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ABSTRACT 

 

A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in 

order to analyze non-destructive accidents caused by transients during reactor operation. The reactor 

model was built for the latest version of the nuclear analysis software package called Program for the 

Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were 

compared with previous data obtained with other tools in order to benchmark the code. Finally, the 

model was used to analyze the behavior of the reactor under a transient using a different nuclear fuel 

with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of 

uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the 

neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative 

reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe 

alternative fuel for the reactor core. 
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1.0 INTRODUCTION 

 

An initiative to investigate the feasibility of low-enriched uranium fuel as a potential alternative fuel 

for the High Flux Isotope Reactor (HFIR) originated from the Reduced Enrichment for Research and 

Test Reactors (RERTR). The proof of principle of this project was performed by R T. Primm [1] in a 

study based on only minor changes to the current fuel design, namely, the thickness of the fuel within 

the fuel plate.  

 

After this preliminary study was performed, the next logical step was to analyze the safety of this 

potential fuel for the HFIR. The desired safety analysis would provide information on the behavior of 

this new fuel design under anticipated transients. At the same time, it was brought to the attention of 

the author the existence of a nuclear safety computer code called PARET which had not been 

employed before in this reactor design, and appeared to be an appropriate choice as the main research 

tool. 

 

There are many potential accident scenarios to be studied, and they are explained in detail on the HFIR 

Updated Safety Analysis Report [2].  Given that this study is the initial safety analysis being 

performed, and given the time constrains of the project, the present study was limited to one class of  

transients. The chosen transient was the primary coolant pump seizure. 

 

PARET [8] is a computer code which iteratively solves for the neutronic-hydrodynamic-heat transfer 

aspect of the reactor under steady state and transient behavior. This code uses the point reactor kinetics 

relations for the neutronic aspect of the analysis; furthermore there are multiple laminar and turbulent 

correlations for the hydrodynamic part and finally an array of heat transfer correlations as well. The 

user has the capability to select the appropriate correlation based on the operational parameters and the 

range of data available for the analysis.  A simplified diagram showing the functionality of the PARET 

code is provided in Fig. 1.1, a slightly updated version from that in Ref. 8. 

 

The goals of this study are to: 

 

1. obtain an initial assessment of the safety of the new fuel design, and 

2. access PARET as a safety analysis tool for the reactor core in question. 

 

Initially, PARET will be used to benchmark against previously published problems by other 

researchers that used similar tools in other reactor designs and other transients. After this is 

accomplished, PARET will be used to re-analyze previously documented transients of the current fuel 

design, namely highly enriched uranium fuel, and this will allow an initial assessment of the 

applicability of PARET on the safety analysis of the low enriched uranium fuel. The results of this 

study will be used as a starting point for a complete safety analysis for the new fuel design. 
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Fig. 1.1.  Block diagram of PARET program. 
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2.0 VERIFICATION AND VALIDATION STUDIES 

 

The version of PARET used in this study is 7.2 and was obtained from A. P. Olson of Argonne 

National Laboratory [9].  Both WINDOWS and LINUX versions of the code were supplied and both 

were tested in this project.  All calculations reported here were performed with the LINUX version.*  

Before the code can be used to represent the HFIR reactor core, it is necessary to benchmark it against 

results published by other researchers obtained with previous versions of the PARET code.  

 

2.1 International Atomic Energy Agency (IAEA) 10 Megawatt Benchmark 

 

A 10-MW research reactor core is defined in Ref. 3 in sufficient detail to serve as a benchmark for the 

PARET code.  The IAEA reactor core is shown in Fig. 2.1 and contains four different regions.  Three 

of the core regions are made up of fuel assemblies that are physically similar to each other, but have 

different fuel enrichments. These three regions are shown shaded in Fig. 2.1. The fourth core region is 

the fuel-control assembly and there are four of these fuel assemblies in this core. The control elements 

are the eight white vertical rectangles in Fig. 2.1. 

 

 
 

Fig. 2.1.  IAEA (right) horizontal core cross section. 

 

The benchmark problem consists of a fast reactivity insertion as described by Woodruff [4].  An input 

file for the problem was distributed with the PARET code and was used as a didactic tool as well as a 

base for building the dataset for HFIR. Published results from [4] obtained by using an older version of 

PARET and also using the RELAP code [5] are shown in Fig. 2.2.  Corresponding graphs produced 

from the output of the current version of PARET are shown in Fig. 2.3.  The power profile, peak clad 

temperature, and peak coolant temperature from the current work all match well to published results in 

Ref. 4.  Peak fuel temperature from the current calculation is slightly lower than that reported in Ref. 4. 

