OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following source.

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.fedworld.gov Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source.

Office of Scientific and Technical Information P.O. Box 62
Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@adonis.osti.gov *Web site* http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Data Compilation for AGR-1 Baseline Coated Particle Composite LEU01-46T

John D. Hunn and Richard A. Lowden Oak Ridge National Laboratory

This document is a compilation of characterization data for the AGR-1 baseline coated particle composite LEU01-46T, a composite of four batches of TRISO-coated 350 μ m 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a ~50% dense carbon buffer layer (100 μ m nominal thickness) followed by a dense inner pyrocarbon layer (40 μ m nominal thickness) followed by another dense outer pyrocarbon layer (40 μ m nominal thickness). The coated particles were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for insertion in the first irradiation test capsule, AGR-1. The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-## (where ## is a series of integers beginning with 01).

Additional particle batches were coated with only buffer or buffer plus inner pyrocarbon (IPyC) layers using similar process conditions as used for the full TRISO batches comprising the LEU01-46T composite. These batches were fabricated in order to qualify that the process conditions used for buffer and IPyC would produce acceptable densities, as described in sections 8 and 9. These qualifying batches used 350 μ m natural uranium oxide/uranium carbide kernels (NUCO). The kernels were obtained from BWXT and identified as composite G73B-NU-69300. The use of NUCO surrogate kernels is not expected to significantly effect the densities of the buffer and IPyC coatings. Confirmatory batches using LEUCO kernels from G73D-20-69302 were coated and characterized to verify this assumption.

The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380, Rev. 6) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Sections 5.2 and 5.3 of EDF-4380 provide the property requirements for the coated particle batches and coated particle composite. The Statistical Sampling Plan for AGR Fuel Materials (INL EDF-4542, Rev. 6) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the particles are outlined in ORNL product inspection plans: AGR-CHAR-PIP-01, AGR-CHAR-PIP-02, AGR-CHAR-PIP-03, and AGR-CHAR-PIP-04. The inspection report forms generated by these product inspection plans document the product acceptance for the property requirements listed in sections 5.2 and 5.3 of EDF-4380.

Note that, as the characterization procedures evolved and improved during the characterization of this composite, several important properties were remeasured (e.g., average kernel weight, buffer density, and coating thicknesses for the particle batches). This is discussed in sections 6-8 and sections 11-14, and the superceded data is included in section 16.

Table of Contents

1	Summary of acceptance test results for LEU01-46T	5
2	Product ID's associated with LEU01-46T	15
3	Coating process conditions	16
4	Classification of coated particles	32
5	Blend of coated particle composites	38
6	Characterization of LEUCO kernel composite	39
7	Characterization of NUCO kernel composite	46
8	Characterization of buffer on interrupted batches	53
9	Characterization of IPyC on interrupted batches	67
10	Characterization of IPyC on additional interrupted batches	91
11	Characterization of first batch of TRISO-coated particles	106
12	Characterization of second batch of TRISO-coated particles	121
13	Characterization of third batch of TRISO-coated particles	136
14	Characterization of fourth batch of TRISO-coated particles	151
15	Characterization of TRISO-coated particle composite	166
16	Superceded data	205

1 Summary of acceptance test results for LEU01-46T

This section contains inspection report forms (IRF's) associated with the coated particle composite LEU01-46T. These inspection report forms summarize the acceptance testing performed according to the product inspection plans: AGR-CHAR-PIP-02, AGR-CHAR-PIP-03, and AGR-CHAR-PIP-04. The information in these forms covers all the property specifications listed in sections 5.2 and 5.3 of the AGR-1 Fuel Product Specification and Characterization Guidance document INL EDF-4380, Rev. 6. The coated particle composite, LEU01-46T, was found to meet all the requirements in these two sections of EDF-4380, Rev. 6.

These inspection report forms also appear in later sections of this compilation, accompanied by the associated data report forms showing the results of each individual measurement.

Table 1-1 is provided for quick reference. It gives the mean values of key variable properties of the coated particle composite, LEU01-46T. For standard deviations of the distribution of the measured values see the appropriate IRF. For discussions on the uncertainty in these values, see the associated data acquisition methods and data report forms. The kernel diameter and density values are from ORNL measurements made for information only. The buffer and IPyC densities in the table are averages of the means for the individual interrupted batches (including confirmation batches on LEUCO), rather than direct measurements on the composite. The OPyC density in the table is an average of the mean OPyC density for each batch weighted by the fraction of each batch in the composite.

Table 1-1: Quick reference table for key variable properties of LEU01-46T.

Property	Mean
Average kernel diameter (µm)	349.7
Kernel envelope density (Mg/m ³)	10.924
Average buffer thickness (µm)	103.5
Average IPyC thickness (µm)	39.4
Average SiC thickness (µm)	35.3
Average OPyC thickness (µm)	41.0
Buffer envelope density (Mg/m³) (interrupted batches)	1.10
IPyC sink/float density (Mg/m³) (interrupted batches)	1.904
SiC sink/float density (Mg/m ³)	3.2075
OPyC sink/float density (Mg/m³) (weighted average)	1.907
IPyC anisotropy (BAFo equivalent)	1.022
OPyC anisotropy (BAFo equivalent)	1.019

Table 1-2 is also provided for quick reference. It gives the upper limit of the 95% confidence interval of the defect fraction for key attribute properties of the coated particle composite, LEU01-46T. In other words, these values are the lowest tolerance limits for which the composite would be deemed acceptable at 95% confidence based on the particular sample that was measured. For the actual number of trials and number of failures observed, see the inspection report form for the coated particle composite.

Table 1-2: Quick reference table for key attribute properties of LEU01-46T.

Property	Defect Fraction
Particles with SiC gold spot defects	≤1.0 x 10 ⁻³
Particle aspect ratio	≤3.9 x 10 ⁻³
Particles with burn-leach defects	≤2.5 x 10 ⁻⁵
Particles with missing OPyC	≤9.6 x 10 ⁻⁵

Inspection Report Form IRF-02A: Interrupted Coating Batches - Buffer Density

Procedure:	AGR-CHAR-PIP-02 Rev. 4
Batch 1 ID:	NUCO350-25B
Batch 1 description:	Buffer-coated BWXT kernel composite 69300
	NUCO350-368
Batch 2 description:	Buffer-coated BWXT kernel composite 69300
	NUCO350-54B
Batch 3 description:	Buffer-coated BWXT kernel composite 69300

Property		Measured Data S			Specification		Acceptance	Pass	Data
	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Records
to 1. Buffer appellance density (Ma (m²) 1.08 0.04 5 2.132 mean	mean	$A = x - ts/\sqrt{n} \ge 0.88$	1.04	pass	DRF-16				
Batch 1: Buffer envelope density (Mg/m³)	1.08	.08 0.04 5	2.132	1.03 ± 0.15	$B = x + ts/\sqrt{n} \le 1.18$	1.12	pass	DRF-22	
COLUMN TO THE CO	244	0.05	-	2.132	mean	$A = x - ts/\sqrt{n} \ge 0.88$	1.06	pass	DRF-16
Batch 2: Buffer envelope density (Mg/m³)	Mg/m ³) 1.11 0.05 5 2.132	2.132	1.03 ± 0.15	$B = x + ts/\sqrt{n} \le 1.18$	1.16	pass	DRF-22		
THE WEST OF U.S. W. S. RESTONANT	2.22		-	0.400	mean	$A = x - ts/\sqrt{n} \ge 0.88$	1.07	pass	DRF-16
Batch 3: Buffer envelope density (Mg/m³)	1.11	0.04	5	2.132	1.03 ± 0.15	$B = x + ts/\sqrt{n} \le 1.18$	1.15	pass	DRF-22

Comments				

Standard deviations are $\sqrt{5}$ times the uncertainties in buffer density (standard errors) reported on DRF-16.

Average thickness of buffer was 108 µm based on average envelope volume of 9.25E-5 cc (effective diameter of 561 µm) and average kernel diameter of 345 µm. Average thickness of buffer was 108 µm based on average outer diameter of 561 µm obtained per DAM-10 and average kernel diameter of 345 µm. Confirmatory batch on LEUCO kernels, LEU01-16E: mean buffer density = 1.10 g/cc.

Accept process for buffer density (Yes or No):

QA Reviewer

3-10-06

Reviewer

3-10-06

Reviewer

Date

Inspection Report Form IRF-02B: Interrupted Coating Batches - IPyC Density

Procedure:	AGR-CHAR-PIP-02 Rev. 4
Batch 1 ID:	NUCO350-30BI
Batch 1 description:	IPyC/Buffer on BWXT kernel composite 69300
Batch 2 ID:	NUCO350-37BI
Batch 2 description:	IPyC/Buffer on BWXT kernel composite 69300
Batch 3 ID:	NUCO350-29BI
Batch 3 description:	IPyC/Buffer on BWXT kernel composite 69300

		Measured Data			Specification		Acceptance	Pass	Data
Property	Mean (x)	Std. Dev.	# measured (n)	k or t value	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Records
Batch 1: IPyC sink/float density (Mg/m³)			122		mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.888	pass	
	1 0017	0.0110	25	1.711	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.896 pass	DRF-03	
	1.8917	0.0113	25	3.158	≤0.01 ≤ 1.80	1.856	pass		
				3.158		D = x + ks < 2.00	1.927	pass	
Batch 2: IPyC sink/float density (Mg/m³)		0.0153	21	1,725	25 mean 1.90 ± 0.05 $B = x + ts/\sqrt{n} \le 1.95$ dispersion $C = x - ks > 1.80$	$A = x - ts/\sqrt{n} \ge 1.85$	1.898	pass	DRF-03
						$B = x + ts/\sqrt{n} \le 1.95$	1.910	pass	
	1.9038	0.0153	21	2.262		1.854	pass	DK7-03	
				3.262	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.954	pass	
					1.729 mean $A = x - ts/\sqrt{n} \ge 1.85$ 1.906 $B = x + ts/\sqrt{n} \le 1.95$ 1.917	$A = x - ts/\sqrt{n} \ge 1.85$	1.906	pass	
				1.729		1.917	pass	2222	
Batch 3: IPyC sink/float density (Mg/m³)	1.9112	0.0142	20	2.205	dispersion	C = x - ks > 1.80	1.864	pass	DRF-03
				3.295	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.958	pass	

C	omn	ient	is

95% confidence interval for Buffer thickness in composite = $(104\mu m, 106\mu m)$ with $<1\% \le 55\mu m$. 95% confidence interval for IPyC thickness in composite = $(34.2\mu m, 34.9\mu m)$ with $>1\% \le 30\mu m$ and $<1\% \ge 56\mu m$. Confirmatory batch on LEUCO kernels, LEU01-151: mean IPyC density = 1.9074 g/cc.

QA Reviewer

Accept process for IPyC density (Yes or No):

Yes

3-10-06

Date

Inspection Report Form IRF-03: Coated Particle Batches

Procedure: AGR-CHAR-PIP-03 Rev. 2 Coated particle batch ID: LEU01-21T

Coated particle batch description: TRISO on BWXT kernel composite 69302

Property		Meas	ured Data		Specification INL EDF-4380	Acceptance Criteria	Acceptance Test Value	Pass or fail	Data Records								
	Mean (x)	Std, Dev.	# measured (n)	t value (t)													
Average buffer thickness for	102.4	7.1	126	1.657	mean	A = x - ts/√n ≥ 85	101.4	pass	DRF-08								
each particle (µm)	102.4	7.1	120	1.037	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	103.4	pass	DRF-11								
Average IPyC thickness for	kness for	1,655 mean	$A = x - ts/\sqrt{n} \ge 35$	39.6	pass	DRF-08											
each particle (µm)	39.9	2.0	152	1.055	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.2	pass DRF-1	DRF-11								
Average SiC thickness for	37.6	0.9	152	1 455	mean	$A = x - ts/\sqrt{n} \ge 31$	37.5	pass	DRF-08								
each particle (µm)	37.6	0.9	152	1.055	1.655 35 ± 4	$B = x + ts/\sqrt{n} \le 39$	37.7	pass	DRF-11								
Average OPyC thickness for	41.0	2.2	2.2	2.2	2.2	2.2	2.2	2.2	152	153	1,655	A cer	mean	$A = x - ts/\sqrt{n} \ge 35$	40.7	pass	DRF-08
each particle (µm)	41.0	2.2	152	1.055	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	41.3	pass	DRF-11								
Particles with missing OPyC			15578		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19								

	1. ha Am
	QC Supervisor
	ot Coated particle batch (Yes or No): Yes
	ot Coated particle batch (Yes or No):

18072

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	LEU01-3ST
Coated particle batch description:	TRISO on BWXT kernel composite 69302

		Meas	ured Data		Specification	Acceptance Criteria	Acceptance Test Value	Pass	Data Records	
Property		Std. Dev. (s)	# measured (n)	t value (t)	INL EDF-4380			or fail		
Average buffer thickness for	103.4	8.2	8.2 163 1.654	t ssa mean	$A = x - ts/\sqrt{n} \ge 85$	102.3	pass	DRF-08 DRF-11		
each particle (µm)	103.4	0,2		1.034 100 ± 15	$B = x + ts/\sqrt{n} \le 115$	104.5	pass			
Average IPyC thickness for	39.7	2.2	214	214	1,652	mean	$A = x - ts/\sqrt{n} \ge 35$	39.5	pass	DRF-08
each particle (µm)	39.7	2.2		1.052	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	39.9	pass	DRF-11	
Average SIC thickness for	36.3	1.0	214 1.		mean	$A = x - ts/\sqrt{n} \ge 31$	36.2	pass	DRF-08	
each particle (µm)	30.3	1.0			35 ± 4	$B = x + ts/\sqrt{n} \le 39$	36.4	pass	DRF-11	
Average OPyC thickness for	40,2	1.9	214	4 450	1,652 mean	$A = x - ts/\sqrt{n} \ge 35$	40.0	pass	DRF-08	
each particle (µm)	40.2	1.9	214	1.032	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.4	pass	DRF-11	
Particles with missing OPyC			15622		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19	

0 0	
July John	3-23-06
QC Supervisor	Date
cept Coated particle batch (Yes or No): Yes	

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	LEU01-27T
Coated particle batch description:	TRISO on BWXT kernel composite 69302

		Meas	ured Data		Specification INL EDF-4380	Acceptance Criteria	Acceptance Test Value	Pass	Data Records							
Property	The state of the s	Std. Dev.	# measured (n)	t value (t)				or fail								
Average buffer thickness for	104.9	8.2	188 1.653	1.653 mean 100 ± 15	$A = x - ts/\sqrt{n} \ge 85$	103.9	pass	DRF-08								
each particle (µm)	104.9	0.2			1.055	1.053	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	105.9	pass	DRF-11					
Average IPyC thickness for	39.0	2.2	249 1.6	240	2 240	1.651	mean	$A = x - ts/\sqrt{n} \ge 35$	38.8	pass	DRF-08					
each particle (µm)	39.0	2.2		1.651	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	39.2	pass	DRF-11							
Average SiC thickness for	24.6	34.6 1.2 248	240	240	249	1.2 248	1.651	1.651 mean	$A = x - ts/\sqrt{n} \ge 31$	34.5	pass	DRF-08				
each particle (µm)	34.0	1.2	240	248 1.651	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	34.7	pass	DRF-11							
Average OPyC thickness for	41.7	2.0	248	Chican	mean	$A = x - ts/\sqrt{n} \ge 35$	41.5	pass	DRF-08							
each particle (µm)	41.7	2.0		248	248	248	248	248	248	248	248	1.651	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	41.9	pass
Particles with missing OPyC			15680	100	defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19							

Comments
Goldspot analysis performed on missing OPyC sample for information only. 31 out of 15680 gold spots observed.

QC Supervisor		3-23-06
ccept Coated particle batch (Yes or No):	Yes	Date

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	
Coated particle batch description:	TRISO on BWXT kernel composite 69302

		Meas	ured Data		Specification		Acceptance	Pass	Data																												
Property Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Test Value	or fail	Records																													
Average buffer thickness for	107.2	7.7	147 1.655	1.655 mean 100 ± 15	$A = x - ts/\sqrt{n} \ge 85$	106.1	pass	DRF-08 DRF-11																													
each particle (µm)	107.2	1.1			$B = x + ts/\sqrt{n} \le 115$	108.3	pass																														
Average IPyC thickness for	40.1	2.0	194 1.653	104	101	04 4 652	1.000	nean mean	$A = x - ts/\sqrt{n} \ge 35$	39.9	pass	DRF-08																									
each particle (µm)	40.1	2.0		1.053	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.3	pass	DRF-11																												
Average SiC thickness for	25.0	4.4	404	194 1.653	4.652 M	mean	$A = x - ts/\sqrt{n} \ge 31$	35.7	pass	DRF-08																											
each particle (µm)	35.8	1.1	194		1.653 35 ± 4	$B = x + ts/\sqrt{n} \le 39$	35.9	pass	DRF-11																												
Average OPyC thickness for	40.0		404	1	1	mean	$A = x - ts/\sqrt{n} \ge 35$	39.9	pass	DRF-08																											
each particle (µm)	40.1	1.9	194 1.653	194 1.653	194 1.653	194 1.653	194	194	194	194	194	194	194	194	194	194	194	194	1.653	1.653	194 1.653	194 1.653	1.653	194 1.653	1.653	1.653	1.653	1.653	1.653	1.653	1.653	194 1.653	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.3	pass	DRF-11
Particles with missing OPyC	1000		15574		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19																												

Jerlyn Hum	3-23-66
QC Supervisor	Date
ccept Coated particle batch (Yes or No):	

Inspection Report Form IRF-04A: Coated Particle Composites

Procedure:	AGR-CHAR-PIP-04 Rev. 2
Coated particle composite ID:	LEU01-46T
Coated particle composite description:	Baseline Composite: TRISO on BWXT kernel composite 69302

		Meas	sured Data		Specification		Acceptance	Pass	Data		
Property	Mean (x)	Std. Dev.	# measured (n)	k or t	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Records		
	12/	(3)	(11)		mean	A = x - ts/√n ≥ 85	102.6	pass			
Average buffer thickness for	103.5	8.2	213	1.652	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	104.4	pass	DRF-08		
each particle (μm)	103.5	8.2	213	2.560	dispersion ≤0.01 ≤ 55	C = x - ks > 55	82.5	pass	DRF-11		
				1.651	mean	$A = x - ts/\sqrt{n} \ge 36$	39.2	pass			
Average IPvC thickness for			2.2	1.051	40 ± 4	$B = x + ts/\sqrt{n} \le 44$	39.6	pass	DRF-08		
each particle (µm)	39.4	39.4 2.3	2.3 233	2.549	dispersion	C = x - ks > 30	33.5	pass	DRF-11		
	1 7			2.549 ≤0.01 ≤ 30 ≤0.01 ≥ 56		D = x + ks < 56	45.3	pass			
					mean	A = x - ts/√n ≥ 32	35.2	pass			
Average SiC thickness for	25.0		1.3 233	1.651	35 ± 3	$B = x + ts/\sqrt{n} \le 38$	35.4	pass	DRF-08		
each particle (μm)	35.3	1.3		2.549	dispersion ≤0.01 ≤ 25	C = x - ks > 25	32.0	pass	DRF-11		
				1/222	mean	A = x - ts/√n ≥ 36	40.8	pass			
Average OPyC thickness for	41.0	2.1		1.651	40 ± 4	B = x + ts/√n ≤ 44	41.2	pass	DRF-08		
each particle (µm)	41.0	2.1	2.1 233	2.549	dispersion ≤0.01 ≤ 20	C = x - ks > 20	35.6	pass	DRF-11		
Buffer envelope density				Se	e 1RF-02A			pass	IRF-02A		
IPyC sink/float density				Se	e IRF-028			pass	IRF-02B		
1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0.0000	0.0032 40	1.685	mean ≥ 3.19	$A = x - ts/\sqrt{n} \ge 3.19$	3.207	pass	TRAFFORM
SiC sink/float density (Mg/m³)	3.2075	0.0032	40	40		32 40	2.941	dispersion ≤0.01 ≤ 3.17	C = x - ks > 3.17	3.198	pass
OPyC sink/float density				Se	e IRF-04B				IRF-048		
	1.022	0.002	10	1.833	mean ≤ 1.035	$B = x + ts/\sqrt{n} \le 1.035$	1.023	pass	200200		
IPyC anisotropy (BAFo equivalent)	1.022	0,002	10	3.981	dispersion ≤0.01 ≥1.06	D = x + ks < 1.06	1,030	pass	DRF-18		
OPyC anisotropy (BAFo equivalent)	1.010	0.003	10	1.833	mean ≤ 1,035	B = x + ts/√n ≤ 1.035	1.021	pass	DRF-18		
Oryc anisotropy (BAPO equivalent)	1.019	1.019 0.003	10	3.981	dispersion ≤0.01 ≥1.06	D = x + ks < 1.06	1.031	pass	DKF-18		
Particles with SiC gold spot defects			81507	E EVIII	defect fraction ≤ 1.0 x 10 ⁻³	≤6 in 12,000 or ≤14 in 22,000	66	pass	DRF-20		
Particle aspect ratio			1626		dispersion ≤0.01 ≥1.14	≤1 in 500 or ≤7 in 1420	2	pass	DRF-07 DRF-10		
Particles with SiC burn-leach defects			120688		defect fraction ≤ 1.0 × 10 ⁻⁴	≤1 in 50,000 or ≤6 in 120,000	0	pass	DRF-21		
Particles with missing OPyC			31227		defect fraction ≤ 3.0 x 10 ⁻⁴	≤4 in 31,000	0	pass	DRF-19		
SiC microstructure			3		comparison to visual standard	all imaged pass visual standard comparison	3	pass	DRF-23		

Comments						
66 out of 81507 gold spot defects passes the acceptance criterion of ≤66 in 81100 indicating ≤1E-3 defects with 95% confidence.						

July Am	3-21-06 Date
Accept coated particle composite (Yes or No):	
MA Pre- QA Reviewer	3/29/06 Date

Inspection Report Form IRF-04B: Outer Pyrocarbon Density		
Procedure:	AGR-CHAR-PIP-04 Rev. 2	
Coated particle composite ID:	LEU01-46T	
Coated particle composite description:	Baseline Composite: TRISO on BWXT kernel composite 69302	
Batch 1 ID:	LEU01-21T	
Batch 1 description:	Baseline TRISO on BWXT kernel composite 69302	
Batch 2 ID:	LEU01-35T	
Batch 2 description:	Baseline TRISO on BWXT kernel composite 69302	
Batch 3 ID:	LEU01-27T	
Batch 3 description:	Baseline TRISO on BWXT kernel composite 69302	
Batch 4 ID:	LEU01-45T	
Batch 4 description:	Baseline TRISO on BWXT kernel composite 69302	

	Measured Data		Specification		Acceptance Pass		Data																			
Property	Mean Std. Dev. # measured k or t IN (x) (s) (n) value		INL EDF-4380 Rev. 6			or fail	Record																			
					mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.909	pass																		
	222	0.0129		1.682	.682 1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.915	pass	DRF-03																	
Batch 1: OPyC sink/float density (Mg/m³)	1.9121	0.0129	43	2,905	dispersion	C = x - ks > 1.80	1.875	pass	DRF-0																	
		E		2.905	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.950	pass																		
					mean	A = x - ts/√n ≥ 1.85	1.902	pass																		
	1.9029	0.0056	52		1.675	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.904	pass																	
Batch 2: OPyC sink/float density (Mg/m³)				2.042	dispersion	C = x - ks > 1.80	1.887	pass	DRF-03																	
					2.842	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.919	pass																	
	1.9034 0	0.0054	Tan-		1.500	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.902	pass																	
					AF.	4F	45	45	45	AF.	45	45	45	ar.	4F	45	AF.	AF.	ar.	45	ar.	45	40	an .	1.680	1.90 ± 0.05
Batch 3: OPyC sink/float density (Mg/m³)	1.9034	0.0054	45	2.897	dispersion ≤0.01 ≤ 1.80 - ≤0.01 ≥ 2.00	C = x - ks > 1.80	1.888	pass	DRF-0																	
				2.897		D = x + ks < 2.00	1.919	pass																		
	1.9112 0.00		mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.909	pass																				
Batch 4: OPyC sink/float density (Mg/m³)		0.0075	41	41	41	76 41	41	6 41	41	41	41	1.684 1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.913	pass	DRF-03										
		0.0076										41	41	2.922	dispersion ≤0.01 ≤ 1.80	C = x - ks > 1.80	1.889	pass	DRF-03							
				2.922	≤0.01 ≤ 1.80	D = x + ks < 2.00	1.933	pass																		

s.
3-21-06

Accept composite for OPyC density (Yes or No): Yes

MA () QA Reviewer

2 Product ID's associated with LEU01-46T

Kernels

LEU01-## (from BWXT G73D-20-69302) NUCO350-## (from BWXT G73B-NU-69300)

Buffer-only particles

NUCO350-25B

NUCO350-36B

NUCO350-54B

NUCO350-58B (composite of 25B+36B+54B, for information only)

LEU01-16B (confirmation on LEUCO kernels, for information only)

IPyC/Buffer-only particles

NUCO350-30BI

NUCO350-37BI

NUCO350-29BI

NUCO350-66BI (composite of 30BI+37BI+29BI, for information only)

LEU01-15I (confirmation on LEUCO kernels, for information only)

LEU01-23I (confirmation on LEUCO kernels, for information only)

LEU01-26I (confirmation on LEUCO kernels, for information only)

LEU01-41I (confirmation on LEUCO kernels, for information only)

TRISO-coated particles

LEU01-21T

LEU01-35T

LEU01-27T

LEU01-45T

LEU01-46T (composite of 21T+35T+27T+45T)

3 Coating process conditions

The following pages contain coating process conditions for all coated particle batches associated with the LEU01-46T coated particle composite. These particles were coated within the baseline process conditions listed in section 3.1 of the AGR-1 Fuel Product Specification and Characterization Guidance document INL EDF-4380, Rev. 6.

