial run was 

made for 2,000 time steps without saving 

the performance data to separate out the 

initialization cost. The simulation was 

then continued using a checkpoint file for 

another 2,000 time steps, and the 

performance data was recorded.  The 

second run gets into the nonlinear 

turbulence stage in the DIII-D benchmark 

plasma. The total wall-clock time spent was about 24 hours. Table 15 shows operation counts during the 

second run from the hardware performance counters, obtained using the PAPI performance data 

collection interface. 

Figure 13 shows the nonlinear turbulent eddies of the electrostatic potential over the whole poloidal 

cross section. The image at left is at an earlier time, showing turbulence generation in the edge.  The 

image at right is at the end of the Q2 run, showing that the edge turbulence has propagated to core. At the 

central core, the heat-source enhanced ITG turbulence can be seen, while the rest of the plasma is 

occupied with turbulent activities propagated from the edge.  Stronger turbulence eddies are observed at 

the weaker magnetic field side due to the toroidal ballooning effect. Figure 14 shows the inward 

propagation of turbulence intensity in the initial nonlinear period Q2 simulation.  We note again here that 

the nonlinear turbulence and plasma in Q2 are not in a quasi-steady state yet. Our Q4 goal was to obtain 

the quasi-steady self-organized nonlinear stage in 4 times more time steps as in Q2 by increasing the 

number of processor cores by factor of 4.  
 

  

Fig. 13. Turbulent eddies on the whole poloidal cross-sectional plane at (left) an 

earlier time and (right) a later time. The nonliear turbulence and the plasma are not in a 

quasi-steady state, yet. 

 

Table 15. XGC1 performance data collected on the Q2  

benchmark with PAPI hardware counters 

Number of processing elements 29,952 

Cycles per second per processor 2,255.35 × 10
6
  

Instructions executed per second per processor 2,293.69 × 10
6
  

Instructions per cycle 1.02 

Floating point operations executed per second  

   per processor 

222.65 × 10
6
  

Particles pushed per second 0.628 × 10
9
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Fig. 14. Inward propagation of the square root of 

turbulence intensity Sqrt(I) during the bursty nonlinear 

period, where I = < (δφ)2 >. Each plot is drawn in 

0.08 millisecond interval, and the total propagation time is 

only 0.4 millisecond. 

 

The simulation result is rejected when the particle noise dominates the simulation, which can be 

detected by comparing the effective turbulent ion thermal conductivity with a noise-driven thermal 

conductivity level (0.05 m
2
/s). We have also investigated the convergence of the solution in particle 

numbers.  The simulation is also rejected when a numerical oscillation dominates the turbulent 

fluctuation. We have observed that this could happen if the ion temperature in the open magnetic field 

region (scrape-off plasma) is much higher than that observed experimentally.  

3.3.6 Computational Performance Gains 

There is sufficient work in processing the particles in this experiment to use hundreds of thousands of 

processors, even when holding the problem size fixed while increasing the number of processors (strong 

scaling).  The primary inhibitor to scaling is the MPI communication overhead arising in the solution of 

the Poisson problem and in the reassignment of particles to processes as the result of the time advance.   

Studies in the fall of 2008 indicated that OpenMP parallelization might improve the scalability by 

allowing us to decrease the number of MPI processes used for a fixed number of processors, thereby 

decreasing some of the MPI communication overhead.  In particular, on the Cray XT5, up to four 

OpenMP threads could be used efficiently to parallelize the processing of the particles. Using more than 

four is not useful currently due to the nonuniform memory access characteristics in the XT5 compute 

node. Beginning in 2009, OpenMP parallelism was implemented in XGC1, allowing the use of 1/4 as 

many MPI processes as would otherwise be required in the Q4 simulations. This not only contributed to 

achieving the Joule performance metric but is also a critical capability for scaling to even larger processor 

counts.  

The other major performance enhancement that occurred between the Q2 and Q4 experiments was the 

optimization of the interpolation scheme used in the evaluation of the magnetic field (and elsewhere).  By 

precomputing many of the spline coefficients and by taking advantage of common partial results in the 

computation of derivatives, the number of required floating operations is decreased, resulting in 

significant reductions in run time. As described in the next section, this has the seemingly anomalous 

effect of decreasing the achieved computation rate, but it decreased the amount of computation even 

more, improving throughput by approximately 30% in addition to the improvement achieved through 

OpenMP parallelism. 
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There are also other improvements made in XGC1, which include higher parallelization of particle 

operations, increased cache efficiency, and I/O speed improvement in ADIOS. 

3.3.7 Q4 Metric Problem Results 

In Q4 the number of XT5 processor cores was increased by 4 times to 119,808, which is about 4/5 of 

the maximal allowed number of cores in Jaguarpf.  The total number of time steps was also increased to 

4 times longer (16,000 steps), in proportion to the number of processors.  As in Q2, the Q4 runs were 

performed in two consecutive runs using restart file, and the performance data were obtained during the 

second run to avoid the initialization counts. 

Two performance enhancements described in the previous section (OpenMP parallelism and 

interpolation scheme optimization) enabled the performance to improve by a factor of 4.6 between the Q2 

and Q4 experiments, reducing the execution time per model time step from 21.6 seconds to 4.7 seconds. 

The Q4 experiment used 4 times as many processors, so this reflects superlinear speedup compared to the 

Q2 experiment. To reiterate, the OpenMP parallelism enhanced the ability to use efficiently 4 times as 

many processors, while the interpolation scheme optimization decreased the amount of work required in 

the Q4 experiment. It is this latter performance enhancement that led to the more than ideal linear speedup 

for this fixed-size problem.  Due to the superlinear speedup, the total wall-clock time has decreased from 

24 hours to about 21 hours. 

Table 16 shows Q4 operation counts during the second run from the hardware performance counters, 

obtained using the PAPI performance data collection interface.  Q2 operation counts are shown together 

for a direct comparison. 

 
Table 16. XGC1 performance data collected on the Q4 benchmark  

with PAPI hardware counters 

 Q2 Q4 

Number of processing elements 29,952 119,808 

Cycles per second per processor 2,255.35 × 10
6
  1,622.65 × 10

6
  

Instructions executed per second per processor 2,293.69 × 10
6
  1,399.46 × 10

6
  

Instructions per cycle 1.02 0.86 

Floating point operations executed per second  

   per processor 

222.65 × 10
6
  151.23 × 10

6
 

Particles pushed per second 0.628 × 10
9
  2.87 × 10

9 
 

 

Increasing the number of processor cores by 4 times to 119,808 enabled the improved XGC1 to 

execute the simulation to 4 times longer physical time steps within a day from the 29,952 core Q2 

simulation. As a result, while the Q2 simulation went only into the initial bursty nonlinear turbulence 

phase, the Q4 simulation was carried to the self-organized quasi-steady phase where the real experimental 

plasmas stay. Valuable information on the overall picture of the nonlocal turbulence propagation and the 

settling down of the turbulence and the plasma profile to the quasi-steady SOC state was thus obtained.   
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Figure 15 is an enlarged image 

of the turbulence intensity <||
2
> 

contour in the radius-time space in 

the pedestal area.  It can be clearly 

seen that the turbulence starts around 

the temperature pedestal knee (N  

0.83) and propagates inward 

(outward propagation is much 

weaker).  A localized simulation in 

the small radial domain can distort 

the propagating turbulence dynamics 

due to the artificial inner boundary 

condition. A global simulation is 

needed to study the nonlocal 

turbulence dynamics. Figure 16 is 

the result of the localized simulation 

with a simulation boundary at 

r = 0.5 m and indeed shows a highly 

different result from the global 

simulation result of Fig. 15. A minor 

radius of 0.52 m in Fig. 16 

corresponds to about N = 0.89 in 

Fig. 15. 

 

 

 

 

 

  

 

Fig. 15. An enlarged image of the turbulence intensity < |δφ|
2
> 

contour in the radius-time space in the pedestal area. 

 

 

Fig. 16. The same simulation as in Fig. 15 in the localized 

radial domain, with the usual particle simulation boundary at 

r = 0.5. 
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Figure 17 is the heat flux contour in the 

global space-time space, which indeed shows 

that the out-to-in propagation of the 

turbulence front is all the way to the plasma 

core. As the turbulence front arrives (solid 

arrow), heat bursts appear radially outward 

(dotted arrows).  The inward propagation 

stops when the edge-originated turbulence 

meets the strongly sheared central turbulence 

at t  150 R/vi (0.6 millisecond). In the 

pedestal region, both the turbulence intensity 

and the heat flux remain small, which is 

characteristic of H-mode plasma.  Turbulence 

in the edge pedestal may be better described 

by electromagnetic effect.  However, the 

weak turbulence intensity and heat flux of the 

electrostatic ITG turbulence in the pedestal 

area suffice the present purpose of 

investigating the nonlocal edge-core relation. 

Another remarkable observation made 

from the simulation is the self-organizing 

modification of the background temperature 

profile by the incoming turbulence, as can be 

seen in Fig. 18.  Before the arrival of the 

edge originated turbulence, the ion 

temperature gradient was below the nonlinear 

ITG criticality (dotted horizontal line) [18].  

However, arrival of the edge-generated 

turbulence raises the local temperature 

gradient above the nonlinear criticality. The 

ion thermal conductivity is then self-

regulated to a new criticality by the self-

generated EB shearing.  In other words, the 

turbulence criticality is nonlocally self-

organized by the edge turbulence source.  

This state is maintained by the out-flowing 

heat flux.  Combination of the low heat 

thermal conductivity near the magnetic 

separatrix surface and the large heat flux 

from the core keeps the i value at the Ti knee well above the nonlinear criticality, continuously supplying 

the ITG turbulence energy to maintain the new self-organized criticality.  Without the strong heat flux 

from the core, the i value at the Ti knee would collapse and the driver for the new SOC state would be 

lost.  In other words, the heat flux from the core is a ―fuel‖ to the edge turbulence energy source.  The 

present simulation reveals that this is how the global ITG turbulence maintains an H-mode profile, if ITG 

is the strongest global turbulence transport mechanism. We have examined a few different heating power 

levels and have found that the i profile shown here is ―stiff‖ with respect to the change of heating power, 

which is consistent with the experimental findings. 

 

 

 

 

Fig. 17. Heat flux contour in the global space-time 

space, exhibiting the out-to-in propagation of the 

turbulence front. 

 

 

Fig. 18. Self-organizing modification of the 

background temperature profile by the incoming 

turbulence. The horizontal line represents the 

nonlinear criticality in the core plasma. 
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Figure 19 is the time behavior of 

effective ion thermal conductivity (thermal 

flux divided by local Ti gradient) from the 

start of the simulation across N = 0.64, 

which corresponds to r = 42 cm on the 

outside midplane.  The short initial jittering 

of high frequency is the large amplitude 

GAM oscillations during the self-

organization of the toroidal plasma in the 

initial local Maxwellian loading and is 

subdued at about 30 ~ vi/R. At about 60 vi/R, 

ITG modes start to grow. It is well known 

that unless the jittering from the initial GAM 

activities is subdued, ITG turbulence does not 

grow in a full-f simulation [19]. The total 

simulation time is about twice the ion 90
o
 

collision time.  The Q2 run corresponds to 

1/4 of the time length. 

In Fig. 19, after the arrival of the 

turbulence front at the radial location, there is 

a distinctive bursty type of heat flux behavior 

in the initial stage of nonlinear turbulent 

transport until about t = 240 R/vi. This 

behavior corresponds to the heat bursts in 

Fig. 17. The inter-burst period is much 

greater than the initial GAM period. The 

radial speed of the ballistic motion of heat 

burst is about Vr  (1/5) i vi/R  (1/30) i 

vi/LT, which is similar to the analytic 

intensity burst estimates reported in refs. [20] 

through [22].  

Figure 20 shows interplay between the 

temperature gradient, heat flux, and the EB 

shearing dynamics during the bursty heat flux 

at a radial location r = 42 cm. Arrival of the 

turbulence front is first noticed by the 

steepening of local temperature gradient and 

increase in heat flux ( turbulence intensity), followed by time delayed increase in the local EB shearing 

rate.  Increase of the local EB shearing rate then suppresses turbulence until the turbulence-driven 

sheared flow is reduced.  The burst cycle continues until a steady turbulence is reached at the end, where 

the turbulence shows a 1/f avalanche type of power law.  This is a textbook demonstration on the 

interplay between EB shearing, turbulence intensity, and local temperature gradient, which is possible 

only in a full-f simulation. 

 

Fig. 19. Time behavior of effective ion thermal 

conductivity (thermal flux divided by local Ti gradient) 

from the start of the simulation across ψN = 0.64, which 

corresponds to r = 42 cm on the outside midplane. The 

self-organizing process is bursty. 

 

 

Fig. 20. Phase relation between the temperature 

gradient, heat flux, and EB shearing dynamics at a 

radial location. 
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Energy conservation has been investigated 

within the volume 0.3  N  0.7. Between the 

total energy flowing into the volume across 

the inner surface N = 0.3, the sum of the 

particle energy change, the field energy 

created, and the out-flowing energy across the 

outer surface N = 0.7 shows about 2% error 

in the total energy conservation (Fig. 21).  The 

energy conservation error in a full-f code does 

not grow unless numerical errors grow. 

3.3.8 Interpretation of Results 

A fusion experiment measures its 

performance in quasi-steady-state operation. 

Study of the transient behavior is important 

for physics understanding.  However, a 

simulation will have to reach a quasi-steady 

state for an eventual understanding and 

prediction of the experimental performance.  

The goal of this metric is designed to obtain 

the initial transient nonlinear turbulence 

behavior in the realistic whole-volume DIII-D geometry in Q2, and to achieve the quasi-steady self-

organized turbulent state in Q4 within a day of wall-clock time. The original XGC1 did not scale too well 

much above 30,000 processor cores.  We thus chose 29,952 Jaguar/XT5 cores for the Q2 metric base.  

The improved XGC1 (OpenMP parallelism and interpolation scheme optimization) scales super-linearly 

to the Q4 metric base of 199,808 cores, which is 4 times the Q2 number of cores, and enabled the 

performance of XGC1 to improve by a factor of 4.5 between the Q2 and Q4 experiments, reducing the 

execution time per model time step from 21 seconds to 4.7 seconds. 

Improvement of the physics capability as a result of the above Joule metric exercise is significant. In 

Q2 the propagation of the nonlinear edge turbulence into the core was observed within a day of wall-

clock time, which provides an exciting evidence for nonlocal edge effect on the core turbulence and 

confinement in realistic DIII-D geometry.  However, in order to produce an experimentally relevant 

result, the nonlinear simulation has to be carried through the quasi-steady self-organized stage, while 

keeping the multiscale dynamics self-consistently.  The improved XGC1 performance in Q4 is good 

enough to reach to the quasi-steady self-organized stage within a day of wall-clock time.  As a result, 

many new physics results have been obtained to shed light on the over 25 year old H-mode plasma 

physics mysteries, which ITER is heavily relying upon for its success. 

As the computing power increases, we will be able to include more physics into XGC1 code, en route 

to the whole-physics modeling in first principles. 

OpenMP parallelism was implemented in XGC1, allowing the use of 1/4 as many MPI processes as 

would otherwise be required in the Q4 simulations. This not only contributed to achieving the Joule 

performance metric but is also a critical capability for scaling to even larger processor counts.  

The other major performance enhancement that occurred between the Q2 and Q4 experiments was the 

optimization of the interpolation scheme used in the evaluation of the magnetic field (and elsewhere).  By 

precomputing many of the spline coefficients and by taking advantage of common partial results in the 

computation of derivatives, the number of required floating operations is decreased, resulting in 

significant reductions in run time. This has the seemingly anomalous effect of decreasing the achieved 

computation rate, but it decreased the amount of computation even more, improving throughput by 

approximately 30% in addition to the improvement achieved through OpenMP parallelism. 

 

Fig. 21. Energy accounting within 0.3 ≤ ψN ≤ 0.7 

between the total influx across the inner boundary 

(black curve) and the sum of the consumed energy (blue 

curve) to the particles, the electric field, and across the 

outer boundary. Red line shows sum of black and blue 

curves. About 2% error is noticed. 
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Other improvements have also contributed, to lesser degrees, to Q4 enhancements of the 

performance, which include higher parallelization of particle operations, increased cache efficiency, and 

I/O speed improvement in ADIOS. 

3.3.9 Summary and Conclusions 

A fusion experiment measures its performance in quasi-steady state operation. Study of the transient 

behavior is important for physics understanding.  However, a simulation will have to reach a quasi-steady 

state for an eventual understanding and prediction of the experimental performance.  The goal of this 

metric is designed to obtain the initial transient nonlinear turbulence behavior in the realistic whole-

volume DIII-D geometry in Q2, and to achieve the quasi-steady self-organized turbulent state in Q4 

within a day of wall-clock time. The original XGC1 did not scale too well much above 30,000 processor 

cores.  We thus chose 29,952 Jaguar/XT5 cores for the Q2 metric base.  The improved XGC1 (OpenMP 

parallelism and interpolation scheme optimization) scales super-linearly to the Q4 metric base of 199,808 

cores, which is 4 times the Q2 number of cores, and enabled the performance of XGC1 to improve by a 

factor of 4.5 between the Q2 and Q4 experiments, reducing the execution time per model time step from 

21 seconds to 4.7 seconds. 

Improvement of the physics capability as a result of the above Joule metric exercise is significant. In 

Q2 the propagation of the nonlinear edge turbulence into the core was observed within a day of wall-

clock time, which provides an exciting evidence for nonlocal edge effect on the core turbulence and 

confinement in realistic DIII-D geometry.  However, in order to produce an experimentally relevant 

result, the nonlinear simulation has to be carried through the quasi-steady self-organized stage, while 

keeping the multiscale dynamics self-consistently.  The improved XGC1 performance in Q4 was good 

enough to reach to the quasi-steady self-organized stage within a day of wall-clock time.  As a result, 

many new physics results have been obtained to shed light on the over 25 year old H-mode plasma 

physics mysteries, which ITER is heavily relying upon for its success. 

As the computing power increases, we will be able to include more physics into XGC1 code, en route 

to the whole-physics modeling in first principles. 
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3.4 RAPTOR 

3.4.1 Introduction 

Turbulent combustion processes are prevalent in a wide variety of propulsion and power systems, 

including internal combustion engines, gas turbines, and liquid rockets. As such, development and 

rigorous validation of science-based predictive models for turbulent combustion have long been 

recognized as important priorities in research, and there are a variety of challenges. Turbulent flows 

involving heterogeneous chemically reacting and/or multiphase mixtures (as is the case for all propulsion 

and power systems) have a variety of complicating factors, including highly nonlinear chemical kinetics, 

small-scale velocity and scalar mixing, turbulence–chemistry interactions, compressibility effects 

(volumetric changes induced by changes in pressure), and variable inertia effects (volumetric changes 

induced by variable composition or heat addition). Coupling between processes occurs over a wide range 

of time and length scales, many being smaller than can be resolved in a numerically feasible manner. 

Further complications arise when multiple phases are present due to the introduction of dynamically 

evolving interface boundaries and the complex exchange processes that occur as a consequence. At the 

device level, high performance, dynamic stability, low pollutant emissions, and low soot formation must 

be achieved simultaneously in highly confined geometries that generate extremely complex flow and 

acoustic patterns. Flow and combustion processes are highly turbulent (i.e., integral-scale Reynolds 

numbers of O(10
5
) or greater), and geometry or various operating transients inherently dominate the 

turbulence dynamics. In many cases operating pressures approach or exceed the thermodynamic critical 

pressure of the fuel or oxidizer. Operation at elevated pressures significantly increases the system 

Reynolds number(s) and inherently broaden the range of spatial and temporal turbulence scales over 

which interactions occur. 

No one experimental or numerical technique is capable of providing a complete description of the 

processes described above. The highest quality experimental diagnostics provide only partial information 

from highly idealized flows relative to a given application. Modeling and simulation of these processes 

has historically been limited by computational power. Even with peta-scale computing (and beyond), 

Direct Numerical Simulation (DNS) of the fully coupled equations of fluid motion, transport, and 

chemical reaction can only be applied over a limited range of turbulence scales, in the high wave number, 

low Reynolds number, diffusive regime of turbulence. Thus, simulating these phenomena almost always 

begins with some form of formal filtering of the governing conservation equations. The Reynolds-

Averaged Navier-Stokes (RANS) approximation, for example, employs filtering in time to derive the 

governing conservation equations for the mean state. For this approach all dynamic degrees of freedom 

smaller than the largest energy-containing eddies in a flow are averaged, and no information exists to 

describe interactions between the small scales. The Large Eddy Simulation (LES) technique, on the other 

hand, has historically employed spatial filtering to split the field variables into time-dependent resolved-

scale and subgrid-scale (SGS) components. For this approach the large energetic scales are resolved and 

SGS quantities are modeled to provide a complete, time-accurate representation of dynamic processes 

over the full range of multidimensional scales in a turbulent reacting flow. RAPTOR is a massively 

parallel flow solver that has been optimized for application of LES to turbulent, chemically reacting 

and/or multiphase flows in complex geometries, with emphasis placed on propulsion and power systems. 

3.4.2 Background and Motivation 

The limitations and challenges associated with turbulent combustion research require that a hierarchy 

of approaches be taken to fully understand key processes and work toward predictive models. The 

primary challenge is to bridge the gap between basic research and the conditions of interest in typical 

applications. As part of the Reacting Flow Research and Advanced Engine Combustion programs at 

Sandia National Laboratories’ Combustion Research Facility (CRF), two complementary projects have 

been established to achieve this goal. The first is funded under the DOE SC Basic Energy Sciences (BES) 

program and focuses on the LES of turbulence–chemistry interactions in reacting multiphase flows. The 
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second is funded under the DOE Office of Energy Efficiency and Renewable Energy (EERE), Office of 

Vehicle Technologies (OVT) program and focuses on the application of LES to combustion research on 

high-pressure, low-temperature internal combustion engines. Figure 22 shows the key experiments 

currently being studied under these two projects using RAPTOR. A subset of experiments associated with 

the Reacting Flow Research Program is shown on the left. A subset of experiments associated with the 

Advanced Engine Combustion Program is shown on the right. Objectives and milestones for both projects 

are aimed at establishing high-fidelity computational benchmarks that identically match the geometry and 

operating conditions of key target experiments using a single unified theoretical-numerical framework 

(i.e., RAPTOR). The projects are complementary in that the DOE SC BES activity provides the basic 

science foundation for detailed model development and that the EERE-OVT activity provides the applied 

component for advanced engine research. 

 

 

Fig. 22. Key experiments currently being studied using RAPTOR. (left) A subset of 

experiments associated with the Reacting Flow Research program (a,b: simple jet flames; c,d: 

piloted jet flames; e: bluff-body; f: bluff-body with swirl). (right) A subset of experiments 

associated with the Advanced Engine Combustion program (g: Constant-Volume Diesel 

combustion facility; h: typical single-cylinder optically accessible internal combustion engine). 

 

Flames studied under Reacting Flow Research (see a–f in Fig. 22, for example) are internationally 

recognized benchmarks that provide some of the most detailed experimental data available for model 

validation. Using these data, significant collaborations with key modeling groups worldwide have been 

established as part of the International Workshop on Measurement and Computation of Turbulent 

Nonpremixed Flames (see Barlow et al. [23] for details). The TNF Workshop is an ongoing collaboration 

among experimental and computational researchers. A central theme of the series has been to use detailed 

comparisons of results from experiments and multiple modeling approaches to quantify state-of-the-art 

modeling capabilities and identify future research needs toward a predictive capability. As part of this 

activity, RAPTOR has been used to provide benchmark simulations that reach beyond the capabilities and 

resources of most universities and industry in a manner consistent with a national laboratory’s role of 

using high-performance computing. We have two primary objectives. The first is to establish a set of 

high-fidelity computational benchmarks that identically match the geometry and operating conditions of 

selected experimental target flames. The second is to establish a scientific foundation for advanced model 
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development. The benchmark simulations provide a direct one-to-one correspondence between measured 

and modeled results at conditions unattainable using DNS by performing simulations that represent the 

fully coupled dynamic behavior of a reacting flow with detailed chemistry and realistic levels of 

turbulence. After achieving an adequate level of validation, results from these simulations provide 

fundamental information not measurable directly that is imperative for model development and provides a 

strong link between theory, canonical studies, experiments, and critical applications. 

In contrast to the turbulent nonpremixed flames (TNFs), research activities related to Advanced 

Engine Combustion are focused on internal combustion engines. Needs and milestones related to 

RAPTOR have been established in three critical areas: (1) perform a progression of LES studies focused 

on the CRF optically accessible hydrogen-fueled internal combustion engine (see h in Fig. 22), 

(2) establish a parallel task focused on homogeneous charge compression ignition (HCCI) engines, and 

(3) perform a series of supporting studies focused on the development and validation of multiphase 

injection and combustion models with emphasis placed on direct-injection processes in IC-engines (see g 

in Fig. 22). The integrated set of research includes an optimal combination of in-cylinder and canonical 

(out-of-engine) studies to validate and understand key phenomenological processes that are present in 

internal combustion engine flow environments. These milestones are being facilitated in collaboration 

with ORNL as part of the 2009 INCITE project entitled ―High-Fidelity Simulations for Clean and 

Efficient Combustion for Alternative Fuels.‖ RAPTOR is being used to provide benchmark simulations in 

a manner identical to that described above for the TNFs. However, there are two key distinctions that 

must be made. Compared to the TNFs, the phenomenological and geometric complexities of device scale 

systems (such as internal combustion engines) reduce the level and fidelity of the experimental diagnostic 

techniques that can be applied. They also preclude the use of canonical DNS studies since appropriate 

initial and boundary conditions for such studies are largely unknown and unverified. Operating pressures 

are much greater, system Reynolds numbers are orders of magnitude higher, the flow fields associated 

with these devices are extremely complex, and a much broader range of dynamically evolving time and 

length scales need to be considered. To maximize the benefits of our fundamental and research efforts 

under these types of conditions, there is a clear need to understand what changes phenomenologically in 

various systems when one scales from laboratory conditions at atmospheric pressure (or equivalently 

lower Reynolds numbers) to application-relevant conditions at high pressures and Reynolds numbers. 