A change in the materials properties library might be an explanation for the difference. 

 

                                                 
* ORNL Software Registry System ID is 1424. 
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Fig. 2.2.  Transient response of benchmark core to reactivity insertion of $1.50/0.5 s with an 

overpower scram trip at 12 MW and a 25 ms delay from [4]. 
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Fig. 2.3.  Transient response of benchmark core to reactivity insertion of $1.50/0.5 s with an 

over-power scram trip at 12 MW and a 25 ms delay (this work). 

 
2.2 The Massachusetts Institute of Technology – II Reactor 

 

The next problem used to benchmark PARET is a reactivity insertion transient at the MIT research 

reactor (see [6] for reactor description and description of transient). The input file used is provided by 

Newton [6], who performed a similar study on the mentioned research reactor. As the previous 

benchmark problem, Newton utilized the older version of PARET.  Figure 2.4 shows the level of 

agreement between the current work and that reported in Ref. 6. 
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Fig. 2.4.  Comparison of LEU fuel temperature during a reactivity transient as reported by 

Newton using an old version of PARET (top) and the version 7.2 of PARET (bottom, this work). 
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2.3  Conclusion from Verification Studies 

 

The only input datasets available to the authors were the two discussed in previous sections.  It can be 

inferred from the IAEA and MIT studies that the new version of PARET (7.2) was successfully 

installed at ORNL and this new version produces results that are consistent with prior versions of 

PARET. Thus, it is reasonable to apply this code to the HFIR reactor core as it appears capable to 

handle transients of interest. 

 

2.4 Validation Studies with Earlier Versions of PARET 

 

A search of the web-based, Reduced Enrichment for Research and Test Reactors publication database 

(www.rertr.anl.gov) revealed that calculation-to-experiment comparisons had been made with versions 

of PARET for three research reactors [11 – 13].  Table 2.1 provides a brief summary of the levels of 

agreement between calculations and experiments that are reported in these references.  In no case was 

the result of the PARET calculation non-conservative, i.e. less than measurement. 

  

Table 2.1.  Representative validation studies for PARET with other reactors 

Ref. 

number 
Reactor 

Calculation-to-experiment ratio 

Peak clad Peak power 

Core outlet 

coolant 

temperature 

Margin to incipient 

boiling 

11a SPERT-IV 

Always >1.0, 

max of 1.73 for 

$1.8 transient 

1.0-1.1 - - 

12a MNSR - - ~1.0 

Agrees with 

prediction from 

correlation derived 

from expts for 3.77 

mk transient 

13a ORR - 1-2.75 - - 

 

 

Computer programs can be validated by comparison to other, similar computer programs for which the 

level of accuracy is known over a specified area of applicability (see Fig. 2.2).  Several computational 

comparisons among PARET and other codes have been documented [14 – 17] but are not reviewed 

here. 

 

2.5 Operational Data from HFIR 

 

Records in the operators‘ log books for the HFIR exist that can be used to validate the PARET 

program and associated materials property library.  These include: 

 

1) shutdown from full power – coolant outlet temperature as a function of time, 

2) as rods are pulled at startup and power increases at some rate, outlet coolant temperature as a 

function of time, and 

3) power change as a function of time due to reactivity insertion caused by ―rabbits‖ (capsules) 

inserted in the hydraulic tube located in the central target region of HFIR [18]. 
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The object of the studies documented in this report was to create the PARET models for HEU-fuelled 

and LEU-fuelled HFIR cores.  A follow-on study could use the models to conduct validation studies 

with these HFIR operational data. 
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3.0 HFIR MODEL CONSTRUCTION 

 

It is necessary to define the following terms as they will be used throughout this document. For any 

type of reactor – power or research or other - the reactor core is a three dimensional body that typically 

can be represented in terms of two dimensional core regions perpendicular to the unidirectional flow of 

coolant (i.e., axial slices through the three dimensional body).  Each ―slice‖ or core region is frequently 

composed of multiple fuel assemblies and each fuel assembly consists of multiple fuel plates and 

coolant channels.   

 

3.1 Reactor Geometry and Neutronics Input 

 

The core design of the HFIR is shown in Fig. 3.1 and differs from the typical plate-fueled reactor core. 