Buffer-only interrupted batches

NUCO350-25B NUCO350-36B NUCO350-54B LEU01-16B

<u>IPyC/Buffer-only interrupted batches</u>

NUCO350-30BI NUCO350-37BI NUCO350-29BI LEU01-15I LEU01-23I LEU01-26I LEU01-41I

TRISO-coated batches

LEU01-21T LEU01-35T LEU01-27T LEU01-45T

Summary for Baseline Buffer Qualification Run – NUCO350-25B

Coating Run No.		NUCO350-25B	
Description:	Baseline processing conditions for Buffer layer		
Procedure:	AGR-COAT-SOP-01, Rev.		
Kernel Lot No.	NUCO350-2		
Operator:	R. A. Lowde		
Date:	06/17/20		
Data Location:	B002249, Coating Lo	g, Volume 1, pp. 202 - 212	
Kernel Batch Wt.		62.11 g	
Coated Particle Batch Wt.		81.33 g	
	AGR-1 Parameter	As-Processed	
Buffer		1	
Coating gases	$C_2H_2 + Ar$	C ₂ H ₂ + Ar	
TGF		8530 sccm	
CGF	0.60 ± 0.10	0.61	
Temperature	1450 ± 25°C	1450°C	
Time		5 min	
IPyC			
Coating gases	Ar + C ₂ H ₂ + C ₃ H ₆		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1265 ± 25°C		
Time			
SiC			
Coating gases	H ₂ + MTS		
TGF			
CGF	0.015 ± 0.005		
Temperature	1500 ± 25°C		
Time			
OPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1290 ± 40°C		
Time			
Comments/Notes:			
Operators A D 1	010	1/1-1-	
Operator: //wyy	yewan Da	te: 6/17/05	
QAS:	Da	te: (3/30/01	

Summary for Baseline Buffer Qualification Run – NUCO350-36B

Coating Run No.		NUCO350-36B	
Description:	Baseline processing conditions for Buffer layer		
Procedure:	AGR-COAT-SOP-01, Rev. 1		
Kernel Lot No.		NUCO350-36	
Operator:		R. A. Lowden	
Date:		06/17/2005	
Data Location:	B002249, Coating	Log, Volume 1, pp. 214 - 223	
Kernel Batch Wt.		61.97 g	
Coated Particle Batch Wt.		81.50 g	
	AGR-1 Parameter	As-Processed	
Buffer		1	
Coating gases	$C_2H_2 + Ar$	$C_2H_2 + Ar$	
TGF		8530 sccm	
CGF	0.60 ± 0.10	0.61	
Temperature	1450 ± 25°C	1450°C	
Time		5 min	
IPyC		1	
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1265 ± 25°C		
Time	100000000000000000000000000000000000000		
SiC			
Coating gases	H ₂ + MTS		
TGF			
CGF	0.015 ± 0.005		
Temperature	1500 ± 25°C		
Time			
OPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1290 ± 40°C		
Time			
Comments/Notes:			
1 1 1	al 0		
Operator: //u/yy	a fourth	Date: 6/17/05	
QAS:	2-	Date: 3/30/06	

Summary for Baseline Buffer Qualification Run – NUCO350-54B

Coating Run No.		NUCO350-54E	
Description:	Baseline processing conditions for Buffer layer		
Procedure:	AGR-COAT-SOP-01, Rev.		
Kernel Lot No.	NUCO350-5		
Operator:		R. A. Lowder	
Date:	06/20/20		
Data Location:	B002249, Coating	Log, Volume 1, pp. 224 - 233	
Kernel Batch Wt.		62.08	
Coated Particle Batch Wt.		81.47	
	AGR-1 Parameter	As-Processed	
Buffer	and the control of the first of the control of the		
Coating gases	$C_2H_2 + Ar$	C ₂ H ₂ + Ar	
TGF		8530 sccm	
CGF	0.60 ± 0.10	0.61	
Temperature	1450 ± 25°C	1450°C	
Time		5 min	
IPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1265 ± 25°C		
Time	3 Julie 20 Sp. 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
SiC			
Coating gases	H ₂ + MTS		
TGF			
CGF	0.015 ± 0.005		
Temperature	1500 ± 25°C		
Time			
OPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1290 ± 40°C		
Time			
Comments/Notes:	10		
Operator: Muhaya (1)	bwdn 1	Date: 6/20/05	
QAS:	//)	Date: 2/20/06	

Summary for Baseline Buffer Qualification Run – LEU01-16B

Coating Run No.			LEU01-16B	
Description:	Baseline processing conditions for Buffer layer			
Procedure:	AGR-COAT-SOP-01, Rev.			
Kernel Lot No.	LEU01-10			
Operator:	R. A. Lowd			
Date:	11/03/20			
Data Location:	B002516, Coa	ating Log	, Volume 3, pp. 2 – 10	
Kernel Batch Wt.			63.30 g	
Coated Particle Batch Wt.			82.57 g	
	AGR-1 Paramete	r	As-Processed	
Buffer				
Coating gases	C ₂ H ₂ + Ar		$C_2H_2 + Ar$	
TGF			8530 sccm	
CGF	0.60 ± 0.10		. 0.61	
Temperature	1450 ± 25°C		1450°C	
Time			5 min	
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$	S.		
TGF				
CGF	0.30 ± 0.03			
CGR	0.85 ± 0.085			
Temperature	1265 ± 25°C			
Time				
SiC				
Coating gases	H ₂ + MTS			
TGF				
CGF	0.015 ± 0.005			
Temperature	1500 ± 25°C			
Time				
OPyC			C .	
Coating gases	Ar + C ₂ H ₂ + C ₃ H ₆			
TGF	1000 =743.74			
CGF	0.30 ± 0.03			
CGR	0.85 ± 0.085			
Temperature	1290 ± 40°C			
Time				
Comments/Notes:				
1 1	10		9)	
Operator: //ululul	U power	Date:	11/3/05	
QAS: MACCH	2	Date:	2/20/06	

Summary for Baseline IPyC Qualification Run – NUCO350-30BI

Coating Run No.		NUCO350-30BI	
Description:	Baseline processing conditions for IPyC layer		
Procedure:	AGR-COAT-SOP-01, Rev.		
Kernel Lot No.	NUCO350-		
Operator:	R. A. Lowo		
Date:	06/29/20		
Data Location:	B002249, Coating Log	g, Volume 1, pp. 260 - 268	
Kernel Batch Wt.		61.87 g	
Coated Particle Batch Wt.		104.34 g	
	AGR-1 Parameter	As-Processed	
Buffer		5	
Coating gases	C ₂ H ₂ + Ar	C ₂ H ₂ + Ar	
TGF		8530 sccm	
CGF	0.60 ± 0.10	0.61	
Temperature	1450 ± 25°C	1450°C	
Time		5 min	
IPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$	
TGF		9430 sccm	
CGF	0.30 ± 0.03	0.30	
CGR	0.85 ± 0.085	0.85	
Temperature	1265 ± 25°C	1265°C	
Time		13 min	
SiC		11	
Coating gases	H ₂ + MTS		
TGF			
CGF	0.015 ± 0.005		
Temperature	1500 ± 25°C		
Time			
OPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1290 ± 40°C		
Time			
Comments/Notes:	110		
Operator: / lightly	a forder Dat	te: 6/29/05	
QAS:	Dar	te: 3/30/06	

Summary for Baseline IPyC Qualification Run – NUCO350-37BI

Coating Run No.		NUCO350-3		
Description:	Baseline processing conditions for IPyC layer			
Procedure:	AGR-COAT-SOP-01, Rev. 1			
Kernel Lot No.	NUCO350-37			
Operator:	R. A. Lowde			
Date:	06/30/200			
Data Location:	B002249, Coating	Log, Volume 1, pp. 270 -	278	
Kernel Batch Wt.		61.9	92 g	
Coated Particle Batch Wt.		103.4	15 g	
	AGR-1 Parameter	As-Processed		
Buffer				
Coating gases	$C_2H_2 + Ar$	$C_2H_2 + Ar$		
TGF		8530 sccm		
CGF	0.60 ± 0.10	0.61		
Temperature	1450 ± 25°C	1450°C		
Time		5 min		
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$	3	
TGF		9430 sccm		
CGF	0.30 ± 0.03	0.30		
CGR	0.85 ± 0.085	0.85		
Temperature	1265 ± 25°C	1265°C		
Time		13 min		
SiC				
Coating gases	H ₂ + MTS			
TGF				
CGF	0.015 ± 0.005			
Temperature	1500 ± 25°C			
Time				
OPyC	L			
Coating gases	$Ar + C_2H_2 + C_3H_6$			
TGF				
CGF	0.30 ± 0.03			
CGR	0.85 ± 0.085			
Temperature	1290 ± 40°C			
Time	W 100 WAY 1000 1000 1000			
Comments/Notes:	1 1 0			
Operator: //ulund	afonda	Date: 6/30/05	-	
QAS: MATS		Date: 3/30/0	,	

Summary for Baseline IPyC Qualification Run – NUCO350-29BI

Coating Run No.			NUCO350-29BI
Description:	Baseline processing conditions for IPyC layer		
Procedure:	AGR-COAT-SOP-01, Rev.		
Kernel Lot No.	NUCO350-2		
Operator:	R. A. Lowde		
Date:	07/01/20		
Data Location:	B002249, Coating	Log, Vo	olume 1, pp. 279 - 287
Kernel Batch Wt.			62.52 g
Coated Particle Batch Wt.			105.56 g
	AGR-1 Parameter		As-Processed
Buffer		- ·	
Coating gases	$C_2H_2 + Ar$		$C_2H_2 + Ar$
TGF			8530 sccm
CGF	0.60 ± 0.10		0.61
Temperature	1450 ± 25°C		1450°C
Time			5 min
IPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		$Ar + C_2H_2 + C_3H_6$
TGF			9430 sccm
CGF	0.30 ± 0.03		0.30
CGR	0.85 ± 0.085		0.85
Temperature	1265 ± 25°C		1265°C
Time			13 min
SiC			
Coating gases	H ₂ + MTS		
TGF			
CGF	0.015 ± 0.005		
Temperature	1500 ± 25°C		
Time			
OPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1290 ± 40°C		
Time			
Comments/Notes:			
101	.10		
Operator: Hughand C	Iborda	Date:	7/1/05
QAS: March	2,	Date:	13/30/01

Summary for Baseline IPyC Qualification Run – LEU01-15I

Coating Run No.			LEU01-15I	
Description:	Baseline processing conditions for IPyC layer			
Procedure:	AGR-COAT-SOP-01, Rev. 1			
Kernel Lot No.	LEU01-15K			
Operator:	R. A. Lowder			
Date:	11/04/200			
Data Location:	B002516, Coa	ting Log,	Volume 3, pp. 12 – 20	
Kernel Batch Wt.			63.27 g	
Coated Particle Batch Wt.			108.96 g	
	AGR-1 Paramete	r	As-Processed	
Buffer				
Coating gases	$C_2H_2 + Ar$		$C_2H_2 + Ar$	
TGF			8530 sccm	
CGF	0.60 ± 0.10		0.61	
Temperature	1450 ± 25°C		1450°C	
Time			5 min	
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$	3	$Ar + C_2H_2 + C_3H_6$	
TGF			9430 sccm	
CGF	0.30 ± 0.03		0.30	
CGR	0.85 ± 0.085		0.85	
Temperature	1265 ± 25°C		1265°C	
Time			13 min	
SiC				
Coating gases	H ₂ + MTS			
TGF				
CGF	0.015 ± 0.005			
Temperature	1500 ± 25°C			
Time				
OPyC				
Coating gases	$Ar + C_2H_2 + C_3H$	6		
TGF				
CGF	0.30 ± 0.03			
CGR	0.85 ± 0.085			
Temperature	1290 ± 40°C			
Time	Annual State of State			
Comments/Notes:	1 0			
Operator: Muhard	aponda	Date:	11/4/05	
QAS: MACCA	2	Date:	3/20/00	

Summary for Variant #3b Coating Run - LEU01-23l

Coating Run No.		LEU01-23	
Description:	Variant #3b AGR-1 processing conditions		
Procedure:	AGR-COAT-SOP-01, Rev.		
Kernel Lot No.	LEU01-23		
Operator:		R. A. Lowder	
Date:		01/19/2006	
Data Location:	B002516, Coating Log, V	olume 3, pp. 194 – 201,203	
Kernel Batch Wt.	63.42		
Coated Particle Batch Wt.		106.94	
	AGR-1 Parameter	As-Processed	
Buffer		1	
Coating gases	C ₂ H ₂ + Ar	C ₂ H ₂ + Ar	
TGF		8530 sccm	
CGF	0.60 ± 0.10	0.61	
Temperature	1450 ± 25°C	1450°C	
Time		5 min	
IPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$	
TGF		9435 sccm	
CGF	0.30 ± 0.03	0.30	
CGR	0.85 ± 0.085	0.85	
Temperature	1265 ± 25°C	1265°C	
Time		12.33 min	
SiC			
Coating gases	H ₂ + MTS		
TGF			
CGF	0.015 ± 0.005		
Temperature	1500 ± 25°C		
Time			
OPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$		
TGF			
CGF	0.30 ± 0.03		
CGR	0.85 ± 0.085		
Temperature	1290 ± 40°C		
Time	- 0000 TUVE 50		
Comments/Notes:	1010		
Operator: Muhdyl	a wan o	ate: 1/19/06	
QAS: MOCI	Q D	ate: 2/29/04	

Summary for Variant #3b Coating Run - LEU01-26l

Coating Run No.			LEU01-26	
Description:	Variant #3b AGR-1 processing conditions			
Procedure:	AGR-COAT-SOP-01, Rev. 1			
Kernel Lot No.			LEU01-26K	
Operator:			R. A. Lowder	
Date:			01/17/2006	
Data Location:	B002516, Coating Log	g, Volum	e 3, pp. 186 – 193,202	
Kernel Batch Wt.			63.42 g	
Coated Particle Batch Wt.			106.59 g	
	AGR-1 Parameter		As-Processed	
Buffer				
Coating gases	C ₂ H ₂ + Ar		$C_2H_2 + Ar$	
TGF			8530 sccm	
CGF	0.60 ± 0.10		0.61	
Temperature	1450 ± 25°C		1450°C	
Time			5 min	
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$		$Ar + C_2H_2 + C_3H_6$	
TGF .			9435 sccm	
CGF	0.30 ± 0.03		0.30	
CGR	0.85 ± 0.085		0.85	
Temperature	1265 ± 25°C		1265°C	
Time			12.33 min	
SiC			E PLOST COLUMN CONTRACTOR	
Coating gases	H ₂ + MTS			
TGF	-			
CGF	0.015 ± 0.005			
Temperature	1500 ± 25°C			
Time				
OPyC	N A			
Coating gases	$Ar + C_2H_2 + C_3H_6$			
TGF				
CGF	0.30 ± 0.03			
CGR	0.85 ± 0.085			
Temperature	1290 ± 40°C			
Time	, 3990, 30 10 -00			
Comments/Notes:	0 0			
Operator: Ruhwy	a few a	Date:	1/7/06	
QAS: 77/16	70	Date:	- Laston	

Summary for Variant #3b Coating Run - LEU01-41I

Coating Run No.		LEU01-41		
Description:	Variant #3b AGR-1 processing conditions			
Procedure:	AGR-COAT-SOP-01, Rev. 1			
Kernel Lot No.		LEU01-41K		
Operator:		R. A. Lowden		
Date:		01/20/2006		
Data Location:	B002516, Coating I	Log, Volume 3, pp. 204 - 213		
Kernel Batch Wt.		63.42 g		
Coated Particle Batch Wt.		106.97 g		
	AGR-1 Parameter	As-Processed		
Buffer				
Coating gases	$C_2H_2 + Ar$	C ₂ H ₂ + Ar		
TGF		8530 sccm		
CGF	0.60 ± 0.10	0.61		
Temperature	1450 ± 25°C	1450°C		
Time		5 min		
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$		
TGF		9435 sccm		
CGF	0.30 ± 0.03	0.30		
CGR	0.85 ± 0.085	0.85		
Temperature	1265 ± 25°C	1265°C		
Time		12.33 min		
SiC				
Coating gases	H ₂ + MTS			
TGF				
CGF	0.015 ± 0.005			
Temperature	1500 ± 25°C			
Time				
OPyC	•			
Coating gases	$Ar + C_2H_2 + C_3H_6$			
TGF	POLITICAL SALES SALES			
CGF	0.30 ± 0.03			
CGR	0.85 ± 0.085			
Temperature	1290 ± 40°C			
Time	ACTION OF A TO			
Comments/Notes:	10			
Operator: Muhaya	adowsh	Date: 1/20/06		
QAS: MICIE	2	Date: 3/30/00		

Summary for Baseline Coating Run - LEU01-21T

Coating Run No.			LEU01-21T	
Description:	Baseline AGR-1 processing conditions			
Procedure:	AGR-COAT-SOP-01, Rev.			
Kernel Lot No.			LEU01-21K	
Operator:			R. A. Lowden	
Date:			11/18/2005	
Data Location:	B002516, Co	ating Log	g, Volume 3, pp. 24 -33	
Kernel Batch Wt.			63.41 g	
Coated Particle Batch Wt.			187.07 g	
	AGR-1 Paramete	r	As-Processed	
Buffer			(144) to 1.14 (14) A POSSO	
Coating gases	$C_2H_2 + Ar$		$C_2H_2 + Ar$	
TGF			8530 sccm	
CGF	0.60 ± 0.10		0.61	
Temperature	1450 ± 25°C		1450°C	
Time			5 min	
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$		$Ar + C_2H_2 + C_3H_6$	
TGF			9435 sccm	
CGF	0.30 ± 0.03		0.30	
CGR	0.85 ± 0.085		0.85	
Temperature	1265 ± 25°C		1265°C	
Time			12.33 min	
SiC				
Coating gases	H ₂ + MTS		H ₂ + MTS	
TGF			16,933 sccm	
CGF	0.015 ± 0.005		0.0123	
Temperature	1500 ± 25°C		1500°C	
Time			140 min	
ОРуС				
Coating gases	$Ar + C_2H_2 + C_3H_6$		$Ar + C_2H_2 + C_3H_6$	
TGF			16,215 sccm	
CGF	0.30 ± 0.03		0.30	
CGR	0.85 ± 0.085		0.85	
Temperature	1290 ± 40°C		1290°C	
Time	373,73,83		10 min	
Comments/Notes:	10			
Operator: Mulidial (1 dowar	Date:	11/18/05	
QAS: MICH	2	Date:	12/29/05	

Summary for Baseline Coating Run - LEU01-35T

Coating Run No.			LEU01-35T	
Description:	Baseline AGR-1 processing conditions			
Procedure:	AGR-COAT-SOP-01, Rev.			
Kernel Lot No.			LEU01-35K	
Operator:			R. A. Lowder	
Date:	1		12/08/2005	
Data Location:	B002516, Co	ating Log	, Volume 3, pp. 44 - 52	
Kernel Batch Wt.			63.18 g	
Coated Particle Batch Wt.			184.02 g	
	AGR-1 Paramet	er	As-Processed	
Buffer				
Coating gases	C ₂ H ₂ + Ar		$C_2H_2 + Ar$	
TGF			8530 sccm	
CGF	0.60 ± 0.10		0.61	
Temperature	1450 ± 25°C		1450°C	
Time			5 min	
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_3$	6	$Ar + C_2H_2 + C_3H_6$	
TGF			9435 sccm	
CGF	0.30 ± 0.03		0.30	
CGR	0.85 ± 0.085		0.85	
Temperature	1265 ± 25°C		1265°C	
Time			12.33 min	
SiC				
Coating gases	H ₂ + MTS		H ₂ + MTS	
TGF	-		16,920 sccm	
CGF	0.015 ± 0.005		0.0116	
Temperature	1500 ± 25°C		1500°C	
Time			140 min	
OPyC			Carrie and	
Coating gases	Ar + C ₂ H ₂ + C ₃ H	6	$Ar + C_2H_2 + C_3H_6$	
TGF			16,215 sccm	
CGF	0.30 ± 0.03		0.30	
CGR	0.85 ± 0.085		0.85	
Temperature	1290 ± 40°C		1290°C	
Time	1200 2 40 0		10 min	
Comments/Notes:	1 0			
Operator: highward	1 pwch	Date:	12/8/05	
QAS: MYCC)	Date:	12/8/05	

Summary for Baseline Coating Run - LEU01-27T

Coating Run No.		LEU01-27T		
Description:	Baseline A	AGR-1 processing conditions		
Procedure:	AGR-COAT-SOP-01, Rev. 1			
Kernel Lot No.		LEU01-27K		
Operator:		R. A. Lowder		
Date:		12/15/2005		
Data Location:	B002516, Coating	Log, Volume 3, pp. 124 -134		
Kernel Batch Wt.		63.39 g		
Coated Particle Batch Wt.		185.95 g		
	AGR-1 Parameter	As-Processed		
Buffer				
Coating gases	$C_2H_2 + Ar$	C ₂ H ₂ + Ar		
TGF		8530 sccm		
CGF	0.60 ± 0.10	0.61		
Temperature	1450 ± 25°C	1450°C		
Time		5 min		
IPyC				
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$		
TGF		9435 sccm		
CGF	0.30 ± 0.03	0.30		
CGR	0.85 ± 0.085	0.85		
Temperature	1265 ± 25°C	1265°C		
Time		12.33 min		
SiC				
Coating gases	H ₂ + MTS	H ₂ + MTS		
TGF		16,912 sccm		
CGF	0.015 ± 0.005	0.0111		
Temperature	1500 ± 25°C	1500°C		
Time		140 min		
ОРуС				
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$		
TGF		16,215 sccm		
CGF	0.30 ± 0.03	0.30		
CGR	0.85 ± 0.085	0.85		
Temperature	1290 ± 40°C	1290°C		
Time		10 min		
Comments/Notes:	1 0			
Operator: hybridal	fowdn 0	Pate: 12/15/05		
QAS: MACTA	2	Pate: /2/15/05		

Summary for Baseline Coating Run - LEU01-45T

Coating Run No.		LEU01-45T	
Description:	Baseline AGR-1 processing conditions		
Procedure:	AGR-COAT-SOP-01, Rev.		
Kernel Lot No.		LEU01-45K	
Operator:		R. A. Lowder	
Date:		12/16/2005	
Data Location:	B002516, Coating Lo	g, Volume 3, pp. 136 -144	
Kernel Batch Wt.		63.46 g	
Coated Particle Batch Wt.		186.05 g	
	AGR-1 Parameter	As-Processed	
Buffer			
Coating gases	$C_2H_2 + Ar$	$C_2H_2 + Ar$	
TGF		8530 sccm	
CGF	0.60 ± 0.10	0.61	
Temperature	1450 ± 25°C	1450°C	
Time		5 min	
IPyC			
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$	
TGF		9435 sccm	
CGF	0.30 ± 0.03	0.30	
CGR	0.85 ± 0.085	0.85	
Temperature	1265 ± 25°C	1265°C	
Time		12.33 min	
SiC			
Coating gases	H ₂ + MTS	H ₂ + MTS	
TGF		16,945 sccm	
CGF	0.015 ± 0.005	0.0130	
Temperature	1500 ± 25°C	1500°C	
Time		140 min	
ОРуС			
Coating gases	$Ar + C_2H_2 + C_3H_6$	$Ar + C_2H_2 + C_3H_6$	
TGF		16,215 sccm	
CGF	0.30 ± 0.03	0.30	
CGR	0.85 ± 0.085	0.85	
Temperature	1290 ± 40°C	1290°C	
Time		10 min	
Comments/Notes:	110		
Operator: //why/	Whenh Date	e: 12/16/05	
QAS: MATT	Date	e: 4 \/ 2 /2 r	

4 <u>Classification of coated particles</u>

Fully-coated batches of particles were sorted employing a sizing technique described in AGR-ROLLER-SOP-1, Rev. 0 and a tabling method described in AGR-TABLER-SOP-1, Rev. 1 as required in section 5.1 of the AGR-1 Fuel Product Specification and Characterization Guidance document INL EDF-4380, Rev. 6. The purpose of this classification is to remove aspherical particles and particles outside a specified diameter range. Details regarding the application of the procedures to the classification of coated particle batches can be found in the logbooks referenced on the summary sheets.

Particles can be sized using a set of sieves, with diameter ranges and limits determined by the selected mesh openings. As an alternative to sieving, the roller technique uses rotating sloped rollers with a diverging gap to size classify particles. Particles are fed onto the gap between the rollers. The rollers are tilted or angled downward away from the feed point to create an inclined track. The rollers rotate with an upward and outward motion. A particle travels down the gradually widening gap until it reaches a point equal to its diameter upon which it drops through the gap into a collection bin. The gap between the rollers is adjusted to separate different sizes of particles or to classify particles within a specific range of diameters. A schematic illustrating the relationship between roller gap and particle size is shown in Figure 4.1.

Figure 4.1. Schematic of the collection bins and roller spacing showing relationship between roller gap and particle size.

From EDF-4380, Rev 6, section 5.1.1, Sieving or Rolling to Remove Undersize and Oversize Particles, "Each batch of coated particles shall be double-sieved with electroformed sieves to remove all particles that pass through a 700 μ m sieve and all particles that do not pass through an 850 μ m sieve. . . . Alternately, the particles can be size-classified using a roller micrometer that achieves results equivalent to or better than sieving." To size separate the batches of coated

particles, the gaps between the rollers above bins #1 and #10 were set at 680 and 880 μ m, respectively, producing the size distribution shown in the figure. Only particles from Bins #3 - #8, with a particle size range of 715 to 845 μ m, were retained with the majority of the particles being from Bins #4 through #7 with a nominal particle size range 735 to 825 μ m.

The following pages contain records of the classification performed on the TRISO-coated particle batches associated with the LEU01-46T coated particle composite.

TRISO batches

LEU01-21T

LEU01-35T

LEU01-27T

LEU01-45T

Sizing & Removal of Aspherical Particles for LEU01-21T

Summary for Sizing of Kernels or Coated Particles

Procedure:		AGR-ROLLER-SOP-01, Rev.		
Operator:		R. A. Lowde		
Kernel/Coated Particle ID:		LEU01-21		
Kernel/Coated Pa	rticle Description:	Ва	seline, full TRISO	on 350 μm LEUCO
Data Location:			B002163, Sizi	ng & Tabling, p. 31
Date	Batch Weight (g)	Sized Batch Weight (g)	Scrap (g)	Loss (g)
11/22/2005	187.07	178.13	8.90	(0.04)
Comments: Operator:	A. hadd	hunde	Date:	11/2/20
QAS:	Mar T	2	Date:	3/30/06

Summary for Tabling of Kernels or Coated Particles

Procedure:		AGR-TABLE-SOP-01, Rev		
Operator:		1		J. H. Miller
Kernel/Coated Pa	rticle ID:			LEU01-21T
Kernel/Coated Pa	rticle Description:	Ва	seline, full TRISC	on 350 μm LEUCO
Data Location:		p.;	B002163, Siz	zing & Tabling, p. 32
Date	Batch Weight (g)	Tabled Batch Weight (g)	Scrap (g)	Loss (g)
11/23/2005	178.13	177.03	1.10	0.00
Comments: Operator:	James H. Al	ule	Date:	11-23-05
QAS:	March	2	Date:	3/30/06

Sizing & Removal of Aspherical Particles for LEU01-35T

Summary for Sizing of Kernels or Coated Particles

Procedure:		AGR-ROLLER-SOP-01, Rev.		
Operator:		J. H. Mill		
Kernel/Coated Pa	rticle ID:			LEU01-35T
Kernel/Coated Particle Description:		Ва	seline, full TRISO	on 350 μm LEUCO
Data Location:			B002163, Siz	ing & Tabling, p. 38
Date	Batch Weight (g)	Sized Batch Weight (g)	Scrap (g)	Loss (g)
12/09/2005	184.02	172.49	11.52	(0.01)
Comments:				
Operator:	Janes H. M	ulla	Date:	12-9-05
QAS:	march	2_	Date:	3/30/06

Summary for Tabling of Kernels or Coated Particles

Procedure:		AGR-TABLE-SOP-01, Rev.			
Operator:	Operator:		J. H. Mil		
Kernel/Coated Particle ID:		LEU01-3			
Kernel/Coated Pa	rticle Description:	Baseline, full TRISO on 350 μm LEUC			
Data Location:			B002163, Siz	ing & Tabling, p. 39	
Date	Batch Weight (g)	Tabled Batch Weight (g)	Scrap (g)	Loss (g)	
12/09/2005	172.49			0.00	
Comments:				5	
Operator:	Acanes H. 9	Villa	Date:	12-9-05	
QAS:	mar.l	2.	Date:	3/30/06	

Sizing & Removal of Aspherical Particles for LEU01-27T

Summary for Sizing of Kernels or Coated Particles

Procedure:	Procedure:		AGR-ROLLER-SOP-01, Rev.		
Operator:		R. A. Lowde			
Kernel/Coated Pa	rticle ID:			LEU01-27T	
Kernel/Coated Particle Description:		Ва	aseline, full TRISO	on 350 μm LEUCO	
Data Location:			B002163, Siz	ing & Tabling, p. 40	
Date	Batch Weight (g)	Sized Batch Weight (g)	Scrap (g)	Loss (g)	
12/15/2005	185.95	176.95	8.96	(0.04)	
Comments:		10			
Operator:	Thickard a	powdin	Date:	12/15/05	
QAS:	Max F	2_	Date:	3/30/06	

Summary for Tabling of Kernels or Coated Particles

Procedure:		AGR-TABLE-SOP-01, Rev.		
Operator:		R. A. Lowde		
Kernel/Coated Pa	rticle ID:			LEU01-27T
Kernel/Coated Pa	rticle Description:	Ba	seline, full TRISO	on 350 μm LEUCO
Data Location:			B002163, Sizi	ing & Tabling, p. 41
Date	Batch Weight (g)	Tabled Batch Weight (g)	Scrap (g)	Loss (g)
12/16/2005	176.98			(0.02)
Comments:	, 0 ,	10		
Operator:	Richard a	power	Date:	12/16/05
QAS:	many	1	Date:	2/-/00

Sizing & Removal of Aspherical Particles for LEU01-45T

Summary for Sizing of Kernels or Coated Particles

Procedure:			AGR-ROLL	ER-SOP-01, Rev. 0	
Operator:		R. A. Lowden			
Kernel/Coated Particle ID:		LEU01-45T			
Kernel/Coated Particle Description:		Baseline, full TRISO on 350 μm LEUCO			
Data Location:			B002163, Siz	ing & Tabling, p. 42	
Date	Batch Weight (g)	Sized Batch Weight (g)	Scrap (g)	Loss (g)	
12/20/2005	186.05	177.60	8.49	+ 0.04	
Comments:					
Operator:	Michael a	powder	Date:	12/20/05	
QAS:	MATO	V	Date:	3/20/06	

Summary for Tabling of Kernels or Coated Particles

Procedure:		AGR-TABLE-SOP-01, Rev. 1			
Operator:		R. A. Lowden			
Kernel/Coated Particle ID:		LEU01-45T			
Kernel/Coated Pa	rticle Description:	Ва	seline, full TRISO	on 350 μm LEUCO	
Data Location:			B002163, Sizi	ng & Tabling, p. 43	
Date	Batch Weight (g)	Tabled Batch Weight (g)	Scrap (g)	Loss (g).	
12/21/2005	177.60	170.51	7.07	(0.02)	
Comments:	10			10. 0.01	
Operator:	Muharde	I waln	Date:	12/21/05	
QAS:	MATA	V	Date:	3/20/00	

5 Blend of coated particle composites

Four batches of TRISO-coated particles were blended into composite LEU01-46T. The mass of each batch added to the composite is shown in the following table.

Batch ID	Amount added to LEU01-46T composite (g)
LEU01-21T	69.2704
LEU01-35T	146.2983
LEU01-27T	151.5947
LEU01-45T	151.9880
Total	519.1514

Three batches of buffer-coated particles were blended into composite NUCO350-58B. The mass of each batch added to the composite is shown in the following table.

Batch ID	Amount added to NUCO350-58B composite (g)
NUCO350-25B	54.4356
NUCO350-36B	55.8622
NUCO350-54B	56.0934
Total	166.3912

Three batches of buffer/IPyC-coated particles were blended into composite NUCO350-66BI. The mass of each batch added to the composite is shown in the following table.

Batch ID	Amount added to NUCO350-66BI composite (g)
NUCO350-30BI	96.9421
NUCO350-37BI	96.1568
NUCO350-29BI	98.2502
Total	291.3491

6 Characterization of LEUCO kernel composite

This section contains data on the kernel composite used for LEU01-46T. The data was obtained according to product inspection plan AGR-CHAR-PIP-01R1. Some of the kernel data in this section was used as input for subsequent measurements of coating properties (e.g., buffer density and burn-leach defects). This is only a partial analysis of the kernel composite and was not used for product acceptance. Characterization of the kernel composite for acceptance according to the specific requirements listed in section 4 of INL EDF-4380 is documented in the BWXT data package for G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-## (where ## is a series of integers beginning with 01).

Note that the average kernel weights were remeasured using a revised procedure which improved the accuracy of the reported value by improving the randomness of the measured samples. The measured value of the LEUCO average kernel weight changed from $(2.47\pm0.01)\cdot10^{-4}$ grams per kernel to $(2.418\pm0.006)\cdot10^{-4}$ grams per kernel. On data report form DRF-15 for the measurement of average kernel envelope density, the average kernel weight is used to approximate the number of kernels in a sample from the weight of the sample. The approximate number of kernels in a sample is divided into the sample envelope volume to determine the average kernel envelope volume. The change in average kernel weight resulted in a significant change in the calculated average kernel envelope volume. The data in this section shows the new average kernel weight and average kernel envelope volume. Records showing the original values are included in section 16.