Given the importance of Reynolds number scaling and its relation to combustion modeling and the 

INCITE calculations, our focal point for the Joule metric using RAPTOR will be the flames studied under 

the Reacting Flow Research program. A related set of experiments focused on passive scalar mixing will 

also be considered. Figure 23 shows a photograph of the baseline flame (known as DLR-A) along with an 

instantaneous image from LES. This flame corresponds to that shown in Fig. 22(left, b). The photograph 

was taken in the Turbulent Combustion Laboratory at the CRF. The corresponding LES was performed 

using RAPTOR. In general, the integral-scale Reynolds numbers for the TNFs (which correspond to the 

jet Reynolds number here) are of O(10
4
), whereas those associated with internal combustion engines and 

related injection processes are of O(10
5
) or greater. The jet Reynolds number for this case is 15,200. 

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related 

scalar-mixing processes requires significant increases in CPU resources and is directly aligned with the 

need for weak scaling. Here, we will simultaneously study the related issues of Reynolds number scaling 

and resolution requirements for LES by successively increasing the problem size. A range of jet Reynolds 

numbers, starting from 15,200, will be considered. We will perform a series of weak scaling studies to 

demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Initial 

benchmark runs will be performed using 47,616 cores. Subsequent runs will be performed by 

systematically increasing the total CPU time required (i.e., total number of floating point operations per 

case) by factors of 2 as a function of increasing jet Reynolds number. The Joule metric will be 

accomplished by demonstrating we can simulate successively larger problems in the same amount of 

time. 
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Fig. 23. Photograph and corresponding LES of the DLR-A flame (corresponds to b in Fig. 22). 

 

3.4.3 Capability Overview 

Physical Model. RAPTOR is a massively parallel flow solver designed specifically for application of 

the LES technique to turbulent, chemically reacting, multiphase flows. It solves the fully coupled 

conservation equations of mass, momentum, total energy, and species for a chemically reacting flow 

system (gas or liquid) in complex geometries. It also accounts for detailed chemistry, thermodynamics, 

and transport processes at the molecular level and uses detailed chemical mechanisms. The code is 

sophisticated in its ability to handle complex geometries and a generalized subgrid-scale model 

framework. It is capable of treating spray combustion processes and multiphase flows using a 

Lagrangian-Eulerian formulation. The numerical formulation treats the compressible form of the 

conservation equations but can be evaluated in the incompressible limit. The theoretical framework 

handles both multicomponent and mixture-averaged systems. The baseline formulation also employs a 

general treatment of the equation of state, thermodynamics, and transport properties that accommodates 

real gas or liquids with detailed chemistry (i.e., not constrained to ideal gas applications). Details are 

given by Oefelein [24]. 

Numerical Method. The temporal integration scheme employs an all Mach number formulation 

using the dual time stepping technique with generalized preconditioning. The approach is fourth-order 

accurate in time and provides a fully implicit solution using a fully explicit (highly scalable) multistage 

scheme in ―pseudo time.‖ Preconditioning is applied in the inner pseudo time loop and coupled to local 

time-stepping techniques to minimize convective, diffusive, geometric, and source term anomalies (i.e., 

stiffness) in an optimal manner. This maximizes convergence rates as the system is advanced in time. The 

formulation is A-stable, which allows one to set the physical time step based solely on accuracy 

considerations. This attribute typically provides a 2 to 3 order-of-magnitude increase in the allowable 

integration time step compared to compressible flow solvers in the incompressible, low Mach number 

limit.  

The spatial scheme is designed using nondissipative, discretely conservative, staggered, finite volume 

differencing stencils. The discretization is formulated in generalized curvilinear (i.e., body-fitted) 
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coordinates and employs a general R-refinement adaptive mesh (AMR) capability. This allows us to 

account for the inherent effects of geometry on turbulence over the full range of relevant scales while 

significantly reducing the total number of grid cells required in the computational domain. Treating the 

full range of scales is a critical requirement since turbulence–chemistry interactions are inherently 

coupled through a cascade of nonlinear interactions between the largest and smallest scales of the flow. 

The differencing methodology has been specifically designed for LES. In particular, the second-order 

accurate staggered grid formulation, where we store scalar values at cell centers and velocity components 

at respective cell faces, fulfills two key accuracy requirements. First, it is spatially nondissipative, which 

eliminates numerical contamination of the subgrid-scale models due to artificial dissipation. Second, the 

stencils provide discrete conservation of mass, momentum, total energy, and species, which is an 

imperative requirement for LES. This eliminates the artificial buildup of velocity and scalar energy at the 

high wave numbers, which causes both accuracy problems and numerical instabilities in turbulent flow 

calculations. The algorithm includes appropriate switches to handle shocks, detonations, flame fronts, and 

contact discontinuities. It has also been designed using a generalized treatment for boundary conditions 

based on the method of characteristics. 

Software Implementation. The RAPTOR code framework is massively parallel and has been 

optimized to provide excellent parallel scalability attributes using a distributed multiblock domain 

decomposition with a generalized connectivity scheme. Distributed memory message passing is 

performed using MPI and the Single Program–Multiple Data (SPMD) model. It accommodates complex 

geometric features and time varying meshes with generalized hexahedral cells while maintaining the high 

accuracy attributes of structured spatial stencils. The numerical framework has been ported to all major 

platforms and provides highly efficient coarse- and fine-grain (i.e., weak and strong) scalability attributes. 

The code is fully vectorized and has been optimized for both vector and commodity architectures. Further 

optimization is currently in progress to account for new issues associated with state-of-the-art multicore 

technology. The complete package is fully modular, self-contained, and written in ANSI standard Fortran 

90. The complete theoretical–numerical framework (i.e., governing equations, physical submodels, 

numerics, and parallel efficiency) has been extensively validated over the course of the last 16 years. 

Representative results can be found in refs. [25] through [30]. 

3.4.4 Science Driver for Metric Problem 

Given the importance of Reynolds number scaling and its relation to combustion modeling, our focal 

point for the Joule metric using RAPTOR are the flames studied under the Reacting Flow Research 

program at Sandia National Laboratories. A related set of experiments focused on passive scalar mixing 

will also be used. Figure 24 shows a photograph of the baseline flame (known as DLR-A) along with an 

instantaneous image from LES. The photograph was taken in the Turbulent Combustion Laboratory at the 

CRF. The corresponding LES was performed using RAPTOR. In general, the integral-scale Reynolds 

numbers for the TNFs (which correspond to the jet Reynolds number here) are of O(10
4
), whereas those 

associated with internal combustion engines and related injection processes are of O(10
5
) or greater. The 

jet Reynolds number for this case is 15,200. Quantifying the effects of increasing Reynolds number on 

turbulent flame dynamics and the related scalar-mixing processes requires significant increases in CPU 

resources. Here, we will study the related issues of Reynolds number scaling and resolution requirements 

for LES by successively increasing the problem size. A range of jet Reynolds numbers, starting from 

15,200, will be considered. We will perform a series of weak scaling studies to demonstrate the effects of 

increasing Reynolds number on the dynamics of scalar mixing. Initial benchmark runs will be performed 

using 47,616 cores. Subsequent runs will be performed by systematically increasing the total CPU time 

required (i.e., total number of floating point operations per case) by factors of approximately 2 as a 

function of increasing jet Reynolds number. The Joule metric will be accomplished by demonstrating we 

can simulate successively larger problems in the same amount of time. 
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Fig. 24. Baseline flame used for problem scaling. (left) Photograph and (center) corresponding LES  

of the DLR-A flame. (right) Representative comparisons between experimentally measured (symbols) and 

modeled (lines) results showing acceptable agreement. 

3.4.5 Q2 Baseline Problem Results 

Our Q2 benchmark established the initial baseline for a series of weak scaling studies that 

demonstrate the combined computational effectiveness of the ORNL NCCS Jaguar/XT5 platform and 

RAPTOR. We simultaneously studied the related issues of Reynolds number scaling and resolution 

requirements for LES by successively refining the grid and temporal resolution of the DLR-A 

configuration shown in Fig. 23. A range of jet Reynolds numbers, starting from 15,200, were considered. 

The three primary objectives were to (1) study the effects of LES grid resolution on scalar-mixing 

processes, (2) understand the relationship between the grid spacing and the measured turbulence length 

scales from a companion set of experimental data, and (3) study the effects of increasing jet Reynolds 

number on the dynamics of turbulent scalar mixing. The initial benchmark was run using 47,616 cores. 

Subsequent runs were performed by systematically increasing the total CPU time required (i.e., total 

number of floating point operations per case) by factors of approximately 2 as a function of increasing jet 

Reynolds number. 

Figure 25 shows a cross section of the computational domain that highlights key features of the 

optimized curvilinear grid topology. To eliminate ambiguities associated with boundary conditions, the 

computational domain includes the entire burner geometry (inside the jet nozzle and the outer co-flow) 

and extends downstream over a span that covers the same dimensions as the experimental test section. 

The nozzle geometry corresponds to that shown in Fig. 23. The inner nozzle diameter is 8.0 mm. The 

outer nozzle surface is tapered to a sharp edge at the burner exit. The overall dimensions of the 

computational domain are 110 inner jet diameters in the axial direction and 40 jet diameters in the radial 

direction (88 cm by 32 cm, respectively). Flow inside the jet nozzle is simulated by assuming that the 

turbulent flow dynamics far upstream are fully developed. Using this assumption we impose a time-

dependent inflow condition 10 jet diameters upstream of the nozzle exit (i.e., at the base of the image 

shown in Fig. 23) and allow it to evolve in a time accurate manner to the nozzle exit. The outer co-flow is 

imposed in a similar manner. A far field force-free pressure condition is applied at the downstream and 

transverse boundaries.  
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Fig. 25. Cross section of the computational domain showing key features of the 

grid topology. The domain includes the entire burner geometry, as shown in Fig. 23. To 

the right are single-shot measurements of mixture fraction and scalar dissipation. The jet 

Reynolds number is 15,200. 

 

A novel feature of our approach is to design respective grids using the dissipation spectrum cutoff 

length scales measured from the companion experiments. These scales represent the average thickness of 

the scalar mixing layers (i.e., the structural dimensions of the turbulent scalar eddies). Example images of 

both mixture fraction and the scalar dissipation layers are shown in Fig. 25. The white boxes on the grid 

indicate the experimental interrogation windows at x/d = 5, 10, and 20. Elongated filaments of high 

dissipation reveal the convoluted inhomogeneous structure of the fine-scale scalar mixing processes. Data 

similar to that shown in Fig. 25 were used to design a set of optimally stretched curvilinear grids that 

provided a consistent level of resolution in all three coordinate directions relative to the local physical 

mixing layers in the flow. A representative set of grid sizes are listed in Table 17. Grid 3 was established 

as an initial arbitrary baseline by sizing cells such that the local spacing throughout the domain was 

nominally the same size as the cutoff length scales. Grids 2 and 1 were obtained by successively 

coarsening Grid 3 by a factor of 2 in each coordinate direction while maintaining the curvilinear topology 

shown in Fig. 25. Using these three grids, we have performed an initial series of calculations that 

identically match the experimental flow conditions. Calculations were carried out on Grid 1 first to 

determine what the appropriate time step was. For the case considered, a time step of 1 μs was found to 

give an appropriate level of time accuracy. The Q2 benchmark case was performed using Grid 2 with a 

corresponding time step of 0.5 μs. Other relevant run parameters are listed in Figs. 24 and 25.  
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Table 17. Baseline grid sizes for Joule benchmark runs* 

Grid Number Total Cells ∆t (Red = 15,200) 

1 1,285,632 1.00 µs 

2 10,285,056 0.50 µs 

3 82,280,448 0.25 µs 

*Respective grids are successively refined by a factor of 2 in 

each coordinate direction while maintaining the curvilinear 

topology shown in Fig. 23. The corresponding integration time 

steps (∆t) are incremented by factors of 2 in a manner consistent 

with the spatial refinement. 

 

To acquire the appropriate performance statistics, the DLR-A configuration described above was run 

for 50 physical time steps. The physical results were validated using the experimental data provided by 

Barlow et al. [23]. A representative set of results are given in Fig. 26, which shows comparisons between 

numerical results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data (symbols). 

Here we show mean and RMS profiles. These results, coupled with similar comparisons performed 

throughout the domain, provide a validated level of confidence in the accuracy of the solution. The 

computational performance was simultaneously evaluated by using the CrayPAT instrumented executable 

in place of the original executable. The program was instrumented to provide hardware performance 

counter information from start to finish. The simulation was performed using 47,616 processor cores on 

the Cray XT5 system. The CrayPAT output was postprocessed using pat report, as shown in Table 18. On 

average, each processor core performed 7.94 billion floating point operations, leading to an aggregate of 

378 trillion floating-point operations being performed by the 47,616 cores. We measure the computational 

performance of RAPTOR for a given problem using the metric  

 

 

Fig. 26. Comparison of experimentally measured (symbols) and modeled (lines) results showing 

acceptable agreement. 
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Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 

integrator portion of the solver and (2) the number of processor cores occupied by the job while the 

program was executing. 

For the benchmark run, the code’s internal timers reported that the time integration through 50 time 

steps took 1,034 seconds. The remaining time (approximately 300 seconds) was consumed by the 

initialization step when the computational mesh and initial condition information were read from the disk 

and the software prepared itself for the simulation. Therefore, the performance of RAPTOR during the 

benchmark simulation was 

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 . 

This indicates that it cost 96 milliseconds of processor time per cell per time step to simulate the 

problem on 47,616 cores. Subsequent runs will be performed by systematically increasing the total CPU 

time required (i.e., total number of floating point operations per case) by approximate factors of 2 as a 

function of increasing jet Reynolds number. The Joule metric will be accomplished by demonstrating we 

can simulate successively larger problems in the same amount of time. 

 
Table 18. Counter data acquired from CrayPAT 4.2 for Q2  

benchmark run using RAPTOR 

Time% 100.0% 

Time 1425.761880 secs 

Imb.Time -- secs 

Imb.Time% -- 

Calls 0.0 /sec 4.0 calls 

PAPI_L1_DCM 20.674M/sec 26457314029 misses 

PAPI_TOT_INS 3379.668M/sec 4325136094614 instr 

PAPI_L1_DCA 1348.943M/sec 1726311709236 refs 

PAPI_FP_OPS 6.204M/sec 7939032813 ops 

User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time 

Average Time per Call 356.440470 sec 

CrayPat Overhead : Time 0.0% 

HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP) 

HW FP Ops / WCT 5.568M/sec 

HW FP Ops / Inst 0.2% 

Computational intensity 0.00 ops/cycle 0.00 ops/ref 

Instr per cycle 1.47 inst/cycle 

MIPS 160926295.28M/sec 

MFLOPS (aggregate) 295389.35M/sec 

Instructions per LD & ST 39.9% refs 2.51 inst/ref 

D1 cache hit,miss ratios 98.5% hits 1.5% misses 

D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses 

 

3.4.6 Computational Performance Gains 

During Q3 the performance of RAPTOR on the model problem was studied and the software was 

revised to obtain better computational performance. To obtain a quick turn-around time in the queues and 

for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 cores. 

The performance profiles obtained on 5,952 cores were then used to guide the tuning. The results of code 

changes were tested by measuring the execution time on 5,952 and 47,616 cores.  

CrayPAT was used to obtain a performance profile of the 10.3 million cell Q2 model problem on 

5,952 cores. Figure 27 shows a budget of the time spent in the code.  Given the inherent fine-grain nature 
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of the problem, a significant amount of time was being spent in MPI calls for this case and only 20% of 

the time was being spent in the Fortran routines.  

 

Fig. 27. Performance profile of the original code on 5,952 XT5 cores. 

 

It was found that the largest amount of time was being spent in MPI_Barrier and MPI_Allreduce. 

MPI_Barrier was being called from the user routine dbsh, which provides the time-dependent inflow 

boundary condition for the case. The inflow boundary condition is read as a function of time (i.e., at the 

beginning of each time step in the integrator) from a file, and when the end of file is reached, the file is 

rewound and the boundary condition was recycled at the inlet. One of the tasks performed by subroutine 

dbsh was to check the end of the inlet boundary condition and rewind the file accordingly. This portion of 

the routine was rewritten such that it calls a MPI_barrier only when a file rewind was necessary.  

MPI_Allreduce was being called from the subroutine norm, which is used to monitor convergence 

rates of respective residuals in the dual-time integrator. This routine provides the convergence of the 

solution vector using either a L_2 or L_infinite (max) norm. The computed norm was then compared 

against the error criterion to determine when to terminate the inner pseudo time step iteration and proceed 

to the next physical time step. A global MPI_allreduce was necessary for computing the error norm. Since 

MPI_allreduce affects the scalability of the software, the convergence test was modified taking into 

account the fact that the number of pseudo time iterations necessary to obtain convergence will not vary 

drastically between consecutive time steps. In the revised routine, the last pseudo time step in which 

convergence was achieved in the previous physical time step is saved in a static variable, say Nc. In the 

next physical time step, the convergence check is deferred until Nc  – 1 pseudo time steps. This way the 

solver would perform a few extra iterations occasionally while avoiding the expensive convergence check 

after each iteration.  

A profile of the revised code after the above-mentioned changes to global MPI operations is shown in 

Fig. 28. It is seen that the MPI barrier and allreduce costs have decreased. However, a significant amount 

of time is still being spent in the MPI communication routines, especially point-to-point send/receives and 

related waits.  
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Fig. 28. Performance profile of RAPTOR on 5,952 cores after reducing global MPI operations. 

 

RAPTOR uses halo communications to build a ghost zone around the problem domain in each MPI 

rank. The halo communications are performed between the nearest neighbors within the 3D grid topology. 

The MPI cost in performing the nearest neighbor communication was reduced through a rewrite of three 

main halo exchange routines—halo, halo_dqv, and halo_flx. The MPI communications in these routines 

were rearranged with the following principles: (1) prepost all receives as the first operation in the routine, 

(2) post the sends as soon as the data is available, and (3) postpone the waits on send operations until the 

end of the routine. Nonblocking sends and receives are used throughout, both before and after these 

modifications.  

A last set of modifications was aimed at reducing wait times due to load imbalances induced at the 

boundaries and grid centerline. It was also noticed that any load imbalance in routines prior to halo 

exchanges led to increased MPI wait times. The main source of this imbalance was due to treatment of the 

boundaries and centerline where only the MPI ranks at these respective locations were assigned work and 

the remaining ranks did not perform any computation. A prime candidate for tuning in this respect was 

subroutine pole, which handles the singularity associated with the swept grid design. This routine was 

tuned by creating separate subcommunicators consisting of the centerline ranks at various axial planes. 

Then the required velocity averaging was implemented using MPI_allreduce on the subcommunicator 

instead of send/receive operations. This was found to reduce the time taken by this routine and thereby 

lead to better load balance and lower MPI wait times.  

The current performance profile of the code with all revisions made to date is shown in Fig. 29. 

Table 19 shows the net reductions in time to solution on 5,952 and 47,616 cores as a result of the code 

changes.  
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Fig. 29. Performance profile of RAPTOR after software revisions. 

 
 

 

Table 19. Summary of measured timings (in seconds) after each set  

of code revisions using the 10.3 million cell Q2 test problem  

and 200 time steps 

 5,952 cores 47,616 cores 

Original Q2 software 1,414 4,136 

After revising dbsh (less barrier) 555 315 

After revising norm (less allreduce) 510 242 

Revised halo and pole (better point to point) 450 192 

 

3.4.7 Q4 Metric Problem Results 

RAPTOR was compiled using the default PGI Fortran compiler. Output from the compilation is 

included in the Appendix and is identical for both the Q2 benchmark and Q4 metric. Here we show only 

the skeletal output, which includes the options used for optimization of the code. Note that the complete 

output, which includes all information related to the optimization, is also available but spans 21,807 lines 

and has thus been omitted in the interest of space. In all cases the code was profiled using CrayPAT 4.2 

using the following recipe to build the executable 

module load xt-craypat 

make 

pat_build -w -Drtenv=PAT_RT_HWPC=0 DTMS.out DTMS_pat.out . 

The instrumented executable (DTMS pat.out) was run using the batch script listed in the Appendix. 

Here we show the script used for Q2.  The corresponding run time environment is also listed and 

essentially identical for both the Q2 and Q4 cases except for the different number of cores used for each. 

Performance data was generated by issuing the commands 

module load xt-craypat 

pat_report DTMS_pat.out+xxxyyy > report.out , 
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where DTMS pat.out+xxxyyy is the name of the directory created by CrayPAT after the run completed. 

Table 20 lists the resultant set of data. 

To acquire the appropriate performance statistics, the DLR-A configuration described above was run 

for 50 physical time steps. The physical results were validated using the experimental data provided by 

Barlow et al. [23], where a representative set of results is given in Fig. 4, which shows comparisons 

between numerical results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data 

(symbols). Here we show mean and RMS profiles. These results, coupled with similar comparisons 

performed throughout the domain, provide a validated level of confidence in the accuracy of the solution. 

The computational performance was simultaneously evaluated by using the CrayPAT instrumented 

executable in place of the original executable. The program was instrumented to provide hardware 

performance counter information from start to finish. The simulation was performed using 47,616 

processor cores on the Cray XT5 system. The CrayPAT output was post processed using pat report, as 

shown in Table 20. On average, each processor core performed 7.94 billion floating point operations, 

leading to an aggregate of 378 trillion floating point operations being performed by the 47,616 cores. We 

measure the computational performance of RAPTOR for a given problem using the metric  

Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 

integrator portion of the solver, and (2) the number of processor cores occupied by the job while the 

program was executing. 

For the Q2 benchmark run, the code’s internal timers reported that the time integration through 

50 time steps took 1,034 seconds. The remaining time (approximately 300 seconds) was consumed by the 

initialization step for CrayPAT and when the computational mesh and initial condition information were 

read from the disk. Therefore, the performance of RAPTOR during the benchmark simulation was 

(1, 034 seconds × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 . 

It cost 96 milliseconds of processor time per cell per time step to simulate the problem on 47,616 

cores. Using this benchmark, our Q4 metric was performed by increasing the total CPU time required 

(i.e., total number of floating point operations per case) by factors of approximately 2 as a function of 

increasing jet Reynolds number. The Joule goal metric was accomplished by demonstrating we can 

simulate successively larger problems in the same amount of time. 

 
Table 20. Counter data acquired from CrayPAT 4.2 for the Q2 benchmark run using RAPTOR 

Time% 100.0% 

Time 1425.761880 secs 

Imb.Time -- secs 

Imb.Time% -- 

Calls 0.0 /sec 4.0 calls 

PAPI_L1_DCM 20.674M/sec 26457314029 misses 

PAPI_TOT_INS 3379.668M/sec 4325136094614 instr 

PAPI_L1_DCA 1348.943M/sec 1726311709236 refs 

PAPI_FP_OPS 6.204M/sec 7939032813 ops 

User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time 

Average Time per Call 356.440470 sec 

CrayPat Overhead : Time 0.0% 

HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP) 

HW FP Ops / WCT 5.568M/sec 

HW FP Ops / Inst 0.2% 

Computational intensity 0.00 ops/cycle 0.00 ops/ref 

Instr per cycle 1.47 inst/cycle 

MIPS 160926295.28M/sec 
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MFLOPS (aggregate) 295389.35M/sec 

Instructions per LD & ST 39.9% refs 2.51 inst/ref 

D1 cache hit,miss ratios 98.5% hits 1.5% misses 

D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses 

 

For the Q4 benchmark, we modified the DLR-A model problem run in Q2 by systematically 

increasing the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest 

turbulence scales in the flow and thus increases the range of scales that must be considered in the 

calculation. To account for this increase, both the grid resolution and physical time step must be refined 

appropriately (i.e., linear scaling in the weak sense must be achieved to keep the total time required for 

the calculation the same as Q2). To demonstrate the performance of RAPTOR, we increased the total 

CPU time required (i.e., the total number of floating point operations per case) and total number of cores 

used by a factor of 2.359. The final Q4 case used 24,261,120 grid cells and 112,320 cores (compared to 

10,285,056 cells and 47,616 cores for Q2). The resultant run was analyzed in a manner identical to the Q2 

run. The final results are shown in Table 21. Weak scaling from Q2 to Q4 was near linear. In addition to 

scaling linearly, we were able to achieve an additional net improvement in the overall code performance 

of 2.329 beyond the linear metric due to the above-mentioned code improvements. 

 
Table 21. Summary of results from the Q4 run compared to the Q2 baseline 

 Q2 Q4 

Grid size 10.3 million 24.3 million 

Number of XT5 cores 47,616 112,320 

Time taken for integrating 50 time steps 1,034 seconds 444 seconds 

Number of floating point operations 378 × 10
12

 893 × 10
12

 

Flop rate sustained by the unsteady solver 0.36 TF/second 2.0 TF/second 

Cost per grid point per time step 0.096 seconds 0.041 seconds 

 

Performance statistics summarized in Table 21 were acquired in a manner identical to the Q2 run. The 

DLR-A configuration was run for 50 physical time steps at a higher Reynolds number to study issues 

related to scalar mixing and the related structural dynamics of the flow. The computational performance 

was evaluated by using a CrayPAT instrumented executable in place of the original executable and 

configured to give hardware performance counter information from start to finish. The CrayPAT output 

was postprocessed using pat report and is given in Table 22. 