As it can be observed, the HFIR reactor core is made up of two regions, the inner and outer annulus 

which contains the curved fuel plates. These two regions are different since the fuel plates that make 

up each region contain different uranium loadings and differing curvatures. The control elements are 

the two sparsely shaded outer annuli in the HFIR core.  

 

 

 
 

Fig. 3.1.  HFIR core configuration. 
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The HFIR fuel plates are curved, with an involute shape, whereas the fuel plates of the IAEA core 

(Fig. 2.1) are flat plates. There are 23 fuel plates per fuel assembly and 17 fuel plates per fuel-control 

assembly in the IAEA core. In the HFIR core there are 171 fuel plates in the inner fuel region and 369 

fuel plates in the outer fuel region (refer to Fig. 3.1). In addition to this difference, the layer of fuel in 

the HFIR does not have constant thickness along the width of the fuel plate, however the standard fuel 

plate, such as that of the IAEA core has a constant fuel layer thickness along the width of the fuel plate 

[7]. Fuel plates for the inner fuel element have a different arc of curvature from those of the outer fuel 

element (see Fig. 3.2). 

 

 

  
 

Fig. 3.2.  HFIR involute fuel plates showing variable fuel „meat‟ thickness within the fuel plate. 

 

In order to model the HFIR core in PARET, is necessary to decide the number of core regions that are 

to be modeled. Given that the power distribution in not uniform across both fuel elements of the 

reactor, it is necessary to spatially discretize the reactor core so as to model these non-uniformities. The 

discretization must be such that there are enough nodes as to accurately describe the power 

distribution, yet should not be so large as to lead to long computational time due to an unnecessary 

large number of mesh points. Thus, a discretization must be done to the inner and outer fuel elements 

and along the height of the core such that the ratio of the local power to the average power can be 

represented in both directions, radial and axial.  
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Based on the a recent static reactor physics study by Primm [10], the power distribution of each of the 

two fuel elements of the core can be accurately represented by eight radial regions in the inner fuel and 

nine radial regions in the outer fuel.  Nineteen axial zones were present in the neutronics model – one 

less than the maximum allowed in PARET. Fig. 3.3 shows this relation for the HEU fuel.  Figs. 3.4 

and 3.5 show the radial discretization schemes for the inner and outer elements.  Axial mesh intervals 

had a uniform thickness of 3 cm except for the top and bottom interval which were each 0.4 cm and 

the interval containing the axial midplane which was 2 cm.  The power distribution for beginning-of-

life in the inner element is presented in Table 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.3.  HFIR simplified core discretization scheme. 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

 
Fig. 3.4.  Radial mesh spacing; inner fuel element. 
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Fig. 3.5.  Radial mesh spacing for outer fuel element. 

 

 

 

 

 
Table 3.1.  Relative power distribution for the inner fuel element, HEU, beginning-of-cycle 

Power Level Distribution Inner Fuel Element: HEU Fuel 

 Radial Mesh 

Axial 

Mesh 

No. 1 2 3 4 5 6 7 8 

19 1.049 1.093 1.145 1.210 1.269 1.231 1.146 1.109 

18 0.881 0.836 0.811 0.803 0.809 0.807 0.819 0.873 

17 0.922 0.871 0.833 0.810 0.807 0.817 0.838 0.901 

16 1.065 1.005 0.960 0.937 0.942 0.956 0.979 1.047 

15 1.205 1.140 1.093 1.070 1.077 1.093 1.120 1.195 

14 1.336 1.263 1.205 1.181 1.188 1.213 1.250 1.328 

13 1.423 1.351 1.298 1.274 1.288 1.312 1.347 1.432 

12 1.479 1.405 1.351 1.334 1.355 1.384 1.423 1.515 

11 1.512 1.440 1.391 1.369 1.390 1.420 1.462 1.556 

10 1.518 1.445 1.388 1.375 1.392 1.428 1.465 1.563 

9 1.512 1.437 1.381 1.359 1.382 1.408 1.448 1.544 

8 1.470 1.397 1.343 1.317 1.337 1.360 1.396 1.485 

7 1.400 1.328 1.272 1.250 1.259 1.282 1.312 1.397 

6 1.283 1.217 1.169 1.148 1.155 1.172 1.201 1.279 

5 1.158 1.097 1.054 1.029 1.038 1.047 1.073 1.145 

4 1.012 0.961 0.917 0.893 0.897 0.906 0.930 0.990 

3 0.886 0.831 0.787 0.762 0.762 0.768 0.790 0.843 

2 0.844 0.801 0.770 0.757 0.757 0.752 0.762 0.816 

1 0.995 1.044 1.070 1.137 1.183 1.130 1.059 1.020 

 

15.13 cm 

Inner radius 

0.36 

cm 

0.50 

cm 

1.0 
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Data in Table 3.1 as well as in Tables 3.2 through 3.4 were calculated with the MCNP-V code using a 

HFIR model documented in Ref. 31.  End-of-life power profiles were determined by incorporating the 

HFIR MCNP model into the ALEPH [32] Monte Carlo depletion code system. 