The following pages shows the inspection report form (IRF-01). Following IRF-01 are the individual data report forms for the measurements that were performed.

Inspection Report Form IRF-01: BWXT LEUCO Kernel Composite 69302

Procedure: AGR-CHAR-PIP-01 Rev. 1

	The return	Meas	ured Data	124.11	Specification		Acceptance	Data
Property	Mean (x)	Std. Dev.	# measured (n)	k or t	INL EDF-4380 Rev. 6	Acceptance Criteria	ritoria	Records
	TI DO STORY		1000		mean	A = x - ts/√n ≥ 340	349.5	
	early or	-	Transfer 1	1.645	350 ± 10	$B = x + ts/\sqrt{n} \le 360$	349.9	DRF-06
Average kernel diameter (µm)	349.7	9	4304	2.20	dispersion	C = x - ks > 300	328.3	DRF-09
	14			2.38	≤0.01 < 300 ≤0.01 > 400	D = x + ks < 400	371.1	
Kernel ellipticity (Dmax/Dmin)	1.021	THE REAL	4304		dispersion ≤0.10 ≥1.05	≤1 in 50 or ≤7 in 142	94	DRF-06 DRF-09
Kernel envelope density (Mg/m³)	10.924	0.015	5	2.132	mean ≥10.4	A = x - ts/√n ≥ 10.4	10.91	DRF-15 DRF-22

94 kernels with ellipticity ≥1.05 out	Comments If 4304 kernels measured passes the dispersion specification acceptance cri	iteria of ≤397 in 4304.
	imit of ≥1.035 at 10% tolerance limit with 95% confidence level. imit of ≥1.05 at 2.6% tolerance limit with 95% confidence level.	
	DATES DE COMPANION DE CONTRACTOR DE LA CONTRACTOR DE CONTR	
	1	

Data Report Form DRF-06: Imaging of Kernel Diameter and Ellipticity Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-06 Rev. 0
Operator:	Andrew Kercher
Sample ID:	LEUCO350-01B renamed LEUDI-OIK-B M 4-17-06
Sample Description:	LEUCO kernel composite 69302
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05051902\

DMR Calibration Expiration Date: 3/24/06	
Stage Micrometer Calibration Expiration Date: 2/17/07	
Measured Value for 760 μm in Stage Micrometer Image: 760. μm	

Mean average weight/particle (g):	2.47E-04	2.42E-04	OH 3-22-06
Weight of sample of particles (g):	1.519		
Approximate number of particles in sample:	6150	6277	OH 3-22-06

Data Report Form DRF-09A: Measurement of Kernel Diameter

Procedure:	AGR-CHAR-DAM-09 Rev. 0
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05051902
Sample ID:	LEUCO350-01B renamed LEUOI-DIK-B MY 4-17-Db
Sample Description:	BWXT LEUCO kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P05051902_output

Number of kernels analyzed: 4304

Mean of the average diameter of each kernel (µm): 349.7

Standard deviation in the average diameter of each kernel (µm): 9

Distribution of the average kernel diameter (top binned)

Mean Diameter	Frequency
<300	
305	2
310	9 2 2 1 2 2 18
315	1
320	2
325	2
330	18
335	143
340	366
345	666
350	1060
355	946
360	572
365	317
370	128
375	45
380	18
385	4
390	3
395	0
400	4 3 0
>400	0

Likew K-Lenker Operator

Date

Data Report Form DRF-09B: Measurement of Kernel Ellipticity (Dmax/Dmin)

Procedure:	AGR-CHAR-DAM-09 Rev. 0	
Operator:	Andrew K. Kercher	
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05051902	
Sample ID:	LEUCO350-01B renamed LEU01-01K-B At 4-17-06	
Sample Description:	BWXT LEUCO kernel composite 69302	
Folder name containing processed data:	a: \\mc-agr\AGR\ImageProcessing\Completed_Shadow\P05051902_output	

Number of kernels analyzed: 4304
Number of kernels with ellipticity >1.05: 94
Average kernel ellipticity: 1.021

Distribution of the ellipticity (top binned)

Ellipticity (D)	Frequency
1.005	10
1.01	439
1.015	1025
1.02	1003
1.025	754
1.03	462
1.035	218
1.04	166
1.045	89
1.05	44
1.055	29
1.06	21
1.065	17
1.07	12
1.075	5
1.08	3
1.085	1
1.09	2
1.095	5 3 1 2 0
1.1	1
>1.1	3

likewh. Kewher Operator

May 23, 2005

Data Report Form DRF-15: Measurement of Average Kernel Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-15 Rev. 2		
Operator:	S. D. NUNN		
Kernel Lot ID:	LEUCO350-01 renamed LEUOI-01 K 01 4-17-06		
Kernel Lot Description:	WXT LEUCO KERNEL COMPOSITE 69302		
Thermocouple Expiration Date:	/23/06		
Penetrometer Expiration Date:	5/25/06		
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05052701\S05052701R1_DRF15R2		

Mean average weight/kernel (g): 2.42E-04
Uncertainty in mean average weight/kernel (g): 5.96E-07

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05052701L	S05052702L	S05052703L	S05052704L	S05052705L
Weight of kernels (g):	12.5822	12.5075	12.8773	12.6448	12.6895
Approximate number of kernels:	52036	51727	53256	52294	52479
Uncertainty in number of kernels:	128	128	131	129	129
Envelope volume of sample (cc):	1.150	1.145	1.180	1.157	1.164
Average envelope volume/kernel (cc):	2.21E-05	2.21E-05	2.22E-05	2.21E-05	2.22E-05
Sample envelope density (g/cc):	10.943	10.925	10.912	10.932	10.906

Mean average envelope volume/kernel (cc):	2.214E-05
Uncertainty in mean envelope volume/kernel (cc):	1.34E-08
Mean sample envelope density (g/cc):	10.924
Standard deviation in sample envelope density (g/cc):	0.015

5.D. Hunn	2114/06
Operator	Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	John Hunn
Particle Lot ID:	LEU01-32K-A
Particle Lot Description:	BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\ParticleWeight\W06020601_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	5.76E-02	5.33E-02	5.20E-02	4.90E-02	4.85E-02
Number of particles:	239	220	215	204	199
Average weight/particle (g):	2.41E-04	2.42E-04	2.42E-04	2.40E-04	2.44E-04

Mean average weight/particle (g):	2.418E-04
Uncertainty in mean average weight/particle (g):	5.96E-07

7 Characterization of NUCO kernel composite

This section contains data on the kernel composite used for buffer and IPyC process qualification batches. The data was obtained according to product inspection plan AGR-CHAR-PIP-01R1. Some of the kernel data in this section was used as input for subsequent measurements of coating properties (e.g., buffer density). This is only a partial analysis of the kernel composite and was not used for product acceptance. Characterization of the kernel composite for acceptance according to the specific requirements listed in section 4 of INL EDF-4380, is documented in the BWXT data package for G73B-NU-69300. The BWXT kernel lot G73B-NU-69300 was riffled into sublots for characterization and coating. The ORNL identification for these kernels was NUCO350-## (where ## were a series of integers beginning with 01).

Note that the average kernel weights were remeasured using a revised procedure which improved the accuracy of the reported value by improving the randomness of the measured samples. The NUCO average kernel weight changed from $(2.39\pm0.03)\cdot10^{-4}$ grams per kernel to $(2.308\pm0.009)\cdot10^{-4}$ grams per kernel. On data report form DRF-15 for the measurement of average kernel envelope density, the average kernel weight is used to approximate the number of kernels in a sample is divided into the sample envelope volume to determine the average kernel envelope volume. The change in average kernel weight resulted in a significant change in the calculated average kernel envelope volume. The data in this section shows the new average kernel weight and average kernel envelope volume. Records showing the original values are included in section 16.

The following pages shows the inspection report form (IRF-01). Following IRF-01 are the individual data report forms for the measurements that were performed.

Inspection Report Form IRF-01: BWXT NUCO Kernel Composite 69300

Procedure: AGR-CHAR-PIP-01 Rev. 1

	Measured Data			Specification	CONTRACTOR OF THE PARTY OF THE	The second of the																													
Property	Mean (x)	Std. Dev.	# measured (n)	k or t value	INL EDF-4380 Rev. 4	Acceptance Criteria	Acceptance Test Value	Data Records																											
				1.645	mean	A = x - ts/√n ≥ 340	344.5																												
Average kernel diameter (µm) 344	244.0	244.0			1.045	350 ± 10	$B = x + ts/\sqrt{n} \le 360$	345.3	DRF-06																										
	344.9	15	4202	2.38	dispersion ≤0.01 < 300	C = x - ks > 300	309.2	DRF-09																											
	- 7-10-1																															2.30	≤0.01 < 300	D = x + ks < 400	380.6
Kernel ellipticity (Dmax/Dmin)	1.022		4202		dispersion ≤0.10 ≥1.05	≤1 in 50 or ≤7 in 142	186	DRF-06 DRF-09																											
Kernel envelope density (Mg/m³)	10.800	0.006	5	2.132	mean ≥10.4	A = x - ts/√n ≥ 10.4	10.79	DRF-15 DRF-22																											

This composite would pass an ellipticity control limit of \geq 1.038 at 10% tolerance limit with scomposite would pass an ellipticity control limit of \geq 1.05 at 5% tolerance limit with	rith 95% confidence level. 195% confidence level.
Anh Bhr	2-20-06

Data Report Form DRF-06: Imaging of Kernel Diameter and Ellipticity Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-06 Rev. 0
Operator:	Andrew Nelson
Sample ID:	NUCO350-26B
Sample Description:	350 um NUCO kernels from BWXT 69300 Composite
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05052501

DMR Calibration Expiration Date:	3/25/06
Stage Micrometer Calibration Expiration Date:	2/17/07
Measured Value for 760 µm in Stage Micrometer Image:	760.6 µm

Mean average weight/particle (g): 2.39E-04	2.31E-04	M	4-17-06
Weight of sample of particles (g): 1.408			
Approximate number of particles in sample: 5891	6095	04	4-17-06

Data Report Form DRF-09A: Measurement of Kernel Diameter

Procedure:	AGR-CHAR-DAM-09 Rev. 0
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05052501
	NUCO350-26B NUCO kernels
Sample Description:	350 um NUCO kernels from BWXT 69300 Composite
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P05052501_output

Number of kernels analyzed:	4202
Mean of the average diameter of each kernel (µm):	344.9
Standard deviation in the average diameter of each kernel (µm):	15

Distribution of the average kernel diameter (top binned)

Mean Diameter	Frequency
<300	36
305	1
310	11
315	15
320	61
325	156
330	204
335	233
340	412
345	867
350	858
355	603
360	383
365	182
370	71
375	48
380	16
385	8
390	7
395	8 7 5 3
400	3
>400	22

Likew K. Lewber Operator

ate of 51g

Data Report Form DRF-09B: Measurement of Kernel Ellipticity (Dmax/Dmin)

Procedure:	AGR-CHAR-DAM-09 Rev. 0
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05052501
Sample ID:	NUCO350-26B NUCO kernels
Sample Description:	350 um NUCO kernels from BWXT 69300 Composite
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P05052501_output

Number of kernels analyzed:	4202
Number of kernels with ellipticity >1.05:	186
Average kernel ellipticity:	1.022

Distribution of the ellipticity (top binned)

Ellipticity (D)	Frequency	
1.005	15	
1.010	486	
1.015	1069	
1.020	979	
1.025	627	
1.030	361	
1.035	197	
1.040	141	
1.045	89	
1.050	52	
1.055	42	
1.060	19	
1.065	17	
1.070	19	
1.075	11	
1.080	12	
1.085	15	
1.090	8	
1.095	11	
1.100	2	
>1.100	30	

hewh. Hercher Operator

May 31, 2005

Data Report Form DRF-15: Measurement of Average Kernel Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-15 Rev. 2
Operator:	S. D. NUNN
Kernel Lot ID:	NUCO350-26
Kernel Lot Description:	NUCO KERNEL COMPOSITE 69300
Thermocouple Expiration Date:	5/23/06
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05052601\S05052601R1_DRF15R2

Mean average weight/kernel (g):	2.31E-04
Uncertainty in mean average weight/kernel (g):	8.69E-07

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05052601L	S0502602L	S05052603L	S05052604L	S050526051
Weight of kernels (g):	12.8272	12.9542	12.9410	12.9793	12.9624
Approximate number of kernels:	55577	56127	56070	56236	56163
Uncertainty in number of kernels:	209	211	211	212	211
Envelope volume of sample (cc):	1.187	1.200	1.199	1.202	1.199
Average envelope volume/kernel (cc):	2.14E-05	2.14E-05	2.14E-05	2.14E-05	2.14E-05
Sample envelope density (g/cc):	10.805	10.792	10.797	10.799	10.807

Mean average envelope volume/kernel (cc):	2.137E-05
Uncertainty in mean envelope volume/kernel (cc):	5.47E-09
Mean sample envelope density (g/cc):	
Standard deviation in sample envelope density (g/cc):	0.006

5, D. Munn 2/14/06
Operator Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	John Hunn
Particle Lot ID:	NUCO350-42-A
Particle Lot Description:	BWXT kernel composite 69300
Filename:	\\mc-agr\AGR\ParticleWeight\W06020302_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	3.13E-02	2.84E-02	3.40E-02	3.48E-02	3.40E-02
Number of particles:	136	123	149	149	147
Average weight/particle (g):	2.30E-04	2.31E-04	2.28E-04	2.34E-04	2.31E-04

Mean average weight/particle (g):	2.308E-04
Uncertainty in mean average weight/particle (g):	8.69E-07

8 Characterization of buffer on interrupted batches

This section contains data on the buffer coating density and other buffer properties for particles removed from the coater after deposition of only the buffer layer. The data was obtained according to product inspection plan AGR-CHAR-PIP-02R4. The buffer on these particles was deposited under similar conditions as the buffer on the particles in composite LEU01-46T and should therefore be representative of the buffer on the particles in that composite. Density measurements were made on these interrupted batches because it was not feasible to measure the buffer density after all coating layers were applied. According to section 5.3 of EDF-4380, Rev. 6, three representative buffer layers from interrupted batches which meet the specification for buffer density are sufficient to qualify the process for buffer density. The qualifying batches used 350 μ m natural uranium oxide/uranium carbide kernels (NUCO). The kernels were obtained from BWXT and were identified as composite G73B-NU-69300. The use of NUCO surrogate kernels was not expected to significantly effect the density of the buffer. A confirmatory batch using LEUCO kernels from G73D-20-69302 was coated and characterized to verify this assumption.

Note that the average kernel weights and volumes for both the LEUCO and NUCO kernel composites were remeasured after coated particle composite characterization was underway in order to improve the accuracy of the reported value, as discussed in sections 6 and 7. On data report form DRF-16 for the buffer envelope density, the average kernel weight and volume are used to calculate the buffer density. The change in average kernel weight and volume resulted in a significant change in the calculated buffer densities previously used to determine acceptability of the buffer deposition conditions. The data in this section shows the new average kernel weight, average kernel volume, and buffer densities. Records showing the original values are included in section 16. The new values for buffer density were about 10% higher than the originally reported values, but both were within the range specified in INL EDF-4380, Rev. 6.

The following page shows the inspection report form (IRF-02A). Following IRF-02A are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. The process conditions used to deposit the buffer layer were determined to be sufficient to satisfy the specifications in section 5.3 of EDF 4380, Rev. 6.

Inspection Report Form IRF-02A: Interrupted Coating Batches - Buffer Density

Procedure:	AGR-CHAR-PIP-02 Rev. 4
Batch 1 ID:	NUCO350-25B
Batch 1 description:	Buffer-coated BWXT kernel composite 69300
Batch 2 ID:	NUCO350-36B
Batch 2 description:	Buffer-coated BWXT kernel composite 69300
	NUCO350-54B
Batch 3 description:	Buffer-coated BWXT kernel composite 69300

	Measured Data			Specification		Acceptance	Pass	Data		
Property	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Records	
The same of the sa	1.00	0.04	-	nean mean	mean 1.03 ± 0.15	$A = x - ts/\sqrt{n} \ge 0.88$	1.04	pass	DRF-16	
Batch 1: Buffer envelope density (Mg/m³)	1.08	0.04	3	2.132		$B = x + ts/\sqrt{n} \le 1.18$	1.12	pass	DRF-22	
2	300	3.44	0.05	P 3:	mean mean	$A = x - ts/\sqrt{n} \ge 0.88$	1.06	pass	DRF-16	
Batch 2: Buffer envelope density (Mg/m³)	1.11	0.05	2	2.132	1.03 ± 0.15	$B = x + ts/\sqrt{n} \le 1.18$	1.16	pass	DRF-22	
	1.11	0.04	34		5 2.132 mean 1.03 ± 0.15	mean	$A = x - ts/\sqrt{n} \ge 0.88$	1.07	pass	DRF-16
Batch 3: Buffer envelope density (Mg/m ³)) 1.11	0.04	2		1.03 ± 0.15	$B = x + ts/\sqrt{n} \le 1.18$	1.15	pass	DRF-22

Standard deviations are V5 times the uncertainties in buffer density (standard errors) reported on DRF-16. Average thickness of buffer was 108 μm based on average envelope volume of 9.25E-5 cc (effective diameter of 561 μm) and average kernel diameter of 345 μm. Average thickness of buffer was 108 μm based on average outer diameter of 561 μm obtained per DAM-10 and average kernel diameter of 345 μm. Confirmatory batch on LEUCO kernels, LEU01-163: mean buffer density = 1.10 g/cc.	

Accept process for buffer density (Yes or No):

Yes

3-10-06

Date

3-10-06

3-10-06

3-10-06

3-10-06

3-10-06

3-10-06

3-10-06

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D. NUNN
Buffer-coated kernel batch ID:	NUCO350-25B
Batch Description:	Buffer Coated BWXT Kernel Composite 69300
Thermocouple Expiration Date:	
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05062001\S05062001R1_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.07E-04
Uncertainty in mean average weight/b-c kernel (g):	1.00E-06
Mean average weight/bare kernel (g):	2.31E-04
Uncertainty in mean average weight/bare kernel (g):	8.69E-07
Mean average envelope volume/bare kernel (cc):	2.14E-05
Uncertainty in envelope volume/bare kernel (cc):	5.47E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05062001L	S05062002L	S05062003L	S05062004L	S05062005I
Weight of buffer-coated kernels (g):	4.1223	4.2165	4.4333	4.4104	4.0445
Approximate number of b-c kernels:	13428	13735	14441	14366	13174
Uncertainty in number of b-c kernels:	44	45	47	47	43
Total envelope volume of sample (cc):	1.235	1.268	1.335	1.321	1,212
Av. envelope volume/b-c kernels (cc):	9.19E-05	9.23E-05	9.24E-05	9.19E-05	9.20E-05
Sample envelope density (g/cc):	3.339	3.326	3,321	3.340	3.338

Mean average envelope volume/b-c kernel (cc): 9	9.21E-05
Uncertainty in envelope volume/b-c kernel (cc): 1	1.1E-07

Buffer density:	1.08E+00	
Uncertainty in buffer density:	1.88E-02	

5. D. Nun Operator

2/14/06 Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	NUC0350-25B
Particle Lot Description:	Buffer Coated NUCO
Filename:	\\mc-agr\AGR\ParticleWeight\W05062001_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	3.28E-02	2.73E-02	3.08E-02	3.46E-02	3,99E-02
Number of particles:	107	90	100	113	129
Average weight/particle (g):	3.07E-04	3.03E-04	3.08E-04	3.06E-04	3.09E-04

Mean average weight/particle (g):	3.07E-04
Uncertainty in mean average weight/particle (g):	1.00E-06

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D.NUNN
Buffer-coated kernel batch ID:	NUCO350-36B
Batch Description:	Buffer Coated BWXT Kernel Composite 69300
Thermocouple Expiration Date:	
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05062006\S05062006R1_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.11E-04
Uncertainty in mean average weight/b-c kernel (g):	1.20E-06
Mean average weight/bare kernel (g):	2.31E-04
Uncertainty in mean average weight/bare kernel (g):	8.69E-07
Mean average envelope volume/bare kernel (cc):	2.14E-05
Uncertainty in envelope volume/bare kernel (cc):	5.47E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05062006L	S05062007L	S05062008L	S05062101L	S05062102L
Weight of buffer-coated kernels (g):	4.0723	4.0655	4.0860	4.0696	4.0514
Approximate number of b-c kernels:	13094	13072	13138	13086	13027
Uncertainty in number of b-c kernels:	51	50	51	50	50
Total envelope volume of sample (cc):	1.226	1.227	1.232	1.226	1.217
Av. envelope volume/b-c kernels (cc):	9.37E-05	9.38E-05	9.38E-05	9.37E-05	9.34E-05
Sample envelope density (g/cc):	3.321	3.315	3.317	3.319	3.328

Mean average envelope volume/b-c kernel (cc): 9.37E-05	
Uncertainty in envelope volume/b-c kernel (cc): 6.7E-08	

Buffer density:	1.11E+00
Uncertainty in buffer density:	2.05E-02

5.D.) unu 2/14/06
Operator Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	NUCO350-36B
Particle Lot Description:	Buffer Coated NUCO
Filename:	\\mc-agr\AGR\ParticleWeight\W05062002_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	3.45E-02	3.26E-02	3.54E-02	3.58E-02	3.42E-02
Number of particles:	110	104	115	116	110
Average weight/particle (g):	3.14E-04	3.13E-04	3.08E-04	3.09E-04	3.11E-04

Mean average weight/particle (g):	3.11E-04
Uncertainty in mean average weight/particle (g):	1.20E-06

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D.NUNN
Buffer-coated kernel batch ID:	NUCO350-54B
Batch Description:	Buffer Coated BWXT Kernel Composite 69300
Thermocouple Expiration Date:	5/23/06
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\mc-agr\AGR\Porosimeter\S05062201\S05062201R1 DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.11E-04
Uncertainty in mean average weight/b-c kernel (g):	1.09E-06
Mean average weight/bare kernel (g):	2.31E-04
Uncertainty in mean average weight/bare kernel (g):	8.69E-07
Mean average envelope volume/bare kernel (cc):	2.14E-05
Uncertainty in envelope volume/bare kernel (cc):	5.47E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05062201L	S05062202L	S05062203L	S05062204L	5050622051
Weight of buffer-coated kernels (g):	4.1223	4.0694	4.0160	4.0391	4.0471
Approximate number of b-c kernels:	13255	13085	12913	12987	13013
Uncertainty in number of b-c kernels:	46	46	45	46	46
Total envelope volume of sample (cc):	1.233	1.225	1.209	1.215	1,215
Av. envelope volume/b-c kernels (cc):	9.30E-05	9.36E-05	9.36E-05	9.35E-05	9.34E-05
Sample envelope density (g/cc):	3.344	3.323	3.323	3.326	3.331

Mean average envelope volume/b-c kernel (cc): 9	9.34E-05
Uncertainty in envelope volume/b-c kernel (cc): 1	1.1E-07

Uncertainty in buffer density: 1.94E-02	.11E+00	Buffer density:
	94E-02	Uncertainty in buffer density:

5. D. Munn 2/14/06
Operator Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	NUCO350-54B
Particle Lot Description:	Buffer Coated NUCO
Filename:	\\mc-agr\AGR\ParticleWeight\W05062101 DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	3.66E-02	4.39E-02	3.80E-02	4.22E-02	3.97E-02
Number of particles:	118	140	123	135	129
Average weight/particle (g):	3.10E-04	3.14E-04	3.09E-04	3.13E-04	3.08E-04

Mean average weight/particle (g):	3.11E-04
Uncertainty in mean average weight/particle (g):	1.09E-06

Digit Basher

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D.NUNN
Buffer-coated kernel batch ID:	NUCO350-58B
Batch Description:	Composite of Buffer Coated BWXT Kernel Composite 69300
Thermocouple Expiration Date:	
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05062206\S05062206R1_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.09E-04
Uncertainty in mean average weight/b-c kernel (g):	4.99E-07
Mean average weight/bare kernel (g):	2.31E-04
Uncertainty in mean average weight/bare kernel (g):	8.69E-07
Mean average envelope volume/bare kernel (cc):	
Uncertainty in envelope volume/bare kernel (cc):	5.47E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05062206L	S05062207L	S05062301L	S05062302L	S05062303L
Weight of buffer-coated kernels (g):	4.3399	4.3264	4.3459	4.4478	4.3485
Approximate number of b-c kernels:	14045	14001	14064	14394	14073
Uncertainty in number of b-c kernels:	23	23	23	23	23
Total envelope volume of sample (cc):	1.300	1.296	1.300	1.333	1,303
Av. envelope volume/b-c kernels (cc):	9.25E-05	9.26E-05	9.24E-05	9.26E-05	9.26E-05
Sample envelope density (g/cc):	3.340	3.338	3.344	3.337	3.338

Mean	average envelope volume/b-c kernel (cc): 9.25E-05	
Uncert	ainty in envelope volume/b-c kernel (cc): 3.8E-08	

Buffer density:	1.10E+00
Uncertainty in buffer density:	1.41E-02

5. D. Munn 2/14/06
Operator Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	NUCO350-58B
Particle Lot Description:	Composite of Buffer Coated BWXT Kernel Composite 69300
	\\mc-agr\AGR\ParticleWeight\W05062201_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	3.35E-02	3.07E-02	4.09E-02	3.50E-02	4.08E-02
Number of particles:	109	99	132	113	132
Average weight/particle (g):	3.07E-04	3.10E-04	3.10E-04	3.10E-04	3.09E-04

Mean average weight/particle (g):	3.09E-04
Uncertainty in mean average weight/particle (g):	4.99E-07

Data Report Form DRF-10A: Measurement of Particle Diameter

Procedure:	AGR-CHAR-DAM-10 Rev. 0
Operator:	Andy Nelson
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05062401
	NUCO350-58B
Sample Description:	Composite of Buffer-coated BWXT Kernel Composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P05062401_output

Number of particles analyzed:	640
Mean of the average diameter of each particle (µm):	561
Standard deviation in the average diameter of each particle (µm):	

Distribution of the average particle diameter (top binned)

Mean Diameter	Frequency
< 500	0
510	0 2 7
520	7
530	24
540	49
550	86
560	127
570	158
580	102
590	55
600	21
610	5
620	0
630	2
640	21 5 0 2 0 2 0
650	2
> 650	0

and The

Operator

000

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D. NUNN
Buffer-coated kernel batch ID:	LEU01-16B
Batch Description:	Buffer on BWXT LEUCO kernel composite 69302
Thermocouple Expiration Date:	
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05110701\S05110701R1_DRF16R2.xis

Mean average weight/buffer-coated kernel (g):	3.20E-04
Uncertainty in mean average weight/b-c kernel (g):	8.22E-07
Mean average weight/bare kernel (g):	2.42E-04
Uncertainty in mean average weight/bare kernel (g):	5.96E-07
Mean average envelope volume/bare kernel (cc):	2.21E-05
Uncertainty in envelope volume/bare kernel (cc):	1.34E-08

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05110701L	S05110702L	S05110703L	S05110704L	S05110705L
Weight of buffer-coated kernels (g):	4.0951	4.1007	4.2203	4.2527	4.3448
Approximate number of b-c kernels:	12797	12815	13188	13290	13578
Uncertainty in number of b-c kernels:	33	33	34	34	35
Total envelope volume of sample (cc):	1.192	1.193	1.234	1.229	1.267
Av. envelope volume/b-c kernels (cc):	9.32E-05	9.31E-05	9.36E-05	9.25E-05	9.33E-05
Sample envelope density (g/cc):	3.435	3.438	3.421	3.460	3,430

Mean average envelope volume/b-c kernel (cc): 9.31E-05
Uncertainty in envelope volume/b-c kernel (cc): 1.8E-07

Buffer density:	1.10E+00
Uncertainty in buffer density:	1.46E-02

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	LEU01-16B
Particle Lot Description:	Buffer on BWXT kernel composite 69302
	\\mc-agr\AGR\ParticleWeight\W05110701 DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	6.21E-02	6.72E-02	5.58E-02	5.12E-02	6.32E-02
Number of particles:	194	209	175	159	199
Average weight/particle (g):	3.20E-04	3.22E-04	3.19E-04	3.22E-04	3.18E-04

Mean average weight/particle (g):	3.20E-04
Uncertainty in mean average weight/particle (g):	8.22E-07

9 Characterization of IPyC on interrupted batches

This section contains data on the inner pyrocarbon (IPyC) coating density and other properties for particles removed from the coater after deposition of only the buffer and IPyC layers. The data was obtained according to product inspection plan AGR-CHAR-PIP-02R4. The IPyC on these particles was deposited under similar conditions as the IPyC on the particles in composite LEU01-46T and should therefore be representative of the IPyC on the particles in that composite. Density measurements were made on these interrupted batches because it was not feasible to measure the IPyC density after all coating layers were applied. According to section 5.3 of EDF-4380, Rev. 6, three representative IPyC layers from interrupted batches which meet the specification for IPyC density are sufficient to qualify the process for IPyC density. The qualifying batches used 350 μ m natural uranium oxide/uranium carbide kernels (NUCO). The kernels were obtained from BWXT and were identified as composite G73B-NU-69300. The use of NUCO surrogate kernels was not expected to significantly effect the density of the IPyC. A confirmatory batch using LEUCO kernels from G73D-20-69302 was coated and characterized to verify this assumption.

The following page shows the inspection report form (IRF-02B). Following IRF-02B are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. The process conditions used to deposit the IPyC layer were determined to be sufficient to satisfy the specifications in section 5.3 of EDF 4380, Rev. 6.