 
Table 22.  Counter data acquired from CrayPAT 4.2 for the Q4 run using RAPTOR 

Time% 100.0% 

Time  1972.397426 secs 

Imb.Time secs 

Imb.Time% -- 

Calls 0.0 /sec 4.0 calls 

PAPI_L1_DCM 17.939M/sec    30225838071 misses 

PAPI_TOT_INS 3505.170M/sec  5906032655453 instr 

PAPI_L1_DCA  1400.128M/sec  2359144379197 refs 

PAPI_FP_OPS  4.718M/sec     7948841143 ops 

User time (approx) 1684.949 secs  3875382374683 cycles  85.4%Time 

Average Time per Call 493.099356 sec 

CrayPat Overhead : Time 0.0% 

HW FP Ops / User time 4.718M/sec     7948841143 ops  0.1%peak(DP) 

HW FP Ops / WCT 4.030M/sec 
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HW FP Ops / Inst 0.1% 

Computational intensity 0.00 ops/cycle      0.00 ops/ref 

Instr per cycle 1.52 inst/cycle 

MIPS 393700725.39M/sec 

MFLOPS (aggregate) 529875.93M/sec 

Instructions per LD & ST  39.9% refs 2.50 inst/ref 

D1 cache hit,miss ratios  98.7% hits 1.3% misses 

D1 cache utilization (M)  78.05 refs/miss 9.756 avg uses 

 

In running the Q4 case, we observed an anomaly associated with the time required for the 

initialization stage of the calculation (which is not compute intensive) compared to the integration stage 

(which is compute intensive). This anomaly was traced to CrayPAT. In all cases, our executables that 

were instrumented with CrayPAT exhibited a wide range of initialization times compared to those that 

were not. In the results for Q2, for example, the total run time reported by CrayPAT was 1,423 seconds. 

However, the time spent in the integration part of the calculation was only 1,034 seconds. Similarly, the 

Q4 calculation took a total of 1,972 seconds for both initialization and integration; however, only 

444 seconds were spent in the integration part. To verify this we performed several additional tests. First, 

we reran the Q2 case with the integration loop bypassed to isolate the time associated with initialization. 

Results from this run are provided in Appendix E, Sect. E.5 and compared to the original Q2 counter data 

shown in Fig. 27. These data verify that a negligible amount of floating point operations occur during 

initialization, and also that the internal clock used to measure the amount of time spent in the integrator 

was accurate, as reported in Table 21 above. As a second test, we ran both cases without CrayPAT 

installed and verified that the initialization times for both became negligible (i.e., less than 10 percent of 

the total integration time). The combined set of tests confirms that the integration times and estimated 

floating point operation rates reported are accurate.  

For the Q4 run, the code’s internal timers reported that the time integration through 50 time steps took 

444 seconds. Here the code performed 7.94 billion floating point operations on each core (as in Q2), 

leading to an aggregate of 893 trillion floating point operations being performed by the 112,320 cores. 

The remaining time was consumed by the initialization step required for CrayPAT and when the 

computational mesh and initial condition information were read from the disk. Thus, the performance of 

RAPTOR for Q4, which includes the performance enhancements described in the last section, was 

(444 seconds × 112,320 cores) / 24,261,120 cells / 50 time steps = 0.041 ,  

which is a factor of 2.3 improvement in speed beyond the linear weak-scaling metric specified as our 

target.  

3.4.8 Interpretation of Results 

The selected Joule goal metric described here has established an initial baseline for a series of weak 

scaling studies aimed at demonstrating the combined computational effectiveness of the ORNL NCCS 

Jaguar/XT5 platform and RAPTOR. Given the importance of Reynolds number scaling and its relation to 

combustion modeling, our focal point for the Joule metric is the experimental flames studied under the 

Reacting Flow Research program at Sandia National Laboratories. These flames are internationally 

recognized as important benchmarks for model validation and provide a significant amount of high 

quality data for model development. A key issue, however, is that the integral-scale Reynolds number for 

these flames (which corresponds to the jet Reynolds number here) is of O(10
4
), whereas those associated 

with several important applications are of O(10
5
) or greater. Thus, it is necessary to understand the 

phenomenological changes that occur as a function of Reynolds number when one scales to device-level 

conditions. 

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related 

scalar mixing processes requires significant increases in CPU resources and is directly aligned with the 

need for highly efficient weak scaling attributes. Here our goal is to study the related issues of Reynolds 
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number scaling and resolution requirements for LES by successively increasing the problem size. A range 

of jet Reynolds numbers, starting from 15,200, was considered. We will perform a series of weak scaling 

studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Our 

initial Q2 benchmark runs were performed using 47,616 cores. Subsequent runs were performed by 

systematically increasing the total CPU time required (i.e., total number of floating point operations per 

case) by factors of approximately 2 as a function of increasing jet Reynolds number. The Joule metric was 

accomplished by demonstrating we can simulate successively larger problems in the same amount of 

time. 

Our initial Q2 benchmark run was performed using 47,616 cores on the Cray XT5 system. On 

average, each processor core performed 7.94 billion floating point operations, leading to an aggregate of 

378 trillion floating point operations. We measured the computational performance of RAPTOR using the 

metric  

Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 

integrator portion of the solver and (2) the number of processor cores occupied by the job while the 

program was executing (i.e., the ―grind time‖). For the benchmark run, the code’s internal timers reported 

that the time integration through 50 time steps took 1,034 seconds. Therefore, the benchmark 

performance of RAPTOR was calculated as 0.096 (i.e., it cost 96 milliseconds of processor time per cell 

per time step to simulate the problem on 47,616 cores). 

During Q3 the performance of RAPTOR on the model problem was studied and the software was 

revised to obtain better computational performance. To obtain a quick turn-around time in the queues and 

for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 cores. 

The performance profiles obtained on 5,952 cores were then used to guide the tuning. The results of code 

changes were tested by measuring the execution time on 5,952 and 47,616 cores. The collective efforts 

led to a net increase in the time spent by the Fortran routines from 20 percent to 63 percent (i.e., latency 

due to fine-grain communication overhead was reduced from 80 percent to 37 percent for the selected 

model problem), which provided a significant net speedup in the performance of RAPTOR. 

For the Q4 benchmark, we modified the DLR-A configuration run in Q2 by systematically increasing 

the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest turbulence 

scales in the flow and thus increases the range of scales that must be considered in the calculation. To 

account for this increase, both the grid resolution and physical time step must be refined appropriately 

(i.e., linear scaling in the weak sense must be achieved to keep the total time required for the calculation 

the same as Q2). To demonstrate the performance of RAPTOR, we increased the total CPU time required 

(i.e., the total number of floating point operations per case) and total number of cores used by a factor of 

2.359. The final Q4 case used 24,261,120 grid cell and 112,320 cores. The resultant run was analyzed in a 

manner identical to the Q2 run. The code’s internal timers reported that the time integration through 

50 time steps took 444 seconds. The remaining time was consumed by both the initialization step when 

the computational mesh and initial condition information were read from the disk and the CrayPAT 

instrumentation in the software. Thus, the performance of RAPTOR for Q4 (which includes the 

performance enhancements performed as part of Q3 activities) was calculated to be 0.041 (compared to 

0.096 for Q2), which is a factor of 2.3 improvement in speed beyond the linear weak-scaling metric 

specified as our target.  

3.4.9 Summary and Conclusions 

The Joule metric selected here was designed to establish a baseline for a series of weak scaling 

studies aimed at demonstrating the combined computational effectiveness of the ORNL NCCS 

Jaguar/XT5 platform and RAPTOR. Given the importance of Reynolds number scaling and its relation to 

combustion modeling, our focal point for the Joule metric is the experimental flames studied under the 

Reacting Flow Research program at Sandia National Laboratories. These flames are internationally 

recognized as important benchmarks for model validation and provide a significant amount of high 



 

59 

quality data for model development. A key issue, however, is that the integral-scale Reynolds number for 

these flames (which corresponds to the jet Reynolds number here) is of O(10
4
), whereas those associated 

with several important applications are of O(10
5
) or greater. Thus, it is necessary to understand the 

phenomenological changes that occur as a function of Reynolds number when one scales to device-level 

conditions. 

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related 

scalar mixing processes requires significant increases in CPU resources and is directly aligned with the 

need for highly efficient weak scaling attributes. Here our goal is to study the related issues of Reynolds 

number scaling and resolution requirements for LES by successively increasing the problem size. A range 

of jet Reynolds numbers, starting from 15,200, was considered. We performed a series of weak scaling 

studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Our 

initial Q2 benchmark was performed using 47,616 cores on the Cray XT5 system. On average, each 

processor core performed 7.94 billion floating point operations, leading to an aggregate of 378 trillion 

floating point operations. We measured the computational performance of RAPTOR using the metric  

Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 

integrator portion of the solver and (2) the number of processor cores occupied by the job while the 

program was executing (i.e., the ―grind time‖). For the benchmark run, the code’s internal clock reported 

that the time integration through 50 time steps took 1,034 seconds. Therefore, the benchmark 

performance of RAPTOR was calculated as 0.096 (i.e., it costs 96 milliseconds of processor time per cell 

per time step to simulate the problem on 47,616 cores). 

During Q3 the performance of RAPTOR on the DLR-A model problem was studied and the software 

was revised to obtain better computational performance. To obtain a quick turn-around time in the queues 

and for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 

cores. The performance profiles were then used to guide the tuning. The changes were tested by 

measuring the execution time on 5,952 and 47,616 cores. The collective efforts led to a net increase in the 

time spent by the Fortran routines from 20 percent to 63 percent (i.e., latency due to fine-grain 

communication overhead was reduced from 80 percent to 37 percent for the selected model problem), 

which provided a significant net speedup in the performance of RAPTOR. 

For the Q4 benchmark, we modified the DLR-A case considered in Q2 by systematically increasing 

the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest turbulence 

scales in the flow and thus increases the range of scales that must be considered in the calculation. To 

account for this increase, both the grid resolution and physical time step must be refined appropriately 

(i.e., linear scaling in the weak sense must be achieved to keep the total time required for the calculation 

the same as Q2). To demonstrate the performance of RAPTOR, we increased the total CPU time required 

(i.e., the total number of floating point operations per case) and total number of cores used by a factor of 

2.359. The final Q4 case used 24,261,120 grid cells and 112,320 cores.  

Results from the Q4 run were analyzed in a manner identical to the Q2 run. The code’s internal clocks 

reported that the time integration through 50 time steps took 444 seconds. The remaining time was 

consumed by the initialization routines for CrayPAT, reading the computational mesh from the disk and 

setting the initial conditions.  Thus, the performance of RAPTOR for the Q4 benchmark (which includes 

the performance enhancements made as part of the Q3 activities) was calculated to be 0.041 (compared to 

0.096 for Q2). This represents a factor of 2.3 improvement in speed beyond the linear weak scaling metric 

specified as our target.  
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APPENDIX A. OVERVIEW 

 

 

We present in this appendix detailed information about the build and run time environments for the 

various benchmarks executed in Q2 on the Cray XT5 system at ORNL’s NCCS. An example follows 

where the source code is presented as well as the build and execution process invoked to execute 

instrumented (direct or automated) code on the target machine. 

A.1 PARALLEL MATRIX MULTIPLY EXAMPLE 

The acceptability of computed results is defined by the problem. In ASCR’s Joule software exercises, 

the complexity of executing a problem is directly deduced according to machine events measured with 

supported system software on the target platform. The number of total instructions retired, the number of 

floating point instructions executed, the total number of processes (assuming a one-to-one relationship 

between processes and processor cores—not the case for various thread models), and the total execution 

time are the events we typically return in this report.  

The target architecture has a well-developed set of tools designed for tracing and sampling analysis of 

a variety of machine events of interest. The vendor tools have the capability to instrument a compiled 

binary via recompiling, and to postanalyze the performance data captured during execution (CrayPAT, 

Apprentice2 tools). The degree of granularity can be controlled by the user and ranges from exhaustive 

fine-grain tracing (which can introduce large wall-clock time overhead) to a small set of hardware events 

that introduce only noise in the execution time. Alternatively, the PAPI tool can be used to instrument the 

application source code (C, Fortran API exists) and enables the user to declare the events of interest and 

pinpoint specified regions of their codes. The consistency of the approaches has been checked for a 

handful of scenarios on the benchmarked platform with exceptional agreement on common test problems 

prior to the Q2 benchmarks.  

A detailed example may help here. Suppose our application problem is to have a computer program 

that executes (on Jaguar/XT5) the common math operation C  AB + C
 
where A,B,C are all rank two 

arrays of double precision, complex numbers with dimensions A  [m,n], B  [n,p], C  [m,p], and , 

are double precision, complex numbers. The problem, P(m,n p), has complexity that is well described by 

the storage demands, mn + np + mp + 2 complex numbers, and floating point operation count, P(m,n,p) ~ 

8mpn + 13mp.This problem’s complexity (like all program instances) can be calibrated with machine 

capabilities (even if we did not have a theoretical estimate) by counting the instructions and specifically 

floating point instructions completed to execute an instance on Jaguar/XT5. 

To further simplify, let m = n = p. In this case the theoretical complexity of P(n) is ~3n
2
 + 2 complex 

numbers and ~8n
3
 + 13n

2
 floating point operations. (In the real number case, the problem floating point 

complexity for m = n = p is P(n ) ~ 2n
3
 + 2n

2
 and the storage becomes 3n

2
 + 2 real numbers.) 

For now, let’s check the quality of the counts returned by the approaches on the target hardware. 

First, consider P(n = 16,384). The theoretical complexity of this instance (within the significant digits 

offered by a handheld calculator) is P(16,384) = 35,187,861,750,000 floating point operations, the PAPI 

tool measured 36,560,640,672,864 floating point instructions as accumulated over 56 processes given the 

parallel implementation of the kernel. The relative difference is 3.9%. For the exact same problem 

parameters, the CrayPAT tool was used to automatically instrument the binary. Two different 

compilations were used for instrumentation with increased granularity. As an example of a low overhead 

glimpse into what happened, a floating point instruction count per process was sampled for a fraction of 

the processes from which we deduced the total floating point instruction count to be 

36,563,861,900,000—the relative difference computed against theory is here 3.91%. Since we do not 

investigate how the chipset actually computes the various complex algebraic terms in the implementation, 

the agreement to theory is very good. 
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Let us also report one other consistency check. Here we wish to understand if increasing the number 

of processes we throw at a fixed problem instance introduces a large error into the machine event data 

collection process. To this end, the kernel P(24,576) is executed first on 120 PEs and next on 256 PEs of 

the target system. The theoretical complexity for the complex representation is P(24,576) = 

113,555,757,096,871 floating point operations. The measured (PAPI in this example) count on 120 PEs 

was 123,390,048,340,380 floating point operations in 165.22 seconds, yielding a relative difference of 

8.6% from the complexity model. The measured count on 256 PEs was 123,390,048,343,296 floating 

point operations in 81.33 seconds, yielding a relative difference of 8.6% from the complexity model. The 

results are essentially identical. As a last note, the speedup between runs was 2.03; ideally this number 

would be 2.133.  The following is the source code used in the example. 

 
/* rochekj@ornl.gov */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <complex.h> 

#include <mpi.h> 

#ifdef KRP 

#include <papi.h> 

 

/* 

PAPI 

  _TOT_IIS 

  _TOT_INS 

  _INT_INS 

  _FP_INS 

  _FMA_INS 

  _VEC_INS 

  _L2_DCM 

*/ 

 

#define NUM_PAPI_EVENTS 4 

#endif 

 

/* BLACS , ScaLAPACK */ 

/* 

void Cblacs_pinfo( int * , int * ) ; 

void Cblacs_setup( int * , int * ) ; 

void Cblacs_get( int , int , int * ) ; 

void Cblacs_gridinit( int * , char * , int , int ) ; 

void Cblacs_gridinfo( int , int * , int * , int * , int * ) ; 

void Cblacs_exit( int ) ; 

void Cdgesd2d( int , int , int , double * , int , int , int ) ; 

void Cdgerv2d( int , int , int , double * , int , int , int ) ; 

void Cigebs2d( int ictxt , char * scope , char * top , int m , int n , int 

* A , int lda ) ; 

void Cigebr2d( int ictxt , char * scope , char * top , int m , int n , int 

* A , int lda , int rsrc , int csrc ) ; 

void pzgemm_( char * , char * , int * , int * , int * , double complex * , 

double complex * , int * , int * , int * , double complex * 

, int * , int * , int * , double complex * , double complex * , int * , 

int * , int * ) ; 

*/ 
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/* home spun support routines */ 

void get_num_rows( int iamprow , int nprows , int ma , int mblk , int * 

nrow ) 

{ 

  int mydist , nrows , np ; 

  int srcproc , extrarows ; 

  srcproc = 0 ; /* assume that the process(0,0) owns the first element(s) 

*/ 

  mydist  = ( nprows + iamprow - srcproc ) % nprows ; 

  nrows = ma / mblk ; 

  np = ( nrows / nprows ) * mblk ; 

  extrarows = nrows % nprows ; 

  if ( mydist < extrarows ) np += mblk ; 

  else if ( mydist == extrarows ) np += ma % mblk ; 

  *nrow = np ; 

} 

 

void get_num_columns( int iampcol , int npcols , int na , int nblk , int * 

ncol ) 

{ 

  int mydist , ncols , np ; 

  int srcproc , extracols ; 

  srcproc = 0 ; /* assume that the process(0,0) owns the first element(s) 

*/ 

 

  mydist  = ( npcols + iampcol - srcproc ) % npcols ; 

  ncols = na / nblk ; 

  np = ( ncols / npcols ) * nblk ; 

  extracols = ncols % npcols ; 

  if ( mydist < extracols ) np += nblk ; 

  else if ( mydist == extracols ) np += na % nblk ; 

  *ncol = np ; 

} 

 

void get_mem_req_blk_cyc ( int ip , int iq , int np , int nq , int ma , 

int na , int mblk , int nblk , int * nip , int * niq ) 

{ 

  get_num_rows( ip , np , ma , mblk , nip ) ; 

  get_num_columns( iq , nq , na , nblk , niq ) ; 

} 

 

void get_mem_req_blk_cyc ( int ip , int iq , int np , int nq , int ma , 

int na , int mblk , int nblk , int * nip , int * niq ) ; 

int main( int argc , char ** argv ) 

{ 

#ifdef KRP 

  /* PAPI */ 

  int hw_counters ; 

  const PAPI_hw_info_t *hwinfo = NULL ; 

  int papi_events[ NUM_PAPI_EVENTS ] ; 

  long long int papi_values[ NUM_PAPI_EVENTS + 4 ] ; 

  long long int papi_real_cyc_0 , papi_virt_cyc_0 , papi_real_usec_0 , 

papi_virt_usec_0 ; 
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  char * papi_event_name[] = { "PAPI_TOT_INS" , "PAPI_FP_INS" , 

"PAPI_FP_OPS" , "PAPI_L2_DCM" } ; 

  long long int * llbuf , llval ; 

#endif 

 

  /* for the kernel */ 

  int i , j ; 

  double complex * a , * b , * c ; 

  double complex zone = 1. + I * 1. ; double complex zmone = -1. + I * 1. 

; 

  int np , p , q ; /* np ~ p q , np := number of processes , p := number 

of process rows , q := number of process columns */ 

  int ip , iq , nip , niq ; /* id (ip,iq) in (p,q) rectangular , virtual 

process grid owns (nip,niq) elements */ 

  int ma , na , nb , nblk ; /* matrix dimensions [ma,na][na,nb]+[ma,nb] , 

block size */ 

  int iam , npmpi ; 

  int DESCA[ 9 ] , DESCB[ 9 ] , DESCC[ 9 ]; /* array descriptors */ 

  int info , doneflag ; 

  char *b_order, *scope ; 

  int b_val ; 

  int ione = 1 , mone = -1 , zero = 0 ; 

  int iam_blacs , ictxt , nprocs_blacs ; 

#ifdef VERBOSE 

  int namelen ; 

  char myname[ MPI_MAX_PROCESSOR_NAME ] ; 

#endif 

 

  /* blacs */ 

  b_val = zero ; 

  b_order = "R" ; 

  scope = "All" ; 

 

  /* initialize the MPI communicator MPI_COMM_WORLD */ 

  MPI_Init( &argc , &argv ) ; 

  MPI_Comm_size( MPI_COMM_WORLD , &npmpi ) ; 

  MPI_Comm_rank( MPI_COMM_WORLD , &iam ) ; 

 

  /* parse the command line */ 

  if ( argc != 7 ) { 

    printf( "usage: %s ma na nb nblk p q\n" , argv[ 0 ] ) ; 

    MPI_Finalize(); 

    return ( EXIT_SUCCESS ) ; 

  } 

 

  ma = atoi( argv[ 1 ] ) ; /* problem size data */ 

  na = atoi( argv[ 2 ] ) ; /* problem size data */ 

  nb = atoi( argv[ 3 ] ) ; /* problem size data */ 

  nblk = atoi( argv[ 4 ] ) ; /* block buffer data */ 

  p = atoi( argv[ 5 ] ) ; 

  q = atoi( argv[ 6 ] ) ; 

  np = p * q ; 

 

  /* initialize the BLACS grid */ 
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#ifdef VERBOSE 

  printf( "[%d] prior to blacs_pinfo\n" , iam ) ; 

#endif 

 

  Cblacs_pinfo( &iam_blacs , &nprocs_blacs ) ; 

  if ( nprocs_blacs < 1 ) Cblacs_setup( &iam_blacs , &nprocs_blacs ) ; 

  Cblacs_get( mone , zero , &ictxt ) ; 

  Cblacs_gridinit( &ictxt , b_order , p , q ) ;  /* 'Row-Major' */ 

  Cblacs_gridinfo( ictxt , &p , &q , &ip , &iq ) ; /* ip,iq: the process 

row,column id */ 

 

  /* determine memory demands for the matrix A[ma,na] */ 

  get_mem_req_blk_cyc ( ip , iq , p , q , ma , na , nblk , nblk , &nip , 

&niq ) ; 

 

#ifdef VERBOSE 

  printf( "A\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip , 

iq , nip * niq , ( unsigned long long ) sizeof( double comple 

x ) * nip * niq ) ; 

#endif 

 

  if ( ( a = malloc( sizeof( double complex ) * nip * niq ) ) == NULL ) 

    { 

 

      fprintf( stderr , "[%d,%d]error: cannot malloc() a\n...exiting\n", 

ip , iq ) ; 

      MPI_Finalize() ; 

      return( EXIT_SUCCESS ) ; 

    } 

 

  /* generate the matrix elements randomly */ 

  srand( iam + 1 ) ; /* seed the prng the for initial use */ 

  for ( i = 0 ; i < nip * niq ; i++ ) 

      a[ i ] = 0.5 - ( double ) rand() / ( double ) RAND_MAX + I * ( 0.5 - 

( double ) rand() / ( double ) RAND_MAX ) ; 

 

  /* the array descriptor for local_A */ 

  DESCA[ 0 ] = 1 ; /* descriptor type (1=global) */ 

  DESCA[ 1 ] = ictxt ; /* blacs process grid used for distribution */ 

  DESCA[ 2 ] = ma ; /* rows in global A */ 

  DESCA[ 3 ] = na ; /* columns in global A */ 

  DESCA[ 4 ] = nblk ; /* row block factor */ 

  DESCA[ 5 ] = nblk ; /* column block factor */ 

  DESCA[ 6 ] = 0 ; /* row source in the pgrid */ 

  DESCA[ 7 ] = 0 ; /* column source in the pgrid */ 

  DESCA[ 8 ] = nip ; /* local leading dimension of A */ 

 

  /* determine memory demands for the matrix B[na,nb] */ 

  get_mem_req_blk_cyc ( ip , iq , p , q , na , nb , nblk , nblk , &nip , 

&niq ) ; 

 

#ifdef VERBOSE 

  printf( "B\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip , 

iq , nip * niq , ( unsigned long long ) sizeof( double comple 
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x ) * nip * niq ) ; 

#endif 

 

  if ( ( b = malloc( sizeof( double complex ) * nip * niq ) ) == NULL ) 

    { 

      fprintf( stderr , "[%d,%d]error: cannot malloc() b\n...exiting\n", 

ip , iq ) ; 

      MPI_Finalize() ; 

      return( EXIT_SUCCESS ) ; 

    } 

 

  for ( i = 0 ; i < nip * niq ; i++ ) b[ i ] = 0.5 - ( double ) rand() / ( 

double ) RAND_MAX + I * ( 0.5 - ( double ) rand() / ( double 

 ) RAND_MAX ) ; 

 

  /* the array descriptor for local_B */ 

  DESCB[ 0 ] = 1 ; /* descriptor type (1=global) */ 

  DESCB[ 1 ] = ictxt ; /* blacs process grid used for distribution */ 

  DESCB[ 2 ] = na ; /* rows in global B */ 

  DESCB[ 3 ] = nb ; /* columns in global B */ 

  DESCB[ 4 ] = nblk ; /* row block factor */ 

  DESCB[ 5 ] = nblk ; /* column block factor */ 

  DESCB[ 6 ] = 0 ; /* row source in the pgrid */ 

  DESCB[ 7 ] = 0 ; /* column source in the pgrid */ 

  DESCB[ 8 ] = nip ; /* local leading dimension of B */ 

 

  /* determine memory demands for the matrix C[ma,nb] */ 

  get_mem_req_blk_cyc ( ip , iq , p , q , ma , nb , nblk , nblk , &nip , 

&niq ) ; 

 

#ifdef VERBOSE 

  printf( "C\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip , 

iq , nip * niq , ( unsigned long long ) sizeof( double comple 

x ) * nip * niq ) ; 