 

 

Table 3.2.  Relative power distribution for the inner fuel element, HEU, end-of-cycle 
Power Level Distribution Inner Fuel Element: HEU Fuel 

 Radial Mesh 

Axial 

Mesh 

No. 1 2 3 4 5 6 7 8 

19 0.658 0.788 0.906 1.038 1.112 1.094 1.020 0.940 

18 0.643 0.738 0.805 0.850 0.853 0.837 0.823 0.818 

17 0.654 0.754 0.815 0.846 0.844 0.833 0.829 0.827 

16 0.682 0.808 0.897 0.950 0.962 0.946 0.931 0.909 

15 0.698 0.847 0.965 1.051 1.074 1.055 1.024 0.987 

14 0.695 0.867 1.015 1.131 1.166 1.140 1.102 1.047 

13 0.685 0.872 1.035 1.175 1.230 1.209 1.159 1.089 

12 0.678 0.875 1.053 1.209 1.278 1.245 1.194 1.112 

11 0.674 0.874 1.061 1.226 1.299 1.274 1.212 1.122 

10 0.673 0.875 1.060 1.233 1.310 1.283 1.217 1.126 

9 0.676 0.877 1.060 1.231 1.300 1.273 1.207 1.125 

8 0.678 0.877 1.054 1.211 1.273 1.248 1.189 1.110 

7 0.686 0.874 1.036 1.176 1.238 1.210 1.158 1.087 

6 0.694 0.871 1.012 1.122 1.164 1.145 1.103 1.052 

5 0.694 0.844 0.963 1.045 1.072 1.055 1.024 0.988 

4 0.681 0.806 0.895 0.945 0.958 0.943 0.926 0.905 

3 0.664 0.760 0.818 0.846 0.839 0.829 0.829 0.824 

2 0.650 0.742 0.802 0.841 0.843 0.826 0.818 0.816 

1 0.667 0.789 0.907 1.024 1.117 1.080 1.012 0.942 

 

 

The computer code allows the user to define multiple core regions with its own specified power 

generation levels as well as its own reactivity feedback intensity factors for the moderator and the fuel, 

as described by Obenchain [8]. Each of these core regions are independent from each other in terms of 

the hydrodynamic and heat transfer aspect, but coupled to all other regions defined in terms of the 

reactor kinetics and reactivity feedback effects. This is very important, given that PARET does not 

consider the spatial effects of the core in general for the computation.  In fact, in PARET, the 

geometric configuration of the core, cylindrical or rectangular, is only used in the determination of 

the total heat transfer area and, consequently, the total heat flux. However, it is important to specify 

the appropriate equivalent diameter for the core region being defined (the ―element‖) since this will 

determine the coolant flow velocity in that particular region. 
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Table 3.3.  Relative power distribution for the outer fuel element, HEU, beginning-of-cycle 