Inspection Report Form IRF-028: Interrupted Coating Batches - IPyC Density

Procedure:	AGR-CHAR-PIP-02 Rev. 4
Batch 1 ID:	NUCO350-30BI
Batch 1 description:	IPyC/Buffer on BWXT kernel composite 69300
Batch 2 ID:	NUCO350-37BI
Batch 2 description:	IPyC/Buffer on BWXT kernel composite 69300
Batch 3 ID:	NUCO350-29BI
Batch 3 description:	IPyC/Buffer on BWXT kernel composite 69300

Property		Meas	ured Data		Specification	DF-4380 Acceptance Criteria	Acceptance Pass or fall	Data																						
	Mean (x)	Std. Dev.	# measured (n)	k or t value	INL EDF-4380 Rev. 6				Records																					
			25	1 711	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.888	pass																						
	1.8917	0.0113			25	25	1.711	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.896	pass	DDF 03																		
Batch 1: IPyC sink/float density (Mg/m³)	1.0917	0.0113		25			DECEMBER 1	dispersion	C = x - ks > 1.80	1.856	pass	DRF-03																		
										3.158	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.927	pass	1															
	1.9038 0.0153						3 21	21	0153 21	1.725	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.898	pass																
TANAN SERVICE TO SERVICE WAS		0.0153	0.0153	0.0153	0.0153	21				21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	1.725	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.910	pass	DRF-03
Batch 2: IPyC sink/float density (Mg/m³)		0.0153	21	21	21																						21	21	21	21
									3.202	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.954	pass	1																
	1.9112 0.014		2 0042		. 720	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.906	pass																					
Batch 3: IPyC sink/float density (Mg/m³)		0.0443		0.0143	0.0143	0.0143	0.0143	0.0443	20	20		20	20	20	20	20	20	20	20	20	20	20	20	20	1577.72	1.729	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.917	pass
		0.0142	5.0142	3.295	dispersion	C = x - ks > 1.80	1.864	pass	DRF-03																					
								3.295	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.958	pass																		

	Commer	nts	A SECURIOR OF SECURIOR SECURIO	ATT STEELS
95% confidence interval for Buffer thickness in composite = (104µm, 95% confidence interval for IPyC thickness in composite = (34.2µm, Confirmatory batch on LEUCO kernels, LEU01-15I: mean IPyC density	34.9µm) with >1% ≤30µm			
QC Supervisor	X-1900		3-10-06 Date	
Accept process for IPyC density (Yes or No):	Yes			
maria				

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 1	
Operator:	Dixie Barker	
Filename:	\\mc-agr\AGR\DensityColumn\D05062901_DRF03R1.xls	_
Sample ID:	NUCO350-30BI-B	
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300	
Float Expiration Date:		
Gauge Expiration Date:	01/2006	
Bath Temperature:	23.1C	_

That is selected in	Calibrated Floats					
Density	Top of Float	Bottom of Float	Center of Mass			
1.800	154.64	163.83	159.24			
1.850	258.61	266.87	262.74			
1.900	361.46	367.13	364.30			
1.950	459.26	467.16	463.21			
2.000	553.39	560.32	556.86			

Linear Fit					
slope	StDev	intercept	StDev		
5.02E-04	3.18E-06	1.72E+00	1.25E-03		

	Sample	e Density		
Particle	Particle	Calculated	Standard	
Number	Position	Density	Error	
1	1 295.22		0.0016	
2	304.23	1.8714	0.0016	
3	325.99	1.8823	0.0016	
4	326.44	1.8825	0.0016	
5	326.76	1.8827	0.0016	
6	328.81	1.8837	0.0016	
7	326.67	1.8826	0.0016	
8	333.83	1.8862	0.0016	
9	335.75	1.8872	0.0016	
10	334.07	1.8863	0.0016	
11	335.11	1.8869	0.0016	
12	336.64	1.8876	0.0016	
13	348.87	1.8938	0.0017	
14	348.31	1.8935	0.0017	
15	350.33	1.8945	0.0017	
16	351.97	1.8953	0.0017	
17	355.50	1.8971	0.0017	
18	357.75	1.8982	0.0017	
19	359.46	1.8991	0.0017	
20	364.06	1.9014	0.0017	
21	363.84	1.9013	0.0017	
22	362.42	1.9006	0.0017	
23	368.25	1.9035	0.0017	
24	385.58	1.9122	0.0018	
25	390.04	1.9144	0.0018	
Average Densit	У	1.8917	0.0003	
Standard Devia	ition	0.0113	SEA PONCHERS	

Divis Barly

Date

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 1
Operator:	Dixie Barker
Filename:	\\mc-agr\AGR\DensityColumn\D05063001_DRF03R1.xls
Sample ID:	NUCO350-37BI-B
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300
Float Expiration Date:	
Gauge Expiration Date:	01/2006
Bath Temperature:	22.9C

Calibrated Floats					
Density	Top of Float	Bottom of Float	Center of Mass		
1.800	151.98	161.42	156.70		
1.850	262.34	270.69	266.52		
1.900	370.32	376.20	373.26		
1.950	473.40	480.73	477.07		
2.000	569.44	576.52	572.98		

Linear Fit					
slope	StDev	intercept	StDev		
4.79E-04	2.94E-06	1.72E+00	1.17E-03		

THE RESERVE OF THE PARTY OF	Sample	e Density	THE RESIDENCE
Particle	Particle	Calculated	Standard
Number	Position	Density	Error
1	313.15	1.8731	0.0015
2	329.08	1.8807	0.0015
3	335.13	1.8836	0.0015
4	342.49	1.8872	0.0015
5	349.04	1.8903	0.0016
6	351.34	1.8914	0.0016
7	365.21	1.8980	0.0016
8	367.09	1.8989	0.0016
9	367.27	1.8990	0.0016
10	378.19	1.9043	0.0016
11	382.30	1.9062	0.0016
12	386.45	1.9082	0.0016
13	387.67	1.9088	0.0016
14	389.34	1.9096	0.0016
15	390.40	1.9101	0.0016
16	404.73	1.9170	0.0017
17	409.36	1.9192	0.0017
18	412.62	1.9207	0.0017
19	412.95	1.9209	0.0017
20	418.50	1.9236	0.0017
21	428.34	1.9283	0.0017
22			
23			
24			
25			
Average Density		1.9038	0.0004
Standard Deviation		0.0153	Darie Maria

Digit Barner Operator

6 - 30 - 05 Date

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 1
Operator:	Dixie Barker
Filename:	\\mc-agr\AGR\DensityColumn\D05070101_DRF03R1.xls
	NUCO350-29BI-B
Sample Description:	Ipyc/Buffer on BWXT kernel composite 69300
Float Expiration Date:	
Gauge Expiration Date:	01/2006
Bath Temperature:	23.3C

Established in	Calibrated Floats					
Density	Top of Float	Bottom of Float	Center of Mass			
1.800	145.75	154.69	150.22			
1.850	254.86	262.94	258.90			
1.900	363.03	368.69	365.86			
1.950	466.04	473.41	469.73			
2.000	561.98	569.07	565.53			

Linear Fit				
slope	StDev	intercept	StDev	
4.80E-04	3.17E-06	1.73E+00	1.15E-03	

Alexander of the second	Sample	e Density	A MULTINE
Particle	Particle	Calculated	Standard
Number	Position	Density	Error
1	321.45	1.8805	0.0015
2	336.71	1.8878	0.0016
3	341.90	1.8903	0.0016
4	358.02	1.8981	0.0016
5	368.37	1.9030	0.0016
6	374.74	1.9061	0.0017
7	373.30	1.9054	0.0017
8	379.31	1.9083	0.0017
9	382.20	1.9097	0.0017
10	383.00	1.9101	0.0017
11	390.54	1.9137	0.0017
12	390.54	1.9137	0.0017
13	405.88	1.9210	0.0017
14	406.48	1.9213	0.0017
15	408.91	1.9225	0.0017
16	409.63	1.9228	0.0017
17	414.97	1.9254	0.0017
18	423.66	1.9296	0.0018
19	429.22	1.9322	0.0018
20	410.67	1.9233	0.0017
21			
22			
23			
24			
25			
verage Density		1.9112	0.0004
Standard Devia	tandard Deviation		(Allike Mule)

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	GR-CHAR-DAM-03 Rev. 2	
Operator:	xie Barker	
Filename:	c-agr\AGR\DensityColumn\D05110801_DRF03R2.xls	
Sample ID:	J01-15I-B01	
Sample description:	yC/Buffer on BWXT kernel composite 69302	
Float expiration date:		
Gauge expiration date:	ge expiration date: 01/2006	
Bath temperature:	22.7 °C	

Calibrated Floats				
Density	Top of Float	Bottom of Float	Center of Mass	
1.800	134.80	144.21	139.51	
1.850	243.34	251.54	247.44	
1.900	351.28	357.11	354.20	
1.950	456.05	463.23	459.64	
2.000	557.73	565.05	561.39	

	Line	ar Fit	TO STATE OF
slope	StDev	intercept	StDev
4.73E-04	2.74E-06	1.73E+00	9.73E-04

A CONTRACTOR	HOS LEADERS	ALEXANDURA	S	ample Density	A STATE OF THE PARTY OF THE PAR			
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated
1	304.62	1.8774	26	370.16	1.9084	51		
2	311.60	1.8807	27	370.85	1.9087	52		
3	316.86	1.8832	28	369.53	1.9081	53		
4	324.68	1.8869	29	374.00	1.9102	54		
5	328.13	1.8885	30	375.99	1.9112	55		
6	332.97	1.8908	31	381.77	1.9139	56		
7	334.87	1.8917	32	382.71	1.9143	57		
8	338.02	1.8932	33	384.42	1.9151	58		
9	338.84	1.8936	34	385.50	1.9157	59		
10	340.51	1.8944	35	386.44	1.9161	60		
11	341.77	1.8950	36	386.80	1.9163	61		
12	341.09	1.8946	37	387.69	1.9167	62		
13	341.09	1.8946	38	388.54	1.9171	63		
14	351.54	1.8996	39	391.14	1.9183	64		
15	352.97	1.9003	40	392.11	1.9188	65		
16	354.39	1.9009	41	393.13	1.9193	66		
17	358.58	1.9029	42	396.08	1.9207	67		
18	359.74	1.9035	43	397.78	1.9215	68		
19	358.62	1.9029	44	399.01	1.9221	69		
20	360.57	1.9039	45	400.37	1.9227	70		
21	361.40	1.9042	46	403.99	1.9244	71		
22	362.69	1.9049	47	407.97	1.9263	72		
23	365.05	1.9060	48	408.28	1.9264	73		
24	367.05	1.9069	49	420.44	1.9322	74		
25	369.10	1.9079	50	428.33	1.9359	75		
					1071			S. Francisco
	Avera	ge density of Py	C fragments:			1.9074		
		in density of Py		4.		0.0136		
Uncertai	nty in calculate	ed density of Py	C fragments:			0.0015		

Olyin Barler

11-8-05 Date

Summary of "info only" measurements

Coating Thickness

		Buffer thickness (µm)	IPyC thickness (µm)
Batch 1	NUCO350-30BI-C	99	36.3
Batch 2	NUCO350-37BI-C	102	35.1
Batch 3	NUCO350-29BI-C	107	33.9
Average		103	35.1
Composite	NUCO350-66BI-C	105	34.5

Open Porosity

		Average particle weight (g)	Open porosity (ml/m²)
Composite	NUCO350-66BI	3.95E-04	1.65
Confirmatory	LEU01-15I	4.26E-04	1.56

Note: The open porosity measurement on the IPyC was calculated from the mercury intrusion between 250 psi and 10000 psi per table 5.3 in EDF-4380, Rev. 6. In the upper half of this pressure range, there is some compression of the buffer layer that results in a value for open porosity that is higher than the actual value. The open porosity of the IPyC in LEU01-15I, calculated from the mercury intrusion between 250 psi and 5000 psi, was 1.20 ml/m² which corresponds well with the open porosity measured for OPyC deposited under similar conditions. The open porosity of the IPyC in NUCO350-66BI, calculated from the mercury intrusion between 250 psi and 5000 psi, was 1.19 ml/m². Porosimetry measurements on OPyC, where compression between 5000 psi and 10000 psi is negligible, show little mercury intrusion above 5000 psi.

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 0
Operator:	Andrew K. Kercher
Sample ID:	NUCO350-30BI-C
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300 repolished
Mount Number(s):	
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05070101

DMR Calibration Expiration Date: 3/24/06	
Stage Micrometer Calibration Expiration Date: 2/17/07	
Measured Value for 500 μm in Stage Micrometer Image: 500.4 μm	

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070101\
	NUCO350-30BI-C (repolished sample)
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070101_output\

Number of buffer layers analyzed:	123
Mean of the average buffer thickness of each particle (µm):	99.4
Standard deviation in the average buffer thickness of each particle (µm):	8.8

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	2
85	5
90	11
95	19
100	26
105	28
110	16
115	13
120	3
125	0
>125	0

When I Tenker

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070101\
Sample ID:	NUCO350-30BI-C (repolished sample)
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070101_output\

Number of inner pyrocarbon layers analyzed:	216
Mean of the average IPyC thickness of each particle (µm):	36.3
Standard deviation in the average IPyC thickness of each particle (µm):	2.4

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	1
32	7
34	30
36	58
38	72
40	34
42	12
44	2
46	0
48	0
50	0
52	0
54	0
56	0
>56	0

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 0	
Operator:	Andrew K. Kercher	
Sample ID:	NUCO350-37BI-C	
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300	
Mount Number(s):	M05063001	
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05070501\	

DMR Calibration Expiration Date:	3/24/06
Stage Micrometer Calibration Expiration Date:	2/17/07
Measured Value for 500 µm in Stage Micrometer Image:	500.7 μm

Data Report Form DRF-11A; Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070501\
Sample ID:	NUCO350-37BI-C
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070501_output\

Number of buffer layers analyzed:	155
Mean of the average buffer thickness of each particle (μm):	101.5
Standard deviation in the average buffer thickness of each particle (µm):	8.9

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	2
90	8
95	29
100	26
105	40
110	31
115	11
120	5
125	0
>125	3

Juken 7. Kenher

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070501\
	NUCO350-37BI-C
	IPyC/Buffer on BWXT kernel composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070501_output\

Number of inner pyrocarbon layers analyzed:	215
Mean of the average IPyC thickness of each particle (µm):	35.1
Standard deviation in the average IPyC thickness of each particle (µm):	2.0

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	11
34	44
36	96
38	46
40	15
42	3
44	0
46	0
48	0
50	0
52	0
54	0
56	0
>56	0

Julew L. Kenher

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 0	
Operator:	Andrew K. Kercher	
Sample ID:	NUCO350-29BI-C	
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300	
Mount Number(s):		
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05070601\	

DMR Calibration Expiration Date:	3/24/06
Stage Micrometer Calibration Expiration Date:	2/17/07
Measured Value for 500 µm in Stage Micrometer Image:	499.6 μm

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070601\
Sample ID:	NUCO350-29BI-C
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070601_output\

Number of buffer layers analyzed:	120
Mean of the average buffer thickness of each particle (µm):	107.3
Standard deviation in the average buffer thickness of each particle (µm):	8.0

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency	Histogram
<55	0	35 - Histogram
60	0	
65	0	30
70	0	25
75	0	20
80	0	§ 20
85	0	3
90	1	20 20 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
95	7	£ 10
100	13	
105	22	5
110	31	
115	23	
120	17	\$65 60 60 60 60 60 60 60 60 60 60 60 60 60
125	3	·
>125	3	buffer thickness (microns)
	7/0	7/ //
	-//	10 19 700
1201	NT.F	enher July 19, 2005
	Operator	Date

Data Report Form DRF-11B; Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070601\
Sample ID:	NUCO350-29BI-C
Sample Description:	IPyC/Buffer on BWXT kernel composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070601_output\

Number of inner pyrocarbon layers analyzed:	162
Mean of the average IPyC thickness of each particle (μm):	33.9
Standard deviation in the average IPyC thickness of each particle (µm):	2.0

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	2
32	24
34	62
36	52
38	17
40	5
42	0
44	0
46	0
48	0
50	0
52	0
54	0
56	0
>56)	0

Killer Tende

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 0
Operator:	Andrew K. Kercher
Sample ID:	NUCO350-66BI-C
Sample Description:	Composite (30BI+37BI+29BI) IPyC/Buffer on BWXT composite 69300
Mount Number(s):	
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05070602\

DMR Calibration Expiration Date: 3/24/06	
Stage Micrometer Calibration Expiration Date: 2/17/07	
Measured Value for 500 µm in Stage Micrometer Image: 499.6 µm	

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070602\
Sample ID:	NUCO350-66BI-C
Sample Description:	Composite (30BI+37BI+29BI) IPyC/Buffer on BWXT composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070602_output\

Number of buffer layers analyzed:	155
Mean of the average buffer thickness of each particle (µm):	105.3
Standard deviation in the average buffer thickness of each particle (µm):	

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	1
95	9
100	31
105	39
110	32
115	28
120	13
125	2
>125	0

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070602\
	NUCO350-66BI-C
Sample Description:	Composite (30BI+37BI+29BI) IPyC/Buffer on BWXT composite 69300
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05070602 output\

Number of inner pyrocarbon layers analyzed:	193
Mean of the average IPyC thickness of each particle (µm):	34.5
Standard deviation in the average IPyC thickness of each particle (µm):	2.2

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (µm)	Frequency
<30	4
32	17
34	55
36	72
38	31
40	12
42	2
44	0
46	0
48	0
50	0
52	0
54	0
56	0
>56	7 0

Likew Z. Lauber

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	NUCO350-66BI
Particle Lot Description:	Composite (30BI+37BI+29BI) IPyC/Buffer on BWXT 69300
	\\mc-agr\AGR\ParticleWeight\W05072101DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	7.92E-02 -	9.73E-02	8.60E-02	8.78E-02	7.42E-02
Number of particles:	201	246	218	222	188
Average weight/particle (g):	3.94E-04	3.96E-04	3.94E-04	3.95E-04	3.95E-04

Mean average weight/particle (g):	3.95E-04
Uncertainty in mean average weight/particle (g):	2.92E-07

Data Report Form DRF-31: Measurement of Open Porosity using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-31 Rev. 0
Operator:	S. D. Nunn
Coated particle batch ID:	NUCO350-66BI-E
Batch Description:	IPyC coated BWXT NUCO composite 69300
Thermocouple Expiration Date:	
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05071402\S05071402 DRF31R0.xls

Mean average weight/particle (g):	3.95E-04
Uncertainty in mean average weight/particle (g):	2.92E-07
Weight of particles (q):	4.1698
Approximate number of particles:	
Uncertainty in number of particles:	
Total envelope volume of sample (cc):	
Average envelope volume/particle (cc):	
Sample envelope density (g/cc):	2.998
Average particle diameter (microns):	6.31E+02
Average surface area/particle (cm2):	1.25E-02
Total cample curface area (cm 2)	1 225 02

Average particle diameter (microns):	0.31E+02
Average surface area/particle (cm2):	1.25E-02
Total sample surface area (cm2):	1.32E+02
Intruded mercury volume from 250-10,000 psia (cc):	2.18E-02
Open porosity (ml/m2):	1.65E+00

5. D. Hunn . 13/7/05 Operator . Date

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	LEUC0-15I-CO1
Particle Lot Description:	Buffer on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\ParticleWeight\W05110702_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	6.97E-02	6.15E-02	5.69E-02	5.93E-02	6.72E-02
Number of particles:	163	144	134	139	159
Average weight/particle (g):	4.28E-04	4.27E-04	4.25E-04	4.27E-04	4.23E-04

-	
	Mean average weight/particle (g): 4.26E-04
	Uncertainty in mean average weight/particle (g): 9.19E-07

Data Report Form DRF-31: Measurement of Open Porosity using a Mercury Porosimeter

Procedure: AGR-CHAR-DAM-	31 Rev. 0
Operator: S. D. Nunn	
Coated particle batch ID: LEU01-15I-D01	
Batch Description: IPyC coated BWX	T composite 69302
Thermocouple Expiration Date: 5/23/06	
Penetrometer Expiration Date: 5/25/06	
Completed DRF Filename: \\mc-agr\AGR\Po	rosimeter\S05110801\S05110801_DRF31R0.xls
Mean average weight/particle (g): Uncertainty in mean average weight/particle (g):	
Weight of particles (g):	4.0001
Approximate number of particles:	
Uncertainty in number of particles:	20
Total envelope volume of sample (cc):	
Average envelope volume/particle (cc):	1.43E-04
Sample envelope density (g/cc):	2.976
Average particle diameter (microns):	
Average surface area/particle (cm2):	1.32E-02
Total sample surface area (cm2):	1.24E+02
Intruded mercury volume from 250-10,000 psia (cc):	
Open porosity (ml/m2):	11 56E+00

5. D. Mung Operator

10 Characterization of IPyC on additional interrupted batches

This section reports results not required by the fuel specification and is provided for information only.

An additional three batches of particles were removed from the coater after deposition of only the buffer and IPyC layers. These particles contained LEUCO kernels and were fabricated for use in the production of TRISO particles where the coating was interrupted between the IPyC and SiC deposition steps. This section contains data on the inner pyrocarbon (IPyC) coating density and other properties for these particles. The data was obtained according to product inspection plan AGR-CHAR-PIP-02R2 with the exception that no other samples were riffled from the batch other than the one for the IPyC density measurement. The IPyC on these particles was deposited under similar conditions as the IPyC on the particles in composite LEU01-46T and should therefore be representative of the IPyC on the particles in that composite. The results of these measurements are included here because they provide further confirmation to the results in section 9 of the acceptability of the IPyC deposition process for IPyC density. These additional results are valuable because they are for coatings on the same LEUCO kernel composite as that used for LEU01-46T and they were obtained with a newer revision of the data acquisition method for IPyC density measurement which called for measurement on a greater number of coating fragments for improved sampling statistics.

The following page shows the inspection report form (IRF-02B). Following IRF-02B are the individual data report forms for the measurements that were performed.

Inspection Report Form IRF-02B: Interrupted Coating Batches - IPyC Density

Procedure:	AGR-CHAR-PIP-02 Rev. 4
Batch 1 ID:	
Batch 1 description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Batch 2 ID:	LEU01-26I
Batch 2 description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Batch 3 ID:	
Batch 3 description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302

SERVER DESCRIPTION OF STREET PRODUCTION OF A PROPERTY OF	60.000000	Meas	ured Data	A Such	Specification		Acceptance	Pass	Data
Property	Mean (x)	Std. Dev.	# measured (n)	k or t value	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Records
				4 670	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.903	pass	
	4 0056	0.0127	48	1.678	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.909	pass	DRF-03
Batch 1: IPyC sink/float density (Mg/m ³)	1.9056	0.0127	48	2.060	dispersion	C = x - ks > 1.80	1.869	pass	DKF-03
				2.868	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.942	pass	
					mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.898	pass	
			1. 医侧边线管理	1.676	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.905	pass	7
Batch 2: IPyC sink/float density (Mg/m ³)	1.9016	0.0144	51	2.040	dispersion	C = x - ks > 1.80	1.861	pass	DRF-03
				2.848	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.943	pass	
					mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.901	pass	
	1 0015	0.0470		1.679	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.908	pass	DDE 03
Batch 3: IPyC sink/float density (Mg/m ³)	1.9045	0.0130	46	2.002	dispersion	C = x - ks > 1.80	1.867	pass	DRF-03
				2.882	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.942	pass	

The process conditions for IPyC and Buffer were the same as the AGR-1 baseline process condition These results demostrate that the baseline IPyC process conditions satisfy the IPyC density specific	S.
QC Supervisor	3-2-06 Date
Accept process for IPyC density (Yes or No): N/A	
Man (Je) QA Reviewer	3/24/06 Date

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2	
Operator:	Dixie Barker	
Filename:	\\mc-agr\AGR\DensityColumn\D06012501_DRF03R2.xls	
	LEU01-23I-B01	
Sample description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302	
Float expiration date:		
Gauge expiration date:	01/2007	
Bath temperature:	22.9 °C	

Calibrated Floats						
Density	Top of Float	Bottom of Float	Center of Mass			
1.800	122.58	132.72	127.65			
1.850	223.47	231.53	227.50			
1.900	326.68	332.74	329.71			
1.950	429.77	437.46	433.62			
2.000	535.93	543.23	539.58			

	Line	ar Fit	HI SINALINE
slope	StDev	intercept	StDev
4.85E-04	2.89E-06	1.74E+00	9.64E-04

PART OF THE PART O	The same of the same	N. P. Charles	S	ample Densit	/			建护发现
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	276.61	1.8733	26	351.30	1.9096	51		0
2	282.13	1.8760	27	352.03	1.9099	52		
3	287.38	1.8785	28	354.21	1.9110	53		
4	291.23	1.8804	29	354.85	1.9113	54		
5	299.63	1.8845	30	355.47	1.9116	55		
6	310.91	1.8900	31	355.47	1.9116	56		
7	313.07	1.8910	32	356.37	1.9120	57		
8	317.71	1.8933	33	357.52	1.9126	58		
9	318.83	1.8938	34	358.02	1.9128	59		
10	323.08	1.8959	35	358.34	1.9130	60		-
11	324.22	1.8964	36	360.37	1.9140	61		
12	328.36	1.8984	37	361.54	1.9145	62		
13	330.91	1.8997	38	361.54	1.9145	63		
14	332.69	1.9005	39	362.17	1.9148	64		
15	333.78	1.9011	40	365.31	1.9164	65		
16	334.56	1.9014	41	366.52	1.9169	66		
17	337.37	1.9028	42	368.35	1.9178	67		
18	342.48	1.9053	43	370.63	1.9189	68		
19	343.07	1.9056	44	373.61	1.9204	69		
20	345.44	1.9067	45	377.86	1.9224	70		
21	345.97	1.9070	46	379.11	1.9231	71		
22	346.79	1.9074	47	380.42	1.9237	72	The same of the	
23	347.45	1.9077	48	381.00	1.9240	73		
24	348.31	1.9081	49			74		
25	350.73	1.9093	50	STA .		75		
Sign Sign		A SERVEN						
	Avera	ge density of P	yC fragments:			1.9056		
Stan	dard deviation	in density of P	yC fragments:			0.0127		
Uncerta	inty in calculat	ed density of P	yC fragments:			0.0015		

Dyul Barker

1-25-06

Date

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2
Operator:	Dixie Barker
Filename:	\\mc-agr\AGR\DensityColumn\D06012601_DRF03R2.xls
	LEU01-26I-B01
Sample description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Float expiration date:	07/2007
Gauge expiration date:	01/2007
Bath temperature:	22.5 °C

BESTIVES IX	Calibrat	ed Floats	OF THE STATE OF
Density	Top of Float	Bottom of Float	Center of Mass
1.800	128.13	136.87	132.50
1.850	228.36	236.83	232.60
1.900	333.25	338.84	336.05
1.950	435.49	443.49	439.49
2.000	541.90	548.97	545.44

	Line	ar Fit	
slope	StDev	intercept	StDev
4.84E-04	2.90E-06	1.74E+00	9.84E-04

			S	ample Densit	ý		Charle 100	
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	266.79	1.8659	26	346.54	1.9045	51	393.01	1.9270
2	285.87	1.8751	27	346.54	1.9045	52		
3	288.11	1.8762	28	347.31	1.9049	53		
4	288.60	1.8765	29	350.49	1.9064	54		
5	292.72	1.8785	30	351.77	1.9070	55		
6	298.39	1.8812	31	353.96	1.9081	56		
7	300.12	1.8820	32	353.96	1.9081	57		
8	301.41	1.8827	33	355.69	1.9089	58		
9	305.86	1.8848	34	356.71	1.9094	59		
10	313.26	1.8884	35	357.96	1.9100	60		
11	317.17	1.8903	36	. 360.26	1.9112	61		
12	318.36	1.8909	37	361.24	1.9116	62		
13	319.60	1.8915	38	362.33	1.9122	63		
14	320.91	1.8921	39	363.79	1.9129	64		
15	322.75	1.8930	40	363.79	1.9129	65		
16	323.99	1.8936	41	365.03	1.9135	66		
17	326.39	1.8948	42	365.91	1.9139	67		
18	330.64	1.8968	43	366.71	1.9143	68		
19	331.75	1.8974	44	371.41	1.9166	69		
20	338.46	1.9006	45	372.46	1.9171	70		
21	339.67	1.9012	46	375.13	1.9184	71		
22	341.79	1.9022	47	379.10	1.9203	72		
23	343.23	1.9029	48	380.17	1.9208	73		
24	344.00	1.9033	49	. 380.17	1.9208	74		
25	344.93	1.9037	50	383.89	1.9226	75		
				1000			Call Provides	
	Avera	ge density of P	yC fragments:			1.9016		
Stan		in density of P				0.0144		
Uncerta	inty in calculat	ed density of P	yC fragments:			0.0015		

Own Barley

1-26-06

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2
Operator:	Dixie Barker
Filename:	\mc-agr\AGR\DensityColumn\D06013001_DRF03R2.xls
Sample ID:	LEU01-41I-B01
Sample description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Float expiration date:	07/2007
Gauge expiration date:	01/2007
Bath temperature:	23.4 °C

7.0	Calibrat	ted Floats	DOMEST PROPERTY.
Density	Top of Float	Bottom of Float	Center of Mass
1.800	127.12	136.14	131.63
1.850	229.50	237.55	233.53
1.900	335.50	340.95	338.23
1.950	439.00	446.59	442.80
2.000	542.50	549.76	546.13