#endif 

 

  if ( ( c = malloc( sizeof( double complex ) * nip * niq ) ) == NULL ) { 

    fprintf( stderr , "[%d,%d]error: cannot malloc() c\n...exiting\n", ip 

, iq ) ; 

    MPI_Finalize() ; 

    return( EXIT_SUCCESS ) ; 

  } 

 

  for ( i = 0 ; i < nip * niq ; i++ ) c[ i ] = 0.5 - ( double ) rand() / ( 

double ) RAND_MAX + I * ( 0.5 - ( double ) rand() / ( double 

 ) RAND_MAX ) ; 

  /* the array descriptor for local_C */ 

  DESCC[ 0 ] = 1 ; /* descriptor type (1=global) */ 

  DESCC[ 1 ] = ictxt ; /* blacs process grid used for distribution */ 

  DESCC[ 2 ] = ma ; /* rows in global C */ 

  DESCC[ 3 ] = nb ; /* columns in global C */ 

  DESCC[ 4 ] = nblk ; /* row block factor */ 

  DESCC[ 5 ] = nblk ; /* column block factor */ 

  DESCC[ 6 ] = 0 ; /* row source in the pgrid */ 
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  DESCC[ 7 ] = 0 ; /* column source in the pgrid */ 

  DESCC[ 8 ] = nip ; /* local leading dimension of C */ 

 

#ifdef VERBOSE 

  MPI_Get_processor_name( myname , &namelen ) ; 

  printf( "[ %d , %d ][%s] prior to pgemm \n" , ip , iq , myname ) ; 

#endif 

 

#ifdef VERBOSE 

  if ( ip == 0 ) { 

    printf( "a[1,1]= ( %f , %f )\n" , creal( a[ 0 ] ) , cimag( a[ 0 ] ) ) 

; 

    printf( "b[1,1]= ( %f , %f )\n" , creal( b[ 0 ] ) , cimag( b[ 0 ] ) ) 

; 

    printf( "c[1,1]= ( %f , %f )\n" , creal( c[ 0 ] ) , cimag( c[ 0 ] ) ) 

; 

  } 

 

#endif 

  MPI_Barrier(MPI_COMM_WORLD); 

#ifdef KRP 

 

  /* learn something about the system here */ 

  if ( PAPI_library_init( PAPI_VER_CURRENT ) != PAPI_VER_CURRENT ) 

    exit( 1 ) ; 

  if ( ( hwinfo = PAPI_get_hardware_info() ) == NULL ) 

    exit( 1 ) ; 

  if ( iam == 0 ) 

    { 

      printf( "\t\tTotPEs(jagpf)[%d]\n" , hwinfo->totalcpus ) ;  

      printf( "\t\tMhz[%g]\n" , hwinfo->mhz ) ;  

      printf( "\t\tnCPU-SMPnode(jagpf)[%d]\n" , hwinfo->ncpu ); /* Number 

of CPU's in SMP Node */ 

      printf( "\t\tnSMPnodes(jagpf)[%d]\n" , hwinfo->nnodes );  

      printf( "\t\t\tvendor string cpu[%s}\n" , hwinfo->vendor_string ); 

      printf( "\t\t\tmodel string cpu[%s}\n" , hwinfo->model_string ); 

      printf( "\t\t\tmodel number[%d]\n\n" , hwinfo->model ); 

    } 

 

  char * eventname[] = { PAPI_FP_OPS , PAPI_FP_INS } ; 

  int eventcode ; 

  PAPI_event_info_t pinfo ; 

  if ( ip == 0 ) 

    { 

      for ( i = 0 ; i < 2 ; i++ ) 

        { 

          PAPI_event_name_to_code( eventname[ i ] , &eventcode ) ; 

          if ( PAPI_get_event_info( eventcode , &pinfo ) != PAPI_OK ) 

            { 

              fprintf( stderr , "error: papi event[%s]\n" , eventcode[ i ] 

) ; 

            } 

          printf( "papi event[%s]\n" , papi_event_name[ i ] ) ; 

        } 
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    } 

#endif 

 

  /* begin PAPI profiling here */ 

  hw_counters = PAPI_num_counters() ; 

  for ( i = 0 ; i < ( int ) NUM_PAPI_EVENTS ; i++ ) 

    { 

      if ( PAPI_event_name_to_code( papi_event_name[ i ] , &papi_events[ i 

] ) != PAPI_OK ) 

        { 

          fprintf( stderr , "papi error[%s]\n" , papi_event_name[ i ] ) ; 

          if ( hw_counters > i ) hw_counters = i ; 

        } 

    } 

  if( hw_counters > NUM_PAPI_EVENTS ) hw_counters = NUM_PAPI_EVENTS ; 

  papi_real_cyc_0 = PAPI_get_real_cyc() ; 

  papi_real_usec_0 = PAPI_get_real_usec() ; 

  papi_virt_cyc_0 = PAPI_get_virt_cyc() ; 

  papi_virt_usec_0 = PAPI_get_virt_usec() ; 

  PAPI_start_counters( papi_events , hw_counters ) ; 

#endif 

 

  /* 

    extern void p*gemm_( char *TRANSA, char *TRANSB, int * M, int * N, int 

* K, double * ALPHA, 

    double * A, int * IA, int * JA, int * DESCA, double * B, int * IB, int 

* JB, int * DESCB, 

    double * BETA, double * C, int * IC, int * JC, int * DESCC ); 

  */ 

  pzgemm_( "N" , "N" , &ma , &nb , &na , &zone , a , &ione , &ione , DESCA 

, b , &ione , &ione , DESCB , &zmone , c , &ione , &ione , D 

ESCC ) ; 

#ifdef VERBOSE 

  printf( "[ %d , %d ] return from pgemm \n" , ip , iq ) ; 

  if ( ip == 0 ) { 

    printf( "a[1,1]= ( %f , %f )\n" , creal( a[ 0 ] ) , cimag( a[ 0 ] ) ) 

; 

    printf( "b[1,1]= ( %f , %f )\n" , creal( b[ 0 ] ) , cimag( b[ 0 ] ) ) 

; 

    printf( "c[1,1]= ( %f , %f )\n" , creal( c[ 0 ] ) , cimag( c[ 0 ] ) ) 

; 

  } 

#endif 

  free ( a ) ; free( b ) ; free( c ) ; 

#ifdef KRP 

 

  /* PAPI exit results */ 

  PAPI_stop_counters( papi_values , hw_counters ) ; 

  papi_values[ hw_counters ] = PAPI_get_real_cyc() - papi_real_cyc_0 ; 

  papi_values[ hw_counters + 1 ] = PAPI_get_real_usec() - papi_real_usec_0 

; 

  papi_values[ hw_counters + 2 ] = PAPI_get_virt_cyc() - papi_virt_cyc_0 ; 

  papi_values[ hw_counters + 3 ] = PAPI_get_virt_usec() - papi_virt_usec_0 

; 
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  if ( iam == 0 ) 

    { 

      if ( ( llbuf = malloc( sizeof( long long int ) * npmpi ) ) == NULL ) 

        { 

          fprintf( stderr , "[%d,%d]error: cannot malloc() 

llbuf\n...exiting\n", ip , iq ) ; 

          MPI_Finalize() ; 

          return( EXIT_SUCCESS ) ; 

        } 

    } 

  for ( i = 0 ; i < hw_counters ; i++ ) 

    { 

      llval = 0LL ; 

      MPI_Gather( &papi_values[ i ] , 1 , MPI_LONG_LONG , llbuf , 1 , 

MPI_LONG_LONG , 0 , MPI_COMM_WORLD ) ; 

      if ( iam == 0 ) 

        { /* report some profile information */ 

          for ( j = 0 ; j < npmpi ; j++ ) 

            llval += llbuf[ j ] ; 

          printf("%s :\tTot[ %lld ]\tRt[ %lld ]\n", papi_event_name[ i ] , 

llval , papi_values[ i ] ) ; 

        } 

      MPI_Barrier( MPI_COMM_WORLD ) ; 

    } 

  if ( iam == 0 ) 

    { 

      printf( "PAPI_real_cyc = %lld\n" , papi_values[ hw_counters ] ) ; 

      printf( "PAPI_real_usec = %lld\n" , papi_values[ hw_counters + 1 ] ) 

; 

      printf( "PAPI_user_cyc = %lld\n" , papi_values[ hw_counters + 2 ] ) 

; 

      printf( "PAPI_user_usec = %lld\n" , papi_values[ hw_counters + 3 ] ) 

; 

      free ( llbuf ) ; 

    } 

#endif 

  MPI_Barrier( MPI_COMM_WORLD ) ; 

#ifdef VERBOSE 

  printf( "...[%d][%d]clean exit\n" , ip , iq ) ; 

#endif 

 

  MPI_Finalize( ) ; 

  return ( EXIT_SUCCESS ) ; 

} 

A.2 MODULES AVAILABLE ON THE TARGET ARCHITECTURE 

--------------------- /opt/cray/xt-asyncpe/2.0/modulefiles -------------- 

xtpe-quadcore      xtpe-target-native 

------------------------------- /opt/modulefiles ------------------------ 

Base-opts/2.1.27HD 

Base-opts/2.1.27HD.lusrelsave 
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Base-opts/2.1.29HD 

Base-opts/2.1.29HD.lusrelsave 

Base-opts/2.1.41HD 

Base-opts/2.1.41HD.lusrelsave 

Base-opts/2.1.50HD(default) 

Base-opts/2.1.50HD.lusrelsave 

MySQL/5.0.45 

PrgEnv-cray/1.0.0(default) 

PrgEnv-gnu/2.1.27HD 

PrgEnv-gnu/2.1.29HD 

PrgEnv-gnu/2.1.41HD 

PrgEnv-gnu/2.1.50HD(default) 

PrgEnv-pathscale/2.1.27HD 

PrgEnv-pathscale/2.1.29HD 

PrgEnv-pathscale/2.1.41HD 

PrgEnv-pathscale/2.1.50HD(default) 

PrgEnv-pgi/2.1.27HD 

PrgEnv-pgi/2.1.29HD 

PrgEnv-pgi/2.1.41HD 

PrgEnv-pgi/2.1.50HD(default) 

acml/4.0.1a 

acml/4.1.0(default) 

acml/4.2.0 

apprentice2/4.3.0 

apprentice2/4.4.0(default) 

apprentice2/4.4.0.1 

blcr/0.7.3 

cce/7.0.0(default) 

cce/7.0.1 

cce/7.0.2 

cray/audit/1.0.0-1.0000.15784.0 

dwarf/8.2.0 

dwarf/8.4.0 

dwarf/8.6.0 

dwarf/8.8.0(default) 

elf/0.8.10(default) 

fftw/2.1.5 

fftw/3.1.1(default) 

fftw/3.2.0 

gcc/4.1.2 

gcc/4.2.0.quadcore(default) 

gcc/4.2.3 

gcc/4.2.4 

gcc-catamount/3.3 

gnet/2.0.5 

iobuf/1.0.6(default) 

java/jdk1.6.0_05(default) 

java/jdk1.6.0_11 

libfast/1.0(default) 

libfast/1.0.2 

libscifft-pgi/1.0.0(default) 

moab/5.2.3 

moab/5.2.4(default) 

moab/5.3.0 
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modules/3.1.6(default) 

pathscale/3.2(default) 

petsc/2.3.3a(default) 

petsc/3.0.0 

petsc-complex/2.3.3a(default) 

petsc-complex/3.0.0 

pgi/6.2.5 

pgi/7.0.7 

pgi/7.1.6 

pgi/7.2.3 

pgi/7.2.4 

pgi/7.2.5(default) 

pgi/8.0.1 

pgi/8.0.2 

pgi/8.0.3 

pkgconfig/0.15.0(default) 

torque/2.3.2-snap.200807092141(default) 

xt-asyncpe/1.0c 

xt-asyncpe/1.1 

xt-asyncpe/1.2 

xt-asyncpe/2.0(default) 

xt-asyncpe/2.0.34 

xt-asyncpe/2.1 

xt-boot/2.1.27HD 

xt-boot/2.1.29HD 

xt-boot/2.1.41HD 

xt-boot/2.1.50HD 

xt-catamount/2.1.27HD 

xt-catamount/2.1.29HD 

xt-catamount/2.1.41HD 

xt-catamount/2.1.50HD 

xt-craypat/4.3.1 

xt-craypat/4.3.3 

xt-craypat/4.4.0 

xt-craypat/4.4.0.2 

xt-craypat/4.4.0.4(default) 

xt-craypat/4.4.1 

xt-libc/2.1.27HD 

xt-libc/2.1.29HD 

xt-libc/2.1.41HD 

xt-libc/2.1.50HD 

xt-libsci/10.2.1 

xt-libsci/10.3.0 

xt-libsci/10.3.1(default) 

xt-libsci/10.3.2 

xt-lustre-ss/2.1.27HD_1.6.5 

xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5 

xt-lustre-ss/2.1.29HD_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5 
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xt-lustre-ss/2.1.41HD_1.6.5 

xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 

xt-lustre-ss/2.1.50HD_1.6.5 

xt-lustre-ss/2.1.50HD_PS04_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5 

xt-mpt/2.1.27HD 

xt-mpt/2.1.29HD 

xt-mpt/2.1.41HD 

xt-mpt/2.1.50HD 

xt-mpt/3.0.1 

xt-mpt/3.0.2 

xt-mpt/3.0.4 

xt-mpt/3.1.0(default) 

xt-mpt/3.1.0.4 

xt-mpt/3.1.0.6 

xt-mpt/3.1.0.7 

xt-mpt/3.1.1 

xt-os/2.1.27HD 

xt-os/2.1.29HD 

xt-os/2.1.41HD 

xt-os/2.1.50HD 

xt-papi/3.5.99c 

xt-papi/3.6 

xt-papi/3.6.1a 

xt-papi/3.6.2(default) 

xt-pe/2.1.27HD 

xt-pe/2.1.29HD 

xt-pe/2.1.41HD 

xt-pe/2.1.50HD 

xt-service/2.1.27HD 

xt-service/2.1.29HD 

xt-service/2.1.41HD 

xt-service/2.1.50HD 

xtgdb/1.0.0(default) 

xtpe-target-catamount 

xtpe-target-cnl 

 

--------------------------- /opt/modules/3.1.6 --------------------------- 

modulefiles/modules/dot         modulefiles/modules/modules 

modulefiles/modules/module-cvs  modulefiles/modules/null 

modulefiles/modules/module-info modulefiles/modules/use.own 

 

----------------------------- /sw/xt5/modulefiles -------------------- 

DefApps                    lapack/3.1.1-dualcore 

MiscApps                   lapack/3.1.1-fPIC 

adios/0.9.8(default)       liblut/0.9.6 

arpack/2008.03.11          m4/1.4.11 

atlas/3.8.2                matlab/7.5 
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atlas/3.8.2-fPIC-dualcore  mercurial/1.0.2 

autoconf/2.63              metis/4.0 

automake/1.10.1            mpe2/1.0.6 

aztec/2.1                  mpip/3.1.2 

blas/ref(default)          mumps/4.7.3_par 

blas/ref-dualcore          namd/2.6 

bugget/2.0                 ncl/5.0.0 

cmake/2.6.1(default)       nco/3.9.4 

cmake/2.6.2                ncview/1.93c 

cpmd/3.13.1                nedit/5.5 

cpmd/3.13.2                netcdf/3.6.2(default) 

doxygen/1.5.6              netcdf/4.0.0 

doxygen/1.5.8              netcdf/4.0.0_par 

ferret/6.1                 ompi/ADTR65 

fftpack/5-r4i4             ompi/ADTR77 

fftpack/5-r8i4             ompi/ADTR78 

fftpack/5-r8i8             ompi/DTR56 

fftw/3.1.2                 ompi/DTR59 

fftw/3.1.2-dualcore        ompi/routing-pgi 

fftw/3.2                   p-netcdf/1.0.2(default) 

fftw/3.2-dualcore          p-netcdf/1.0.3 

fpmpi/1.0                  parmetis/3.1 

fpmpi/1.1                  petsc/2.3.3-debug 

fpmpi_papi/1.0             petsc-complex/2.3.3-debug 

fpmpi_papi/1.1             pgplot/5.2 

gamess/2008Mar04           pspline/1.0 

git/1.6.0                  python/2.5.2 

git/1.6.0.4                python/2.5.2-netcdf 

globalarrays/4.0.8         qt/4.3.4 

gnuplot/4.2.3              ruby/1.8.7 

gnuplot/4.2.4(default)     ruby/1.9.1 

gptl/3.4.1                 spdcp/0.3.6 

gptl/3.4.3                 sprng/2.0b 

gptl/3.4.7(default)        stagesub/1.0.2 

grace/5.1.21               stagesub/1.0.3(default) 

gromacs/3.3.3              subversion/1.4.6 

gsl/1.11                   subversion/1.5.0(default) 

gsl/1.11-dualcore          sundials/2.3.0 

hdf5/1.6.7(default)        superlu/3.0 

hdf5/1.6.7_par             superlu_dist/2.2 

hdf5/1.6.8                 swig/1.3.36 

hdf5/1.6.8_par             szip/2.1 

hdf5/1.8.1                 tau/2.17.2 

hdf5/1.8.1_par             tau/2.17.3 

hdf5/1.8.2                 tkdiff/4.1.4 

hdf5/1.8.2_par             totalview/8.6.0-1(default) 

hypre/2.0.0                trilinos/8.0.3 

idl/6.4                    udunits/1.12.4 

imagemagick/6.4.2(default) udunits/1.12.9 

java-jdk/1.5.0.06          umfpack/5.1.1 

java-jdk/1.6.0.06          valgrind/3.3.1 

java-jre/1.5.0.06          vim/7.1 

lammps/4Mar08              vim/7.2 

lammps/May08               visit/1.11.1 
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lapack/3.1.1(default) 

A.3 COMPILATION FOR INSTRUMENTATION AND EXECUTION 

PAPI instrumented case (example) 

 

 Prepare the environment 

module load xt-papi . 

jaguarpf-login2 roche/chk-perf> env | grep PAPI 

PE_PRODUCT_LIST=ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW:PAPI 

PAPI_POST_LINK_OPTS= -L/opt/xt-tools/papi/3.6.2/v23/linux/lib -lpapi -lpfm 

PAPI_INCLUDE_OPTS=-I/opt/xt-

tools/papi/3.6.2/v23/$XTPE_COMPILE_TARGET/include 

PAPI_VERSION=3.6.2 

 

 Compile the code 

cc -c -DKRP ${PAPI_INCLUDE_OPTS} kr-cpblas-tst.c ; cc -o xcpbls kr-

cpblastst.o ${PAPI_POST_LINK_OPTS} –lsci -lm 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

 

 The run script 

#PBS -V 

#PBS -l walltime=00:30:00,size=256 

#PBS -A csc053 

#PBS -N cpbls 

#PBS -j oe 

 

cd ${PBS_O_WORKDIR} 

aprun -n 256 ./xcpbls 24576 24576 24576 80 16 16 

 

 The output of the example 

TotPEs(jagpf)[8] 

Mhz[2300] 

nCPU-SMPnode(jagpf)[8] 

nSMPnodes(jagpf)[1] 

vendor string cpu[AuthenticAMD} 

model string cpu[Quad-Core AMD Opteron(tm) Processor 23 (B3)} 

model number[16] 

 

PAPI_TOT_INS :  Tot[ 111540195796692 ]  Rt[ 449702700723 ] 

PAPI_FP_INS :   Tot[ 123390048343296 ]  Rt[ 522995200021 ] 

PAPI_FP_OPS :   Tot[ 123390048343296 ]  Rt[ 522995200021 ] 

PAPI_L2_DCM :   Tot[ 84401033569 ]      Rt[ 248334396 ] 

PAPI_real_cyc = 187063030672 

PAPI_real_usec = 81331753 

PAPI_user_cyc = 187036000000 

PAPI_user_usec = 81320000 

Application 107259 resources: utime 16225, stime 129 
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Automatically instrumented case (example) 

 

 Prepare the environment 

module load xt-craypat . 

 

 Check the modules 

module list 

Currently Loaded Modulefiles: 

1) modules/3.1.6                      4) moab/5.2.4 

7) xt-service/2.1.50HD               10) xt-boot/2.1.50HD 

13) Base-opts/2.1.50HD                16) xt-libsci/10.3.1 

19) xt-asyncpe/2.0 

2) DefApps                            5) xtpe-quadcore 

8) xt-libc/2.1.50HD                  11) xt-lustre-ss/2.1.50HD_PS04_1.6.5 

14) pgi/7.2.5                         17) xt-mpt/3.1.0 

20) PrgEnv-pgi/2.1.50HD 

3) torque/2.3.2-snap.200807092141     6) MySQL/5.0.45 

9) xt-os/2.1.50HD                    12) xtpe-target-cnl 

15) fftw/3.1.1                        18) xt-pe/2.1.50HD 

21) xt-craypat/4.4.0.4 

 

 Compile the code 

cc -c kr-cpblas-tst.c ; cc -o xcpbls-cp kr-cpblas-tst.o -lsci -lm 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

 

 Build the instrumented binary 

pat_build -Drtenv=PAT_RT_HWPC=0 -g mpi -w –o xcpbls-cp+apa ./xcpbls-cp 

 

 The run script 

#PBS -V 

#PBS -l walltime=00:30:00,size=56 

#PBS -A csc053 

#PBS -N cpbls 

#PBS -j oe 

 

cd ${PBS_O_WORKDIR} 

aprun -n 56 ./xcpbls-cp+apa 16384 16384 16384 80 7 8 

 

 Run the code 

qsub qscr-joule-apa 

 

 Build the automated performance report 

pat_report -o apa-report.txt 

xcpbls-cp+apa+25678-20623tdt.xf 

 

 Actual output of the automatically generated performance report 
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CrayPat/X:  Version 4.4.0 Revision 2195 (xf 2119)  10/29/08 14:13:53 

 

Number of PEs (MPI ranks):      56 

 

Number of Threads per PE:       1 

 

Number of Cores per Processor:  4 

 

Execution start time:   Tue Mar  3 02:31:12 2009 

 

System type and speed:   x86_64  2300 MHz 

 

Current path to data file: 

  /tmp/work/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.ap2  (RTS) 

  /tmp/work/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.xf   (RTS) 

 

Notes for table 1: 

 

  Table option: 

    -O profile_pe_th-h 

  Options implied by table option:  

    -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE 

 

  Options for related tables not shown by default: 

    -O profile_pe.th           -O callers             

    -O profile_th_pe           -O callers+src         

    -O profile+src             -O calltree            

    -O load_balance            -O calltree+src        

 

  The Total value for each of Time, Calls is the sum of the Group values. 

  The Group value for each of Time, Calls is the sum of the Function 

values. 

  The Function value for each of Time, Calls is the avg of the PE values. 

    (To specify different aggregations, see:  pat_help report options s1) 

 

  This table shows only lines with Time% > 0.95. 

    (To set thresholds to zero, specify:  -T) 

 

  Percentages at each level are of the Total for the program. 

    (For percentages relative to next level up, specify: 

      -s percent=r[elative]) 

 

Table 1:  Profile by Function Group and Function (no hwpc) 

 

 Time % |       Time |Imb. Time |   Imb. |  Calls |Group 

        |            |          | Time % |        | Function 

        |            |          |        |        |  PE='HIDE' 

 

 100.0% | 110.941610 |       -- |     -- | 5109.3 |Total 

|------------------------------------------------------------- 

|  88.9% |  98.575756 |       -- |     -- |    2.0 |USER 

||------------------------------------------------------------ 

||  88.9% |  98.575642 | 4.527489 |   4.5% |    1.0 |main 

||============================================================ 
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|  11.1% |  12.313924 |       -- |     -- | 5105.3 |MPI 

||------------------------------------------------------------ 

||   4.8% |   5.370178 | 1.467647 |  21.9% |    1.0 |MPI_Comm_create 

||   3.6% |   3.938757 | 3.694346 |  49.3% |  930.2 |MPI_Recv 

||   2.7% |   2.980756 | 3.777156 |  56.9% |  930.2 |MPI_Send 

|============================================================= 

 

Notes for table 2: 

 

  Table option: 

    -O profile 

  Options implied by table option:  

    -d ti%@0.95,ti,imb_ti,imb_ti%,tr,P -b gr,fu,pe=HIDE 

 

  Options for related tables not shown by default: 

    -O profile_pe.th           -O callers             

    -O profile_th_pe           -O callers+src         

    -O profile+src             -O calltree            

    -O load_balance            -O calltree+src        

 

  The Total value for each data item is the sum of the Group values. 

  The Group value for each data item is the sum of the Function values. 

  The Function value for each data item is the avg of the PE values. 

    (To specify different aggregations, see:  pat_help report options s1) 

 

  'D1 cache utilization (M)' is based on data size 8B, and refills caused 

by 

 

    misses. 

 

  This table shows only lines with Time% > 0.95. 

    (To set thresholds to zero, specify:  -T) 

 

  Percentages at each level are of the Total for the program. 