Power Level Distribution Outer Fuel Element: HEU Fuel 

 Radial Mesh 

Axial 

Mesh 

No. 9 10 11 12 13 14 15 16 17 

19 1.141 1.177 1.195 1.173 1.020 0.781 0.586 0.467 0.354 

18 0.908 0.847 0.800 0.733 0.624 0.509 0.416 0.352 0.291 

17 0.935 0.875 0.826 0.755 0.642 0.529 0.438 0.375 0.314 

16 1.087 1.029 0.978 0.901 0.778 0.655 0.553 0.478 0.409 

15 1.244 1.177 1.124 1.048 0.923 0.805 0.712 0.654 0.592 

14 1.383 1.319 1.263 1.179 1.053 0.943 0.859 0.807 0.756 

13 1.504 1.429 1.369 1.286 1.161 1.047 0.966 0.917 0.866 

12 1.590 1.508 1.444 1.364 1.235 1.128 1.055 1.011 0.964 

11 1.637 1.561 1.499 1.414 1.289 1.202 1.144 1.112 1.079 

10 1.645 1.561 1.501 1.418 1.300 1.220 1.174 1.156 1.127 

9 1.620 1.542 1.480 1.395 1.272 1.177 1.116 1.082 1.045 

8 1.555 1.479 1.425 1.335 1.205 1.092 1.008 0.954 0.893 

7 1.455 1.386 1.332 1.248 1.111 0.996 0.913 0.857 0.798 

6 1.332 1.267 1.211 1.129 1.002 0.890 0.809 0.754 0.698 

5 1.187 1.122 1.069 0.996 0.866 0.742 0.646 0.585 0.520 

4 1.029 0.970 0.922 0.841 0.713 0.573 0.456 0.376 0.297 

3 0.879 0.819 0.768 0.693 0.577 0.457 0.357 0.289 0.221 

2 0.847 0.787 0.739 0.665 0.554 0.430 0.332 0.265 0.200 

1 1.063 1.079 1.098 1.060 0.887 0.655 0.472 0.353 0.244 

 

 

Fig. 3.6 shows a ―cylindrical‖ representation of HFIR that is to be converted into a ―nested tube in slab 

geometry‖ option for the PARET computational model.  The core is divided into 17 radial regions, 

each having its own power generation, coolant flow rate, hydraulic parameters, etc. and each 

represented by a single fuel plate plus its associated coolant channel.  Each of the radial regions is 

further subdivided into 19 axial sections (one less than the maximum available in the PARET code).  

Each of these 17 radial regions is termed an ―element‖ in the vocabulary of the PARET documentation 

[8, 9].  Materials Test Reactor-type of research reactors do, indeed, have cores composed of physically 

separate fuel elements.  For HFIR, the designation is artificial and necessary in order to model the 

graded fuel thickness inside each fuel plate (see Fig. 3.2). 

 

Table 3.5 shows the radial mesh spacing for the PARET model corresponding to Fig. 3.6.  The mesh 

spacing differs from that shown in Fig. 3.4 and 3.5 because the central target region of the reactor is 

not modeled and, since PARET does not consider three dimensional spatial effects for the thermal 

conduction or neutronic aspects of the calculation, there is no need for separate models of the inner 

and outer element fuel plates. However, consistency in defining the two dimensional distribution of the 

core regions (horizontal core cross section) is important since the heat removal capacity will be 

calculated from this parameters.  Note that the radial mesh spacing in Table 3.5 is the radial mesh for 

the ―elements‖ (PARET terminology).  There are no nodes between identified mesh points.  The fuel 

plate model for each ―element‖, i.e. the mesh inside a fuel plate channel – limited to 43 mesh points – 

is described subsequently. 
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Table 3.4.  Relative power distribution for the outer fuel element, HEU, end-of-cycle 

Power Level Distribution Outer Fuel Element: HEU Fuel 

 Radial Mesh 

Axial 

Mesh 

No. 9 10 11 12 13 14 15 16 17 

19 1.001 1.090 1.171 1.235 1.168 1.028 0.892 0.802 0.713 

18 0.843 0.848 0.839 0.810 0.761 0.727 0.707 0.696 0.677 

17 0.843 0.849 0.843 0.811 0.764 0.754 0.752 0.751 0.738 

16 0.928 0.955 0.958 0.929 0.884 0.868 0.859 0.843 0.806 

15 1.007 1.047 1.059 1.044 0.998 0.975 0.950 0.916 0.853 

14 1.070 1.130 1.153 1.136 1.084 1.053 1.012 0.956 0.864 

13 1.114 1.184 1.219 1.209 1.151 1.112 1.054 0.977 0.856 

12 1.136 1.226 1.271 1.258 1.199 1.154 1.082 0.989 0.850 

11 1.155 1.243 1.290 1.285 1.227 1.179 1.097 0.993 0.844 

10 1.155 1.257 1.299 1.302 1.234 1.185 1.096 0.993 0.844 

9 1.153 1.244 1.296 1.289 1.226 1.176 1.094 0.992 0.844 

8 1.139 1.226 1.269 1.258 1.199 1.152 1.080 0.987 0.847 

7 1.114 1.186 1.220 1.211 1.154 1.115 1.057 0.976 0.856 

6 1.070 1.132 1.154 1.138 1.084 1.052 1.017 0.962 0.867 

5 1.009 1.051 1.063 1.045 0.991 0.971 0.953 0.917 0.854 

4 0.928 0.957 0.958 0.932 0.884 0.873 0.865 0.851 0.812 

3 0.839 0.844 0.836 0.807 0.763 0.753 0.755 0.755 0.740 

2 0.841 0.844 0.836 0.808 0.754 0.720 0.697 0.683 0.663 

1 1.000 1.097 1.165 1.220 1.151 1.001 0.869 0.770 0.672 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.6.  PARET model spatial discretization. 