THE VETTO	Line	ar Fit	OF THE SECTION
slope	StDev	intercept	StDev
4.82E-04	2.92E-06	1.74E+00	9.95E-04

				ample Densit	/			
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	286.46	1.8750	26	348.83	1.9050	51		
2	294.85	1.8790	27	352.30	1.9067	52		
3	305.28	1.8840	28	353.32	1.9072	53		
4	308.22	1.8854	29	353.81	1.9074	54		
5	310.52	1.8865	30	358.69	1.9097	55		
6	312.28	1.8874	31	359.79	1.9103	56		
7	320.59	1.8914	32	361.05	1.9109	57		,
8	323.40	1.8927	33	362.21	1.9114	58		
9	325.20	1.8936	34	363.30	1.9120	59		
10	325.90	1.8939	35	363.30	1.9120	60		
11	329.06	1.8955	36	365.45	1.9130	61		
12	332.16	1.8970	37	368.29	1.9144	62		
13	332.16	1.8970	38	373.79	1.9170	63		
14	333.34	1.8975	39	376.08	1.9181	64		
15	336.83	1.8992	40	376.49	1.9183	65		
16	338.18	1.8999	41	379.22	1.9196	66	i pari	
17	340.70	1.9011	42	380.71	1.9203	67		
18	341.74	1.9016	43	383.98	1.9219	68		
19	341.74	1.9016	44	390.28	1.9250	69	V	
20	344.81	1.9031	45	392.92	1.9262	70		
21	345.54	1.9034	46	416.92	1.9378	71		
22	346.21	1.9037	47			72		
23	346.46	1.9039	48	25)		73		
24	346.94	1.9041	49			74		
25	348.16	1.9047	50			75		
								TANK TANK
		ge density of P		The state of the s		1.9045		
		in density of P				0.0130		
Uncertai	nty in calculat	ed density of P	yC fragments:			0.0016		

Diffic Bake

1-30-06

Summary of "info only" measurements

Coating Thickness

		Buffer thickness (µm)	IPyC thickness (µm)
Batch 1	LEU01-23I	109	35.2
Batch 2	LEU01-26I	108	35.1
Batch 3	LEU01-41I	110	35.0
Average		109	35.1

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-23I-B01
Sample description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Mount ID number:	M06012401L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06013001\P0601300101\

DMR calibration expiration date:	9/8/06	
Calibrated pixels/micron:	2.8260	
Stage micrometer calibration expiration date:	2/17/07	
Measured value for 500 μm in stage micrometer image (μm):	500.0	

P	Polish-down dis	tance n,m (µm)
2,2	2,8	8,2	8,8
298	283	297	280

Ap	proximate lay	er width in pol	ish plane (µm) Entiron Selection
Kernel radius	Buffer	IPyC	SiC	OPyC
174	104	36		

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06013001\
Sample ID:	LEU01-23I-B01
Sample Description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06013001_output\

Number of buffer layers analyzed:	77
Mean of the average buffer thickness of each particle (µm):	109.0
Standard deviation in the average buffer thickness of each particle (µm):	7.4

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	6
95	28
100	37
105	58
110	44
115	19
120	7
125	0
>125	2

akew K. Kewher

01/31/0G Date

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06013001\
Sample ID:	LEU01-23I-B01
Sample Description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06013001_output\

Number of inner pyrocarbon layers analyzed:	80
Mean of the average IPyC thickness of each particle (µm):	35.2
Standard deviation in the average IPyC thickness of each particle (µm):	2.4

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (µm)	Frequency
<30	0
32	0
34	4
36	25
38	53
40	61
42	41
44	12
46	3
48	2
50	0
52	0
54	0
56	0
>56	0

Ruhew & Henker

01/31/06 Date

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-26I-B01
Sample description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Mount ID number:	M06012501L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06020701\P0602070101\

DMR calibration expiration date:	9/8/06	
Calibrated pixels/micron:	2.8260	
Stage micrometer calibration expiration date:	2/17/07	
Measured value for 500 μm in stage micrometer image (μm):	500.4	

F	olish-down dis	tance n,m (µm	1)
2,2	2,8	8,2	8,8
296	303	290	298

Ap	proximate lay	er width in pol	ish plane (µm	
Kernel radius	Buffer	IPyC	SiC	OPyC
175	100	37		

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020701\
	LEU01-26I-B01
Sample Description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020701_output\

Number of buffer layers analyzed:	75
Mean of the average buffer thickness of each particle (µm):	107.6
Standard deviation in the average buffer thickness of each particle (µm):	8.4

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	1
95	3
100	11
105	17
110	15
115	15
120	8
125	3
>125	2

Date

Operator

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020701\
Sample ID:	LEU01-26I-B01
Sample Description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020701_output\

Number of inner pyrocarbon layers analyzed:	80
Mean of the average IPyC thickness of each particle (µm):	35.1
Standard deviation in the average IPyC thickness of each particle (µm):	2.3

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	2
32	4
34	22
36	19
38	24
40	8
42	1
44	0
46	0
48	0
50	0
52	0
54	0
56	0
>56	0

Leu L. Kenher

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Microscope System

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-41I-B01
Sample description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Mount ID number:	M06012701L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06020702\P0602070201\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 µm in stage micrometer image (µm):	500.4

All the same	1)	tance n,m (µm	Polish-down dis	P
Kerne	8,8	8,2	2,8	2,2
1	300	314	297	308

Ap	proximate lay	er width in pol	ish plane (µm	MINTER STATE
Kernel radius	Buffer	IPyC	SiC	OPvC
168	111	36		0.70

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020702\
Sample ID:	LEU01-41I-B01
Sample Description:	Variant 3h: IPvC/Ruffer on BWYT kornel composite 50202
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020702_output\

Mean of the average buffer thickness of each particle (um):	Number of buffer layers analyzed:	72
	Mean of the average buffer thickness of each particle (µm): Standard deviation in the average buffer thickness of each particle (µm):	110.1

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	2
95	4
100	3
105	8
110	16
115	19
120	14
125	3
>125	3

Mhew F. Zenker

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020702\
Sample ID:	LEU01-41I-B01
Sample Description:	Variant 3b: IPyC/Buffer on BWXT kernel composite 69302
Folder name containing processed data:	\mc-agr\AGR\ImageProcessing\Completed_Layers\P06020702_output\

Number of inner pyrocarbon layers analyzed:	79
Mean of the average IPvC thickness of each particle (um):	35.0
Standard deviation in the average IPyC thickness of each particle (µm):	2.0

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (µm)	Frequency
<30	0
32	5
34	20
36	26
38	24
40	3
42	1
44	0
46	0
48	0
50	0
52	0
54	0
56	0
>56	0

Whew h. Kender

11 Characterization of first batch of TRISO-coated particles

This section contains data on LEU01-21T, the first batch of TRISO-coated particles used for the LEU01-46T particle composite. The data was obtained according to product inspection plan AGR-CHAR-PIP-03R2.

Note that some of the carbon deposited for the buffer layer reacted with the kernel to form a uranium carbide layer between the kernel and the buffer. The uranium carbide layer was not included in the measurement of the buffer thickness. The thickness of this carbide layer varied, but was typically around 6 μ m thick and effectively increased the kernel radius by that amount.

Note that the coating thicknesses of the TRISO-coated particle batch were remeasured after coated particle composite characterization was underway in order to improve the accuracy of the reported values. The original images of the particle cross sections were reanalyzed using an updated version of the image analysis program. This new version utilized a more robust algorithm for identifying the outer boundary of the outer pyrocarbon layer (OPyC). The data in this section shows the new coating thickness values. A record of the original measured values, which were initially used to determine the acceptance of this batch for inclusion in the composite, is included in section 16. Both the old and new coating thickness values for batch LEU01-21T were within the range specified in INL EDF-4380, Rev. 6.

The following pages show the inspection report form (IRF-03). Following IRF-03 are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. This batch was determined to satisfy the specifications in section 5.2 of EDF 4380, Rev. 6.

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	LEU01-21T
Coated particle batch description:	TRISO on BWXT kernel composite 69302

Property	TO HILL	Measured Data			Specification			Pass	1 Married Married													
	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Acceptance Test Value	or fall	Data Records													
Average buffer thickness for	102.4	7.1	126	1.657	57 mean	$A = x - ts/\sqrt{n} \ge 85$	101.4	pass	DRF-08													
each particle (µm)			120	1.037	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	103.4	pass	DRF-11													
Average IPyC thickness for 39.9	39.9	2.0	152 1	1.655	1 655 mean	$A = x - ts/\sqrt{n} \ge 35$	39.6	pass	DRF-08													
each particle (µm)	33.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	-32	132	1.033	1.033	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.2	pass	DRF-11
Average SiC thickness for each particle (µm) 37.	37.6	0.9	152	152 1.655	e mean	$A = x - ts/\sqrt{n} \ge 31$	37.5	pass	DRF-08													
	57.0		0.5	0.5	132	1.033	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	37.7	pass	DRF-11											
Average OPyC thickness for each particle (µm) 41.	41.0	2.2	152 1.655	1 655	mean 40 ± 5	$A = x - ts/\sqrt{n} \ge 35$	40.7	pass	DRF-08													
	n) 41.0			2.2 152		$B = x + ts/\sqrt{n} \le 45$	41.3	pass	DRF-11													
Particles with missing OPyC			15578		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19													

								pass	
Average SiC thickness for	37.6	0.9	152	1.655	mean	A = x - ts/√n ≥ 31	37.5	pass	DRF-08
each particle (µm)	37.0	0.9	132	1.055	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	37.7	pass	DRF-11
Average OPyC thickness for	41.0	2.2	152	1.655	mean	A = x - ts/√n ≥ 35	40.7	pass	S DRF-0
each particle (µm)	12.0	2.12	152	1.055	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	41.3	pass	DRF-1
Particles with missing OPyC			15578		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-1
Ident analysis performed on mission ObyC same	ala fas info	CHARLES THE		mments	Service.		May 15 759	TEL TIME	in ofthe
oldspot analysis performed on missing OPyC sam	ple for inform	nation only.			bserved.	rathiku 1/2 bet	ALCO DO	ne Man	n oty s
ildspot analysis performed on missing OPyC sam	ple for inform	nation only.			bserved.	n enknikanjuk ku n	May 199	is Valva	e otys
oldspot analysis performed on missing OPyC sam	ple for inform	nation only.			bserved.		MARCH TO	ing Malyi	in Olyle.
oldspot analysis performed on missing OPyC sam	ple for inform	nation only.			bserved.	2 22 6	Mariaty 2-99	es Valu	
oldspot analysis performed on missing OPyC sam	ple for inform	nation only.			bserved.	3-23-01	6	NE TIL	
oldspot analysis performed on missing OPyC sam	~~				bserved.				i coluis
John Hu	~~		10 out of 15578						an organization

3/29/06 Date

Data Report Form DRF-08: Imaging of Coated Particle Cross-sections Using an Optical Mi	Microscope System
--	-------------------

Procedure:	AGR-CHAR-DAM-08 Rev. 0	
Operator:	John Hunn	
Sample ID:	LEU01-21T-B01	
Sample Description:	TRISO on BWXT kernel composite 69302	
Mount Number(s):		
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05112803	

DMR Calibration Expiration Date: 9	9/8/06
Stage Micrometer Calibration Expiration Date: 2	2/17/07
Measured Value for 500 µm in Stage Micrometer Image: 5	500.4 µm

Procedure:	AGR-CHAR-DAM-08 Rev. 0	
Operator:	John Hunn	
Sample ID:	LEU01-21T-B01	
Sample Description:	TRISO on BWXT kernel composite 69302	
Mount Number(s):	M05112803	
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05112804	

DMR Calibration Expiration Date:	9/8/06
Stage Micrometer Calibration Expiration Date:	2/17/07
Measured Value for 500 µm in Stage Micrometer Image:	500.4 μm

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
	LEU01-21T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

Number of buffer layers analyzed:	126
Mean of the average buffer thickness of each particle (µm):	102.4
Standard deviation in the average buffer thickness of each particle (µm):	7.1

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	6
95	16
100	25
105	32
110	29
115	14
120	3
125	1
>125	0

Date

Lew K-Lowler Operator

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
Sample ID:	LEU01-21T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

Number of inner pyrocarbon layers analyzed:	152
Mean of the average IPyC thickness of each particle (µm):	39.9
Standard deviation in the average IPyC thickness of each particle (µm):	2.0

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (µm)	Frequency
<30	0
32	0
34	0
36	2
38	20
40	63
42	42
44	19
46	6
48	0
50	0
52	0
54	0
56	0
>56	0

Data Report Form DRF-11C: Measurement of Silicon Carbide Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
	LEU01-21T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

Number of silicon carbide layers analyzed:	152
Mean of the average SiC thickness of each particle (µm):	37.6
Standard deviation in the average SiC thickness of each particle (µm):	0.9

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	0
35	0
36	4
37	39
38	54
39	46
40	9
>40	0

Likew L. Howken

January 24,2006

Data Report Form DRF-11D: Measurement of Outer Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
Sample ID:	LEU01-21T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

Number of outer pyrocarbon layers analyzed:	152
Mean of the average OPyC thickness of each particle (µm):	41.0
Standard deviation in the average OPyC thickness of each particle (µm):	2.2

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	1
32	0
34	0
36	0
38	6
40	42
42	58
44	34
46	9
48	2
50	0
>50	0

Likew H. Lenker

January 24, 2006

Procedure:	AGR-CHAR-DAM-19 Rev. 1
	John Hunn
	LEU01-21T-C02
Sample Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\MissingOPyC\X05112801_DRF19R1.xls
	N Company of the Comp
Mean average	weight/particle (g): 7.30E-04
Uncertainty in average	weight/particle (g): 1.48E-06
Weight of san	nple of particles (g): 11.372
	particles in sample: 15578
Uncertainty in number of	particles in sample: 32
Number of particles with	missing OPyC layer: 0
Commo	arts on unusual visual characteristics of OD-C
Comme	nts on unusual visual characteristics of OPyC
few particles (<10) were observed to have	a dark blemish as seen in image P0511280501.
	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
Parchay of Calculation	

Operator

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	LEU01-21T-D01
Particle Lot Description:	TRISO on LEU01 kernels
	\\mc-agr\AGR\ParticleWeight\W05112301_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	9.46E-02	8.24E-02	8.75E-02	8.89E-02	8.36E-02
Number of particles:	130	113	119	122	115
Average weight/particle (g):	7.28E-04	7.29E-04	7.35E-04	7.29E-04	7.27E-04

Mean average weight/particle (g):	7.30E-04
Uncertainty in mean average weight/particle (g):	

	ounting of Particles with SiC Gold Spot Defects by Visual Inspection
	AGR-CHAR-DAM-20 Rev. 1
	John Hunn
	LEU01-21T-C02
Sample Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\GoldSpots\G05112901_DRF20R1.xls
Mean average	weight/particle (a) 7 205 04
Uncertainty in average	weight/particle (g): 7.30E-04 weight/particle (g): 1.48E-06
Weight of san	nple of particles (g): 11.372
Approximate number of	particles in sample: 15578
Oncertainty in number of	particles in sample: 32
Number of particles wit	th gold spot defects: 10 ents on unusual visual characteristics of SIC
Number of particles wit	th gold spot defects: 10 ents on unusual visual characteristics of SIC

Example of soot inclusion at IPyC/SiC interface on particle with a goldspot.

	ounting of Particles with SIC Gold Spot Defects by Visual Inspection
Procedure:	AGR-CHAR-DAM-20 Rev. 1
Operator:	John Hunn
Sample ID:	LEU01-21T-A01
Sample Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\GoldSpots\G05120101_DRF20R1.xls
Mean average	weight/particle (g): 7.30E-04
Uncertainty in average	weight/particle (q): 1.48E-06
Weight of sar	nple of particles (g): 5.286
Approximate number of	particles in sample: 7241
Uncertainty in number of	particles in sample: 15
Number of particles with	th gold snot defects. E
Number of particles wit	th gold spot defects: 5
Comme	ents on unusual visual characteristics of SiC
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Comme	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether
Commo	ents on unusual visual characteristics of SIC 2901_DRF20R1.xls, which was inconclusive as to whether specification.
Commo	ents on unusual visual characteristics of SiC 2901 DRF20R1.xls, which was inconclusive as to whether

Frocedure.	AGR-CHAR-DAM-20 Rev. 1
	John Hunn
Sample ID:	LEU01-21T-A01 and LEU01-21T-C02
Sample Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\GoldSpots\G05120102_DRF20R1.xls
Mean average	weight/particle (g): 7.30E-04
Uncertainty in average	weight/particle (g): 1.48E-06
Weight of sar	nple of particles (g): 16.658
Approximate number of	particles in sample: 22819
Uncertainty in number of	particles in sample: 46
Number of particles with	
Number of particles wit	th gold spot defects: 15
Comm	ante on unusual visual de la
Commo	ents on unusual visual characteristics of SiC
Commo	

12 Characterization of second batch of TRISO-coated particles

This section contains data on LEU01-35T, the second batch of TRISO-coated particles used for the LEU01-46T particle composite. The data was obtained according to product inspection plan AGR-CHAR-PIP-03R2.

Note that some of the carbon deposited for the buffer layer reacted with the kernel to form a uranium carbide layer between the kernel and the buffer. The uranium carbide layer was not included in the measurement of the buffer thickness. The thickness of this carbide layer varied, but was typically around 6 μ m thick and effectively increased the kernel radius by that amount.

Note that the coating thicknesses of the TRISO-coated particle batch were remeasured after coated particle composite characterization was underway in order to improve the accuracy of the reported values. The original images of the particle cross sections were reanalyzed using an updated version of the image analysis program. This new version utilized a more robust algorithm for identifying the outer boundary of the outer pyrocarbon layer (OPyC). The data in this section shows the new coating thickness values. A record of the original measured values, which were initially used to determine the acceptance of this batch for inclusion in the composite, is included in section 16. Both the old and new coating thickness values for batch LEU01-35T were within the range specified in INL EDF-4380, Rev. 6.

The following pages show the inspection report form (IRF-03). Following IRF-03 are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. This batch was determined to satisfy the specifications in section 5.2 of EDF 4380, Rev. 6.

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	LEU01-35T
Coated particle batch description:	TRISO on BWXT kernel composite 69302

Property	Measured Data			Specification		Acceptance Pas	Pass	s Data		
	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Test Value	or fail	Records	
Average buffer thickness for	103.4	8.2	163	1.654	mean	$A = x - ts/\sqrt{n} \ge 85$	102.3	pass	DRF-08	
each particle (µm)		0.2	163 1.654	8.2 163 1.6	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	104.5	pass	DRF-11	
Average IPyC thickness for	39.7	20 20 20	39.7 2.2 . 214 1.652 mea	mean	A = x - ts/√n ≥ 35	39.5	pass	DRF-08		
each particle (µm)	39.7	2.2	, 214	1.032	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	39.9	pass	DRF-11	
Average SiC thickness for	36.3	1.0	214	1.652	mean	$A = x - ts/\sqrt{n} \ge 31$	36.2	pass	DRF-08	
each particle (µm)	36.3	1.0	214	1.052	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	36.4	pass	DRF-11	
Average OPyC thickness for	40.2	1.9	24.4	214	1.652	mean	$A = x - ts/\sqrt{n} \ge 35$	40.0	pass	DRF-08
each particle (µm)	40.2	1.9	214	1.052	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.4	pass	DRF-11	
Particles with missing OPyC			15622	1	defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19	

spot analysis performed on missing OPyC	sample for information only. 1		mments 2 gold spots of	oserved.	Carl mais upt		
July An	ervisor	- P. P. V.			3-23-0		
Accept Coated particle batch (Yes or N	No): Yes						
month	_				2/20/0		

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-35T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05121201L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Pyymmddnn\P05121202\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.4

F	olish-down dis	tance n,m (µm	1)
2,2	2,8	8,2	8,8
367	371	380	390

Approximate layer width in polish plane (µm)				
Kernel radius	Buffer	IPyC	SiC	OPyC
177	108	38	38	39

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-35T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05121202L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Pyymmddnn\P05121202\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.4

Polish-down distance n,m (µm)				
2,2	2,8	8,2	8,8	
383	394	384	399	

Approximate layer width in polish plane (μm)				
Kernel radius	Buffer	IPyC	SIC	OPyC
170	94	40	38	40

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-35T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05121203L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Pyymmddnn\P05121202\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.4

F	Polish-down distance n,m (µm)					
2,2	2,8	8,2	8,8			
356	369	346	360			

Approximate layer width in polish plane (µm)				
Kernel radius	Buffer	IPyC	SiC	OPyC
169	107	38	39	40

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
Sample ID:	LEU01-35T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

Number of buffer layers analyzed:	163
Mean of the average buffer thickness of each particle (µm):	103.4
Standard deviation in the average buffer thickness of each particle (µm):	8.2

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	1
90	3
95	20
100	37
105	39
110	29
115	19
120	10
125	3
>125	2

01

ew K. Lenken

Date

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
Sample ID:	LEU01-35T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

Number of inner pyrocarbon layers analyzed:	214	
Mean of the average IPyC thickness of each particle (µm):	39.7	
Standard deviation in the average IPyC thickness of each particle (µm):	2.2	

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	0
34	0
36	9
38	37
40	76
42	57
44	29
46	5
48	1
50	0
52	0
54	0
56	0
>56	0

Likew K. Keuchen

Data Report Form DRF-11C: Measurement of Silicon Carbide Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
Sample ID:	LEU01-35T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

Number of silicon carbide layers analyzed:	214
Mean of the average SiC thickness of each particle (µm):	36.3
Standard deviation in the average SiC thickness of each particle (µm):	1.0

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	2
35	23
36	60
37	79
38	42
39	7
40	1
>40	0

Lakew K. Tenher

Data Report Form DRF-11D: Measurement of Outer Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
Sample ID:	LEU01-35T-B01
Sample Description:	Baseline TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

Number of outer pyrocarbon layers analyzed:	214
Mean of the average OPyC thickness of each particle (μm):	40.2
Standard deviation in the average OPyC thickness of each particle (µm):	1.9

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	0
34	0
36	3
38	24
40	76
42	72
44	36
46	3
48	0
50	0
>50	0

akent Lenker

Date

Procedure:	: AGR-CHAR-DAM-19 Rev. 1	
Operator:	: John Hunn	
Sample ID:	: LEU01-35T-C01	
Sample Description:	: TRISO on BWXT kernel composite 69302	
Filename:	: \\mc-agr\AGR\MissingOPyC\X05121201_DRF19R1.xls	Ш
Management	a walabh/aartiala /a\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	e weight/particle (g): 7.27E-04	_
	e weight/particle (g): 2.10E-06	
	mple of particles (g): 11.357	_
	f particles in sample: 15622	_
Uncertainty in number of	f particles in sample: 45	_
Number of particles with	n missing OPyC layer: 0	
Number of particles with	n missing OPyC layer: 0	
	n missing OPyC layer: 0 ents on unusual visual characteristics of OPyC	
Comme	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	16)	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	ents on unusual visual characteristics of OPyC	
Comme mall blemish slightly darker than the aver	rage OPyC surface was observed on a small fraction of particles	
Comme	ents on unusual visual characteristics of OPyC	

A small dark blemish was observed on less than 0.5% of the particles from LEU01-35T-C01.

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Andy Nelson
Particle Lot ID:	LEU01-35T-D01
Particle Lot Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\ParticleWeight\W05121201_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	8.52E-02	7.79E-02	1.07E-01	9.47E-02	7.91E-02
Number of particles:	117	108	147	131	108
Average weight/particle (g):	7.28E-04	7.21E-04	7.30E-04	7.23E-04	7.32E-04

Mean average weight/particle (g):	7.27E-04
Uncertainty in mean average weight/particle (g):	2.10E-06

Procedure:	AGR-CHAR-DAM-20 Rev. 1
	John Hunn
	LEU01-35T-C01
Sample Description:	TRISO on BWXT kernel composite 69302
	\\mc-agr\AGR\GoldSpots\G05121201_DRF20R1.xls
	e weight/particle (g): 7.27E-04
Uncertainty in average	e weight/particle (g): 2.10E-06
Weight of sar	mple of particles (g): 11.357
	f particles in sample: 15622
Uncertainty in number of	f particles in sample: 45
	ith gold spot defects: 17
Number of particles with	nents on unusual visual characteristics of SiC

Average appearance of SiC after burnback for LEU01-35T

13 Characterization of third batch of TRISO-coated particles

This section contains data on LEU01-27T, the third batch of TRISO-coated particles used for the LEU01-46T particle composite. The data was obtained according to product inspection plan AGR-CHAR-PIP-03R2.

Note that some of the carbon deposited for the buffer layer reacted with the kernel to form a uranium carbide layer between the kernel and the buffer. The uranium carbide layer was not included in the measurement of the buffer thickness. The thickness of this carbide layer varied, but was typically around 6 μ m thick and effectively increased the kernel radius by that amount.

Note that the coating thicknesses of the TRISO-coated particle batch were remeasured after coated particle composite characterization was underway in order to improve the accuracy of the reported values. The original images of the particle cross sections were reanalyzed using an updated version of the image analysis program. This new version utilized a more robust algorithm for identifying the outer boundary of the outer pyrocarbon layer (OPyC). The data in this section shows the new coating thickness values. A record of the original measured values, which were initially used to determine the acceptance of this batch for inclusion in the composite, is included in section 16. Both the old and new coating thickness values for batch LEU01-27T were within the range specified in INL EDF-4380, Rev. 6.

The following pages show the inspection report form (IRF-03). Following IRF-03 are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. This batch was determined to satisfy the specifications in section 5.2 of EDF 4380, Rev. 6.

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	LEU01-27T
Coated particle batch description:	TRISO on BWXT kernel composite 69302

Property	15 5 5 111	Meas	ured Data	THO PER	Specification	Acceptance Criteria	Acceptance Test Value	Pass or fail	Data Records
	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380				
Average buffer thickness for	nee buffer thickness for	$A = x - ts/\sqrt{n} \ge 85$	103.9	pass	DRF-08				
each particle (µm)	104.9	0.2	100	1.055	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	105.9	pass	DRF-11
Average IPyC thickness for	ne IPvC thickness for 200 22 240 4554 mean	mean	$A = x - ts/\sqrt{n} \ge 35$	38.8	pass	DRF-08			
each particle (µm)	39.0	2.2	249	1.651	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	39.2	pass	DRF-11
Average SiC thickness for	34.6	1.2	248	1.651	mean	$A = x - ts/\sqrt{n} \ge 31$	34.5	pass	DRF-08
each particle (µm)	34.6	1.2	240	1.051	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	34.7	pass	DRF-11
Average OPyC thickness for	41.7	2.0	248	1.651	mean	$A = x - ts/\sqrt{n} \ge 35$	41.5	pass	DRF-08
each particle (µm)	41.7	2.0	248	1.051	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	41.9	pass	DRF-11
Particles with missing OPyC		N Y	15680		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19

Particles with missing OPyC		15680		defect fraction ≤ 6.0 × 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19
Goldspot analysis performed on missing OPyC sa	ample for information on		mments gold spots	observed.	KAS SERVEDIS	EURENA	ie ie jage	9150
July A	visor		1		3-23-0			es qu
Accept Coated particle batch (Yes or No	o): Y	es						
May	2				3/29/00 Date	5		

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-27T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05121902L
Folder name containing images:	\\Mc-agr\agr\ImageProcessing\P05122001\P051220101

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 µm in stage micrometer image (µm):	500.0

Part of the last	Polish-down dista	nce n,m (µ	m)
2,2	2,8	8,2	8,8
382	393 (2,9)	398	413 (8,9)

Approximate layer width in polish plane (μm)					
Kernel radius	Buffer	IPyC	SiC	OPyC	
177	105	38	38	39	

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-27T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05122001L
Folder name containing images:	\\Mc-agr\agr\ImageProcessing\P05122001\P051220102\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.0

P	olish-down dis	tance n,m (µm)
2,2	2,8	8,2	8,8
115	409	388	383

Ap	proximate lay	er width in pol	ish plane (µm)
Kernel radius	Buffer	IPyC	SiC	OPyC
176	99	39	37	42

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-27T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05122002L
Folder name containing images:	ImageProcessing\\P05122001\P051220103\

DMR calibration expiration date:	9/8/06	
Calibrated pixels/micron:	2.8260	
Stage micrometer calibration expiration date:	2/17/07	
Measured value for 500 µm in stage micrometer image (µm):	500.0	

Name of the	Polish-down dista	nce n,m (µ	m)
2,2	2,8	8,2	8,8
373	381 (2,9)	358	363 (8,9)

Ap	proximate lay	er width in pol	sh plane (µm)
Kernel radius	Buffer	IPyC	SiC	OPyC
169	106	40	37	43

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
Sample ID:	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

Number of buffer layers analyzed:	188
Mean of the average buffer thickness of each particle (µm):	104.9
Standard deviation in the average buffer thickness of each particle (µm):	8.2

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	6
95	13
100	39
105	36
110	48
115	25
120	14
125	5
>125	2

Inhew T. Lewler Operator

01/18/06 Date

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
Sample ID:	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

Number of inner pyrocarbon layers analyzed:	249
Mean of the average IPyC thickness of each particle (µm):	39.0
Standard deviation in the average IPyC thickness of each particle (µm):	2.2

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	0
34	0
36	16
38	69
40	93
42	44
44	25
46	2
48	0
50	0
52	0
54	0
56	0
>56	0

Likew K. Lewker

Data Report Form DRF-11C: Measurement of Silicon Carbide Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

Number of silicon carbide layers analyzed:	248
Mean of the average SiC thickness of each particle (µm):	34.6
Standard deviation in the average SiC thickness of each particle (µm):	1.2

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	2
30	0
31	0
32	1
33	12
34	46
35	94
36	74
37	17
38	1
39	1
40	0
>40	0

Khew Loucher

01/18/06 Date

Data Report Form DRF-11D: Measurement of Outer Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
Sample ID:	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

Number of outer pyrocarbon layers analyzed:	248
Mean of the average OPyC thickness of each particle (µm):	41.7
Standard deviation in the average OPyC thickness of each particle (µm):	2.0

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	0
34	0
36	0
38	7
40	46
42	81
44	85
46	24
48	4
50	1
>50	0

Kikew K. Kenler Operator

Date

Procedure: AGR-CHAR	R-DAM-19 Rev. 1
Operator: John Hunn	
Sample ID: LEU01-277	T-C01
Sample Description: TRISO on	BWXT kernel composite 69302
Filename: \\mc-agr\/	AGR\MissingOPyC\X05121901_DRF19R1.xls
Mean average weight/par	rticle (g): 7.25E-04
Uncertainty in average weight/par	rticle (g): 1.34E-06
Weight of sample of part	
Approximate number of particles in	
Uncertainty in number of particles in	n sample: 29
Number of particles with missing OP	yC layer: 0

Comments on unus	sual visual characteristics of OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPyC t.
Comments on unus	sual visual characteristics of OPyC ved on a small fraction of particles during analysis for missing OPy

Dark blemishes observed on OPyC surface on a small fraction of particles appear to be caused by temporary particle to particle contact when observed by SEM.