    (For percentages relative to next level up, specify: 

      -s percent=r[elative]) 

 

Table 2:  Profile by Function Group and Function 

 

Group / Function / PE='HIDE' 

 

======================================================================== 

Totals for program 

------------------------------------------------------------------------ 

  Time%                                        100.0% 

  Time                                     110.941610 secs 

  Imb.Time                                         -- secs 

  Imb.Time%                                        -- 

  Calls                       46.3 /sec        5109.3 calls 

  PAPI_L1_DCM               11.761M/sec    1297073220 misses 

  PAPI_TOT_INS            5392.251M/sec  594676118362 instr 

  PAPI_L1_DCA             2267.168M/sec  250031159666 refs 

  PAPI_FP_OPS             5920.436M/sec  652926106258 ops 

  User time (approx)       110.283 secs  253651943657 cycles   99.4%Time 
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  Average Time per Call                      0.021714 sec 

  CrayPat Overhead : Time     0.0% 

  HW FP Ops / User time   5920.436M/sec  652926106258 ops  64.4%peak(DP) 

  HW FP Ops / WCT         5885.313M/sec 

  HW FP Ops / Inst                             109.8% 

  Computational intensity     2.57 ops/cycle     2.61 ops/ref 

  Instr per cycle                                2.34 inst/cycle 

  MIPS                   301966.08M/sec 

  MFLOPS (aggregate)     331544.40M/sec 

  Instructions per LD & ST   42.0% refs          2.38 inst/ref 

  D1 cache hit,miss ratios   99.5% hits          0.5% misses 

  D1 cache utilization (M)  192.77 refs/miss   24.096 avg uses 

======================================================================== 

USER 

------------------------------------------------------------------------ 

  Time%                                         88.9% 

  Time                                      98.575756 secs 

  Imb.Time                                         -- secs 

  Imb.Time%                                        -- 

  Calls                        0.0 /sec           2.0 calls 

  PAPI_L1_DCM               11.002M/sec    1082508371 misses 

  PAPI_TOT_INS            5613.815M/sec  552364281560 instr 

  PAPI_L1_DCA             2370.347M/sec  233227344737 refs 

  PAPI_FP_OPS             6635.850M/sec  652926105327 ops 

  User time (approx)        98.394 secs  226305620820 cycles   99.8%Time 

  Average Time per Call                     49.287878 sec 

  CrayPat Overhead : Time     0.0% 

  HW FP Ops / User time   6635.850M/sec  652926105327 ops  72.1%peak(DP) 

  HW FP Ops / WCT         6623.597M/sec 

  HW FP Ops / Inst                             118.2% 

  Computational intensity     2.89 ops/cycle     2.80 ops/ref 

  Instr per cycle                                2.44 inst/cycle 

  MIPS                   314373.63M/sec 

  MFLOPS (aggregate)     371607.57M/sec 

  Instructions per LD & ST   42.2% refs          2.37 inst/ref 

  D1 cache hit,miss ratios   99.5% hits          0.5% misses 

  D1 cache utilization (M)  215.45 refs/miss   26.931 avg uses 

======================================================================== 

USER / main 

------------------------------------------------------------------------ 

  Time%                                         88.9% 

  Time                                      98.575642 secs 

  Imb.Time                                   4.527489 secs 

  Imb.Time%                                      4.6% 

  Calls                        0.0 /sec           1.0 calls 

  PAPI_L1_DCM               11.002M/sec    1082507665 misses 

  PAPI_TOT_INS            5613.824M/sec  552364180392 instr 

  PAPI_L1_DCA             2370.351M/sec  233227289198 refs 

  PAPI_FP_OPS             6635.862M/sec  652926105327 ops 

  User time (approx)        98.394 secs  226305210179 cycles   99.8%Time 

  Average Time per Call                     98.575642 sec 

  CrayPat Overhead : Time     0.0% 

  HW FP Ops / User time   6635.862M/sec  652926105327 ops  72.1%peak(DP) 

  HW FP Ops / WCT         6623.605M/sec 
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  HW FP Ops / Inst                             118.2% 

  Computational intensity     2.89 ops/cycle     2.80 ops/ref 

  Instr per cycle                                2.44 inst/cycle 

  MIPS                   314374.14M/sec 

  MFLOPS (aggregate)     371608.25M/sec 

  Instructions per LD & ST   42.2% refs          2.37 inst/ref 

  D1 cache hit,miss ratios   99.5% hits          0.5% misses 

  D1 cache utilization (M)  215.45 refs/miss   26.931 avg uses 

======================================================================== 

MPI 

------------------------------------------------------------------------ 

  Time%                                       11.1% 

  Time                                    12.313924 secs 

  Imb.Time                                       -- secs 

  Imb.Time%                                      -- 

  Calls                     431.2 /sec       5105.3 calls 

  PAPI_L1_DCM              18.020M/sec    213344554 misses 

  PAPI_TOT_INS           3557.995M/sec  42123083365 instr 

  PAPI_L1_DCA            1412.942M/sec  16727808051 refs 

  PAPI_FP_OPS                  79 /sec      930.161 ops 

  User time (approx)       11.839 secs  27229688194 cycles  96.1%Time 

  Average Time per Call                    0.002412 sec 

  CrayPat Overhead : Time    0.1% 

  HW FP Ops / User time        79 /sec      930.161 ops  0.0%peak(DP) 

  HW FP Ops / WCT              76 /sec 

  HW FP Ops / Inst                             0.0% 

  Computational intensity    0.00 ops/cycle    0.00 ops/ref 

  Instr per cycle                              1.55 inst/cycle 

  MIPS                  199247.71M/sec 

  MFLOPS (aggregate)         0.00M/sec 

  Instructions per LD & ST  39.7% refs         2.52 inst/ref 

  D1 cache hit,miss ratios  98.7% hits         1.3% misses 

  D1 cache utilization (M)  78.41 refs/miss   9.801 avg uses 

======================================================================== 

MPI / MPI_Comm_create 

------------------------------------------------------------------------ 

  Time%                                        4.8% 

  Time                                     5.370178 secs 

  Imb.Time                                 1.467647 secs 

  Imb.Time%                                   22.3% 

  Calls                       0.2 /sec          1.0 calls 

  PAPI_L1_DCM              19.450M/sec    104448581 misses 

  PAPI_TOT_INS           3657.179M/sec  19639696959 instr 

  PAPI_L1_DCA            1453.390M/sec   7804962080 refs 

  PAPI_FP_OPS                                     0 ops 

  User time (approx)        5.370 secs  12351406681 cycles  100.0%Time 

  Average Time per Call                    5.370178 sec 

  CrayPat Overhead : Time    0.0% 

  HW FP Ops / User time                           0 ops   0.0%peak(DP) 

  HW FP Ops / WCT 

  HW FP Ops / Inst                             0.0% 

  Computational intensity    0.00 ops/cycle    0.00 ops/ref 

  Instr per cycle                              1.59 inst/cycle 

  MIPS                  204802.01M/sec 
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  MFLOPS (aggregate)         0.00M/sec 

  Instructions per LD & ST  39.7% refs         2.52 inst/ref 

  D1 cache hit,miss ratios  98.7% hits         1.3% misses 

  D1 cache utilization (M)  74.73 refs/miss   9.341 avg uses 

======================================================================== 

MPI / MPI_Recv 

------------------------------------------------------------------------ 

  Time%                                        3.6% 

  Time                                     3.938757 secs 

  Imb.Time                                 3.694346 secs 

  Imb.Time%                                   50.2% 

  Calls                     267.3 /sec        930.2 calls 

  PAPI_L1_DCM              16.915M/sec     58867999 misses 

  PAPI_TOT_INS           3516.575M/sec  12238748109 instr 

  PAPI_L1_DCA            1395.848M/sec   4857975146 refs 

  PAPI_FP_OPS                                     0 ops 

  User time (approx)        3.480 secs   8004697555 cycles  88.4%Time 

  Average Time per Call                    0.004234 sec 

  CrayPat Overhead : Time    0.0% 

  HW FP Ops / User time                           0 ops  0.0%peak(DP) 

  HW FP Ops / WCT 

  HW FP Ops / Inst                             0.0% 

  Computational intensity    0.00 ops/cycle    0.00 ops/ref 

  Instr per cycle                              1.53 inst/cycle 

  MIPS                  196928.21M/sec 

  MFLOPS (aggregate)         0.00M/sec 

  Instructions per LD & ST  39.7% refs         2.52 inst/ref 

  D1 cache hit,miss ratios  98.8% hits         1.2% misses 

  D1 cache utilization (M)  82.52 refs/miss  10.315 avg uses 

======================================================================== 

MPI / MPI_Send 

------------------------------------------------------------------------ 

  Time%                                        2.7% 

  Time                                     2.980756 secs 

  Imb.Time                                 3.777156 secs 

  Imb.Time%                                   57.9% 

  Calls                     313.2 /sec        930.2 calls 

  PAPI_L1_DCM              16.804M/sec     49901153 misses 

  PAPI_TOT_INS           3444.843M/sec  10229767713 instr 

  PAPI_L1_DCA            1366.745M/sec   4058671524 refs 

  PAPI_FP_OPS                 313 /sec      930.161 ops 

  User time (approx)        2.970 secs   6830054698 cycles  99.6%Time 

  Average Time per Call                    0.003205 sec 

  CrayPat Overhead : Time    0.0% 

  HW FP Ops / User time       313 /sec      930.161 ops  0.0%peak(DP) 

  HW FP Ops / WCT             312 /sec 

  HW FP Ops / Inst                             0.0% 

  Computational intensity    0.00 ops/cycle    0.00 ops/ref 

  Instr per cycle                              1.50 inst/cycle 

  MIPS                  192911.20M/sec 

  MFLOPS (aggregate)         0.02M/sec 

  Instructions per LD & ST  39.7% refs         2.52 inst/ref 

  D1 cache hit,miss ratios  98.8% hits         1.2% misses 

  D1 cache utilization (M)  81.33 refs/miss  10.167 avg uses 



 

A-21 

======================================================================== 

 

Notes for table 3: 

 

  Table option: 

    -O load_balance_m 

  Options implied by table option:  

    -d ti%@0.95,ti,Mc,Mm,Mz -b gr,pe=[mmm] 

 

  Options for related tables not shown by default: 

    -O load_balance_sm         -O load_balance_cm     

 

  The Total value for each data item is the sum of the Group values. 

  The Group value for each data item is the avg of the PE values. 

    (To specify different aggregations, see:  pat_help report options s1) 

 

  This table shows only lines with Time% > 0.95. 

    (To set thresholds to zero, specify:  -T) 

 

  Percentages at each level are of the Total for the program. 

    (For percentages relative to next level up, specify: 

      -s percent=r[elative]) 

 

Table 3:  Load Balance with MPI Message Stats 

 

 Time % |       Time |   MPI |MPI Msg Bytes |Avg MPI Msg |Group 

        |            |   Msg |              |       Size | PE[mmm] 

        |            | Count |              |            | 

 

 100.0% | 110.949027 | 930.2 |  997045979.0 | 1071907.21 |Total 

|----------------------------------------------------------------- 

|  88.8% |  98.575759 |    -- |           -- |         -- |USER 

||---------------------------------------------------------------- 

||   1.7% | 103.103247 |    -- |           -- |         -- |pe.1 

||   1.6% |  99.183271 |    -- |           -- |         -- |pe.43 

||   1.5% |  95.192528 |    -- |           -- |         -- |pe.22 

||================================================================ 

|  11.1% |  12.321335 | 930.2 |  997045979.0 | 1071907.21 |MPI 

||---------------------------------------------------------------- 

||   0.3% |  17.008587 | 932.0 |  981012480.0 | 1052588.50 |pe.39 

||   0.2% |  12.790484 | 927.0 |  999014400.0 | 1077685.44 |pe.32 

||   0.0% |   2.468221 | 929.0 | 1015193600.0 | 1092781.05 |pe.1 

|================================================================= 

 

Notes for table 4: 

 

  Table option: 

    -O mpi_callers 

  Options implied by table option:  

    -d Mm,Mc@,Mb1..7 -b fu,ca,pe=[mmm] 

 

  Options for related tables not shown by default: 

    -O mpi_sm_callers          -O mpi_coll_callers    
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  The Total value for each data item is the sum of the Function values. 

  The Function value for each data item is the sum of the Caller values. 

  The Caller value for each data item is the avg of the PE values. 

    (To specify different aggregations, see:  pat_help report options s1) 

 

  This table shows only lines with MPI Msg Count > 0. 

 

Table 4:  MPI Message Stats by Caller 

 

MPI Msg Bytes |   MPI | 64KB<= | 1MB<= |Function 

              |   Msg |  MsgSz | MsgSz | Caller 

              | Count |   <1MB | <16MB |  PE[mmm] 

              |       |  Count | Count | 

 

  997045979.0 | 930.2 |  243.1 | 687.0 |Total 

|------------------------------------------------ 

|  997045979.0 | 930.2 |  243.1 | 687.0 |MPI_Send 

|              |       |        |       | pzgemm_ 

3              |       |        |       |  main 

||||--------------------------------------------- 

4||| 1015808000.0 | 926.0 |   82.0 | 844.0 |pe.3 

4|||  998711296.0 | 930.0 |  500.0 | 430.0 |pe.14 

4|||  978452480.0 | 930.0 |  507.0 | 423.0 |pe.55 

|================================================ 

 

Notes for table 6: 

 

  Table option: 

    -O program_time 

  Options implied by table option:  

    -d pt,hm -b pe=[mmm] 

 

  The Total value for each of Process Time, Process HiMem (MBytes) is the 

avg 

    of the PE values. 

    (To specify different aggregations, see:  pat_help report options s1) 

 

Table 6:  Program Wall Clock Time, Memory High Water Mark 

 

    Process |  Process |PE[mmm] 

       Time |    HiMem | 

            | (MBytes) | 

 

 114.987871 |      313 |Total 

|------------------------------ 

| 115.521469 |  320.918 |pe.9 

| 114.982404 |  313.098 |pe.28 

| 114.475464 |  313.090 |pe.20 

|============================== 

 

=========  Additional details ============================ 

 

Experiment:  trace 
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Original path to data file: 

  /lustre/scratch/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.xf  (RTS) 

 

Original program:  /lustre/scratch/roche/chk-perf/./xcpbls-cp 

 

Instrumented with: 

  pat_build -Drtenv=PAT_RT_HWPC=0 -g mpi -w -o xcpbls-cp+apa \ 

         ./xcpbls-cp 

 

Instrumented program:  ./xcpbls-cp+apa 

 

Program invocation:  ./xcpbls-cp+apa 16384 16384 16384 80 7 8 

 

Exit Status:  0  PEs:  0-55 

 

Memory pagesize:  4096 

 

Runtime environment variables: 

  MPICHBASEDIR=/opt/mpt/3.1.0/xt 

  PAT_RT_HWPC=0 

  MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi 

 

Report time environment variables: 

  CRAYPAT_ROOT=/opt/xt-tools/craypat/4.4.0.4/v23/cpatx 

 

Report command line options:  -o apa-report.txt 

 

Operating system: 

  Linux 2.6.16.54-0.2.12_1.0000.3997.0-cnl #1 SMP Mon Jan 26 13:41:57 PST 

2009 

 

Hardware performance counter events: 

  PAPI_L1_DCM   Level 1 data cache misses 

  CYCLES_USER   User Cycles (approx, from clock ticks) 

  PAPI_L1_DCA   Level 1 data cache accesses 

  PAPI_TOT_INS  Instructions completed 

  PAPI_FP_OPS   Floating point operations 

 

Estimated minimum overhead per call of a traced function, 

  which was subtracted from the data shown in this report 

  (for raw data, use the option:  -s overhead=include): 

    PAPI_L1_DCM      10.653  misses 

    PAPI_TOT_INS   2019.045  instr 

    PAPI_L1_DCA    1192.191  refs 

    PAPI_FP_OPS       0.000  ops 

    CYCLES_USER    4107.143  cycles 

    Time              1.452  microseconds 

 

Number of traced functions: 104 

  (To see the list, specify:  -s traced_functions=show) 

 

GNU compilation/execution process plus automatic instrumentation 
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 Instrument the code (from a bash shell) 

<yourcode>c via GNU gcc compiler 

 

 Load the GNU environment 

module swap PrgEnv-pgi PrgEnv-gnu . 

 

 Load the correct tools 

Module load xt-craypat . 

 

 Set the environment variables to capture intended metrics 

export PAT_RT_HWPC=PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_FP_INS . 

 

 Instrument the source code by compiling with code generation hooks in the original code that 

CrayPAT will utilize 

cc -c -finstrument-functions <yourcode>.c . 

 

 Build the binary including the instrumentation hooks 

cc -o x<yourcodebinary><yourcode>.o . 

 

 Build the instrumentation (tracing example) binary 

x<yourcodebinary>+pat : pat_build -w 

x<yourcodebinary>x<yourcodebinary>+pat . 

 

 Execute the instrumented binary 

aprun -n <n> ./x<yourcodebinary>+pat . 

 

 Build a simplistic performance report for the run 

pat_report -o <yourreport>.txt x<yourcodebinary>+pat+<processlabels>.xf . 

 

 Report is in the text file, which will include output similar to below (note that the profiled program 

did essentially no floating point computations) 

 
======================================================================== 

 Totals for program 

 ------------------------------------------------------------------------ 

   Time%                                   100.0% 

   Time                                  0.548266 secs 

   Imb.Time                                    -- secs 

   Imb.Time%                                   -- 

   Calls                     9.1 /sec         5.0 calls 

   PAPI_TOT_INS         3648.979M/sec  1997187152 instr 

   PAPI_FP_INS                 0 /sec       0.018 ops 

   PAPI_TOT_CYC            0.547 secs  1258853693 cycles 

   User time (approx)      0.548 secs  1260482143 cycles  99.8%Time 

   Average Time per Call                 0.109653 sec 

   CrayPat Overhead : Time  0.0% 
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   HW FP Ops / Cycles                        0.00 ops/cycle 

   HW FP Ops / User time       0 /sec       0.018 ops  0.0%peak(DP) 

   HW FP Ops / WCT             0 /sec 

   HW FP Ops / Inst                          0.0% 

   Instr per cycle                           1.59 inst/cycle 

   MIPS                204342.81M/sec 

   MFLOPS (aggregate)       0.00M/sec 

 ======================================================================== 

 USER 

 ------------------------------------------------------------------------ 

   Time%                                   100.0% 

   Time                                  0.548263 secs 

   Imb.Time                                    -- secs 

   Imb.Time%                                   -- 

   Calls                     5.5 /sec         3.0 calls 

   PAPI_TOT_INS         3648.992M/sec  1997186185 instr 

   PAPI_FP_INS                 0 /sec       0.018 ops 

   PAPI_TOT_CYC            0.547 secs  1258848387 cycles 

   User time (approx)      0.548 secs  1260482143 cycles  99.8%Time 

   Average Time per Call                 0.182754 sec 

   CrayPat Overhead : Time  0.0% 

   HW FP Ops / Cycles                        0.00 ops/cycle 

   HW FP Ops / User time       0 /sec       0.018 ops  0.0%peak(DP) 

   HW FP Ops / WCT             0 /sec 

   HW FP Ops / Inst                          0.0% 

   Instr per cycle                           1.59 inst/cycle 

   MIPS                204343.58M/sec 

   MFLOPS (aggregate)       0.00M/sec 

 ======================================================================== 

 USER / main 

 ------------------------------------------------------------------------ 

   Time%                                   100.0% 

   Time                                  0.548163 secs 

   Imb.Time                              0.565060 secs 

   Imb.Time%                                52.6% 

   Calls                     3.7 /sec         2.0 calls 

   PAPI_TOT_INS         3649.078M/sec  1997092099 instr 

   PAPI_FP_INS                 0 /sec       0.018 ops 

   PAPI_TOT_CYC            0.547 secs  1258759596 cycles 

   User time (approx)      0.548 secs  1260482143 cycles  99.8%Time 

   Average Time per Call                 0.274082 sec 

   CrayPat Overhead : Time  0.0% 

   HW FP Ops / Cycles                        0.00 ops/cycle 

   HW FP Ops / User time       0 /sec       0.018 ops  0.0%peak(DP) 

   HW FP Ops / WCT             0 /sec 

   HW FP Ops / Inst                          0.0% 

   Instr per cycle                           1.59 inst/cycle 

   MIPS                204348.36M/sec 

   MFLOPS (aggregate)       0.00M/sec 

 ======================================================================== 
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APPENDIX B. VISIT 
 

 

B.1 INPUT SETTINGS 

The VisIt test runs were launched using the python API using the isosurface and volume rendering 

scripts as given below. 

 

Isosurface script 

 
import sys 

OpenDatabase("/lustre/scratch/pugmire/proj/joule/denovo/forward_out.silo", 

0 ) 

expr = "scalar_flux_0 *1.6151E-04" 

expr = expr + "+ scalar_flux_1 *1.4451E-04" 

expr = expr + "+ scalar_flux_2 *1.2704E-04" 

expr = expr + "+ scalar_flux_3 *1.2811E-04" 

expr = expr + "+ scalar_flux_4 *1.2984E-04" 

expr = expr + "+ scalar_flux_5 *1.0343E-04" 

expr = expr + "+ scalar_flux_6 *5.2655E-05" 

expr = expr + "+ scalar_flux_7 *1.2861E-05" 

expr = expr + "+ scalar_flux_8 *3.7358E-06" 

expr = expr + "+ scalar_flux_9 *3.7198E-06" 

expr = expr + "+ scalar_flux_10 *4.0086E-06" 

expr = expr + "+ scalar_flux_11 *4.2945E-06" 

expr = expr + "+ scalar_flux_12 *4.4731E-06" 

expr = expr + "+ scalar_flux_13 *4.5656E-06" 

expr = expr + "+ scalar_flux_14 *4.5597E-06" 

expr = expr + "+ scalar_flux_15 *4.5210E-06" 

expr = expr + "+ scalar_flux_16 *4.4873E-06" 

expr = expr + "+ scalar_flux_17 *4.4660E-06" 

expr = expr + "+ scalar_flux_18 *4.4342E-06" 

expr = expr + "+ scalar_flux_19 *4.3316E-06" 

expr = expr + "+ scalar_flux_20 *4.2028E-06" 

expr = expr + "+ scalar_flux_21 *4.0974E-06" 

expr = expr + "+ scalar_flux_22 *3.8398E-06" 

expr = expr + "+ scalar_flux_23 *3.6748E-06" 

expr = expr + "+ scalar_flux_24 *3.6748E-06" 

expr = expr + "+ scalar_flux_25 *3.6748E-06" 

expr = expr + "+ scalar_flux_26 *3.6748E-06" 

DefineScalarExpression("dose", "%s" % expr) 

AddPlot("Contour", "dose", 1, 1) 

ContourAtts = ContourAttributes() 

ContourAtts.contourMethod = ContourAtts.Value 

ContourAtts.contourValue = (.001, .01, .1, 1, 10, 100) 

SetPlotOptions(ContourAtts) 

AddPlot("Contour", "dose", 1, 1) 

ContourAtts = ContourAttributes() 

ContourAtts.contourMethod = ContourAtts.Value 

ContourAtts.contourValue = (.001, .01, .1, 1, 10, 100) 

SetPlotOptions(ContourAtts) 

s = SaveWindowAttributes() 

s.width, s.height = (1024,1024) 
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SetSaveWindowAttributes(s) 

DrawPlots() 

SaveWindow() 

sys.exit() 

 

The Q4 problem script was identitcal to the Q2 script except that it references the new Q4 file. 

Namely: 

 
OpenDatabase("/lustre/scratch/pugmire/proj/joule/denovo/forward_out.silo", 

0 ) 

 

Was replaced with: 

 
OpenDatabase("/lustre/widow1/scratch/pugmire/proj/joule/denovo/medbig_forw

ard_out.silo", 0 ) 

 

Volume Rendering script: 

 
import sys 

RestoreSession( "/lustre/scratch/pugmire/proj/joule/benchmark0/vr/VR-

4000samp.session", 0 ) 

s = SaveWindowAttributes() 

s.width, s.height = (1024,1024) 

SetSaveWindowAttributes(s) 

DrawPlots() 

SaveWindow() 

sys.exit() 

 

The Q4 problem script was identical to the Q2 script, except that it references the new Q4 data file. 

Namely: 

 
RestoreSession( "/lustre/scratch/pugmire/proj/joule/benchmark0/vr/VR-

4000samp.session", 0 ) 

 

Was replaced with: 

 
RestoreSession( 

"/lustre/widow1/scratch/pugmire/proj/joule/benchmark1/vr/VR-

4000samp.session", 0 ) 

 

Denvo was run on Jaguar/XT5 on 4096 cores and 4096 domains with the input deck given below. 
eq_set: sc 

input: pwr_in 

Pn_order: 3 

Sn_order: 16 

num_blocks_i: 64 

num_blocks_j: 64 

num_z_blocks: 27 

silo_output: forward_out 

pwr_in is a binary file specifying the problem setup. 

 

The simulation output is as follows: 
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Tue Dec 16 23:18:29 EST 2008 

>>> Finished reading problem database. 

>>> Finished partitioning problem. 

>>> Finished reading material database. 

>>> Finished reading source database. 

>>> Finished building solvers. 

Database for hpc_input has: 

    12 integer entries 

    1 double entries 

    2 bool entries 

    4 string entries 

    0 vector<int> entries 

    5 vector<double> entries 

    1 nested database entries 

 

=================================== 

Entries in       hpc_input database 

=================================== 

integer entries 

---------------------------------------- 

                 Pn_order              3 

                 Sn_order             16 

               aztec_diag              0 

             aztec_kspace             20 

             aztec_output              0 

              first_group              0 

               last_group             26 

                  max_itr           1000 

             num_blocks_i             64 

             num_blocks_j             64 

               num_groups             46 

             num_z_blocks             27 

double entries 

---------------------------------------- 

                tolerance          1e-06 

bool entries 

---------------------------------------- 

                  adjoint              0 

              downscatter              1 

 

string entries 

---------------------------------------- 

                 boundary         vacuum 

                    input         pwr_in 

             problem_name            pwr 

      within_group_solver          GMRES 

=================================== 

Entries in            silo database 

=================================== 

bool entries 

---------------------------------------- 

         silo_out_current              0 

           silo_out_sigma              0 
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string entries 

---------------------------------------- 

              silo_output    forward_out 

Denovo Setup complete, ready to solve using   SC spatial differencing 

option. 

--------------------------------------------------------------------------

- 

 

>>> Forward group   0 finished in    8 GMRES iterations. 

>>> Forward group   1 finished in    9 GMRES iterations. 

>>> Forward group   2 finished in    9 GMRES iterations. 

>>> Forward group   3 finished in    9 GMRES iterations. 

>>> Forward group   4 finished in   12 GMRES iterations. 

>>> Forward group   5 finished in   17 GMRES iterations. 

>>> Forward group   6 finished in   23 GMRES iterations. 

>>> Forward group   7 finished in   21 GMRES iterations. 

>>> Forward group   8 finished in   27 GMRES iterations. 

>>> Forward group   9 finished in   26 GMRES iterations. 

>>> Forward group  10 finished in   27 GMRES iterations. 

>>> Forward group  11 finished in   23 GMRES iterations. 

>>> Forward group  12 finished in   20 GMRES iterations. 

>>> Forward group  13 finished in   20 GMRES iterations. 

>>> Forward group  14 finished in   15 GMRES iterations. 

>>> Forward group  15 finished in   13 GMRES iterations. 

>>> Forward group  16 finished in    9 GMRES iterations. 

>>> Forward group  17 finished in    8 GMRES iterations. 

>>> Forward group  18 finished in   10 GMRES iterations. 

>>> Forward group  19 finished in   14 GMRES iterations. 

>>> Forward group  20 finished in    9 GMRES iterations. 

>>> Forward group  21 finished in   10 GMRES iterations. 

>>> Forward group  22 finished in   13 GMRES iterations. 

>>> Forward group  23 finished in    9 GMRES iterations. 

>>> Forward group  24 finished in    8 GMRES iterations. 

>>> Forward group  25 finished in    9 GMRES iterations. 

>>> Forward group  26 finished in    8 GMRES iterations. 

 

=================== 

Final Timing Report 

=================== 

                                 Routine   Max Fraction   Min Fraction 

================================================================== 

                            Build_solver     1.5522e-05     5.1841e-06 

                                  Output     9.5824e-02     4.0892e-04 

                                   Setup     3.6749e-01     3.6746e-01 

                                  Solver     5.3672e-01     5.3669e-01 

                                   Sweep     5.1994e-01     4.8821e-01 

                     Within_group_solver     5.3672e-01     5.3669e-01 

================================================================== 

Total execution time : 4.1919e+03 seconds. 

Application 1843223 resources: utime 0, stime 7 
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B.2 COMPILATION 

Compilation of VisIt was done on the currently released version of VisIt, 1.11.1 using the g++ 

compiler (in /opt/gcc/4.2.0.quadcore/bin/g++).The following compiler options were used: 

 
CC="gcc" 

CXX="g++" 

CFLAGS=" -m64 -fPIC -DMPICH_IGNORE_CXX_SEEK -DPAPI" 

CXXFLAGS=" -m64 -fPIC -DMPICH_IGNORE_CXX_SEEK -DPAPI" 

#Get these via CC -v 

LDFLAGS="-L/opt/fftw/3.1.1/cnos/lib $LDFLAGS" 

LDFLAGS="-L/opt/mpt/3.1.0/xt/mpich2-gnu/lib $LDFLAGS" 

LDFLAGS="-L/opt/xt-libsci/10.3.1/gnu/snos64/lib $LDFLAGS" 

LDFLAGS="-L/opt/mpt/3.1.0/xt/sma/lib $LDFLAGS" 

LDFLAGS="-L/opt/mpt/3.1.0/xt/util/lib $LDFLAGS" 

LDFLAGS="-L/opt/mpt/3.1.0/xt/pmi/lib $LDFLAGS" 

LDFLAGS="-L/opt/xt-pe/2.1.41HD/lib/snos64 $LDFLAGS" 

LDFLAGS="-L/opt/xt-service/2.1.41HD/lib/snos64 $LDFLAGS" 

LDFLAGS="-L/opt/mpt/3.1.0/xt/mpich2-gnu/lib $LDFLAGS" 

CPPFLAGS="-I/opt/mpt/3.1.0/xt/mpich2-gnu/include -I/opt/xt-

tools/papi/3.6.2/v23/linux/include $CPPFLAGS" 

MPI_LIBS="-Bstatic -lfftw3 -lfftw3f -lsci_quadcore -lsci -lfftw3 -lfftw3f 

/opt/mpt/3.1.0/xt/sma/lib/libsma.a /opt/mpt/3.1.0/xt/mpich2-

gnu/lib/libmpichcxx.a /opt/mpt/3.1.0/xt/mpich2-gnu/lib/libmpich.a -lrt 

--start -lpct /opt/mpt/3.1.0/xt/pmi/lib/libpmi.a /opt/xt-

mpt/2.1.41HD/lib/snos64/libalpslli.a /opt/xt-

mpt/2.1.41HD/lib/snos64/libalpsutil.a /opt/xt-

service/2.1.41HD/lib/snos64/libportals.a /opt/xt-

tools/papi/3.6.2/v23/linux/lib/libpapi.a /opt/xt-

tools/papi/3.6.2/v23/linux/lib/libpfm.a -lpthread -lm --end -lm -lgcc -

lgcc_eh -lc -lgcc -lgcc_eh -lc" 

 

The VisIt parallel engine links to the Silo, python, VTK, mesa and HDF5 libraries: 

 
silo/4.6.1/linux-x86_64_gcc-4.2.0 

python/2.5/linux-x86_64_gcc-4.2.0 

vtk/5.0.0c/linux-x86_64_gcc-4.2.0 

mesa/5.0/linux-x86_64_gcc-4.2.0 

hdf5/1.6.5/linux-x86_64_gcc-4.2.0 

B.3 BATCH SCRIPT 

The batch script is available upon request. 

B.4 RUNTIME ENVIRONMENT 

Modules used: 

 
PrgEnv-gnu 

xt-papi 
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APPENDIX C. CAM 
 

 

Here we report the important elements of the software environment at the time of the Q2 run. This 

includes version specification of the operating system, compiler, and required software libraries. We also 

report important settings in the Makefile and other parts of the model build procedure (configuration and 

compilation), including optimization flags passed to the compiler. Finally, the model run script and 

critical Fortran name-list settings are also included. We have archived all these files and settings locally 

(along with the model source code), in order to isolate what was changed between Q2 and Q4. We did not 

include full Makefile, name list, or ―make‖ output here due to the vast volume of data inclusion that 

would be required. 

A.1 INPUT SETTINGS 

Shown below are performance tuning settings from the input Fortran name-list that were applied in 

the Q2 and Q4 runs. Changes in the Q4 settings are as a result of exploring optimal values, and the fact 

that the optimal values can change based on code changes. 

 
&cam_inparm 

 phys_loadbalance = 2 

 phys_alltoall = 1 

/ 

 

Q4 settings: 
 

&cam_inparm 

 phys_loadbalance = 3 

/ 

A.2 COMPILATION 

The following are the critical settings from the model Makefile used in the Q2 and Q4 runs, 

respectively. 

 

Q2 Makefile: 

 
MODEL_EXEDIR:=/autofs/na1_home/rosinski/cam3.5.55/models/atm/cam/joulebase 

INC_NETCDF   := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include 

LIB_NETCDF   := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib 

MOD_NETCDF   := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include 

USER_CPPDEFS := -DHAVE_PAPI -DFORTRANUNDERSCORE \ 

                -DTROPCHEM -DCOUP_DOM -DPLON=1024 \ 

                -DPLAT=512 -DPLEV=26 -DPCNST=3 -DPCOLS=16 \ 

                -DPTRM=341 -DPTRN=341 -DPTRK=341 

FORTRAN_OPTIMIZATION := -fast -Mvect=nosse –Kieee 

 

Q4 Makefile: 

 
MODEL_EXEDIR:=/autofs/na1_home/rosinski/cam3.5.55/models/atm/cam/joulebase 

INC_NETCDF   := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/include 
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LIB_NETCDF   := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/lib 

MOD_NETCDF   := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/include 

USER_CPPDEFS := -DHAVE_PAPI -DFORTRANUNDERSCORE \ 

                -DTROPCHEM -DCOUP_DOM -DPLON=1024 \ 

                -DPLAT=512 -DPLEV=26 -DPCNST=3 -DPCOLS=16 \ 

                -DPTRM=341 -DPTRN=341 -DPTRK=341 

FORTRAN_OPTIMIZATION := -fast -fastsse -Mvect=sse 

A.3 BATCH SCRIPT 

The following is the Q2 model run script, minus the Fortran name lists. 

 
!/bin/csh -fvx 

#PBS -N jb8192 

#PBS -V 

#PBS -A CSC053CAM 

#PBS -j oe 

#PBS -l walltime=3:00:00 

#PBS -l size=8192 

#PBS -q batch 

##PBS -q debug 

 

setenv OMP_NUM_THREADS 8 

setenv MPSTKZ 384M 

setenv MPICH_UNEX_BUFFER_SIZE 250M 

 

cd /tmp/work/rosinski/cam3.5.55.t341.withmods.adv3/joulebase  || exit 1 

 

set iter = 2 

set dir = npes8192.iter$iter 

mkdir $dir 

cd $dir 

cp /ccs/home/rosinski/cam3.5.55/models/atm/cam/joulebase/cam . 

aprun -n 1024 -d $OMP_NUM_THREADS ./cam >&! out.init 

exit 0 

 

Paths to model source and run directories were different for the Q4 runs. But there were no changes to 

environment variables or other aspects of the build system. 

C.4 RUNTIME ENVIRONMENT 

The runtime environment is available in an archived file on the Jaguar/XT5 file system. 
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APPENDIX D. XGC1 
 

 

D.1 INPUT SETTINGS 

Input namelist file 

&sml_param 

sml_machine=1             ! 0 circular, 1:D3D,  

sml_node_file='d3d_g096333_2mm_16_mr10.1.node' 

sml_ele_file='d3d_g096333_2mm_16_mr10.1.ele' 

sml_use_pade=.true. 

sml_bfollow=1 

sml_bfollow_read=0 

 

sml_special=0             ! 0: normal simulation, 1: single particle 

simulation 

sml_dt=0.002            ! delta-t for one time step - unit of toroidal 

transit time.  

sml_mstep=500          ! totoal time step 

sml_deltaf=0              ! delta-f simulation switch - incomplete 

sml_turb_efield=1 

sml_electron_on=0 

sml_nphi_total=16 

sml_canonical_maxwell=0   ! cononical maxwellian initial loading switch - 

incomplete 

sml_bounce=0              ! Particle motion boundary condition  

                          ! 1 for edge simulation (including open field 

line region) 

                          ! 2 for core simulation (excluding open field 

line region) 

sml_limiter=0             ! Limiter on/off 

sml_fem_matrix=1 

sml_inpsi=0.0d0             ! inner boundary of simulation - unit of 

eq_x_psi 

sml_outpsi=1.10d0           ! outter boundary of simulation - unit of 

eq_x_psi 

sml_push_mode=3 

sml_pc_order=2 

sml_restart_write_period=500 

sml_restart=0 

sml_zero_inner_bd=0 

sml_guess_table_size=1500 

sml_no_00_efield=0 

sml_input_file_dir='../XGC1_inputs/' 

sml_bd_ext_delta2=-0.01 

sml_bd_ext_delta1=-0.003 

sml_bd_ext_delta3=0.001 

sml_bd_ext_delta4=0.03 

sml_max_mat_width=300 

sml_bd_Te_mode=0 

sml_bd_Te_width=0.01D0 

sml_sheath_mode=0 

sml_sheath_init_pot_factor=2.5 
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sml_rgn1_pot0_only=.true. 

sml_add_pot0=1 

sml_add_pot0_file='pot0_0327_d3d_g096333_2mm_16_mr10_177236_fac.5.dat' 

sml_zero_out_total_charge=.false. 

sml_pol_decomp=.false. 

sml_heat_on=.true. 

sml_iter_solver=.false. 

sml_iter_solver_niter=3 

sml_bt_sign=1 

/ 

 

&ptl_param 

ptl_mass_au=2D0             ! 1 for hydrogen, 2 for deutron 

ptl_charge_eu=1D0            ! ion charge 

ptl_num=450000             ! number of particle for simulation 

ptl_maxnum=550000 

/ 

 

&eq_param ! Initial equilibrium profile - Tanh profile 

eq_filename='d3d096333.eqd' 

eq_den_shape=-1 

eq_den_edge=4.0D20          ! inside value of density m^-3 

eq_den_out=0.5D20           ! outside value of density  m^-3 

eq_den_ped_c=0.96D0      ! pedestal center  

eq_den_ped_width=0.09D0    ! pedestal width 

eq_den_val3=6.0D20 

eq_den_psi3=0D0 

 

eq_tempi_shape=-1 

eq_tempe_shape=-1 

eq_tempi_ped_c=0.91D0 

eq_tempe_ped_c=0.91D0 

eq_tempi_ped_width=0.14D0 

eq_tempe_ped_width=0.14D0 

eq_tempi_ev_edge=1D3      ! ion temperature (inside) - eV 

eq_tempi_ev_out=5d1     ! ion temperature (outside) - eV 

eq_tempe_ev_edge=1D3 

eq_tempe_ev_out=5D1 

eq_tempi_val3=4.5D3 

eq_tempi_psi3=0D0 

eq_tempe_val3=4.5D3 

eq_tempe_psi3=0D0 

 

eq_den_file='d3d_white_pop_2008_den.prf' 

eq_tempi_file='d3d_white_pop_2008_tempi.prf' 

eq_tempe_file='d3d_white_pop_2008_tempe.prf' 

/ 

 

&efld_param ! E-field calculation 

efld_mode=2              ! 0 zero efield, 1 static efield, 2 self-

consistent 

efld_cutoff=0 

/ 
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&col_param  ! Collision 

col_mode=3  ! 0 : off , 1 monte-carlo (non-conserving) 2: monte-carlo 

(conserving) 

col_accel=.true. 

col_accel_n=1 

col_accel_factor1=10. 

col_accel_pout1=0.08   

/ 

 

&diag_param ! diagnosis 

diag_f_on=0 

diag_tracer_period=1 

diag_tracer_n=1 

diag_binout_period=10 

diag_pot_period=200000 

diag_ptl_on=0 

diag_ptl_begin=10 

diag_ptl_num=1000 

diag_gam_on=0 

diag_avg_on=1 

diag_avg_outperiod=10 

diag_flow_period=10 

diag_rect_rmin=1.7 

diag_rect_rmax=2.3 

diag_rect_zmin=-0.03 

diag_rect_zmax=0.03 

diag_rect_nr=100 

diag_rect_nz=3 

diag_stress_on=.true. 

/ 

 

&neu_param            ! neutral collision 

neu_col_mode=0 

/ 

 

&lim_param            ! limiter  

 

/ 

&smooth_param 

smooth_mode_in=0 

smooth_n_in=2 

smooth_H_mode_in=2 

smooth_H_n_in=2 

 

smooth_r1_n_in=-1 

smooth_r1_d0_in=0.0042 

smooth_r1_type_in=1 

 

smooth_diag_mode_in=-1 

/ 

 

&tbl_param 

/ 
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&heat_param 

heat_narea=1 

heat_power=50D6 

heat_period=10 

heat_outpsi=0.04 

heat_decay_width=0.05 

/ 

 

&mon_param 

mon_flush_count=100 

/ 

 

&prof_inparam 

profile_papi_enable=.true. 

profile_outpe_num = -1 

profile_single_file = .false. 

/ 

&papi_inparam 

papi_ctr1_str="PAPI_TOT_CYC" 

papi_ctr2_str="PAPI_TOT_INS" 

papi_ctr3_str="PAPI_FP_INS" 

/ 

 

PETSc input 

-log_summary 

-pc_type hypre 

%-pc_type jacobi 

-ksp_type cg 

-pc_hypre_type boomeramg 

-mat_partitioning_type current 

-s2_mat_partitioning_type current 

-s2_ksp_type cg  

-s2_pc_type hypre 

-s2_pc_hypre_type boomeramg 

D.2 COMPILATION 

/usr/bin/make  all-am 

make[1]: Entering directory 

`/autofs/na1_home/shku/xgc/trunk/XGC1/jaguarpf' 

source='../../camtimers/GPTLget_memusage.c' object='libtimers_wpapi_a-

GPTLget_memusage.o' libtool=no \ 

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 

libtimers_wpapi_a-GPTLget_memusage.o `test -f 

'../../camtimers/GPTLget_memusage.c' || echo 

'../'`../../camtimers/GPTLget_memusage.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

source='../../camtimers/GPTLprint_memusage.c' object='libtimers_wpapi_a-

GPTLprint_memusage.o' libtool=no \ 
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DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 

libtimers_wpapi_a-GPTLprint_memusage.o `test -f 

'../../camtimers/GPTLprint_memusage.c' || echo 

'../'`../../camtimers/GPTLprint_memusage.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

source='../../camtimers/GPTLutil.c' object='libtimers_wpapi_a-GPTLutil.o' 

libtool=no \ 

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 

libtimers_wpapi_a-GPTLutil.o `test -f '../../camtimers/GPTLutil.c' || 

echo '../'`../../camtimers/GPTLutil.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

source='../../camtimers/f_wrappers.c' object='libtimers_wpapi_a-

f_wrappers.o' libtool=no \ 

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 

libtimers_wpapi_a-f_wrappers.o `test -f '../../camtimers/f_wrappers.c' 

|| echo '../'`../../camtimers/f_wrappers.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

source='../../camtimers/gptl.c' object='libtimers_wpapi_a-gptl.o' 

libtool=no \ 

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 

libtimers_wpapi_a-gptl.o `test -f '../../camtimers/gptl.c' || echo 

'../'`../../camtimers/gptl.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

source='../../camtimers/gptl_papi.c' object='libtimers_wpapi_a-

gptl_papi.o' libtool=no \ 

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 

libtimers_wpapi_a-gptl_papi.o `test -f '../../camtimers/gptl_papi.c' || 

echo '../'`../../camtimers/gptl_papi.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

PGC-W-0095-Type cast required for this conversion 

(../../camtimers/gptl_papi.c: 952) 

PGC/x86-64 Linux 7.2-5: compilation completed with warnings 

source='../../camtimers/threadutil.c' object='libtimers_wpapi_a-

threadutil.o' libtool=no \ 

DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 

cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-

tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
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libtimers_wpapi_a-threadutil.o `test -f '../../camtimers/threadutil.c' 

|| echo '../'`../../camtimers/threadutil.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.    -Mfree -i4 -Mdalign -Mextend -

byteswapio -DLINUX -DFORTRANUNDERSCORE -DSPMD -DHAVE_NANOTIME -DBIT64 -

I../../camtimers  -DHAVE_PAPI -I/opt/xt-tools/papi/3.6.2/v23/xt-

cnl/include -fastsse -Kieee -mp -c -o libtimers_wpapi_a-perf_utils.o 

`test -f '../../camtimers/perf_utils.F90' || echo 

'../'`../../camtimers/perf_utils.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.    -Mfree -i4 -Mdalign -Mextend -

byteswapio -DLINUX -DFORTRANUNDERSCORE -DSPMD -DHAVE_NANOTIME -DBIT64 -

I../../camtimers  -DHAVE_PAPI -I/opt/xt-tools/papi/3.6.2/v23/xt-

cnl/include -fastsse -Kieee -mp -c -o libtimers_wpapi_a-perf_mod.o 

`test -f '../../camtimers/perf_mod.F90' || echo 

'../'`../../camtimers/perf_mod.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

rm -f libtimers_wpapi.a 

/usr/bin/ar crus libtimers_wpapi.a libtimers_wpapi_a-GPTLget_memusage.o 

libtimers_wpapi_a-GPTLprint_memusage.o libtimers_wpapi_a-GPTLutil.o 

libtimers_wpapi_a-f_wrappers.o libtimers_wpapi_a-gptl.o 

libtimers_wpapi_a-gptl_papi.o libtimers_wpapi_a-threadutil.o 

libtimers_wpapi_a-perf_utils.o libtimers_wpapi_a-perf_mod.o  

/usr/bin/ranlib libtimers_wpapi.a 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-module.o `test -f 'module.F90' || echo '../'`module.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-search.o `test -f 'search.F90' || echo '../'`search.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-charge.o `test -f 'charge.F90' || echo '../'`charge.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
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I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-read.o `test -f 'read.F90' || echo '../'`read.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-pol_decomp.o `test -f 'pol_decomp.F90' || echo 

'../'`pol_decomp.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-push.o `test -f 'push.F90' || echo '../'`push.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-setup.o `test -f 'setup.F90' || echo '../'`setup.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-efield.o `test -f 'efield.F90' || echo '../'`efield.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-diagnosis.o `test -f 'diagnosis.F90' || echo '../'`diagnosis.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-limiter.o `test -f 'limiter.F90' || echo '../'`limiter.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
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I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-bounce.o `test -f 'bounce.F90' || echo '../'`bounce.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-diagnosis2.o `test -f 'diagnosis2.F90' || echo 

'../'`diagnosis2.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-collision.o `test -f 'collision.F90' || echo '../'`collision.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-collision2.o `test -f 'collision2.F90' || echo 

'../'`collision2.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-diagnosis-f.o `test -f 'diagnosis-f.F90' || echo '../'`diagnosis-

f.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-heat.o `test -f 'heat.F90' || echo '../'`heat.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
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I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-turbulence.o `test -f 'turbulence.F90' || echo 

'../'`turbulence.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-neutral.o `test -f 'neutral.F90' || echo '../'`neutral.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-neutral2.o `test -f 'neutral2.F90' || echo '../'`neutral2.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-linearsolver.o `test -f 'linearsolver.F90' || echo 

'../'`linearsolver.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-therm2d.o `test -f 'therm2d.F90' || echo '../'`therm2d.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-poisson.o `test -f 'poisson.F90' || echo '../'`poisson.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-taus88.o `test -f 'taus88.F90' || echo '../'`taus88.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
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ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-derf.o `test -f 'derf.F90' || echo '../'`derf.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-datanh.o `test -f 'datanh.F90' || echo '../'`datanh.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-fmin.o `test -f 'fmin.F90' || echo '../'`fmin.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-bspline90_22.o `test -f 'bspline90_22.F90' || echo 

'../'`bspline90_22.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-mpi.o `test -f 'mpi.F90' || echo '../'`mpi.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-interpolation.o `test -f 'interpolation.F90' || echo 

'../'`interpolation.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -
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I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-load.o `test -f 'load.F90' || echo '../'`load.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -

I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -

I/opt/petsc/2.3.3a/real/PGI/linux -

I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -

I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 

xgc1-main.o `test -f 'main.F90' || echo '../'`main.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

ftn  -fastsse -Kieee -mp   -o xgc1  xgc1-module.o xgc1-search.o xgc1-

charge.o xgc1-read.o xgc1-pol_decomp.o xgc1-push.o xgc1-setup.o xgc1-

efield.o xgc1-diagnosis.o xgc1-limiter.o xgc1-bounce.o xgc1-

diagnosis2.o xgc1-collision.o xgc1-collision2.o xgc1-diagnosis-f.o 

xgc1-heat.o xgc1-turbulence.o xgc1-neutral.o xgc1-neutral2.o xgc1-

linearsolver.o xgc1-therm2d.o xgc1-poisson.o  xgc1-taus88.o xgc1-derf.o 

xgc1-datanh.o xgc1-fmin.o xgc1-bspline90_22.o xgc1-mpi.o xgc1-

interpolation.o xgc1-load.o xgc1-main.o    -

L/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib -ladios -lmxml -

I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -

L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5 -

L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz  -L. -ltimers_wpapi -

L/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/lib -lpspline -lezcdf -lportlib -

L/sw/xt/netcdf/3.6.2/sles9.2_pgi7.0.7/lib -lnetcdf -

L/sw/xt/netcdf/3.6.2/sles9.2_pgi7.0.7/lib -lnetcdf      

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 

/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib/libadios.a(libadios_a-

adios_socket.o): In function `adios_set_socket_address': 