Figure 1. Small dark blemish observed under optical stereo microscope during inspection for missing OPyC.

Figure 2. SEM image of blemish.

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	LEU01-27T-D01
Particle Lot Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\ParticleWeight\W05120201_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	6.72E-02	9.72E-02	1.09E-01	1.02E-01	7.93E-02
Number of particles:	93	134	150	140	110
Average weight/particle (g):	7.23E-04	7.25E-04	7.27E-04	7.28E-04	7.21E-04

Mean	average weight/particle (g):	7.25E-04
Uncertainty in mean	average weight/particle (g):	1.34E-06

Data Report Form DRF-20: Counting of	Particles with SiC Gold Spot Defects by Visual Inspection
Procedure: AGR-CHA	P-DAM-20 Pay 1
Operator: John Hun	
Sample ID: LEU01-27	
	n BWXT kernel composite 69302
	\AGR\GoldSpots\G05122001_DRF20R1.xls
Mean average weight/pa	article (g): 7.25E-04
Uncertainty in average weight/pa	article (g): 1.34E-06
Weight of sample of pa	
Approximate number of particles	
Uncertainty in number of particles	in sample: 29
· · · · · · · · · · · · · · · · · · ·	
Number of particles with gold spo	ot defects: 31
Comments on un	nusual visual characteristics of SiC
Image of goldspots: P0512200201.	
X	
1 1) 11	real teath of the second
1/2 //	12-20-05
//Vom	72 20 00
Operator	Date

14 Characterization of fourth batch of TRISO-coated particles

This section contains data on LEU01-45T, the fourth batch of TRISO-coated particles used for the LEU01-46T particle composite. The data was obtained according to product inspection plan AGR-CHAR-PIP-03R2.

Note that some of the carbon deposited for the buffer layer reacted with the kernel to form a uranium carbide layer between the kernel and the buffer. The uranium carbide layer was not included in the measurement of the buffer thickness. The thickness of this carbide layer varied, but was typically around 6 μ m thick and effectively increased the kernel radius by that amount.

Note that the coating thicknesses of the TRISO-coated particle batch were remeasured after coated particle composite characterization was underway in order to improve the accuracy of the reported values. The original images of the particle cross sections were reanalyzed using an updated version of the image analysis program. This new version utilized a more robust algorithm for identifying the outer boundary of the outer pyrocarbon layer (OPyC). The data in this section shows the new coating thickness values. A record of the original measured values, which were initially used to determine the acceptance of this batch for inclusion in the composite, is included in section 16. Both the old and new coating thickness values for batch LEU01-45T were within the range specified in INL EDF-4380, Rev. 6.

The following pages show the inspection report form (IRF-03). Following IRF-03 are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. This batch was determined to satisfy the specifications in section 5.2 of EDF 4380, Rev. 6.

Inspection Report Form IRF-03: Coated Particle Batches

Procedure:	AGR-CHAR-PIP-03 Rev. 2
Coated particle batch ID:	LEU01-45T
Coated particle batch description:	TRISO on BWXT kernel composite 69302

	AND SELECTION	Meas	ured Data		Specification	Acceptance Criteria	Acceptance Test Value	Pass or fail	Data Records
Property	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380				
Average buffer thickness for	107.2	7.7	147	1.655	mean	$A = x - ts/\sqrt{n} \ge 85$	106.1	pass	DRF-08 DRF-11
each particle (µm)	107.2	/./	147	1.033	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	108.3	pass	
Average IPyC thickness for	40.1	2.0	194	1 652	1.653 mean 40 ± 5	$A = x - ts/\sqrt{n} \ge 35$	39.9	pass	DRF-08 DRF-11
each particle (µm)	40.1	2.0	194	1.055		$B = x + ts/\sqrt{n} \le 45$	40.3	pass	
Average SiC thickness for	35.8	1.1	194	1.653	mean	$A = x - ts/\sqrt{n} \ge 31$	35.7	pass	DRF-08 DRF-11
each particle (µm)	55.0	1.1	134	1.033	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	35.9	pass	
Average OPyC thickness for	40.1	1.9	194	1.653	mean	$A = x - ts/\sqrt{n} \ge 35$	39.9	pass	DRF-08
each particle (µm)	40.1	1.9	194	1.055	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.3	pass	DRF-11
Particles with missing OPyC	訓禮		15574		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19

Average OPyC thickness for each particle (µm)	40.1	1.9	194	1.653	mean 40 ± 5	$A = x - ts/\sqrt{n} \ge 35$ $B = x + ts/\sqrt{n} \le 45$	39.9 40.3	pass pass	DRF-08
Particles with missing OPyC	动来		15574		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19
AND WAS INCOME. IN BOOK ON THE PARTY	ensemble to		Cor	mments		TOTAL STATE OF STATE	1 1 0 0	(A 0.9	0.000
soldspot analysis performed on missing OPyC sa	ample for inform	mation only.			served.			AL PASS	
				gp					
	/								
11. V. (h)	0					3-23-06			
(Mary /X	ww					J-120-06			
QC Super	visor	SUAN TOWN	1200 : 110mg		THE RESERVE OF THE PERSON NAMED IN	Date	THE REAL PROPERTY.	A CHE PA	U.S. S
U									
Accept Coated particle batch (Yes or No	0):	Yes							
2020						, ,			
Man I de						2/20/01	,		
CA C				-		5/07/08	2		

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-45T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05122101L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05122201\P0512220101\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 µm in stage micrometer image (µm):	500.4

P	olish-down dis	tance n,m (µm	1)
2,2	2,8	8,2	8,8
372	372	365	363

Approximate layer width in polish plane (µm)					
Kernel radius	Buffer	IPyC	SiC	OPyC	
169	110	41	37	36	

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-45T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05122102L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05122201\P0512220102\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.4

P	olish-down dis	tance n,m (µm)
2,2	2,8	8,2	8,8
370	387	367	372

Ap	proximate lay	er width in pol	ish plane (µm)
Kernel radius	Buffer	IPyC	SiC	OPyC
176	100	39	38	39

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-45T-B01
Sample description:	TRISO on BWXT kernel composite 69302
Mount ID number:	M05122103L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P05122201\P0512220103\

DMR calibration expiration date:	9/8/06	
Calibrated pixels/micron:	2.8260	
Stage micrometer calibration expiration date:	2/17/07	
Measured value for 500 μm in stage micrometer image (μm):	500.4	

F	Polish-down dis	tance n,m (µm)
2,2	2,8	8,2	8,8
387	400	368	375

Ap	proximate lay	er width in pol	ish plane (µm)
Kernel radius	Buffer	IPyC	SiC	OPyC
178	111	39	36	41

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201\
Sample ID:	LEU01-45T-B01
Sample Description:	TRISO on BWXT composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

Number of buffer layers analyzed:	147
Mean of the average buffer thickness of each particle (µm):	107.2
Standard deviation in the average buffer thickness of each particle (µm):	7.7

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	1
95	4
100	23
105	35
110	34
115	23
120	15
125	9
>125	3

Likew & Venhir

71/17/06 Date

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201\
Sample ID:	LEU01-45T-B01
Sample Description:	TRISO on BWXT composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed Layers\P05122201 output

Number of inner pyrocarbon layers analyzed:	194
Mean of the average IPyC thickness of each particle (µm):	40.1
Standard deviation in the average IPyC thickness of each particle (µm):	2.0

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	0
34	0
36	3
38	23
40	71
42	65
44	26
46	4
48	2
50	0
52	0
54	0
56	0
>56	0

Rolew H. Kewher

Data Report Form DRF-11C: Measurement of Silicon Carbide Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201\
Sample ID:	LEU01-45T-B01
Sample Description:	TRISO on BWXT composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

194	Number of silicon carbide layers analyzed:
35.8	Mean of the average SiC thickness of each particle (µm):
1.1	Standard deviation in the average SiC thickness of each particle (µm):

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	15
35	32
36	63
37	60
38	20
39	4
40	0
>40	0

Riken- K. Venher

01/17/06

Data Report Form DRF-11D: Measurement of Outer Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201\
Sample ID:	LEU01-45T-B01
Sample Description:	TRISO on BWXT composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

Number of outer pyrocarbon layers analyzed:	194
Mean of the average OPyC thickness of each particle (µm):	40.1
Standard deviation in the average OPyC thickness of each particle (µm):	1.9

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	0
34	0
36	1
38	25
40	76
42	62
44	25
46	5
48	0
50	0
>50	0

Ruhew T. Henher

01/17/06 Date

Procedure:	AGR-CHAR-DAM-19 Rev. 1		
Operator:	John Hunn		
Sample ID:	LEU01-45T-C01		
	TRISO on BWXT kernel composite 69302		
Filename:	\\mc-agr\AGR\MissingOPyC\X05122101_DRF19R1.xls		
Mean average	weight/particle (g): 7.29E-04		
Uncertainty in average	weight/particle (g): 1.78E-06		
	nple of particles (g): 11.354		
Approximate number of	particles in sample: 15574		
Uncertainty in number of	particles in sample: 38		
Number of particles with	missing OPyC layer: 0		
Commer	nts on unusual visual characteristics of OPyC		
2210101: picture of slightly darker partic	cle with some spots on surface.		

Slightly darker particle with some spots on surface.

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	LEU01-45T-D07
Particle Lot Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\ParticleWeight\W05122101_DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	8.25E-02	7.26E-02	8.29E-02	8.16E-02	7.24E-02
Number of particles:	114	100	113	112	99
Average weight/particle (g):	7.24E-04	7.26E-04	7.34E-04	7.29E-04	7.31E-04

Mean average weight/particle (g):	7.29E-04
Uncertainty in mean average weight/particle (g):	1.78E-06

Ş1

Operator Sarker

Procedure:	: AGR-CHAR-DAM-20 Rev. 1
	: John Hunn
	: LEU01-45T-C01
	: TRISO on BWXT kernel composite 69302
	: \\mc-agr\AGR\GoldSpots\G05122101_DRF20R1.xls
Mean average	e weight/particle (g): 7.29E-04
	e weight/particle (g): 1.78E-06
	mple of particles (g): 11.354
	f particles in sample: 15574
Uncertainty in number of	f narticles in sample: 38
oncoreancy in number o	r particles in sample. 30
De authoritation - 1000 throates - 1000	
	ith gold spot defects: 3
Number of particles wi	
Number of particles wi	ith gold spot defects: 3 nents on unusual visual characteristics of SiC
Number of particles wi Comm 0512210103: picture of 3 goldspots and one	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface. e appearance.
Number of particles wi Comm 0512210103: picture of 3 goldspots and one 0512210106: picture of average SiC surface	ith gold spot defects: 3 nents on unusual visual characteristics of SiC e particle with white coating on surface.

3/15574 gold spots found. One particle had white coating on surface.

Average appearance of SiC after burnback for LEU01-45T

15 Characterization of TRISO-coated particle composite

This section contains data on the TRISO-coated particle composite, LEU01-46T. The data was obtained according to product inspection plan AGR-CHAR-PIP-04R2.

Note that some of the carbon deposited for the buffer layer reacted with the kernel to form a uranium carbide layer between the kernel and the buffer. The uranium carbide layer was not included in the measurement of the buffer thickness. The thickness of this carbide layer varied, but was typically around 6 μ m thick and effectively increased the kernel radius by that amount.

The following pages shows the inspection report forms (IRF-04A and IRF-04B) for the LEU01-46T composite. Following IRF-04A and IRF-04B are the individual data report forms for the measurements that were performed. Additional data at the end of this section is provided for information only. This composite was determined to satisfy the specifications in section 5.3 of EDF 4380, Rev. 6.

Inspection Report Form IRF-04A: Coated Particle Composites

Procedure	AGR-CHAR-PIP-04 Rev. 2
Coated particle composite ID	LEU01-46T
Coated particle composite description	Baseline Composite: TRISO on BWXT kernel composite 69302

		Meas	sured Data	W. Total	Specification	The state of the s	Acceptance	Pass	Data	
Property	Mean (x)	Std. Dev.	# measured	k or t value	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Record	
				+ (52	mean	$A = x - ts/\sqrt{n} \ge 85$	102.6	pass		
Average buffer thickness for	103.5		103.5	8.2 213	1.652	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	104.4	pass	DRF-0
each particle (µm)	103.5	0,2	2 560 disper	dispersion ≤0.01 ≤ 55	C = x - ks > 55	82.5	pass	DRF-11		
					mean	$A = x - ts/\sqrt{n} \ge 36$	39.2	pass		
Average IPyC thickness for				1.651	40 ± 4	$B = x + ts/\sqrt{n} \le 44$	39.6	pass	DRF-0	
each particle (µm)	39.4	2.3	233	2,549	dispersion	C = x - ks > 30	33.5	pass		
		1.6		2.549	≤0.01 ≤ 30 ≤0.01 ≥ 56	D = x + ks < 56	45.3	pass		
				7 (227)	mean	$A = x - ts/\sqrt{n} \ge 32$	35.2	pass		
Average SiC thickness for	25.2		222	1.651	35 ± 3	$B = x + ts/\sqrt{n} \le 38$	35.4	pass	DRF-0	
each particle (µm)	35.3	1.3	233	2.549	dispersion ≤0.01 ≤ 25	C = x - ks > 25	32.0	pass	DRF-1	
					mean	A = x - ts/√n ≥ 36	40.8	pass		
Average OPyC thickness for			3 222	1.651	40 ± 4	$B = x + ts/\sqrt{n} \le 44$	41.2	pass	DRF-0	
each particle (µm)	41.0	2.1	233	2.549	dispersion ≤0.01 ≤ 20	C = x - ks > 20	35.6	pass	DRF-1	
Buffer envelope density				Se	e IRF-02A			pass	IRF-0	
IPyC sink/float density				Se	e IRF-02B			pass	IRF-0	
				1.685	mean ≥ 3.19	A = x - ts/√n ≥ 3.19	3.207	pass		
SiC sink/float density (Mg/m³)	3.2075	0.0032	40	2.941	dispersion ≤0.01 ≤ 3.17	C = x - ks > 3.17	3.198	pass	DRF-0	
OPyC sink/float density				Se	ee IRF-04B				IRF-0	
VD. C -	1.022 0.002	1.032 0.003	10	1.833	mean ≤ 1.035	B = x + ts/√n ≤ 1.035	1.023	pass	DRF-	
IPyC anisotropy (BAFo equivalent)		0.002	10	3.981	dispersion ≤0.01 ≥1.06	D = x + ks < 1.06	1.030	pass	DRF-	
OPyC anisotropy (BAFo equivalent)	1.019	1.019 0.003	10	1.833	mean ≤ 1.035	$B = x + ts/\sqrt{n} \le 1.035$	1.021	pass	DRF-	
OPYC anisotropy (BAPO equivalent)	1.019	0.003	10	3.981	dispersion ≤0.01 ≥1.06	D = x + ks < 1.06	1.031	pass	DKF	
Particles with SiC gold spot defects			81507		defect fraction ≤ 1.0 x 10 ⁻³	≤6 in 12,000 or ≤14 in 22,000	66	pass	DRF-	
Particle aspect ratio			. 1626		dispersion ≤0.01 ≥1.14	≤1 in 500 or ≤7 in 1420	2	pass	DRF-	
Particles with SiC burn-leach defects			120688		defect fraction ≤ 1.0 x 10 ⁻⁴	≤1 in 50,000 or ≤6 in 120,000	0	pass	DRF-	
Particles with missing OPyC		14.10	31227		defect fraction ≤ 3.0 × 10 ⁻⁴	≤4 in 31,000	0	pass	DRF-	
SiC microstructure			3		comparison to visual standard	all imaged pass visual standard comparison	3	pass	DRF-	

56 out of 81507 gold spot defects passes the acceptance criterion of ≤66 in 81100 indicating ≤1E-3 defects with 95% confidence.	s passes the acceptance criterion of ≤66 in 81100 indicating ≤1E-3 defects with 95% confidence.				
0					

3-21-06

Accept coated particle composite (Yes or No):

Yes

3/29/06

QA Reviewer

Inspection Report Form IRF-04B: Outer Pyrocarbon Density

Procedure:	AGR-CHAR-PIP-04 Rev. 2	
Coated particle composite ID:	LEU01-46T	
Coated particle composite description:	Baseline Composite: TRISO on BWXT kernel composite 69302	
Batch 1 ID:	LEU01-21T	
Batch 1 description:	Baseline TRISO on BWXT kernel composite 69302	
Batch 2 ID:	LEU01-35T	
Batch 2 description:	Baseline TRISO on BWXT kernel composite 69302	
Batch 3 ID:	LEU01-27T	
Batch 3 description:	Baseline TRISO on BWXT kernel composite 69302	
Batch 4 ID:	LEU01-45T	
Batch 4 description:	Baseline TRISO on BWXT kernel composite 69302	

	A LL I	Meas	ured Data	E-LIVER N	Specification		Acceptance	Pass	Data																																		
Property	Mean (x)	Std. Dev. (s)	# measured - (n)	k or t value	INL EDF-4380 Rev. 6	Acceptance Criteria	Test Value	or fail	Records																																		
					mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.909	pass																																			
and the second of the second o	1.9121	0.0129	43	1.682	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.915	pass	7																																		
Batch 1: OPyC sink/float density (Mg/m³)	1.9121	0.0129	43	2.905	dispersion ≤0.01 ≤ 1.80	C = x - ks > 1.80	1.875	pass	DRF-03																																		
		d such		2.903	≤0.01 ≤ 1.80	D = x + ks < 2.00	1.950	pass																																			
			52	1.675	mean 1.90 ± 0.05	$A = x - ts/\sqrt{n} \ge 1.85$	1.902	pass	DRF-03																																		
	1.9029	0.0056				$B = x + ts/\sqrt{n} \le 1.95$	1.904	pass																																			
Batch 2: OPyC sink/float density (Mg/m³)		0.0056		2.842	dispersion	C = x - ks > 1.80	1.887	pass																																			
					2.842	≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.919	pass																																		
	1.9034										1.680	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.902	pass																												
		0.0054	45		1.000	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.905	pass	DDF 03																																	
Batch 3: OPyC sink/float density (Mg/m³)	1.9054	0.0034		43	43	43	43	45	43	43	45	45	45	43	43	43	43	43	45	43	43	75	43	43	45	43	43	43	45	43	43	43	45	43	43	75	43	43	2.897	dispersion	C = x - ks > 1.80	1.888	pass
	2	2.097	7 ≤0.01 ≤ 1.80 ≤0.01 ≥ 2.00	D = x + ks < 2.00	1.919	pass																																					
		1000		1.684	mean	$A = x - ts/\sqrt{n} \ge 1.85$	1.909	pass																																			
Batch 4: OPyC sink/float density (Mg/m³)		0.0076			4.	44	41			4.	41		4.	41	41	4.	41	4.	41	41	41	4.	1.084	1.90 ± 0.05	$B = x + ts/\sqrt{n} \le 1.95$	1.913	pass	7															
	1.9112	0.0076	71	2.922	dispersion ≤0.01 ≤ 1.80	C = x - ks > 1.80	1.889	pass	DRF-03																																		
				2.922	≤0.01 ≤ 1.80	D = x + ks < 2.00	1.933	pass																																			

1 0 12	2 21 0/
QC Supervisor Accept composite for OPyC density (Yes or No): Yes) - 2 - 06 Date
Mac Qa Reviewer	3/29/05 Date

Comments

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-46T-B01
Sample description:	Baseline composite of TRISO on BWXT kernel composite 69302
Mount ID number:	M06010901L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06011001\P0601100101\

DMR calibration expiration date:	9/8/06	
Calibrated pixels/micron:	2.8260	
Stage micrometer calibration expiration date:	2/17/07	716
Measured value for 500 μm in stage micrometer image (μm):	500.7077	

F	olish-down dis	tance n,m (µm)
2,2	2,8	8,2	8,8
384	374	369	363

Ap	proximate lay	er width in poli	ish plane (µm	
Kernel radius	Buffer	IPyC	SIC	OPyC
173	103	40	38	42

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-46T-B01
Sample description:	Baseline composite of TRISO on BWXT kernel composite 69302
Mount ID number:	M06010902L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06011001\P0601100102\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.7077

Part of the F	olish-down dis	tance n,m (µm	
2,2	2,8	8,2	8,8
373	378	353	354

Approximate layer width in polish plane (μm)				
Kernel radius	Buffer	IPyC	SiC	OPyC
171	95	42	36	43

Procedure:	AGR-CHAR-DAM-08 Rev. 2
Operator:	Andrew K. Kercher
Sample ID:	LEU01-46T-B01
Sample description:	Baseline composite of TRISO on BWXT kernel composite 69302
Mount ID number:	M06010903L
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06011001\P0601100103\

DMR calibration expiration date:	9/8/06
Calibrated pixels/micron:	2.8260
Stage micrometer calibration expiration date:	2/17/07
Measured value for 500 μm in stage micrometer image (μm):	500.7077

F	olish-down dis	tance n,m (µm	1)
2,2	2,8	8,2	8,8
369	362	384	374

Approximate layer width in polish plane (µm)				
Kernel radius	Buffer	IPyC	SiC	OPyC
174	106	38	36	45

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001\
	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001_output\

Number of buffer layers analyzed:	213
Mean of the average buffer thickness of each particle (µm):	103.5
Standard deviation in the average buffer thickness of each particle (µm):	8.2

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	2
90	10
95	21
100	34
105	64
110	42
115	23
120	10
125	6
>125	1

When I Kewhen Operator

01/13/06 Date

Data Report Form DRF-11B: Measurement of Inner Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001\
	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001_output\

Number of inner pyrocarbon layers analyzed:	233
Mean of the average IPyC thickness of each particle (μm):	39.4
Standard deviation in the average IPyC thickness of each particle (µm):	2.3

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (µm)	Frequency
<30	0
32	0
34	1
36	9
38	61
40	84
42	51
44	17
46	8
48	1
50	1
52	0
54	0
56	0
>56	0

Rikew K. Zenken

Data Report Form DRF-11C: Measurement of Silicon Carbide Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001\
Sample ID:	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001_output\

233	Number of silicon carbide layers analyzed:
35.3	Mean of the average SiC thickness of each particle (µm):
1.3	Standard deviation in the average SiC thickness of each particle (µm):

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	7
34	31
35	59
36	65
37	41
38	25
39	4
40	1
>40	0

allew K. Kenker

01/13/06 Date

Data Report Form DRF-11D: Measurement of Outer Pyrocarbon Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001\
	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P06011001_output\

Number of outer pyrocarbon layers analyzed:	233
Mean of the average OPyC thickness of each particle (μm):	41.0
Standard deviation in the average OPyC thickness of each particle (µm):	2.1

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	0
34	0
36	0
38	19
40	51
42	95
44	48
46	17
48	2
50	1
>50	0

aleur Kenken

01/13/06 Date

Data Report Form DRF-02: Measurement of SiC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-02 Rev. 3	
Operator:	Dixie Barker	
Filename:	\mc-agr\AGR\DensityColumn\D06010901_DRF02R3.xls	
Sample ID:	LEU01-46T-E01	
Sample description:	Baseline Composite of TRISO on BWXT kernel composite 69302	
Float expiration date:	07/2007	
Gauge expiration date:	01/2007	
Bath temperature:	23.0 °C	

L. B. St.	Calibrat	ed Floats	
Density	Top of Float	Bottom of Float	Center of Mass
3.150	153.01	173.52	166.68
3.170	280.32	304.28	296.29
3.190	385.96	408.33	400.87
3.210	508.72	532.91	524.85

Linear Fit						
slope	StDev	intercept	StDev			
1.70E-04	3.14E-06	3.12E+00	1.09E-03			

g ^{3,21}	R ² =	0.9985		
63.19			-	
A				
Charles of the Control of the Contro				

Dell'AN III			S	ample Densit	y	Control of		THE PERSON
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	475.63	3.2018	26	511.65	3.2079	51		
2	481.23	3.2027	27	515.56	3.2086	52		
3	482.49	3.2030	28	516.88	3.2088	53		
4	487.46	3.2038	29	517.99	3.2090	54		
5	488.57	3.2040	30	519.89	3.2093	55		
6	489.19	3.2041	31	522.05	3.2097	56		
7	490.04	3.2042	32	525.39	3.2102	57		
8	491.48	3.2045	33	528.52	3.2108	58		
9	494.40	3.2050	34	534.03	3.2117	59		-
10	495.87	3.2052	35	536.34	3.2121	60		100
11	496.75	3.2054	36	542.73	3.2132	61		
12	496.72	3.2054	37	547.81	3.2140	62		
13	497.30	3.2055	38	548.98	3.2142	63		
14	497.82	3.2056	39	542.93	3.2132	64		
15	499.70	3.2059	40	532.80	3.2115	65		
16	501.31	3.2061	41			66		
17	501.31	3.2061	42			67		
18	503.80	3.2066	43			68		
19	504.50	3.2067	44			69		
20	504.50	3.2067	45			70		
21	506.53	3.2070	46			71		
22	507.10	3.2071	47			72		
23	508.81	3.2074	48			73		
24	510.12	3.2076	49			74	DUR LIVE	
25	511.03	3.2078	50		Line of the last	75		
NE HALL	A NAME OF				The Room			
	Avera	ge density of S	iC fragments:			3.2075		
Stan	dard deviation	in density of S	iC fragments:	0.0032				
Uncerta	inty in calculat	ed density of S	iC fragments:			0.0020		

Duris Bayler

1-9-06

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2
	Dixie Barker
Filename:	\\mc-agr\AGR\DensityColumn\D05112801_DRF03R2.xls
	LEUO1-21T-E01
Sample description:	OPyC fragments from TRISO on BWXT kernel composite 69302
Float expiration date:	
Gauge expiration date:	01/2006
Bath temperature:	23.0 °C

misuale, =	Calibrat	ed Floats		
Density	Pensity Top of Float	Bottom of Float	Center of Mass	
1.800	138.63	147.16	142.90	
1.850	237.50	245.95	241.73	
1.900	336.38	342.28	339.33	
1.950	432.68	439.81	436.25	
2.000	528.48	536.03	532.26	

Linear Fit						
slope	slope StDev Intercept StD					
5.14E-04	3.29E-06	1.73E+00	1.12E-03			

WANTED IN			. S	ample Densit	y	TAU THAT THEY	CILLO TO THE TANK	A DE HE TOTALL
Fragment	Fragment	Calculated	Fragment	Fragment	Calculated	Fragment	Fragment	Calculated
Number	Position	Density	Number	Position	Density	Number	Position	Density
1	345.31	1.9035	26	376.19	1.9194	51		
2	350.31	1.9061	27	377.71	1.9201	52		
3	352.83	1.9074	28	378.81	1.9207	53		
4	355.81	1.9089	29	379.81	1.9212	54		
5	356.33	1.9092	30	381.17	1.9219	55		
6	356.54	1.9093	31	381.73	1.9222	56		
7	357.20	1.9096	32	385.09	1.9239	57		
8	357.20	1.9096	33	385.09	1.9239	58		
9	357.80	1.9099	34	385.91	1.9244	59		
10	358.61	1.9103	35 -	391.71	1.9273	60		
11	359.28	1.9107	36	394.82	1.9289	61		
12	360.55	1.9113	37	401.42	1.9323	62		
13	361.76	1.9120	38	296.91	1.8786	63		
14	362.98	1.9126	39	296.97	1.8787	64		
15	363.87	1.9130	40	305.71	1.8832	65		
16	365.18	1.9137	41	315.20	1.8880	66		
17	365.91	1.9141	42	317.15	1.8890	67		
18	397.49	1.9303	43	328.73	1.8950	68		
19	369.40	1.9159	44			69		
20	370.07	1.9162	45			70		
21	371.63	1.9170	46			71		
22	372.01	1.9172	47			72		
23	372.35	1.9174	48			73		
24	374.56	1.9185	49			74		
25	375.69	1.9191	50			75		
		ge density of P				1.9121		
		in density of P	-			0.0129		
Uncerta	inty in calculat	ed density of P	vC fragments:			0.0017		

Dyperator Baylin

(1-28-05) Date

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2
Operator:	Dixie Barker
Filename:	\mc-agr\AGR\DensityColumn\D05121201_DRF03R2.xls
Sample ID:	LEU01-35T-E01
Sample description:	OPyC fragments from TRISO on BWXT kernel composite 69302
Float expiration date:	07/2007
Gauge expiration date:	01/2006
Bath temperature:	22.9 °C

Calibrated Floats					
Density	Top of Float	Bottom of Float	Center of Mass		
1.800	119.98	129.36	124.67		
1.850	213.68	222.19	217.94		
1.900	314.03	319.46	316.75		
1.950	416.29	424.36	420.33		
2.000	523.90	530.89	527.40		

Linear Fit					
slope StDev intercept StD					
4.96E-04	3.19E-06	1.74E+00	1.10E-03		