/autofs/na1_sw/xt5/adios/0.9.8/cnl2.1_pgi8.0.3/adios-

0.9.8/src/adios_socket.c:46: warning: Using 'gethostbyaddr' in 

statically linked applications requires at runtime the shared libraries 

from the glibc version used for linking 

/autofs/na1_sw/xt5/adios/0.9.8/cnl2.1_pgi8.0.3/adios-

0.9.8/src/adios_socket.c:41: warning: Using 'gethostbyname' in 

statically linked applications requires at runtime the shared libraries 

from the glibc version used for linking 

make[1]: Leaving directory `/autofs/na1_home/shku/xgc/trunk/XGC1/jaguarpf 

D.3 BATCH SCRIPT 

#PBS -N pf9 

#PBS -l walltime=24:00:00,size=29952 

#PBS -j eo 

##PBS -q debug 

#PBS -A csc053xgc1  

cd $PBS_O_WORKDIR 

date 

rm finished.sim 

mkdir restart_dir 

lfs setstripe restart_dir -s 39845888  -c 40 -i -1 
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aprun -n 29952 ../xgc1exe/xgc1+apa3 >& output.out 

date 

touch finished.sim 

D.4 RUNTIME ENVIRONMENT 

FFTW_POST_LINK_OPTS= -L/opt/fftw/3.1.1/cnos/lib -lfftw3 -lfftw3f 

MODULE_VERSION_STACK=3.1.6 

LESSKEY=/etc/lesskey.bin 

PAPI_POST_LINK_OPTS= -L/opt/xt-tools/papi/3.6.2/v23/linux/lib -lpapi -lpfm 

NNTPSERVER=news 

INFODIR=/usr/local/info:/usr/share/info:/usr/info 

MANPATH=/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/man:/opt/petsc/2.3.3a/man:/opt/xt-

tools/papi/3.6.2/man:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/share/man:/sw/

xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/share/man:/sw/xt5/subversion/1.5.0/s

les10.1_gnu4.2.4/share/man:/opt/xt-

pe/2.1.50HD/papi/man:/opt/mpt/3.1.0/xt/man:/opt/xt-

libsci/10.3.1/man:/opt/fftw/3.1.1/cnos/man:/opt/pgi/7.2.5/linux86-

64/7.2/man:/opt/xt-lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/man:/opt/xt-

os/2.1.50HD/cnselect/man:/opt/xt-os/2.1.50HD/ros/man:/opt/xt-

libc/2.1.50HD/xt3_glibc/man:/opt/MySQL/5.0.45/man:/opt/moab/man:/opt/to

rque/default/man:/sw/xt5/man:/usr/local/man:/usr/share/man:/usr/X11R6/m

an:/opt/gnome/share/man:/opt/xt-pe/2.1.50HD/pe/man 

HOSTNAME=jaguarpf-login1 

GNOME2_PATH=/usr/local:/opt/gnome:/usr 

XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB 

PAPI_VERSION=3.6.2 

PE_ENV=PGI 

PATHSCALE_POST_COMPILE_OPTS= -march=barcelona 

_MODULESBEGINENV_=/ccs/home/shku/.modulesbeginenv.jaguarpf-login1 

HOST=jaguarpf-login1 

TERM=xterm 

SHELL=/bin/bash 

XTOS_VERSION=2.1.50HD 

PROFILEREAD=true 

HISTSIZE=1000 

TOTALVIEW_VERSION=8.6.0-1 

PETSC_ARCH=cray-xt 

PERFMON_VERSION=v23 

SSH_CLIENT=128.122.81.37 40601 22 

LIBRARY_PATH=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib:/sw/xt5/netcdf/3.6.2/

sles10.1_pgi7.2.3/lib:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/lib 

MPT_DIR=/opt/mpt/3.1.0/xt 

FFTW_INC=/opt/fftw/3.1.1/cnos/include 

MORE=-sl 

BOOT_DIR=/opt/xt-boot/2.1.50HD 

QTDIR=/usr/lib/qt3 

INCLUDE_PATH=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod:/sw/xt5/netcdf/3.6.2/

sles10.1_pgi7.2.3/include:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/in

clude 
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PRGENV_DIR=/opt/xt-prgenv/2.1.50HD 

SSH_TTY=/dev/pts/26 

TVMEMDEBUG_POST_LINK_OPTS= -L/sw/xt/totalview/8.6.0-

1/sles10.1_binary/linux-x86-64/lib -ltvheap_cnl_static 

PSPLINE_INCLUDE_OPTS=-I/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod 

FFTW_DIR=/opt/fftw/3.1.1/cnos/lib 

ASYNCPE_DIR=/opt/cray/xt-asyncpe/2.0 

BUILD_OPTS=/opt/cray/xt-asyncpe/2.0/bin/build-opts 

GROFF_NO_SGR=yes 

JRE_HOME=/usr/lib/jvm/jre 

USER=shku 

LD_LIBRARY_PATH=/opt/xt-

tools/papi/3.6.2/v23/linux/lib:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib:

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib:/sw/xt5/subversion/1.5.0/sle

s10.1_gnu4.2.4/lib:/opt/xt-

pe/2.1.50HD/lib:/opt/fftw/3.1.1/cnos/lib:/opt/pgi/7.2.5/linux86-

64/7.2/libso:/opt/pgi/7.2.5/linux86-64/7.2/lib:/opt/xt-

os/2.1.50HD/lib:/opt/xt-

libc/2.1.50HD/amd64/lib:/opt/MySQL/5.0.45/lib/mysql 

LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so=01;35:do=01;35:bd=40;3

3;01:cd=40;33;01:or=41;33;01:ex=00;32:*.cmd=00;32:*.exe=01;32:*.com=01;

32:*.bat=01;32:*.btm=01;32:*.dll=01;32:*.tar=00;31:*.tbz=00;31:*.tgz=00

;31:*.rpm=00;31:*.deb=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.zip=0

0;31:*.zoo=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:*.tb2=00;31

:*.tz2=00;31:*.tbz2=00;31:*.avi=01;35:*.bmp=01;35:*.fli=01;35:*.gif=01;

35:*.jpg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=0

1;35:*.pbm=01;35:*.pgm=01;35:*.png=01;35:*.ppm=01;35:*.tga=01;35:*.tif=

01;35:*.xbm=01;35:*.xpm=01;35:*.dl=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=

00;32:*.au=00;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc=00;32:*.wav=

00;32: 

LC_PE_ENV=pgi 

TVDSVRLAUNCHCMD=ssh 

XNLSPATH=/usr/X11R6/lib/X11/nls 

PGI_VERS_STR=7.2.5 

MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi 

ENV=/etc/bash.bashrc 

GOTO_NUM_THREADS=1 

HOSTTYPE=x86_64 

RCLOCAL_PRGENV=true 

MPT_VERSION=3.1.0 

PE_PRODUCT_LIST=TOTALVIEW:TOTALVIEW-

SUPPORT:PSPLINE:ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW:PAPI

:PETSC 

FROM_HEADER= 

PGI_VERSION=7.2 

FFTW_SYSTEM_WISDOM_DIR=/opt/xt-libsci/10.3.1 

PAGER=less 

PAPI_INCLUDE_OPTS= -I/opt/xt-

tools/papi/3.6.2/v23/${XTPE_COMPILE_TARGET}/include 

OS_DIR=/opt/xt-os/2.1.50HD 

CSHEDIT=emacs 

PSPLINE_DIR=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3 

MPICHBASEDIR=/opt/mpt/3.1.0/xt 

XDG_CONFIG_DIRS=/usr/local/etc/xdg/:/etc/xdg/:/etc/opt/gnome/xdg/ 
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PGI=/opt/pgi/7.2.5 

MINICOM=-c on 

PETSC_INCLUDE_OPTS= -

I/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET} -

I/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET}/include 

YOD_LOGFILE=syslog 

MODULE_VERSION=3.1.6 

MAIL=/var/mail/shku 

PATH=/sw/xt5/totalview/8.6.0-1/sles10.1_binary/totalview-

support/1.0.6/bin:/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/bin:/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/bin2:/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/bin:/opt/xt-

tools/papi/3.6.2/v23/linux/bin:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/bin:

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/bin:/sw/xt5/hdf5/1.6.8/cnl2.1_pg

i7.2.3_par/bin:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/bin:/opt/cray

/xt-asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/linux/64/bin:/opt/fftw/3.1.1/cnos/bin:/opt/pgi/7.2.5/l

inux86-64/7.2/bin:/opt/xt-lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/sbin:/opt/xt-lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/bin:/opt/xt-

boot/2.1.50HD/bin/snos64:/opt/xt-os/2.1.50HD/bin/snos64:/opt/xt-

service/2.1.50HD/bin/snos64:/opt/xt-

prgenv/2.1.50HD/bin:/opt/MySQL/5.0.45/etc:/opt/MySQL/5.0.45/libexec:/op

t/MySQL/5.0.45/bin:/opt/moab/bin:/opt/torque/default/bin:/sw/xt5/bin:/o

pt/modules/3.1.6/bin:/ccs/home/shku/bin:/usr/local/bin:/usr/bin:/usr/X1

1R6/bin:/bin:/usr/games:/opt/bin:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/

jvm/jre/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin:/opt/pathscale/bin:.:/us

r/lib/qt3/bin:/opt/bin:/opt/public/bin:/ccs/proj/e2e/wf/bin:/ccs/proj/e

2e/wf/Workflows/XGC/monitor:/ccs/proj/e2e/wf/bin:/ccs/proj/e2e/wf/Workf

lows/XGC/monitor 

HDF5_CLIB=-I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -

L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5 -

L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz 

CPU=x86_64 

JAVA_BINDIR=/usr/lib/jvm/jre/bin 

SSH_SENDS_LOCALE=yes 

OCTAVE=sku@depot.cims.nyu.edu:octave 

ASYNCPE_VERSION=2.0 

GNU_POST_COMPILE_OPTS= -march=barcelona 

XTPE_COMPILE_TARGET=linux 

RCLOCAL_MYSQL=true 

INPUTRC=/etc/inputrc 

PWD=/ccs/home/shku/joule/Q2 

_LMFILES_=/opt/modulefiles/modules/3.1.6:/sw/xt5/modulefiles/DefApps:/opt/

modulefiles/torque/2.3.2-

snap.200807092141:/opt/modulefiles/moab/5.2.4:/opt/cray/xt-

asyncpe/2.0/modulefiles/xtpe-

quadcore:/opt/modulefiles/MySQL/5.0.45:/opt/modulefiles/xt-

service/2.1.50HD:/opt/modulefiles/xt-libc/2.1.50HD:/opt/modulefiles/xt-

os/2.1.50HD:/opt/modulefiles/xt-boot/2.1.50HD:/opt/modulefiles/xt-

lustre-

ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5:/opt/modulefiles/xtpe-

target-cnl:/opt/modulefiles/Base-

opts/2.1.50HD:/opt/modulefiles/pgi/7.2.5:/opt/modulefiles/fftw/3.1.1:/o
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pt/modulefiles/xt-libsci/10.3.1:/opt/modulefiles/xt-

mpt/3.1.0:/opt/modulefiles/xt-pe/2.1.50HD:/opt/modulefiles/xt-

asyncpe/2.0:/opt/modulefiles/PrgEnv-

pgi/2.1.50HD:/sw/xt5/modulefiles/subversion/1.5.0:/sw/xt5/modulefiles/h

df5/1.6.8_par:/sw/xt5/modulefiles/netcdf/3.6.2:/sw/xt5/modulefiles/pspl

ine/1.0:/opt/modulefiles/xt-

papi/3.6.2:/opt/modulefiles/petsc/2.3.3a:/sw/xt5/modulefiles/adios/0.9.

8:/sw/xt5/modulefiles/totalview/8.6.0-1 

JAVA_HOME=/usr/lib/jvm/jre 

EDITOR=vi 

FFTW_INCLUDE_OPTS= -I/opt/fftw/3.1.1/cnos/include 

C_DIR=/opt/xt-libc/2.1.50HD 

SYSTEM_USERDIR=/tmp/work/shku 

LANG=en_US.UTF-8 

MODULEPATH=/opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/mod

ulefiles 

PYTHONSTARTUP=/etc/pythonstart 

ADIOS_LIB=-L/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib -ladios -lmxml 

PETSC_FORTRAN_INCPATH_CNL=-lmpichf90 

LOADEDMODULES=modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-

service/2.1.50HD:xt-libc/2.1.50HD:xt-os/2.1.50HD:xt-boot/2.1.50HD:xt-

lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5:xtpe-target-

cnl:Base-opts/2.1.50HD:pgi/7.2.5:fftw/3.1.1:xt-libsci/10.3.1:xt-

mpt/3.1.0:xt-pe/2.1.50HD:xt-asyncpe/2.0:PrgEnv-

pgi/2.1.50HD:subversion/1.5.0:hdf5/1.6.8_par:netcdf/3.6.2:pspline/1.0:x

t-papi/3.6.2:petsc/2.3.3a:adios/0.9.8:totalview/8.6.0-1 

PGI_POST_COMPILE_OPTS= -tp barcelona-64 

LM_LICENSE_FILE=/sw/sources/totalview/license.dat:/opt/pgi/7.2.5/license.d

at 

XTPE_QUADCORE_ENABLED=ON 

MPICH_PTL_UNEX_EVENTS=400000 

DEPOT1=sku@depot.cims.nyu.edu:svn/xgc/trunk/XGC1 

TEXINPUTS=:/ccs/home/shku/.TeX:/usr/share/doc/.TeX:/usr/doc/.TeX 

NETCDF_CLIB=-I/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

L/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib -lnetcdf  

QT_SYSTEM_DIR=/usr/share/desktop-data 

SHLVL=1 

HOME=/ccs/home/shku 

ADIOS_DIR=/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3 

NETCDF_DIR=/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3 

PTL_SNOS_NAL=SS 

PGI_PATH=/opt/pgi/7.2.5 

LESS_ADVANCED_PREPROCESSOR=no 

OSTYPE=linux 

SE_DIR=/opt/xt-service/2.1.50HD 

LIBLUSTRE_DEBUG_CONSOLE=0 

LS_OPTIONS=-N --color=tty -T 0 

WINDOWMANAGER= 

GTK_PATH=/usr/local/lib/gtk-2.0:/opt/gnome/lib/gtk-2.0:/usr/lib/gtk-2.0 

PSPLINE_LIB=-I/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod -

L/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib -lpspline -lezcdf -lportlib 

G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252 
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LESS=-M -I 

MACHTYPE=x86_64-suse-linux 

LOGNAME=shku 

CIMS=sku@access.cims.nyu.edu:data 

GTK_PATH64=/usr/local/lib64/gtk-2.0:/opt/gnome/lib64/gtk-

2.0:/usr/lib64/gtk-2.0 

CVS_RSH=ssh 

XDG_DATA_DIRS=/usr/local/share/:/usr/share/:/etc/opt/kde3/share/:/opt/kde3

/share/:/opt/gnome/share/ 

ACLOCAL_FLAGS=-I /opt/gnome/share/aclocal 

SSH_CONNECTION=128.122.81.37 40601 160.91.205.194 22 

PETSC_POST_LINK_OPTS= -L 

/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET}/lib -lcraypetsc 

-lHYPRE -lparmetis -lmetis -lcmumps -ldmumps -lsmumps -lzmumps -lpord -

lsuperlu_3.0 -lsci -lmpich 

MODULESHOME=/opt/modules/3.1.6 

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/local/share/pkgconfig:/usr/l

ib64/pkgconfig:/usr/share/pkgconfig:/opt/kde3/lib64/pkgconfig:/opt/gnom

e/lib64/pkgconfig:/opt/gnome/lib64/pkgconfig:/opt/gnome/share/pkgconfig 

LESSOPEN=lessopen.sh %s 

LIBSCI_BASE_DIR=/opt/xt-libsci/10.3.1 

TOTALVIEW_SUPPORT_LIB=/sw/xt5/totalview/8.6.0-1/sles10.1_binary/totalview-

support/1.0.6/lib 

HDF5_FLIB=-module . -module /sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -

I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -

L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5_fortran -lhdf5 -

L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz 

LIBSCI_VERSION=10.3.1 

INFOPATH=/opt/MySQL/5.0.45/info:/usr/local/info:/usr/share/info:/usr/info:

/opt/gnome/share/info 

TV_EXTRA_OPTIONS=-use_interface ss 

NETCDF_FLIB=-module . -module 

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

I/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

L/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib -lnetcdf  

DISPLAY=localhost:25.0 

ADIOS_INC=-I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include 

PSPLINE_POST_LINK_OPTS=-L/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib -lpspline 

-lezcdf -lportlib 

XAUTHLOCALHOSTNAME=jaguarpf-login1 

PETSC_DIR=/opt/petsc/2.3.3a/real/PGI/linux 

PE_DIR=/opt/xt-pe/2.1.50HD 

LIBSCI_POST_LINK_OPTS= -lsci_quadcore 

LESSCLOSE=lessclose.sh %s %s 

DEPOT=sku@depot.cims.nyu.edu:scratch/tmp 

G_BROKEN_FILENAMES=1 

LUSTRE_DIR=/opt/xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 

JAVA_ROOT=/usr/lib/jvm/jre 

COLORTERM=1 

OLDPWD=/ccs/home/shku/joule 

_=/usr/bin/env 

 

Loaded module 

Currently Loaded Modulefiles: 
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  1) modules/3.1.6 

  2) DefApps 

  3) torque/2.3.2-snap.200807092141 

  4) moab/5.2.4 

  5) xtpe-quadcore 

  6) MySQL/5.0.45 

  7) xt-service/2.1.50HD 

  8) xt-libc/2.1.50HD 

  9) xt-os/2.1.50HD 

 10) xt-boot/2.1.50HD 

 11) xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 

 12) xtpe-target-cnl 

 13) Base-opts/2.1.50HD 

 14) pgi/7.2.5 

 15) fftw/3.1.1 

 16) xt-libsci/10.3.1 

 17) xt-mpt/3.1.0 

 18) xt-pe/2.1.50HD 

 19) xt-asyncpe/2.0 

 20) PrgEnv-pgi/2.1.50HD 

 21) subversion/1.5.0 

 22) hdf5/1.6.8_par 

 23) netcdf/3.6.2 

 24) pspline/1.0 

 25) xt-papi/3.6.2 

 26) petsc/2.3.3a 

 27) adios/0.9.8 

 28) totalview/8.6.0-1 
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APPENDIX E. RAPTOR 

E.1 INPUT SETTINGS 

&solvr 

  cfl    = 0.1000000000000000e+00, 

  vnn    = 0.0100000000000000e+00, 

  ptf    = 1.0000000000000000e+00, 

  sor    = 1.0000000000000000e+00, 

  src    = 1.0000000000000000e+00, 

  tme    = 0.0000000000000000e+00, 

  dtm    = 0.0010000000000000e+00, 

  nrtitr = 100, 

  nrtout = 100, 

  nrtprt = 1, 

  nrtrew = 5000, 

  nptitr = 20, 

  nptout = 1, 

  nptprt = 1, 

  nmpitr = 1000, 

  nmpout = 1, 

  nmpprt = 1, 

  nblkio = 1, 

 / 

&vtmvl 

   cfl_t = 1.0000000000000000e+00, 

   vnn_t = 0.1000000000000000e+00, 

   rtf_t = 1.0000000000000000e+00, 

   dtm_x = 0.0100000000000000e+00, 

 / 

&lhsqv 

   idtrk = 0, 

   irkms = 0, 

   irkcy = 0, 

   iomga = 0, 

   islib = 1, 

   ivtme = 0, 

   inorm = 0, 

   iscvc = 0, 

   idecc = 0, 

   imecp = 0, 

 / 

&rhsqv 

   iturb = 0, 

   isgsm = 0, 

   ichem = 0, 

   ispry = 0, 

   ihsrc = 0, 

   itvgm = 0, 

   iflux = 0, 

   ilmeq = 1, 

   ilmtr = 2, 
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   icsrc = 1, 

   ivisc = 1, 

 / 

&flags 

   irsrt = 0, 

   ishot = 0, 

   ibcnd = 000001, 

   ibcwf = 0, 

   ilfnc = 333333, 

   idbsh = 1, 

   itmsh = 1, 

   itset = 0, 

   iarch = 000000, 

   idata = 0, 

   ianim = 0, 

   istsh = 0, 

   ipost = 0, 

   icsys = 0, 

 / 

&refvl 

   p_ref = 99300.000000000000e+00, 

   T_ref = 294.00000000000000e+00, 

 rho_ref = 1.7912921543918080e+00, 

   U_ref = 8.0240600000000000e+00, 

   L_ref = 8.0000000000000000e-03, 

  mu_ref = 8.0402554092161456e-06, 

  Cp_ref = 1648.3392027401540e+00, 

   c_ref = 250.19015210483540e+00, 

   g_ref = 9.8100000000000000e+00, 

 / 

&refbc 

   u_ave = 0.0000000000000000e+00, 

   v_ave = 0.0000000000000000e+00, 

   w_ave = 0.0000000000000000e+00, 

   u_rms = 0.0000000000000000e+00, 

   v_rms = 0.0000000000000000e+00, 

   w_rms = 0.0000000000000000e+00, 

   m_dot = 785.39810000000000e-03, 

   S_fac = 0.0000000000000000e+00, 

   qwall = 0.0000000000000000e+00, 

   f_sto = 0.0000000000000000e+00, 

   T_sto = 0.0000000000000000e+00, 

   p_tot = 0.0000000000000000e+00, 

   T_tot = 0.0000000000000000e+00, 

   Rmgas = 0.0000000000000000e+00, 

   gCpCv = 0.0000000000000000e+00, 

   c_rf0 = 0.0000000000000000e+00, 

   M_rf1 = 0.0000000000000000e+00, 

   M_rf2 = 0.0000000000000000e+00, 

 / 

&rftme 

   tme_1 = 0.0000000000000000e+00, 

   tme_2 = 0.0000000000000000e+00, 

   tme_3 = 0.0000000000000000e+00, 
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   tme_4 = 0.0000000000000000e+00, 

   tme_5 = 0.0000000000000000e+00, 

   tme_6 = 0.0000000000000000e+00, 

 / 

&rftol 

 epsilon_tau = 1.0000000000000000e-04, 

 epsilon_inv = 0.1000000000000000e-04, 

 epsilon_vis = 0.1000000000000000e-08, 

 epsilon_sor = 1.0000000000000000e-16, 

 epsilon_tol = 1.0000000000000000e-16, 

 epsilon_src = 1.0000000000000000e-16, 

 epsilon_chm = 1.0000000000000000e-99, 

 / 

E.2 COMPILATION 

RAPTOR was compiled using the default Portland Group Fortran compiler. Output from the 

compilation is included in Sect. 3.4.7. Here we show only the skeletal output, which includes the options 

used for optimization of the code. Note that the complete output, which includes all information related to 

the optimization, is also available but spans 21,807 lines and has thus been omitted in the interest of 

space. The code was profiled using CrayPAT 4.2 using the following recipe to build the executable: 

module load xt-craypat 

make 

pat_build -w -Drtenv=PAT_RT_HWPC=0 DTMS.out DTMS_pat.out. 

The instrumented executable (DTMS pat.out) was run using the batch script listed in Sect. E.3. The 

corresponding run time environment is listed in Sect. E.4. Performance data was generated by issuing the 

commands 

module load xt-craypat 

pat_report DTMS_pat.out+xxxyyy > report.out, 

where DTMS pat.out+xxxyyy is the name of the directory created by CrayPAT after the run completed. 

Output from the build is shown below. Here we show only the skeletal output, which includes the options 

used for optimization of the code. Note that the complete output, which includes all information related to 

the optimization, is also available but spans 21,807 lines and has thus been omitted in the interest of 

space. 

 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c MDLS.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c DTMS.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c abrt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_grid.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_xyzh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcch.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcuh.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcvh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcwh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_main.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_halo.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_lpsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_bcwf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c grid_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c gdim.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c mtrc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c mtrc_scg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tvgm.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tvgm_vlp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tvgm_spk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c pole.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c pole_jcc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c qref.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c qref_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c init.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c init_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c rsrt_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c rsrt_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c anim_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c arch_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c arch_ascii_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c arch_ascii_opt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c qvbt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dtdt.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c vtme.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dtme.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dtau.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c norm.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_dqv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_flx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcu.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_jcw.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_qmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_sgs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_qvp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_src.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c halo_xyz.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_dqv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_flx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcu.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcw.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_qmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_sgs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_qvp.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_src.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcnd_xyz.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcdq.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bctd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c inlt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c inlt_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c estr.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c estr_lib.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c estr_mix.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c estr_Z.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dqvc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dsgs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_c.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_m.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_r.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dsgs_t.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bcwf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tble.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tbls.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c upyp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c urms.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c ures.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c sgsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c rk_1.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c rk_4.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c rk_4J.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c rk_5J.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dqdt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dddt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dflx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lmtr.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c scvc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c sidq.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c sidd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c mask.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c mocQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_M.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_L.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_D.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_D0.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxM_P.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxP_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_K.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_L.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c flxQ_D.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcM.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcM_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcM_tvg.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcM_tvg_ddt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcM_D.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcP.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcP_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcQ_hv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c srcQ_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dqmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tmsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lgfc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c dbsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c stsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_ascii_MPI.ftn -

target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -

Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_ascii_opt.ftn -target=linux 

-Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -

DPARALLEL -DSPECIES -c stgp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c stlp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lptd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpdt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpqs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lphx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lphxM.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lphxQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpli.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpdf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lprk.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpdq.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpcf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpbc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lppk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpcm.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_ascii_MPI.ftn -

target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -

Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_ascii_opt.ftn -target=linux 

-Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -

DPARALLEL -DSPECIES -c frmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c prof.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tdst.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c zdst.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c ydis.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bisc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bnbk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c bndc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c circ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c conv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c cube.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c cycl.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c diam.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c hunt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c inth.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c li_1.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c li_2.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c li_3.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c lubk.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c ludc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c ndev.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c sfcn.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c simp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c spln.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c thms.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c udev.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -o DTMS.out MDLS.o DTMS. 
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E.3 BATCH SCRIPT (IDENTICAL FOR BOTH Q2 AND Q4 EXCEPT FOR CORE SIZE) 

#================================================================ # 

# Oak Ridge National Laboratories NCCS Systems. ================= # 

#================================================================ # 

#PBS -A CSC057 

#PBS -N RAPTOR 

#PBS -M oefelei@sandia.gov 

#PBS -m abe 

#PBS -o Std.out 

#PBS -e Std.err 

#PBS -l walltime=04:00:00,size=47616 

set -x 

source /opt/modules/default/init/bash 

cd $PBS_O_WORKDIR 

date 

export PAT_RT_HWPC=0 

export MPICH_ENV_DISPLAY=1 

export MPICH_VERSION_DISPLAY=1 

module list 

module avail 

env 

aprun -n 47616 ./dtms.e 

#================================================================ # 

#================================================================ # 

#================================================================ # 

E.4 RUNTIME ENVIRONMENT 

LESSKEY=/etc/lesskey.bin 

MODULE_VERSION_STACK=3.1.6 

FFTW_POST_LINK_OPTS= -L/opt/fftw/3.1.1/cnos/lib -lfftw3 -lfftw3f 

MANPATH=/opt/xt-pe/2.1.50HD/papi/man:/opt/mpt/3.1.0/xt/man:/opt/xt-

libsci/10.3.1/man:/opt/fftw/3.1.1/cnos/man:/opt/pgi/7.2.5/linux86-

INFODIR=/usr/local/info:/usr/share/info:/usr/info 

NNTPSERVER=news 

HOSTNAME=jaguarpf-batch4 

XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB 

GNOME2_PATH=/usr/local:/opt/gnome:/usr 

_MODULESBEGINENV_=/ccs/home/oefelei/.modulesbeginenv 

PATHSCALE_POST_COMPILE_OPTS= -march=barcelona 

PE_ENV=PGI 

SHELL=/bin/bash 

HOST=jaguarpf-batch4 

BATCH_ALLOC_COOKIE=0 

HISTSIZE=1000 

PROFILEREAD=true 

XTOS_VERSION=2.1.50HD 

PBS_JOBNAME=RAPTOR 

MPT_DIR=/opt/mpt/3.1.0/xt 

FFTW_INC=/opt/fftw/3.1.1/cnos/include 

BATCH_JOBID=71541 
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PBS_ENVIRONMENT=PBS_BATCH 

MORE=-sl 

OLDPWD=/autofs/na1_home/oefelei 

QTDIR=/usr/lib/qt3 

BOOT_DIR=/opt/xt-boot/2.1.50HD 

PBS_O_WORKDIR=/ccs/home/oefelei/scratch/FY09JouleQ2 

PRGENV_DIR=/opt/xt-prgenv/2.1.50HD 

FFTW_DIR=/opt/fftw/3.1.1/cnos/lib 

USER=oefelei 

PBS_TASKNUM=1 

JRE_HOME=/usr/lib/jvm/jre 

GROFF_NO_SGR=yes 

BUILD_OPTS=/opt/cray/xt-asyncpe/2.0/bin/build-opts 

ASYNCPE_DIR=/opt/cray/xt-asyncpe/2.0 

LS_COLORS= 

LD_LIBRARY_PATH=/opt/xt-

pe/2.1.50HD/lib:/opt/fftw/3.1.1/cnos/lib:/opt/pgi/7.2.5/linux86-

64/7.2/libso:/opt/pgi/7.2.5/linux86-64/7.2/PBS_O_HOME=/ccs/home/oefelei 

LC_PE_ENV=pgi 

XNLSPATH=/usr/X11R6/lib/X11/nls 

TVDSVRLAUNCHCMD=ssh 

PBS_NNODES=47616 

ENV=/etc/bash.bashrc 

MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi 

PGI_VERS_STR=7.2.5 

HOSTTYPE=x86_64 

GOTO_NUM_THREADS=1 

RCLOCAL_PRGENV=true 

PBS_MOMPORT=15003 

FROM_HEADER= 

PE_PRODUCT_LIST=ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW 

MPT_VERSION=3.1.0 

PAGER=less 

FFTW_SYSTEM_WISDOM_DIR=/opt/xt-libsci/10.3.1 

PGI_VERSION=7.2 

CSHEDIT=emacs 

OS_DIR=/opt/xt-os/2.1.50HD 

PBS_O_QUEUE=batch 

XDG_CONFIG_DIRS=/usr/local/etc/xdg/:/etc/xdg/:/etc/opt/gnome/xdg/ 

MPICHBASEDIR=/opt/mpt/3.1.0/xt 

MINICOM=-c on 

PGI=/opt/pgi/7.2.5 

PATH=/opt/cray/xt-asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/linux/64/bin:/opt/fftw/3.1.1/cnos/bin:/opt/PBS_O_LOGNA

ME=oefelei 

MAIL=/var/spool/mail/oefelei 

MODULE_VERSION=3.1.6 

YOD_LOGFILE=syslog 

PBS_O_LANG=en_US.UTF-8 

CPU=x86_64 

PBS_JOBCOOKIE=C036D87E89EB27BDBAA67C293634D3AC 

JAVA_BINDIR=/usr/lib/jvm/jre/bin 

GNU_POST_COMPILE_OPTS= -march=barcelona 

ASYNCPE_VERSION=2.0 
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PWD=/ccs/home/oefelei/scratch/FY09JouleQ2 

INPUTRC=/etc/inputrc 

RCLOCAL_MYSQL=true 

XTPE_COMPILE_TARGET=linux 

JAVA_HOME=/usr/lib/jvm/jre 

_LMFILES_=/opt/modulefiles/modules/3.1.6:/sw/xt5/modulefiles/DefApps:/opt/

modulefiles/torque/2.3.2-

snap.200807092141:/opt/modulefiles/MPICH_VERSION_DISPLAY=1 

C_DIR=/opt/xt-libc/2.1.50HD 

FFTW_INCLUDE_OPTS= -I/opt/fftw/3.1.1/cnos/include 

LANG=en_US.UTF-8 

PBS_NODENUM=0 

SYSTEM_USERDIR=/tmp/work/oefelei 

PYTHONSTARTUP=/etc/pythonstart 

MODULEPATH=/opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/mod

ulefiles 

LOADEDMODULES=modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-

service/2.1.50HD:xt-libc/PBS_O_SHELL=/bin/bash 

PGI_POST_COMPILE_OPTS= -tp barcelona-64 

PBS_SERVER=jaguarpf-login2.ccs.ornl.gov 

PBS_JOBID=71541.nid17924 

XTPE_QUADCORE_ENABLED=ON 

LM_LICENSE_FILE=/opt/pgi/7.2.5/license.dat 

PAT_RT_HWPC=0 

ENVIRONMENT=BATCH 

TEXINPUTS=:/ccs/home/oefelei/.TeX:/usr/share/doc/.TeX:/usr/doc/.TeX 

HOME=/ccs/home/oefelei 

SHLVL=2 

QT_SYSTEM_DIR=/usr/share/desktop-data 

OSTYPE=linux 

LESS_ADVANCED_PREPROCESSOR=no 

PGI_PATH=/opt/pgi/7.2.5 

PTL_SNOS_NAL=SS 

PBS_O_HOST=jaguarpf-login2.ccs.ornl.gov 

XCURSOR_THEME=Industrial 

LS_OPTIONS=-N --color=none -T 0 

LIBLUSTRE_DEBUG_CONSOLE=0 

SE_DIR=/opt/xt-service/2.1.50HD 

WINDOWMANAGER= 

MPICH_ENV_DISPLAY=1 

PBS_VNODENUM=0 

GTK_PATH=/usr/local/lib/gtk-2.0:/opt/gnome/lib/gtk-2.0:/usr/lib/gtk-2.0 

LOGNAME=oefelei 

MACHTYPE=x86_64-suse-linux 

LESS=-M -I 

G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252 

CVS_RSH=ssh 

GTK_PATH64=/usr/local/lib64/gtk-2.0:/opt/gnome/lib64/gtk-

2.0:/usr/lib64/gtk-2.0 

BATCH_PARTITION_ID=1 

PBS_QUEUE=batch 

ACLOCAL_FLAGS=-I /opt/gnome/share/aclocal 
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XDG_DATA_DIRS=/usr/local/share/:/usr/share/:/etc/opt/kde3/share/:/opt/kde3

/share/:/opt/gnome/share/ 

MODULESHOME=/opt/modules/3.1.6 

PBS_O_MAIL=/var/mail/oefelei 

LESSOPEN=lessopen.sh %s 

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/local/share/pkgconfig:/usr/l

ib64/pkgconfig:/usr/share/pkgconfig:/opt/kde3/lib64/pkgconfig:/ 

LIBSCI_BASE_DIR=/opt/xt-libsci/10.3.1 

INFOPATH=/opt/MySQL/5.0.45/info:/usr/local/info:/usr/share/info:/usr/info:

/opt/gnome/share/info 

LIBSCI_VERSION=10.3.1 

LESSCLOSE=lessclose.sh %s %s 

LIBSCI_POST_LINK_OPTS= -lsci_quadcore 

PE_DIR=/opt/xt-pe/2.1.50HD 

PBS_NODEFILE=/var/spool/torque/aux//71541.nid17924 

G_BROKEN_FILENAMES=1 

PBS_O_PATH=/opt/xt-tools/craypat/4.4.0.4/v23/bin:/opt/cray/xt-

asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/COLORTERM=1 

JAVA_ROOT=/usr/lib/jvm/jre 

LUSTRE_DIR=/opt/xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 

_=/usr/bin/env 

-------------------------------------------------------------------------- 

++ source /opt/modules/default/init/bash 

+++ ’[’ 3.1.6 = ’’ ’]’ 

+++ MODULE_VERSION_STACK=3.1.6 

+++ export MODULE_VERSION_STACK 

+++ MODULESHOME=/opt/modules/3.1.6 

+++ export MODULESHOME 

+++ ’[’ modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-

service/2.1.50HD:xt-libc/2.1.50HD:+++ ’[’ /opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/mod

ulefiles = ’’ ’]’ 

++ cd /ccs/home/oefelei/scratch/FY09JouleQ2 

++ date 

++ export PAT_RT_HWPC=0 

++ PAT_RT_HWPC=0 

++ export MPICH_ENV_DISPLAY=1 

++ MPICH_ENV_DISPLAY=1 

++ export MPICH_VERSION_DISPLAY=1 

++ MPICH_VERSION_DISPLAY=1 

++ module list 

+++ /opt/modules/3.1.6/bin/modulecmd bash list 

Currently Loaded Modulefiles: 

1) modules/3.1.6 

2) DefApps 

3) torque/2.3.2-snap.200807092141 

4) moab/5.2.4 

5) xtpe-quadcore 

6) MySQL/5.0.45 

7) xt-service/2.1.50HD 

8) xt-libc/2.1.50HD 
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9) xt-os/2.1.50HD 

10) xt-boot/2.1.50HD 

11) xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 

12) xtpe-target-cnl 

13) Base-opts/2.1.50HD 

14) pgi/7.2.5 

15) fftw/3.1.1 

16) xt-libsci/10.3.1 

17) xt-mpt/3.1.0 

18) xt-pe/2.1.50HD 

19) xt-asyncpe/2.0 

20) PrgEnv-pgi/2.1.50HD 

++ eval 

++ module avail 

+++ /opt/modules/3.1.6/bin/modulecmd bash avail 

------------------ /opt/cray/xt-asyncpe/2.0/modulefiles ------------------ 

xtpe-quadcore xtpe-target-native 

---------------------------- /opt/modulefiles ---------------------------- 

Base-opts/2.1.27HD 

Base-opts/2.1.27HD.lusrelsave 

Base-opts/2.1.29HD 

Base-opts/2.1.29HD.lusrelsave 

Base-opts/2.1.41HD 

Base-opts/2.1.41HD.lusrelsave 

Base-opts/2.1.50HD(default) 

Base-opts/2.1.50HD.lusrelsave 

MySQL/5.0.45 

PrgEnv-cray/1.0.0(default) 

PrgEnv-gnu/2.1.27HD 

PrgEnv-gnu/2.1.29HD 

PrgEnv-gnu/2.1.41HD 

PrgEnv-gnu/2.1.50HD(default) 

PrgEnv-pathscale/2.1.27HD 

PrgEnv-pathscale/2.1.29HD 

PrgEnv-pathscale/2.1.41HD 

PrgEnv-pathscale/2.1.50HD(default) 

PrgEnv-pgi/2.1.27HD 

PrgEnv-pgi/2.1.29HD 

PrgEnv-pgi/2.1.41HD 

PrgEnv-pgi/2.1.50HD(default) 

acml/4.0.1a 

acml/4.1.0(default) 

acml/4.2.0 

apprentice2/4.3.0 

apprentice2/4.4.0(default) 

apprentice2/4.4.0.1 

blcr/0.7.3 

cce/7.0.0(default) 

cce/7.0.1 

cray/audit/1.0.0-1.0000.15784.0 

dwarf/8.2.0 

dwarf/8.4.0 

dwarf/8.6.0 

dwarf/8.8.0(default) 
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elf/0.8.10(default) 

fftw/2.1.5 

fftw/3.1.1(default) 

gcc/4.1.2 

gcc/4.2.0.quadcore(default) 

gcc/4.2.3 

gcc/4.2.4 

gcc-catamount/3.3 

gnet/2.0.5 

iobuf/1.0.6(default) 

java/jdk1.6.0_05(default) 

libfast/1.0(default) 

libfast/1.0.2 

libscifft-pgi/1.0.0(default) 

moab/5.2.3 

moab/5.2.4(default) 

moab/5.3.0 

modules/3.1.6(default) 

pathscale/3.2(default) 

petsc/2.3.3a(default) 

petsc-complex/2.3.3a(default) 

pgi/6.2.5 

pgi/7.0.7 

pgi/7.1.6 

pgi/7.2.3 

pgi/7.2.4 

pgi/7.2.5(default) 

pgi/8.0.1 

pgi/8.0.2 

pkgconfig/0.15.0(default) 

torque/2.3.2-snap.200807092141(default) 

xt-asyncpe/1.0c 

xt-asyncpe/1.1 

xt-asyncpe/1.2 

xt-asyncpe/2.0(default) 

xt-asyncpe/2.0.34 

xt-boot/2.1.27HD 

xt-boot/2.1.29HD 

xt-boot/2.1.41HD 

xt-boot/2.1.50HD 

xt-catamount/2.1.27HD 

xt-catamount/2.1.29HD 

xt-catamount/2.1.41HD 

xt-catamount/2.1.50HD 

xt-craypat/4.3.1 

xt-craypat/4.3.3 

xt-craypat/4.4.0 

xt-craypat/4.4.0.2 

xt-craypat/4.4.0.4(default) 

xt-libc/2.1.27HD 

xt-libc/2.1.29HD 

xt-libc/2.1.41HD 

xt-libc/2.1.50HD 

xt-libsci/10.2.1 
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xt-libsci/10.3.0 

xt-libsci/10.3.1(default) 

xt-libsci/10.3.2 

xt-lustre-ss/2.1.27HD_1.6.5 

xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5 

xt-lustre-ss/2.1.29HD_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5 

xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5 

xt-lustre-ss/2.1.41HD_1.6.5 

xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 

xt-lustre-ss/2.1.50HD_1.6.5 

xt-lustre-ss/2.1.50HD_PS04_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5 

xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5 

xt-mpt/2.1.27HD 

xt-mpt/2.1.29HD 

xt-mpt/2.1.41HD 

xt-mpt/2.1.50HD 

xt-mpt/3.0.1 

xt-mpt/3.0.2 

xt-mpt/3.0.4 

xt-mpt/3.1.0(default) 

xt-mpt/3.1.0.4 

xt-mpt/3.1.0.6 

xt-mpt/3.1.0.7 

xt-os/2.1.27HD 

xt-os/2.1.29HD 

xt-os/2.1.41HD 

xt-os/2.1.50HD 

xt-papi/3.5.99c 

xt-papi/3.6 

xt-papi/3.6.1a 

xt-papi/3.6.2(default) 

xt-pe/2.1.27HD 

xt-pe/2.1.29HD 

xt-pe/2.1.41HD 

xt-pe/2.1.50HD 

xt-service/2.1.27HD 

xt-service/2.1.29HD 

xt-service/2.1.41HD 

xt-service/2.1.50HD 

xtgdb/1.0.0(default) 

xtpe-target-catamount 

xtpe-target-cnl 

--------------------------- /opt/modules/3.1.6 --------------------------- 
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modulefiles/modules/dot modulefiles/modules/modules 

modulefiles/modules/module-cvs modulefiles/modules/null 

modulefiles/modules/module-info modulefiles/modules/use.own 

-------------------------- /sw/xt5/modulefiles --------------------------- 

DefApps lapack/3.1.1-dualcore 

MiscApps lapack/3.1.1-fPIC 

adios/0.9.8(default) liblut/0.9.6 

arpack/2008.03.11 m4/1.4.11 

atlas/3.8.2 matlab/7.5 

atlas/3.8.2-fPIC-dualcore mercurial/1.0.2 

autoconf/2.63 metis/4.0 

automake/1.10.1 mpe2/1.0.6 

aztec/2.1 mpip/3.1.2 

blas/ref(default) mumps/4.7.3_par 

blas/ref-dualcore namd/2.6 

bugget/2.0 ncl/5.0.0 

cmake/2.6.1(default) nco/3.9.4 

cmake/2.6.2 ncview/1.93c 

cpmd/3.13.1 nedit/5.5 

cpmd/3.13.2 netcdf/3.6.2(default) 

doxygen/1.5.6 netcdf/4.0.0 

doxygen/1.5.8 netcdf/4.0.0_par 

ferret/6.1 ompi/ADTR65 

fftpack/5-r4i4 ompi/ADTR77 

fftpack/5-r8i4 ompi/ADTR78 

fftpack/5-r8i8 ompi/DTR56 

fftw/3.1.2 ompi/DTR59 

fftw/3.1.2-dualcore ompi/routing-pgi 

fftw/3.2 p-netcdf/1.0.2(default) 

fftw/3.2-dualcore p-netcdf/1.0.3 

fpmpi/1.0 parmetis/3.1 

fpmpi/1.1 petsc/2.3.3-debug 

fpmpi_papi/1.0 petsc-complex/2.3.3-debug 

fpmpi_papi/1.1 pgplot/5.2 

gamess/2008Mar04 pspline/1.0 

git/1.6.0 python/2.5.2 

git/1.6.0.4 python/2.5.2-netcdf 

globalarrays/4.0.8 qt/4.3.4 

gnuplot/4.2.3 ruby/1.8.7 

gnuplot/4.2.4(default) ruby/1.9.1 

gptl/3.4.1 spdcp/0.3.6 

gptl/3.4.3 sprng/2.0b 

gptl/3.4.7(default) stagesub/1.0.2 

grace/5.1.21 stagesub/1.0.3(default) 

gromacs/3.3.3 subversion/1.4.6 

gsl/1.11 subversion/1.5.0(default) 

gsl/1.11-dualcore sundials/2.3.0 

hdf5/1.6.7(default) superlu/3.0 

hdf5/1.6.7_par superlu_dist/2.2 

hdf5/1.6.8 swig/1.3.36 

hdf5/1.6.8_par szip/2.1 

hdf5/1.8.1 tau/2.17.2 

hdf5/1.8.1_par tau/2.17.3 

hdf5/1.8.2 tkdiff/4.1.4 
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hdf5/1.8.2_par totalview/8.6.0-1(default) 

hypre/2.0.0 trilinos/8.0.3 

idl/6.4 udunits/1.12.4 

imagemagick/6.4.2(default) udunits/1.12.9 

java-jdk/1.5.0.06 umfpack/5.1.1 

java-jdk/1.6.0.06 valgrind/3.3.1 

java-jre/1.5.0.06 vim/7.1 

lammps/4Mar08 vim/7.2 

lammps/May08 visit/1.11.1 

lapack/3.1.1(default) 

++ eval 

++ env 

++ aprun -n 47616 ./dtms.e 

MPI VERSION : CRAY MPICH2 XT version 3.1.0 (ANL base 1.0.6) 

BUILD INFO : Built Thu Nov 20 11:14:12 2008 (svn rev 7246) 

PE 0: MPICH environment settings: 

PE 0: MPICH_ENV_DISPLAY = 1 

PE 0: MPICH_VERSION_DISPLAY = 1 

PE 0: MPICH_ABORT_ON_ERROR = 0 

PE 0: MPICH_CPU_YIELD = 0 

PE 0: MPICH_RANK_REORDER_METHOD = 1 

PE 0: MPICH_RANK_REORDER_DISPLAY = 0 

PE 0: MPICH_MAX_THREAD_SAFETY = single 

PE 0: MPICH_MSGS_PER_PROC = 16384 

PE 0: MPICH/SMP environment settings: 

PE 0: MPICH_SMP_OFF = 0 

PE 0: MPICH_SMPDEV_BUFS_PER_PROC = 32 

PE 0: MPICH_SMP_SINGLE_COPY_SIZE = 131072 

PE 0: MPICH_SMP_SINGLE_COPY_OFF = 0 

PE 0: MPICH/PORTALS environment settings: 

PE 0: MPICH_MAX_SHORT_MSG_SIZE = 4301 

PE 0: MPICH_UNEX_BUFFER_SIZE = 142848000 

PE 0: MPICH_PTL_UNEX_EVENTS = 104755 

PE 0: MPICH_PTL_OTHER_EVENTS = 11904 

PE 0: MPICH_VSHORT_OFF = 0 

PE 0: MPICH_MAX_VSHORT_MSG_SIZE = 1024 

PE 0: MPICH_VSHORT_BUFFERS = 32 

PE 0: MPICH_PTL_EAGER_LONG = 0 

PE 0: MPICH_PTL_MATCH_OFF = 0 

PE 0: MPICH_PTL_SEND_CREDITS = 0 

PE 0: MPICH/COLLECTIVE environment settings: 

PE 0: MPICH_FAST_MEMCPY = 0 

PE 0: MPICH_COLL_OPT_OFF = 0 

PE 0: MPICH_COLL_SYNC = 0 

PE 0: MPICH_BCAST_ONLY_TREE = 1 

PE 0: MPICH_ALLTOALL_SHORT_MSG = 1024 

PE 0: MPICH_REDUCE_SHORT_MSG = 65536 

PE 0: MPICH_ALLREDUCE_LARGE_MSG = 262144 

PE 0: MPICH_ALLGATHER_VSHORT_MSG = 2048 

PE 0: MPICH_ALLTOALLVW_FCSIZE = 32 

PE 0: MPICH_ALLTOALLVW_SENDWIN = 20 

PE 0: MPICH_ALLTOALLVW_RECVWIN = 20 

PE 0: MPICH/MPIIO environment settings: 

PE 0: MPICH_MPIIO_HINTS_DISPLAY = 0 
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PE 0: MPICH_MPIIO_CB_ALIGN = 0 

PE 0: MPICH_MPIIO_HINTS = NULL 

CrayPat/X: Version 4.4.0 Revision 2195 10/29/08 14:13:53 

Experiment data directory written: 

/lustre/scratch/oefelei/FY09JouleQ2/dtms.e+25388-13808tdt 

E.5 COMPARISON OF TOTAL RUN TIME VS INITIALIZATION TIME 

In running the Q4 case, we observed an anomaly associated with the time required for the 

initialization stage of the calculation (which is not compute intensive) compared to the integration stage 

(which is compute intensive). This anomaly was traced to CrayPAT. In all cases, executables that were 

instrumented with CrayPAT exhibited a wide range of initialization times compared to those that were 

not. In the results for Q2, for example, the total run time reported by CrayPAT was 1,423 seconds, as 

shown in Table E.1. However, the time spent in the integration part of the calculation, as given by the 

internal timer in the code was only 1,034 seconds, which implies that approximately 389 seconds were 

required for initialization. To verify this we reran the Q2 case with the integration loop bypassed to isolate 

the time associated with initialization. Results from this run are provided shown in Table E.2. Comparing 

these data verifies that a negligible amount of floating point operations occurred during initialization for 

the selected cases and that the internal timer used to measure the amount of time spent in the integrator 

was accurate. As a second test, we ran both the Q2 benchmark and Q4 cases without CrayPAT installed 

and verified that the initialization times for both became negligible (i.e., less than 10 percent of the total 

integration time). The combined set of tests confirmed that the integration times and estimated floating 

point operation rates reported are accurate.  
 

 

 
Table E.1. Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR 

 

Totals for program 

------------------------------------------------------------------------ 

  Time%                                        100.0% 

  Time                                    1425.761880 secs 

  Imb.Time                                         -- secs 

  Imb.Time%                                        -- 

  Calls                       0.0 /sec            4.0 calls 

  PAPI_L1_DCM              20.674M/sec    26457314029 misses 

  PAPI_TOT_INS           3379.668M/sec  4325136094614 instr 

  PAPI_L1_DCA            1348.943M/sec  1726311709236 refs 

  PAPI_FP_OPS               6.204M/sec     7939032813 ops 

  User time (approx)     1279.752 secs  2943428628772 cycles  89.8%Time 

  Average Time per Call                    356.440470 sec 

  CrayPat Overhead : Time    0.0% 

  HW FP Ops / User time     6.204M/sec     7939032813 ops  0.1%peak(DP) 

  HW FP Ops / WCT           5.568M/sec 

  HW FP Ops / Inst                               0.2% 

  Computational intensity    0.00 ops/cycle      0.00 ops/ref 

  Instr per cycle                                1.47 inst/cycle 

  MIPS               160926295.28M/sec 

  MFLOPS (aggregate)    295389.35M/sec 

  Instructions per LD & ST  39.9% refs           2.51 inst/ref 

  D1 cache hit,miss ratios  98.5% hits           1.5% misses 
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  D1 cache utilization (M)  65.25 refs/miss     8.156 avg uses 
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Table E.2. Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR  

but with the integration loop bypassed 

 

Totals for program 

------------------------------------------------------------------------ 

  Time%                                        100.0% 

  Time                                     398.057434 secs 

  Imb.Time                                         -- secs 

  Imb.Time%                                        -- 

  Calls                       0.0 /sec            4.0 calls 

  PAPI_L1_DCM              23.802M/sec     8862182513 misses 

  PAPI_TOT_INS           3505.363M/sec  1305131854712 instr 

  PAPI_L1_DCA            1393.542M/sec   518849673837 refs 

  PAPI_FP_OPS               0.002M/sec         574298 ops 

  User time (approx)      372.324 secs   856345890248 cycles  93.5%Time 

  Average Time per Call                     99.514358 sec 

  CrayPat Overhead : Time    0.0% 

  HW FP Ops / User time     0.002M/sec         574298 ops  0.0%peak(DP) 

  HW FP Ops / WCT           0.001M/sec 

  HW FP Ops / Inst                               0.0% 

  Computational intensity    0.00 ops/cycle      0.00 ops/ref 

  Instr per cycle                                1.52 inst/cycle 

  MIPS               166911368.33M/sec 

  MFLOPS (aggregate)        73.45M/sec 

  Instructions per LD & ST  39.8% refs           2.52 inst/ref 

  D1 cache hit,miss ratios  98.3% hits           1.7% misses 

  D1 cache utilization (M)  58.55 refs/miss     7.318 avg uses 

 

 
 