2.00	E	1 months	STATE STATE	Density C $R^2 = 0.99$		/	
0 1.95	5		K	. = 0.99	93		
5	. [~			
	, I						- 1
1.90 1.81							

G DAY		722	S	ample Densit	y			S - 1
Fragment Number	Fragment Position	Calculated Density	Fragment Number	- Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	300.95	1.8899	26	328.21	1.9034	51	350.91	1.9146
2	301.89	1.8903	27	328.21	1.9034	52	351.43	1.9149
3	308.92	1.8938	28	329.21	1.9039	53		
4	309.95	1.8943	29	329.21	1.9039	54		
5	310.76	1.8947	30	329.57	1.9040	55		
6	311.56	1.8951	31	330.26	1.9044	56		
7	312.08	1.8954	32	330.53	1.9045	57		
8	314.28	1.8965	33	330.96	1.9047	58		
9	314.67	1.8967	34	331.42	1.9050	59		
10	318.32	1.8985	35	332.02	1.9053	60		
11	317.98	1.8983	36	331.93	1.9052	61		
12	318.34	1.8985	37	332.31	1.9054	62	TAILS SALV	
13	326.12	1.9023	38	332.85	1.9057	63		
14	321.12	1.8999	39	334.27	1.9064	64		
15	322.49	1.9005	40	334.27	1.9064	65		
16	322.62	1.9006	41	335.56	1.9070	66		
17	322.82	1.9007	42	336.51	1.9075	67		
18	320.93	1.8998	43	337.51	1.9080	68		
19	321.46	1.9000	44	337.71	1.9081	69		
20	322.26	1.9004	45	339.41	1.9089	70		
21	323.96	1.9013	46	339.70	1.9091	71		
22	324.71	1.9016	47	340.21	1.9093	72		
23	325.52	1.9020	48	342.83	1.9106	73		
24	327.00	1.9028	49	344.33	1.9114	74		
25	327.67	1.9031	50	345.16	1.9118	75		
								La Pie
	Avera	ge density of P	yC fragments:			1.9029		
	dard deviation	in density of P	yC fragments:			0.0056		
Uncerta	inty in calculat	ed density of P	yC fragments:			0.0016		

Willes Barber

12-12-D5

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2	
Operator:	Dixie Barker	
Filename:	\\mc-agr\AGR\DensityColumn\D05122001_DRF03R2.xls	
Sample ID:	LEU01-27T-E01	
Sample description:	OPyC fragments from TRISO on BWXT kernel composite 69302	
Float expiration date:	07/2007	
Gauge expiration date:	01/2006	
Bath temperature:	23.7 °C	

Calibrated Floats					
Density	Top of Float	Bottom of Float	Center of Mass		
1.800	129.31	138.58	133.95		
1.850	224.09	232.28	228.19		
1.900	324.34	329.86	327.10		
1.950	426.34	433.52	429.93		
2.000	530.56	537.79	534.18		

Linear Fit					
slope StDev intercept StDe					
4.99E-04	3.38E-06	1.74E+00	1.12E-03		

2.00	Linea	ar Fit to [Density C	Gradient		
10000		1	$R^2 = 0.99$	996		
1.95 l 1.90 l 1.85 l			~			
		N				
1.85						
1.85	100	200	300	400	500	600

STATE OF THE REAL PROPERTY.			S	ample Densit	у			
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	314.59	1.8920	26	339.98	1.9046	51		
2	316.85	1.8931	27	340.25	1.9048	52		
3	318.98	1.8942	28	. 341.25	1.9053	53		
4	322.19	1.8958	29	341.67	1.9055	54		
5	323.42	1.8964	30	342.32	1.9058	55		
6	327.18	1.8983	31	342.92	1.9061	56		
7	326.91	1.8981	32	344.70	1.9070	57		
8	329.64	1.8995	33	345.80	1.9075	58		
9	328.07	1.8987	34	346.65	1.9080	59		
10	329.80	1.8996	35	346.65	1.9080	60		
11	330.67	1.9000	36	347.44	1.9084	61		
12	330.67	1.9000	37	349.45	1.9094	62		
13	331.97	1.9006	38	349.45	1.9094	63		
14	332.43	1.9009	39	350.04	1.9097	64		
15	333.11	1.9012	40	351.01	1.9101	65		
16	333.18	1.9013	41	351.01	1.9101	66		
17	333.19	1.9013	42	353.47	1.9114	67		
18	334.75	1.9020	43	355.22	1.9122	68		
19	335.35	1.9023	44	363.11	1.9162	69		
20	336.51	1.9029	45	322.11	1.8957	70		
21	337.27	1.9033	46			71		
22	337.66	1.9035	47			72		
23	338.08	1.9037	48			73		
24	338.56	1.9039	49			74		
25	339.98	1.9046	50			75		
	Average density of PyC fragments:					1.9034		
	Standard deviation in density of PyC fragments:			4		0.0054		
Uncertainty in calculated density of PyC fragments:					0.0017			

Dijio Barber Operator

12-20-05

Data Report Form DRF-03: Measurement of PyC Density using a Density Gradient Column

Procedure:	AGR-CHAR-DAM-03 Rev. 2	
Operator:	Dixie Barker	
Filename:	\\mc-agr\AGR\DensityColumn\D05122101_DRF03R2.xls	
Sample ID:	LEU01-45T-E01	
Sample description:	OPyC fragments from TRISO on BWXT kernel composite 69302	
Float expiration date:	07/2007	
Gauge expiration date:	01/2007	
Bath temperature:	23.7 °C	

Calibrated Floats						
Density	Top of Float	Bottom of Float	Center of Mass			
1.800	142.66	151.71	147.19			
1.850	253.82	262.20	258.01			
1.900	365.64	371.28	368.46			
1.950	470.49	477.14	473.82			
2.000	567.86	575.43	571.65			

Linear Fit						
slope	StDev	intercept	StDev			
4.69E-04	2.85E-06	1.73E+00	1.12E-03			

2.00	Linea	er Fit to I	Density C	Gradient		
(32 1.95			$R^2 = 0$	0.9993	/	
> 1.90 T						
1.85						
1.80						
	100	200	300	400	500	600

	A STATE OF THE STA		S	ample Densit	У			
Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density	Fragment Number	Fragment Position	Calculated Density
1	343.23	1.8903	26	401.70	1.9178	51		
2	353.43	1.8951	27	402.90	1.9183	52		
3	355.52	1.8961	28	403.67	1.9187	53		
4	359.74	1.8981	29	407.15	1.9203	54	A DE	
5	367.37	1.9017	30	408.64	1.9210	55		
6	372.98	1.9043	31	409.85	1.9216	56		
7	377.40	1.9064	32	411.44	1.9223	57		
8	378.06	1.9067	33	416.75	1.9248	58		
9	378.08	1.9067	34	403.78	1.9188	59		
10	379.79	1.9075	35	396.95	1.9155	60		
11	380.98	1.9081	36	396.95	1.9155	61		
12	382.91	1.9090	37	395.84	1.9150	62		
13	383.64	1.9093	38	389.83	1.9122	63		
14	384.46	1.9097	39	385.32	1.9101	64		
15	385.69	1.9103	40	378.92	1.9071	65		
16	386.07	1.9104	41	377.31	1.9063	66		
17	388.17	1.9114	42			67		
18	388.88	1.9118	43			68		
19	389.34	1.9120	44			69		
20	392.45	1.9134	45			70		
21	393.74	1.9140	46			71		
22	394.90	1.9146	47			72		
23	396.03	1.9151	48			73		
24	397.30	1.9157	49			74	DANGE	
25	398.29	1.9162	50			75		
Ta Intonia							SERVICE TO	And No.
Average density of PyC fragments:					1.9112			
Stan	Standard deviation in density of PyC fragments:			0.0076				
Uncertainty in calculated density of PyC fragments:					0.0016			

Dix is Barre

12,21-05

Data Report Form DRF-18A: Measurement of Pyrocarbon Anisotropy using the 2-MGEM - IPyC

Procedure:	AGR-CHAR-DAM-18 Rev. 1
Operator:	G. E. Jellison
Mount ID:	M06011102L
Sample ID:	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder containing data:	\\mc-agr\AGR\2-MGEM\R06030601\

Dantiela # Grid	Diattenuation			Equivalent BAFo			
Particle #	Position	Average	St. Dev.	Ave. Error	Average	St. Dev.	Ave. Error
1	4,4	0.0075	0.0017	0.0012	1.0225	0.0051	0.0036
2	4,6	0.0066	0.0023	0.0012	1.0198	0.0069	0.0036
3	4,7	0.0081	0.0030	0.0012	1.0243	0.0090	0.0036
4	5,4	0.0085	0.0023	0.0011	1.0255	0.0069	0.0033
5	5,5	0.0069	0.0020	0.0011	1.0207	0.0060	0.0033
6	5,6	0.0077	0.0023	0.0014	1.0231	0.0069	0.0042
7	5,7	0.0063	0.0025	0.0014	1.0189	0.0075	0.0042
8	6,4	0.0080	0.0021	0.0015	1.0240	0.0063	0.0045
9	6,5	0.0069	0.0019	0.0014	1.0207	0.0057	0.0042
10	6,6	0.0075	0.0024	0.0012	1.0225	0.0072	0.0036
Ave	rage	0.0074	0.0023	0.0013	1.0222	0.0068	0.0038

Mean of average BAFo per particle:	
Standard deviation of average BAFo per particle:	0.0021
Comment	S

1. E. Julla 3/6/06
Operator Date

Data Report Form DRF-18B: Measurement of Pyrocarbon Anisotropy using the 2-MGEM - OPyC

Procedure:	AGR-CHAR-DAM-18 Rev. 1
Operator:	G. E. Jellison
Mount ID:	M06011102L
Sample ID:	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder containing data:	\\mc-agr\AGR\2-MGEM\R06030601\

Particle # Grid Position		Diattenuation		Equiv	quivalent BAF	О	
	Average	St. Dev.	Ave. Error	Average	St. Dev.	Ave. Error	
1	4,4	0.0068	0.0022	0.0013	1.0204	0.0066	0.0039
2	4,6	0.0056	0.0023	0.0012	1.0168	0.0069	0.0036
3	4,7	0.0056	0.0020	0.0012	1.0168	0.0060	0.0036
4	5,4	0.0056	0.0019	0.0012	1.0168	0.0057	0.0036
5	5,5	0.0060	0.0021	0.0015	1.0180	0.0063	0.0045
6	5,6	0.0069	0.0024	0.0014	1.0207	0.0072	0.0042
7	5,7	0.0077	0.0031	0.0016	1.0231	0.0093	0.0048
8	6,4	0.0076	0.0022	0.0016	1.0228	0.0066	0.0048
9	6,5	0.0053	0.0020	0.0015	1.0159	0.0060	0.0045
10	6,6	0.0062	0.0024	0.0012	1.0186	0.0072	0.0036
Ave	rage	0.0063	0.0023	0.0014	1.0190	0.0068	0.0041

Mean of average BAFo per particle: 1.0190 Standard deviation of average BAFo per particle: 0.0026					
	Comments				

A. E. Jelle' 3/6/06

Operator Date

Procedure:	AGR-CHAR-DAM-20 Rev. 1	
Operator:	John Hunn	
Sample ID:	LEU01-46T-D01	
Sample Description:	Baseline Composite TRISO on BWXT kernel composit	e 69302
Filename:	\\mc-agr\AGR\GoldSpots\G06011101_DRF20R1.xls	

	weight/particle (g): 7.27E-04	
	weight/particle (g): 4.25E-07	
	ple of particles (g): 22.702	
	particles in sample: 31227	
Uncertainty in number of	particles in sample. 10	
Number of particles with	n gold spot defects: 27	
POLICE OF SOME OF SOME OF SOME OF SOME	ate an increased viewal above stanistics of CiC	CONTRACTOR OF THE PARTY OF THE
Comm	nts on unusual visual characteristics of SiC	English Shape
	nts on unusual visual characteristics of SiC available particles in missing OPyC sample after com	pletion of DAM-19.
		pletion of DAM-19.

39/50280 gold spots found.

Brown surface color observed on some particle after burn-leach process. This appearance was not associated with gold spot type defects. White coating was also a surface effect.

Data Report Form DRF-07	: Imaging of Particle Diameter and	Aspect Ratio Using an Optical	Microscope System

Procedure:	AGR-CHAR-DAM-07 Rev. 1
Operator:	John Hunn
Sample ID:	LEU01-46T-C01
Sample Description:	Baseline composite of TRISO on BWXT kernel composite 69302
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\P06010601\

DMR Calibration Expiration Date: 9/8/06	
Stage Micrometer Calibration Expiration Date: 2/17/06	
Measured Value for 1200 µm in Stage Micrometer Image: 1200. µm	

Data Report Form DRF-10B: Measurement of Particle Aspect Ratio (Dmax/Dmin)

Procedure:	AGR-CHAR-DAM-10 Rev. 2
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P06010601\
	LEU01-46T-C01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P06010601_output\

Number of particles analyzed:	1626	
Number of particles with aspect ratio ≥ 1.14	2	
Average particle aspect ratio:	1.054	

Distribution of the aspect ratio (top binned)

Aspect Ratio (D)	Frequency
1.005	0
1.010	0
1.015	3
1.020	14
1.025	32
1.030	64
1.035	107
1.040	148
1.045	177
1.050	176
1.055	181
1.060	163
1.065	147
1.070	112
1.075	89
1.080	57
1.085	43
1.090	54
1.095	19
1.100	19
1.105	6
1.110	4
1.115	6
1.120	1
1.125	1
1.130	0
1.135	0
1.140	1
>1.14	2

MAOWN. Journe

January 11,

Data Report Form DRF-21: Measurement of Number of Particles with SiC Burn-Leach Defects

Procedure:	AGR-CHAR-DAM-21 Rev. 1
Operator:	Montgomery
Sample ID:	LEU01-46T-F01
Sample Description:	Baseline Composite: TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\BurnLeach\QCData\B06010601_DRF21R1.xls

Mean average weight/particle (g): 7	7.27E-04
Uncertainty in mean average weight/particle (g): 4	
Weight of sample of particles (g): 3	
Approximate number of particles in sample: 5	
Uncertainty in number of particles in sample: 2	

Mean average weight/kernel (g):	2.42E-04
Uncertainty in mean average weight/kernel (g):	5.96E-07
Mean weight % uranium/kernel:	90.06
Standard deviation in weight % uranium/kernel:	0.09
Approximate weight uranium/kernel (g):	2.18E-04
Uncertainty in approximate weight uranium/kernel (g):	5.76E-07

	Leach 1	Leach 2	Leach 3	Total
Sample ID	B0601060101	B0601180102		Pro HIVENS
Volume of solution (ml):	44.8	49.5		H. H. S.
Measured β activity of 0.1ml aliquot (dpm):	0.0	0.0		
Estimated weight of U in solution (mg):	0	0	0	AND THE PERSON
Radiochemical laboratory analysis number	060223-019	060223-021		
Weight uranium leached (g):	2.79E-06	3.27E-07		3.12E-06
Uncertainty in weight uranium leached (g):	2.80E-07	3.30E-08		2.82E-07
Calculated number of particles with SiC defects:	0	0		0
Uncertainty in number of particles with SiC defects:	1.29E-03	1.52E-04		1.30E-03

Comments

Examined particles under microscope after completion of burn-leach. 31 gold spot defects were identified. No particles appeared hollow. No SiC fragments were observed.

Fcm Checked data 3/01/06

Fred c. montgomery	3/20/06	
Operator	Date	

Data Report Form DRF-21: Measurement of Number of Particles with SiC Burn-Leach Defects

Procedure:	AGR-CHAR-DAM-21 Rev. 1
Operator:	Montgomery
Sample ID:	LEU01-46T-G01
	Baseline Composite: TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\BurnLeach\QCData\B06010602_DRF21R1.xls

Mean average weight/particle (g): 7.27E-04	The state of the s
Uncertainty in mean average weight/particle (g): 4.25E-07	
Weight of sample of particles (g): 51.1864	
Approximate number of particles in sample: 70408	
Uncertainty in number of particles in sample: 41	

Mean average weight/kernel (g):	2.42E-04
Uncertainty in mean average weight/kernel (g):	5.96E-07
Mean weight % uranium/kernel:	90.06
Standard deviation in weight % uranium/kernel:	0.09
Approximate weight uranium/kernel (g):	2.18E-04
Uncertainty in approximate weight uranium/kernel (g):	5.76E-07

	Leach 1	Leach 2	Leach 3	Total
Sample ID	B0601060201	B0601180202		1
Volume of solution (ml):	44.5	45.0		
Measured β activity of 0.1ml aliquot (dpm):	0.0	0.0		
Estimated weight of U in solution (mg):	0	0	0	SEND ATT
Radiochemical laboratory analysis number	060223-020	060223-022		The second
Weight uranium leached (g):	4.73E-06	4.07E-07		5.14E-06
Uncertainty in weight uranium leached (g):	4.70E-07	4.10E-08		4.72E-07
Calculated number of particles with SiC defects:	0	0		0
Uncertainty in number of particles with SiC defects:	2.16E-03	1.88E-04		2.17E-03

Comments

fcm checked data 3/01/06

		The parties of the factor of t
Fiel C. Montgomery	3/20/06	

Procedure:	AGR-CHAR-DAM-19 Rev. 1
	John Hunn
	LEU01-46T-D01
	Baseline Composite TRISO on BWXT kernel composite 69302
	\\mc-agr\AGR\MissingOPyC\X06011001_DRF19R1.xls
Mean average	e weight/particle (g): 7.27E-04
	e weight/particle (g): 4.25E-07
	mple of particles (g): 22.702
	f particles in sample: 31227
Uncertainty in number of	particles in sample: 18
Number of particles with	missing OPyC layer: 0
· ·	
· · · · · · · · · · · · · · · · · · ·	missing OPyC layer: 0
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· ·	
· ·	
· · · · · · · · · · · · · · · · · · ·	

Data Report Form DRF-23: Imaging of SiC Grain Structure

Procedure:	AGR-CHAR-DAM-23 Rev. 0
	Paul Menchhofer
Filename:	\\mc-agr\AGR\SEM\E06011101_DRF23R0.xls
Sample ID:	LEU01-46T-B01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Mount Number(s):	M06011001L
Folder name containing images:	\\mc-agr\AGR\SEM\

Images of S	SiC grain structure		ALL STREET
	particle 1	particle 2	particle 3
1000x image filename	57262	57267	57269
2500x image filename	57264	57268	57270
grain structure acceptable	Yes	Yes	Yes

	2500x image filename	57264	57268	57270	
ŀ	grain structure acceptable	Yes	Yes	Yes	
_					
10 E5.01, 1., K	Co	mments			
01	1				
SKH	1/Pull leads		1.11.0	6	
1110	Operator ()	A POST OF THE PARTY OF THE PART		Date	Ng 112 12
	- P				
A	1				
10-la	Hann	/	-18-06		
1100 M	QC Supervisor	UE DETAIL	VERSENSE	Date	
n	1010		/ /		
///	A Reviewer		3/29/0	Date Date	

Acc.V Spot Magn 10.0 kV 5.0 1000x

BSE 5.8 57267 $20~\mu m$

For Information Only

The information in the remainder of this section reports results of measurements not required by the fuel specification and is provided for information only.

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 1
Operator:	Dixie Barker
Particle Lot ID:	LEU01-46T-H01
Particle Lot Description:	TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\ParticleWeight\W06010501DRF22R1.xls

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Weight of particles (g):	9.29E-02	8.66E-02	8.81E-02	1.09E-01	9.88E-02
Number of particles:	128	119	121	150	136
Average weight/particle (g):	7.26E-04	7.28E-04	7.28E-04	7.27E-04	7.26E-04

_	
ſ	Mean average weight/particle (g): 7.27E-04
ı	Uncertainty in mean average weight/particle (g): 4.25E-07

Data Report Form DRF-10A: Measurement of Particle Diameter

Procedure:	AGR-CHAR-DAM-10 Rev. 2
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P06010601\
	LEU01-46T-C01
Sample Description:	Baseline Composite of TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Shadow\P06010601_output\

Number of particles analyzed:	1626
Mean of the average diameter of each particle (µm):	799.7
Standard deviation in the average diameter of each particle (µm):	14

Distribution of the average particle diameter (top binned)

Mean Diameter (µm)	Frequency
<700	0
710	0
720	0
730	0
740	0
750	0
760	2
770	20
780	110
790	269
800	428
810	419
820	271
830	78
840	24
850	4
>850	1

ahew H. Kenher

11/00

Dat

Data Report Form DRF-31: Measurement of Open Porosity using a Mercury Porosimeter

open porosity of OPyC. lote: sample LEU01-46T-I01 was not used due	to instrument n	
THE STREET WEST OF STREET	CALL III R	Comments
Open po	prosity (ml/m2):	1.19E+00
Intruded mercury volume from 250-1		
Total sample surf		
Average surface area		
Average particle dian	neter (microns):	7.97E+02
Sample envelope	e defisity (g/cc):	[2./13
Average envelope volur Sample envelope		
Total envelope volume		
Uncertainty in num		
Approximate num		
	of particles (g):	
Oncertainty in mean average wer	grid particle (g).	Titled to VI
Uncertainty in mean average wei		
Mean average wei	obt/particle (o)	7 275-04
Completed DRF Filename: \\\	mc-agr\AGR\Por	rosimeter\S06011002\S06011002_DRF31R0.xls
Penetrometer Expiration Date: 5/		
Thermocouple Expiration Date: 5/		e TRISO ON DWX1 Remer composite 03302
Batch Description: Ba	seline composite	e TRISO on BWXT kernel composite 69302
Coated particle batch ID: LE		part EU01-46T-K01
Operator: S.	GR-CHAR-DAM-3	I Rev. U

Supplement to DRF-21: Impurity Analysis Data

Procedure:	AGR-CHAR-DAM-21 Rev. 1
Operator:	Montgomery
Sample ID:	LEU01-46T-F01
Sample Description:	Baseline Composite: TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\BurnLeach\OCData\B06010601 DRF21R1.xls

	Leach 1	Leach 2	Leach 3	
Sample number:	B0601060101	B0601180102		7-1-1
RMAL Analysis Number:	060223-019	060223-021		Total µg
Fe content of leach solution (µg)	8.80	1.53		10.33
Uncertainty in measured Fe content (µg)	0.88	0.31		0.93
Cr content of leach solution (µg)	1.61	< 0.45		< 2.06
Uncertainty in measured Cr content (µg)	0.32			0.32
Mn content of leach solution (µg)	0.22	0.21		0.43
Uncertainty in measured Mn content (µg)	0.04	0.04		0.06
Co content of leach solution (µg)	0.59	0.84		1.43
Uncertainty in measured Co content (µg)	0.12	0.17		0.21
Ni content of leach solution (µg)	< 0.77	< 0.77		< 1.54
Uncertainty in measured Ni content (µg)				
Cr + Mn + Co + Ni (µg)	< 3.19	< 2.27		< 5.46
Uncertainty in Cr + Mn + Co + Ni (µg)	0.34	0.18		0.39
Ca content of leach solution (µg)	19.00	3.41		22.41
Uncertainty in measured Ca content (µg)	1.90	0.68		2.02
Al content of leach solution (µg)	< 2.11	2.77		< 4.88
Uncertainty in measured Al content (µg)		0.55		0.55
Ti content of leach solution (µg)	< 0.50	< 0.50		< 1.00
Uncertainty in measured Ti content (µg)				
V content of leach solution (µg)	< 0.65	0.66		< 1.31
Uncertainty in measured V content (µg)		0.13		0.13
Ti + V content of leach solution (μg)		< 1.16		< 2.31
Uncertainty in measured Ti + V content (µg)		0.13		0.13

<u>Comments</u>

Fred c. montgomery	3/20/06
Operator	Date

Supplement to DRF-21: Impurity Analysis Data

Procedure:	AGR-CHAR-DAM-21 Rev. 1
Operator:	Montgomery
Sample ID:	LEU01-46T-G01
Sample Description:	Baseline Composite: TRISO on BWXT kernel composite 69302
Filename:	\\mc-agr\AGR\BurnLeach\OCData\B06010602 DRF21R1.xls

	Leach 1	Leach 2	Leach 3	
Sample number:	B0601060201	B0601180202		7.4-1
RMAL Analysis Number:	060223-020	060223-022		Total µg
Fe content of leach solution (μg)	7.94	1.49		9.43
Uncertainty in measured Fe content (µg)		0.30		0.85
Cr content of leach solution (µg)	1.43	0.49		1.92
Uncertainty in measured Cr content (µg)	0.29	0.10		0.31
Mn content of leach solution (µg)		0.21		0.61
Uncertainty in measured Mn content (µg)	0.04	0.04		0.06
Co content of leach solution (µg)	0.88	0.74		1.62
Uncertainty in measured Co content (µg)	0.18	0.15		0.23
Ni content of leach solution (μg)	3.52	< 0.77		< 4.29
Uncertainty in measured Ni content (µg)	0.70			0.70
Cr + Mn + Co + Ni (μg)	6.23	< 2.21		< 8.44
Uncertainty in Cr + Mn + Co + Ni (µg)	0.78	0.18		0.80
Ca content of leach solution (μg)	5.79	3.76		9.55
Uncertainty in measured Ca content (μg)	0.58	0.75		0.95
Al content of leach solution (μg)		3.63		8.67
Uncertainty in measured Al content (μg)	1.00	0.73		1.24
Ti content of leach solution (μg)		< 0.50		< 1.00
Uncertainty in measured Ti content (µg)				
V content of leach solution (μg)	< 0.65	< 0.65		< 1.30
Uncertainty in measured V content (µg)				
Ti + V content of leach solution (μg)	< 1.15	< 1.15		< 2.30
Uncertainty in measured Ti + V content (µg)				

Comments

Fuel C. Montgomey	3/20/06
Operator	Date

16 Superceded data

This section contains data related to the LEU01-46T TRISO-coated particle composite that has been superceded by more recent analysis.

It was determined that the average kernel weight as measured using procedure AGR-CHAR-DAM-22 Rev. 0 was of insufficient accuracy. The average kernel weight was remeasured to improve the accuracy of the reported value according to AGR-CHAR-DAM-22 Rev. 1. The measured value of the LEUCO average kernel weight changed from (2.47±0.01)·10⁻⁴ grams per kernel to (2.418±0.006)·10⁻⁴ grams per kernel. The measured value of the NUCO average kernel weight changed from (2.39±0.03)·10⁻⁴ grams per kernel to (2.308±0.009)·10⁻⁴ grams per kernel. On data report form DRF-15 for the measurement of average kernel envelope density, the average kernel weight is used to approximate the number of kernels in a sample from the weight of the sample. The approximate number of kernels in a sample is divided into the sample envelope volume to determine the average kernel envelope volume. The change in average kernel weight resulted in a significant change in the calculated average kernel envelope volume. On data report form DRF-16 for the buffer envelope density, the average kernel weight and volume are used to calculate the buffer density. The change in average kernel weight and volume resulted in a significant change in the calculated buffer densities previously used to determine acceptability of the buffer deposition conditions. The data in this compilation shows the new average kernel weights and average kernel volumes in sections 6 and 7, and the new buffer densities in section 8. Records showing the original values are included in this section. The new values for buffer density were about 10% higher than the originally reported values, but both were within the range specified in INL EDF-4380, Rev. 6.

In addition, the coating thicknesses on each TRISO-coated particle batch were remeasured after coated particle composite characterization was underway in order to improve the accuracy of the reported values. The original images of the particle cross sections were reanalyzed using an updated version of the image analysis program. This new version utilized a more robust algorithm for identifying the outer boundary of the outer pyrocarbon layer (OPyC). The result of this reanalysis was an increase of about 2 μ m in the measured value for the OPyC thickness on each particle. A small change in the measured thicknesses of the other layers also occurred due to the use of the outer OPyC boundary in the correction to the measured thickness to account for imaging off mid-plane (as described in AGR-CHAR-DAM-11R2). The data in this compilation shows the new coating thickness values in sections 11 - 14. Records of the original measured values, which were initially used to determine the acceptance of each TRISO-coated particle batch for inclusion in the composite, are included in this section. Both the old and new coating thickness values for each batch were within the range specified in INL EDF-4380, Rev. 6.

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 0
Operator:	Dixie Barker
Particle Lot ID:	LEUCO350-01H
Particle Lot Description:	BWXT LEUCO KERNELS COMPOSITE 69302
Filonomou	\\mc_agr\AGP\ParticleWeight\W5051701 DPF22 vls

Г		1st 2nd Measurement Measureme		3rd Measurement	4th Measurement	5th Measurement	
	Weight of 100 particles (g):		2.50E-02	2.45E-02	2.49E-02	2.45E-02	
	Average weight/particle (g):	2.48E-04	2.50E-04	2.45E-04	2.49E-04	2.45E-04	

Mean average weight/particle (g	1: 2	.47E-04
Uncertainty in mean average weight/particle (g		

superceded 2-6-06 gh

Data Report Form DRF-15: Measurement of Average Kernel Envelope Density using a Mercury Porosimeter

	Procedure:	AGR-CHAR-DAM-15 Rev. 2
	Operator:	S. D. NUNN
	Kernel Lot ID:	LEUCO350-01
	Kernel Lot Description:	BWXT LEUCO KERNEL COMPOSITE 69302
Therr	mocouple Expiration Date:	5/23/06
Pene	etrometer Expiration Date:	5/25/06
	Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05052701\S05052701 DRF15R2

Mean average weight/kernel (g): 2.47E-04
Uncertainty in mean average weight/kernel (g): 1.03E-06

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number;	S05052701L	S05052702L	S05052703L	S05052704L	S05052705L
Weight of kernels (g):	12.5822	12.5075	12.8773	12.6448	12.6895
Approximate number of kernels:	50940	50638	52135	51194	51374
Uncertainty in number of kernels:	212	211/	217	213	214
Envelope volume of sample (cc):	1.150	1.145	1.180	1.157	1.164
Average envelope volume/kernel (cc):	2.26E-05	2,26E-05	2.26E-05	2.26E-05	2.26E-05
Sample envelope density (g/cc):	10.943	10.925	10.912	10.932	10.906

Mean average envelope volume/kernel (cc):	2.261E-05
Uncertainty in mean envelope volume/kernel (cc):	1.46-08
Mean sample envelope density (g/cc):	10.924
Standard deviation in sample envelope density (g/cc):	0.015

Superceded 2-14-06 At

Data Report Form DRF-22: Estimation of Average Particle Weight

Procedure:	AGR-CHAR-DAM-22 Rev. 0
Operator:	Dixie Barker
Particle Lot ID:	NUC0350-26-H
Particle Lot Description:	
Filename:	\\mc-agr\AGR\ParticleWeight\W05052401_DRF22.xls

	1st Measurement	2nd Measurement	3rd Measurement	4th Measurement	5th Measurement
Weight of 100 particles (g):	2.31E-02	2.38E-02	2.44E-02	2.45E-02	2.38E-02
Average weight/particle (g):	2.31E-04	2.38E-04	2.44E-04	2.45E-04	2.38E-04

Mean average weight/particle (g): 2.39E-04	
Uncertainty in mean average weight/particle (g): 2.52E-06	

arlier

Operator

5-24-05 Date

Superceded 2-3-06 . gH

Data Report Form DRF-15: Measurement of Average Kernel Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-15 Rev. 2
Operator:	S. D. NUNN
Kernel Lot ID:	NUCO350-26
Kernel Lot Description:	NUCO KERNEL COMPOSITE 69300
Thermocouple Expiration Date:	5/23/06
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05052601\S05052601 DRF15R2

Mean average weight/kernel (g): 2.39E-04 Uncertainty in mean average weight/kernel (g): 2.52E-06

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05052601L	S0502602L	S05052603L	S05052604L	S05052605I
Weight of kernels (g):	12.8272	12.9542	12.9410	12.9793	12.9624
Approximate number of kernels:	53670	54202	54146	54307	54236
Uncertainty in number of kernels:	566	571	571	573	572
Envelope volume of sample (cc):	1.187	1.200	1.199	1.202	1.199
Average envelope volume/kernel (cc):	2.21E-05	2.21E-05	2.21E-05	2.21E-05	2.21E-05
Sample envelope density (g/cc):	10.805	10.792	10.797	10.799	10.807

Mean average envelope volume/kernel (cc):	2.213E-05
Uncertainty in mean envelope volume/kernel (cc):	5.7E-09
Mean sample envelope density (g/cc):	10.800
Standard deviation in sample envelope density (g/cc):	0.006

Superce ded 2-3-06 gt

Inspection Report Form IRF-02A: Interrupted Coating Batches - Buffer Density

	Procedure:	AGR-CHAR-PIP-02 Rev. 2
1		NUCO350-25B
	Batch 1 description:	Buffer-coated BWXT kernel composite 69300
		NUCO350-36B
	Batch 2 description:	Buffer-coated BWXT kernel composite 69300
		NUCO350-54B
	Batch 3 description:	Buffer-coated BWXT kernel composite 69300
	Composite ID:	NUCO350-58B
	Composite description:	Composite (25B+36B+54B) Buffer-coated BWXT kernel composite 69300

THE RESERVE OF THE PARTY OF THE	(VIII)	Meas	ured Data	When's	Specification	Automobile To	Acceptance	Pass	Data
Property	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Test Value or fail Records		
	2000000	A COUNTY	5	2.132	mean	$A = x - ts/\sqrt{n} \ge 0.80$	0.89	pass	5,111
Batch 1: Buffer envelope density	0.97	0.09			0.95 ± 0.15	$B = x + ts/\sqrt{n} \le 1.10$	1.05	pass	
	1		_	2 4 22	mean	$A = x - ts/\sqrt{n} \ge 0.80$	0.93	pass	DRF-16
Batch 2: Buffer envelope density	1.01	0.09	5	2.132	0.95 ± 0.15	$B = x + ts/\sqrt{n} \le 1.10$	1.09	pass	DRF-22
		33.5		2.126	mean	$A = x - ts/\sqrt{n} \ge 0.80$	0.93	pass	DRF-16
Batch 3: Buffer envelope density	1.01	0.09	5	2.132	0.95 ± 0.15	$B = x + ts/\sqrt{n} \le 1.10$	1.09	pass	DRF-22
87 A 5 SAN BY C. O.	valence:	1	-	/2.00	mean	$A = x - ts/\sqrt{n} \ge 0.80$	0.92	pass	DRF-16
Composite buffer envelope density	0.99	0,08	5	2.132	0.95 ± 0.15	$B = x + ts/\sqrt{n} \le 1.10$	1.07	pass	DRF-22

Standard deviations are √5 times the uncertainties in buffer density (standard errors) reported on DRF-16.

Average thickness of buffer was 108 μm based on average envelope volume of 9.25E-5 cc (effective diameter of 561 μm) and average kernel diameter of 345 μm.

Average thickness of buffer was 108 μm based on average outer diameter of 561 μm, obtained per DAM-10 and average kernel diameter of 345 μm.

6-28-05

Accept for buffer density (Yes or No);

Yes

QA Reviewer

8/2/05 Date

Superceded 3-10-06 94

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

1		
	Procedure:	AGR-CHAR-DAM-16 Rev. 2
	Operator:	S. D. NUNN
	Buffer coated kernel batch ID:	NUCO35Q-25B
	Batch Description:	Buffer Coated BWXT Kernel Composite 69300
	Thermocouple Expiration Date:	5/23/06
	Penetrometer Expiration Date:	5/25/06
	Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05062001\S05062001_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.07E-04
Uncertainty in mean average weight/b-c kernel (g):	
Mean average weight/bare kernel (g):	2.39E-04
Uncertainty in mean average weight/bare kernel (g):	2.52E-06
Mean average envelope volume/bare Rernel (cc):	
Uncertainty in envelope volume/bare kernel (cc):	5.70E-09
Uncertainty in envelope volume/bare kerner (cc).	3,000 03

	Sample 1 X	Sample 2	Sample 3	Sample 4	Sample 5
Porosimeter data file number:	S05062001L	S05062002L	S05062003L	S05062004L	S05062005L
Weight of buffer-coated kernels (g):	4.1223	4.2165	4,4333	4.4104	4.0445
Approximate number of b-c kernels:	13428	13735	14441	14366	13174
Uncertainty in number of b-c kernels:	/ 44	4,5	47	47	43
Total envelope volume of sample (cc):	1.235	1.268	1.335	1.321	1.212
Av. envelope volume/b-c kernels (cc):	9.19E-05	9.23E-05	9.24E-05	9.19E-05	9.20E-05
Sample envelope density (g/cc):	3.339	3.326	3.321	3.340	3.338

Mean average envelope volume/b-c kernel (cc): 9.21E-05
Uncertainty in envelope volume/b-c kernel (cc): 1.1E-07

	Buffer	density:	9.71E-01	
Uncertainty	in buffer	density:	3.88E-02	

S.D. Nunn Operator 6/30/05 Date

specceded 2-14-06 H

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D.NUNN
Buffer-coated kernel batch ID:	NUCO350-36B
Batch Description:	Buffer Coated BWXT Kernel Composite 69300
Thermocouple Expiration Date:	5/23/06
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\mc-agr\AGR\Porosimeter\\$05062006\\$05062006_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.11E-04
Uncertainty in mean average weight/b-c kernel (g):	
Mean average weight/bare kernel (g):	2.39E-04
Uncertainty in mean average weight/bare kernel (g):	2.52E-06
Mean average envelope volume/bare kernel (cc):	2.21E-05
Uncertainty in envelope volume/bare kernel (cc):	5.70E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5 S05062102L	
Porosimeter data file number:	S05062006L	/S05062007L	S05062008L	S05062101L		
Weight of buffer-coated kernels (g):	4.0723	4.0655	4.0860	4.0696	4.0514	
Approximate number of b-c kernels:	13094	13072	13138	13086	13027	
Uncertainty in number of b-c kernels:	51	50	51	50	50	
Total envelope volume of sample (cc):	1.226	1.227	1.232	1.226	1.217	
Av. envelope volume/b-c kernels (cc):	envelope volume/b-c kernels (cc): 9.37E-05 9.38E-05		9.38E-05	9.37E-05	9.34E-05	
Sample envelope density (g/cc):	/3.321	3.315	3.317	3.319	3.328	

Mean average envelope volume/b-c kernel (cc): 9.37E-05 Uncertainty in envelope volume/b-c kernel (cc): 6.7E-08

Buffer density: 1.01E+00 Uncertainty in buffer density: 3.90E-02

6/21/05 Date

superceded 2-14-06 H

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

1	Procedure:	AGR-CHAR-DAM-16 Rev. 2
	Operator:	S. D.NUNN
Buffer-	coated kernel batch ID:	NUCO350-54B
	Batch Description:	Buffer Coated BWXT Kernel Composite 69300
Thermo	couple Expiration Date:	5/23/06
Penetro	ometer Expiration Date:	5/25/06
Co	moleted DRF Filename:	\\mc-agr\AGR\Porosimeter\S05062201\S05062201_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.11E-04
Uncertainty in mean average weight/b-c kernel (g):	
Mean average weight/bare kernel (g):	2.39E-04
Uncertainty in mean average weight/bare kernel (g):	
Mean average envelope volume/bare kernel (cc):	2.21E-05
Uncertainty in envelope volume/bare kernel (cc):	5.70E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5 S05062205L 4.0471	
Porosimeter data file number:	S05062201L	S05062202L	S05062203L	S05062204L		
Weight of buffer-coated kernels (g):	4.1223	4.0694	4.0160	4.0391		
Approximate number of b-c kernels:	13255/	13085	12913	12987	13013	
Uncertainty in number of b-c kernels:	46/	46	45	46	46	
Total envelope volume of sample (cc):	1/233	1.225	1.209	1.215	1.215	
Av. envelope volume/b-c kernels (cc):	9.30E-05	9.36E-05	9.36E-05	9.35E-05	9.34E-05	
Sample envelope density (g/cc):	3.344	3.323	3.323	3.326	3.331	

Mean average envelope volume/b-c kernel (cc): 9.34E-05 Uncertainty in envelope volume/b-c kernel (cc): 1.1E-07

	Buffer	density:	1.01E+00
/Uncertainty in	buffer	density:	3.85E-02

superceded 2-14-06 gH

6/32/05 Date

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedu	re: AGR-CHAR-DAM-16 Rev. 2
Operat	or: S. D.NUNN
Buffer-coated kernel batch	D: NUCO350-58B
Batch Description	on: Composite of Buffer Coated BWXT Kernel Composite 69300
Thermocouple Expiration Da	te: 5/23/06
Penetrometer Expiration Da	
Completed DRF Filenan	ne: \\mc-agr\AGR\Porosimeter\\$05062206\\$05062206_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.09E-04
Uncertainty in mean average weight/b-c kernel (g):	4.99E-07
Mean average weight/bare kernel (g):	2.39E-04
Uncertainty in mean average weight/bare kernel (g):	2.52E-06
Mean average envelope volume/bare kernel (cc):	2.21E-05
Uncertainty in envelope volume/bare kernel (cc):	5.70E-09

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	
Porosimeter data file number:	S05062206L	S05062206L S05062207L		S05062302L	S05062303L	
Weight of buffer-coated kernels (g):	4.3399	4.3264	4.3459	4.4478	4.3485	
Approximate number of b-c kernels:	14045	14001	14064	14394	14073	
Uncertainty in number of b-c kernels:			23	23	1.303	
Total envelope volume of sample (cc):			1.300	1.333		
Av. envelope volume/b-c kernels (cc):	9.25E-05	9.25E-05 9.26E-05		9.26E-05	9.26E-05	
Sample envelope density (g/cc):	3.340	3.338	3.344	3.337	3.338	

Mean average envelope volume/b-c kernel (cc): 9.25E-05 Uncertainty in envelope volume/b-c kernel (cc): 3.8E-08

> Buffer density: 9.94E-01 Uncertainty in buffer density: 3.65E-02

S. D. Munn

supercelled 2-14-06 gH.

6/33/65× Date

Data Report Form DRF-16: Measurement of Buffer Envelope Density using a Mercury Porosimeter

Procedure:	AGR-CHAR-DAM-16 Rev. 2
Operator:	S. D. NUNN
Buffer-coated kernel batch ID:	LEU01-168
Batch Description:	Buffer on BWXT LEUCO kernel composite 69302
Thermocouple Expiration Date:	5/23/06
Penetrometer Expiration Date:	5/25/06
Completed DRF Filename:	\\mc-agr\AGR\Porosimeter\S05110701\S05110701_DRF16R2.xls

Mean average weight/buffer-coated kernel (g):	3.20E-04
Uncertainty in mean average weight b-c kernel (g):	8.22E-07
Mean average weight/bare kernel (g):	2.47E-04
Uncertainty in mean average weight/bare kernel (g):	1.03E-06
Mean average envelope volume/bare kernel (cc):	2.26E-95
Uncertainty in envelope volume/bare kernel (cc):	1.40E-08

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	
Porosimeter data file number:	S05110701L	S05110702L	S05110703L	S05110704L	S05110705L	
Weight of buffer-coated kernels (g):	4.0951	4.1007	4.2203	4.2527	4.3448	
Approximate number of b-c kernels:	12797	12815	13188	13290	13578	
Uncertainty in number of b-c kernels:	33	33	34	34	35	
otal envelope volume of sample (cc): 1.192		1.193 1.234		1.229	1.267	
Av. envelope volume/b-c kernels (cc): 9.32E-05		9.31E-05	9.36E-05	9.25E-05	9.33E-05	
Sample envelope density (g/cc):	3.435	3.438	3.421	3.460	3.430	

Mean average envelope volume/b-c kernel (cc): 9.31E-05 Uncertainty in envelope volume/b-c kernel (cc): 1.8E-07

> Buffer density: 1.04E+00 Uncertainty in buffer density: 1.89E-02

S.D. Nunn

Superceded 2-14-06

Operator

11/7/05 Date

Inspection Report Form IRF-03: Coated Particle Batches

Procedure: AGR-CHAR-PIP-03 Rev. 2

Coated particle batch ID: LEU01-21T
Coated particle batch description: TRISO on BWXT kernel composite 69302

THE RESERVE OF THE PARTY OF THE	Measured Data			Specification	California In Inc.	Acceptance Pass	Data		
Property	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Test Value	or fail	Records
Average buffer thickness for		7.8	105	1.650	mean	A ≠ x - ts/√n ≥ 85	99.9	pass	DRF-08
each particle (µm)	101.2	7.8	106	1.659	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	102.5	pass	DRF-11
Average IPyC thickness for		2.0			mean 40 ± 5	$A = x - ts/\sqrt{n} \ge 35$	39.8	pass	DRF-08 DRF-11
each particle (µm)	40.1	2.0	157	1.655		$B = x + ts/\sqrt{n} \le 45$	40.4	pass	
Average SiC thickness for	37.6	00	157	1.655	mean	$A = x - ts/\sqrt{n} \ge 31$	37.5	pass	DRF-08 DRF-11
each particle (µm)	37.6	0.9	15/	1.055	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	37.7	pass	
Average OPyC thickness for	40.9		157	1.655	mean	$A = x - ts/\sqrt{n} \ge 35$	40.6	pass	DRF-08
each particle (µm)	40.9	2.3	15/	1.055	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	41.2	pass	DRF-11
Particles with missing OPyC			15578		defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19

Goldspot analysis performed on missing OPyC sample for information only. 10 gut of 15578 gold-spots observed.

11-29-05

Accept Coated particle batch (Yes or No):

Yes

12/29/65

Superceded 3.23-06 JH

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	John Hunn
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
Sample ID:	LEU01-21T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

	Number of buffer layers analyzed:	106
Mean of the avera	ge buffer thickness of each particle (µm):	101.2
Standard deviation in the avera	ge buffer thickness of each particle (µm):	7.8

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	3
90	8
95	10
100	23 /
105	26
110	/22
115	/ 11
120	3
125	0
>125	0

superceded 1-24-06 A

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	John Hunn
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
	LEU01-21T-B01
Sample Description:	TRISO on BWXT kernel composite 69302 /
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

	Number of inner pyrocarbon layers analyzed:	157	
	Mean of the average IPyC thickness of each particle (µm):	40.1	
Stan	ndard deviation in the average IPyC thickness of each particle (µm):	2.0	

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	0
34	0
36	1
38	19
40	60
42	49
44	20
46	8
48	0/
50	0
52	/0
54	0
56	0
>56	0

John Hum Operator

11-29-05 Date

superceded 1-24-06 24

	Procedure:	AGR-CHAR-DAM-11 Rev. 1	
	Operator:	John Hunn	
	Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layer\$\P05112806\	
	Sample ID:	LEU01-21T-B01	
	Sample Description:	TRISO on BWXT kernel composite 69302	
Folder	name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\	

Number of silicon carbide layers analyzed:	157
Mean of the average SiC thickness of each particle (µm):	37.6
Standard deviation in the average SiC thickness of each particle (µm):	0.9

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	0
35	0
36	4 /
37	40/
38	87
39	/48
40	8
>40	0

superceded 1-24-06 gH

Data Report Form DRF-11D: Measurement of Outer Pyrocarbon Layer Thickness

Procedure:		AGR-CHAR-DAM-11 Rev. 1
	Operator:	John Hunn
Folder Name: \\mc-agr\AGR\ImageProcessing\Completed_Layers\P051128		\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806\
	Sample ID:	LEU01-21T-B01
	Sample Description:	TRISO on BWXT kernel composite 69302
Folder name conta	ining processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05112806_output\

Number of outer pyrocarbon layers analyzed:	157	
Mean of the average OPyC thickness of each particle (µm):	40.9	
Standard deviation in the average OPyC thickness of each particle (µm):	2.3	

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	1
32	0
34	0
36	1
38	8
40	42
42	63
44	31 /
46	9/
48	2
50	/0
>50	0

superceded 1-24-06 H

Inspection Report Form IRF-03: Coated Particle Batches

Procedure: AGR-CHAR-PIP-03 Rev. 2

Coated particle batch ID: LEU01-35T
Coated particle batch description: TRISO on BWXT kernel composite 69302

	MARKET N	Measured Data			Specification		Acceptance	Pass	Data
Property	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Test Value	or fall	Records
Average buffer thickness for	102.0	8.1	450	1.654	mean	$A = x - ts/\sqrt{n} \ge 85$	102.9	pass	DRF-08
each particle (µm)	103.9	8.1	169	1.034	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	104.9	pass	DRF-11
Average IPyC thickness for	7-	77	201	1.652	mean	$A = x - ts/\sqrt{n} \ge 35$	39.4	pass	DRF-08
each particle (µm)	39.7	2.2	204	1.652	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.0	pass	DRF-11
Average SiC thickness for	26.2	1.0	. 204	1.652	mean	$A = x - ts/\sqrt{n} \ge 31$	36.2	pass	DRF-08
each particle (µm)	36.3	1.0	204	1.052	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	36.4	pass	DRF-11
Average OPyC thickness for	38.0	2.4	204	1.652	mean	$A = x - ts/\sqrt{n} \ge 35$	37.7	pass	DRF-08
each particle (µm)	38.0	2.4	204	1.052	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	38.3	pass	DRF-11
Particles with missing OPyC		WE SA	15622	1.64	defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19

13-05

12/29/05 Dat

	Comments
Goldspot analysis performed on missing OPyC sample for information opty	. 17 out of 15622 gold spots observed.

Accept Coated particle batch (Yes or No):

Yes

superceded 3-23-06 gH

221

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

	Procedure:	AGR-CHAR-DAM-11 Rev. 1
		Andrew K. Kercher
Folder na	ame containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
		LEU01-35T-B01
	Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:		\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

	Number of buffer layers analyzed:	169
	Mean of the average buffer thickness of each particle (µm):	103.9
Standard dev	riation in the average buffer thickness of each particle (µm):	8.1

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	1
90	4
95	18
100	34
105	42 /
110	31
115	/22
120	/ 10
125	6
>125	1

Operator Cher

December 13, 2005

Superceded 1-26-06 H

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
	LEU01-35T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

Number of inner pyrocarbon Jayers analyzed:	204	
Mean of the average IPyC thickness of each particle (µm):	39.7	
Standard deviation in the average IPyC thickness of each particle (µm):	2.2	

Distribution of the average IPyC Jayer thickness (top binned)

IPyC Thickness (µm)	Frequency
<30	0
32	0
34	0
36	8
38	38
40	71
42	55
44	26
46	5
48	1 /
50	0/
52	0
54	/0
56	/ 0
>56	0

superceded 1-26-06 A

	Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Operator:	Andrew K. Kercher
	Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\/
	Sample ID:	LEU01-35T-B01
		TRISO on BWXT kernel composite 69302
Folde	r name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

Number of silicon carbide layers analyzed:	204
Mean of the average SiC thickness of each particle (μm):	36.3
Standard deviation in the average SiC thickness of each particle (µm):	1.0

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	1
35	22
36	53
37	79
38	41 /
39	7
40	/1
>40	0

Kylew K. Flecher Operator

December 15, 2

superceded 1-26-06 St

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202\
	LEU01-35T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05121202_output\

	Number of outer pyrocarbon layers analyzed:	204
	Mean of the average OPyC thickness of each particle (µm):	38.0
Standard	Standard deviation in the average OPyC thickness of each particle (µm):	

Distribution of the average OPy@ layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	1
34	9
36	38 /
38	5,3
40	/56
42	/ 38
44	9
46	0
48	0
50	0
>50	0

grkew K. Korcher

December 13, 2005

Superceded 1-26-06 2H

Inspection Report Form IRF-03: Coated Particle Batches

Procedure: AGR-CHAR-PIP-03 Rev. 2

Coated particle batch ID: LEU01-27T

Coated particle batch description: TRISO on BWXT kernel composite 69302

Property	Measured Data			Specification		Acceptance Pass	Data									
	Mean (x)	Std. Dev.	# measured (n)	t value (t)	INL EDF-4380	Acceptance Criteria	Test Value	or fall	Or Pacarde							
Average buffer thickness for		4 650	mean	A = x - ts/√n ≥ 85	103.9	pass	DRF-08									
each particle (µm)	104.9	8.0	180	1.653	100 ± 15	$B = x + ts/\sqrt{n} \le 115$	105.9	pass	DRF-11							
Average IPyC thickness for	\		n n	mean /		$A = x - ts/\sqrt{n} \ge 35$	38.7	pass	DRF-08							
each particle (µm)	38.9	2.1	234	1.651	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	39.1	pass	DRF-11							
Average SiC thickness for		10.4			mean	$A = x - ts/\sqrt{n} \ge 31$	34.6	pass	DRF-08							
each particle (µm)	34.7	1.0	· 234	. 234	. 234	. 234	. 234	. 234	234	. 234	1.651	35 ± 4	$B = x + ts/\sqrt{n} \le 39$	34.8	pass	DRF-11
Average OPyC thickness for	12095	1			mean	$A = x - ts/\sqrt{n} \ge 35$	38.6	pass	DRF-08							
each particle (µm)	38.9	2.7	2.7	2.7	235	235	1.651	1.651	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	39.2	pass	DRF-11			
Particles with missing OPyC	U PAR		15680	1	defect fraction ≤ 6.0 × 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19							

A STATE OF THE STA
Goldspot analysis performed on missing OPyC sample for information only. 31 out of
The state of the s
Goldspot analysis performed on missing OPyC sample for information only. 31 out of

Accept Coated particle batch (Yes or No):

Yes

12/29/05

Superceled 3-23-06 St

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
Sample ID:	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

	Number of buffer layers analyzed:	180
	Mean of the average buffer thickness of each particle (µm):	104.9
Standard	deviation in the average buffer thickness of each particle (µm):	8.0

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	5
95	11
100	40
105	33
110	46 /
115	2,7
120	/12
125	5
>125	1

Operator

Date

Superceded 1-18-06 At

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
Sample ID:	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

	Number of inner pyrocarbon layers analyzed:	234	
	Mean of the average IPyC thickness of each particle (µm).		
Standard deviation in the average IPyC thickness of each particle (µm):		2.1	

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	0
34	0
36	14
38	69
40	87
42	41
44	21
46	2
48	0
50	0
52	0
54	0
56	0
>56	0

superceded 1-18-06 2/1

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew K. Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
	LEU01-27T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

Number of silicon carbide layers analyzed:	/	234	
Mean of the average SiC thickness of each particle (μm):		34.7	
Standard deviation in the average SiC thickness of each particle (µm):		1.0	

Distribution of the average SiC layer thickness (top binned)

SiC Thickness (µm)	Frequency
<25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	1
33	11
34	42
35	86
36	73 /
37	19/
38	1
39	/ 1
40	/ 0
>40	0

Releas H. Henken

12/21/05

superceded 1-18-06 JA

	Procedure:	AGR-CHAR-DAM-11 Rev. 1
		Andrew K. Kercher
	Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001\
		LEU01-27T-B01
		TRISO on BWXT kernel composite 69302
Folder name cont	aining processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122001_output\

Number of outer pyrocarbon layers analyzed:	235
Mean of the average OPyC thickness of each particle (μm):	38.9
Standard deviation in the average OPyC thickness of each particle (µm):	2.7

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	0
34	7
36	25
38	57
40	60
42	60 /
44	19
46	/5
48	/ 2
50	0
>50	0

Tilber Lewher Operator

2/21/05 Date

superceded 1-18-06 At

Inspection Report Form IRF-03: Coated Particle Batches

Procedure: AGR-CHAR-PIP-03 Rev. 2

Coated particle batch ID: LEU01-45T

Coated particle batch description: TRISO on BWXT kernel composite 69302

CHARLES AND IN COLUMN		Meas	ured Data	207.3	Specification		Acceptance	Pass	Data	
Property	Mean Std. Dev. # measured (x) (s) (n)		t value INL EDF-4380		Acceptance Criteria	Test Value	or fail	Records		
Average buffer thickness for					mean	$A = x - ts/\sqrt{n} \ge 85$	106.5	pass	DRF-08	
each particle (µm)	107.6	8.3	161	1.654	100 ± 15	B = x + ts/√n ≤ 115	108.7	pass	DRF-11	
Average IPyC thickness for					mean	A = x - ts/√n ≥ 35	39.9	pass	DRF-08	
each particle (µm)	40.1	2.0	192	1,653	40 ± 5	$B = x + ts/\sqrt{n} \le 45$	40.3 pass DRF-1	DRF-11		
Average SiC thickness for	The same	1	100		mean	$A = x - ts/\sqrt{n} \ge 31$	35.7	pass	DRF-08	
each particle (µm)	35.8	1,1	192	192 1.653	1.653 35 ± 4	$B = x + ts/\sqrt{n} \le 39$	35.9	pass	DRF-11	
Average OPyC thickness for	- CANADA		0.00	1000	mean	$A = x - ts/\sqrt{n} \ge 35$	38.0	pass	DRF-08	
each particle (µm)	38.3	2.5	192	192 1.653	1.053	40 ± 5	B = x + ts/√n ≤ 45	38.6	pass	DRF-11
Particles with missing OPyC			15574	1.64	defect fraction ≤ 6.0 x 10 ⁻⁴	≤4 in 15,500	0	pass	DRF-19	

	Comments
oldspot analysis performed on missing OPyC sample for information only 3 out of 15	74 gold spots observed.
Sentation before the or morning of morning services and season more at the services of the ser	

Accept Coated particle batch (Yes or No):

12/29/05

superceded 3.23-06 24.

Data Report Form DRF-11A: Measurement of Buffer Layer Thickness

Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Andrew Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201
	LEU01-45T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

Number of buffer layers analyzed:	161
Mean of the average buffer thickness of each particle (µm):	107.6
Standard deviation in the average buffer thickness of each particle (µm):	8.3

Distribution of the average buffer layer thickness (top binned)

Buffer Thickness (µm)	Frequency
<55	0
60	0
65	0
70	0
75	0
80	0
85	0
90	1
95	5
100	24
105	35
110	36 /
115	28/
120	18
125	/9
>125	/ 5

Superceded 1-17-06 At

Procedure:	AGR-CHAR-DAM-11 Rev. 1
Operator:	Andrew Kercher
Folder name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201
Sample ID:	LEU01-45T-B01
Sample Description:	TRISO on BWXT kernel composite 69302
Folder name containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

Number of inner pyrocarbon layers analyzed:	192
Mean of the average IPyC thickness of each particle (µm):	40.1
Standard deviation in the average IPyC thickness of each particle (µm):	2.0

Distribution of the average IPyC layer thickness (top binned)

IPyC Thickness (μm)	Frequency
<30	0
32	0
34	0
36	3
38	23
40	70
42	65
44	25
46	4
48	2
50	0
52	0
54	0 /
56	0
≥56	/0

huhew ferher

inder 29, 20

Especialed 1-17-06 H

	Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Operator:	Andrew Kercher
Folder	name containing images:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201
	Sample ID:	LEU01-45T-B01
	Sample Description:	TRISO on BWXT kernel composite 69302
Folder name	containing processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

	Number of silicon carbide layers analyzed:		192	
Mean o	f the average SiC thickness of each particle (µm):	/	35.8	
	the average SiC thickness of each particle (µm):		1.1	

Distribution of the average SiC layer thickness (top binned)

	Frequency	SiC Thickness (µm)
	0	<25
	0	26
	0	27
	0	28
	0	29
	0	30
	0	31
	0	32
	0	33
X	15	34
	30	35
	63/	36
	59	37
	20	38
	5	39
	0	40
	0 _	>40

When I Leve

Cember 21, 200

superceded 1-17-06 H

	Procedure:	AGR-CHAR-DAM-11 Rev. 1
	Operator:	Andrew Kercher
	Folder Name:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201
	Sample ID:	LEU01-45T-B01
	Sample Description:	TRISO on BWXT kernel composite 69302
Folder name cont	aining processed data:	\\mc-agr\AGR\ImageProcessing\Completed_Layers\P05122201_output

	Number of outer pyrocarbon layers analyzed:	192	
	Mean of the average OPyC thickness of each particle (µm):	38.3	
Standard deviation in the average OPyC thickness of each particle (µm):		2.5	

Distribution of the average OPyC layer thickness (top binned)

OPyC Thickness (µm)	Frequency
<20	0
22	0
24	0
26	0
28	0
30	0
32	1
34	7
36	29/
38	52
40	/57
42	35
44	9
46	2
48	0
50	0
>50	0
	1 -

Operator

Docember 29, 2005

superceded 1-17-06