 

7 axial disks of 

unequal length 

17 total radial rings of 

unequal thicknesses 

Center cylinder plus 7 next 

rings represent the inner 

fuel element. Next 9 rings 

represent the outer fuel 

element. Ascending order 

from inner to outer for 

mesh nomenclature 

Bottom axial disk is 

number 1 and increases in 

ascending order until disk 

number 19 at the top. 

i=1...17 

  j=1…19 
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The justification for not modeling the central target region or between-element gap is that, since 

thermal conduction is not incorporated in PARET, the amount of cooling provided by these two 

channels is neglected. Similarly, since PARET employs point kinetics, reactivity feedback given by 

these two channels cannot be modeled.  It is noteworthy that an optimal void within the flux trap is the 

maximum reactivity worth accident that can be speculated to occur. Such scenario is not considered in 

the present study. 

 

The area of flow of each horizontal cross section core region of the PARET model is equal to that of 

its corresponding core region of the HFIR reactor core. This is a necessary constraint in order to 

preserve coolant speed, which at the same time preserves Reynolds numbers and other flow regime 

indicators from the real conditions.   

 

 

Table 3.5.  Equivalent diameter for each core region in PARET HEU model 

PARET Cylindrical Model Equivalent Diameter Table 

Core Region Equivalent Hydraulic 

Diameter (cm)
a 

Radial mesh yielding equivalent area 

to meshes in Fig. 3.4 and 3.5 

1 

0.254 

2.296 

2 1.313 

3 1.004 

4 1.576 

5 1.498 

6 1.346 

7 0.631 

8 0.690 

9 0.491 

10 0.656 

11 0.651 

12 1.264 

13 1.276 

14 1.237 

15 0.605 

16 0.577 

17 0.549 
a
 Diameter computed as (4 * flow cross section area) / wetted perimeter. Parallel, 

involute plates result in same hydraulic diameter regardless of position along plate. 

 

 

 

For the LEU neutronics model, the radial and axial discretization were unchanged from the one 

previously presented for the HEU fuel.  The power density profile distributions for the LEU model at 

beginning-of-life are provided in Tables 3.6 and 3.7.  End-of-life distributions for LEU are shown in 

Tables 3.8 and 3.9. 
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Table 3.6 Relative power distribution for the inner fuel element, LEU, beginning-of-cycle 

Power Level Distribution Inner Fuel Element 

 Radial Mesh 

 

 

 

Axial 

Mesh 

No. 1 2 3 4 5 6 7 8 

19 0.706 0.797 0.898 0.901 0.887 0.859 0.790 0.783 

18 0.638 0.673 0.711 0.700 0.691 0.713 0.696 0.699 

17 0.596 0.595 0.594 0.570 0.569 0.621 0.624 0.632 

16 0.554 0.531 0.501 0.466 0.476 0.544 0.567 0.570 

15 1.017 0.899 0.795 0.725 0.743 0.884 0.989 1.025 

14 1.105 0.960 0.834 0.761 0.780 0.926 1.029 1.065 

13 1.343 1.167 1.013 0.921 0.951 1.115 1.226 1.259 

12 1.617 1.400 1.218 1.116 1.149 1.350 1.482 1.526 

11 1.750 1.516 1.319 1.215 1.247 1.468 1.613 1.659 

10 1.748 1.521 1.329 1.220 1.253 1.470 1.616 1.664 

9 1.735 1.504 1.307 1.201 1.235 1.450 1.595 1.641 

8 1.574 1.368 1.191 1.091 1.119 1.317 1.446 1.484 

7 1.296 1.121 0.971 0.888 0.912 1.068 1.172 1.209 

6 1.070 0.923 0.796 0.724 0.741 0.877 0.970 0.997 

5 0.988 0.871 0.761 0.689 0.703 0.828 0.919 0.954 

4 0.537 0.509 0.475 0.441 0.445 0.505 0.523 0.535 

3 0.569 0.566 0.557 0.530 0.528 0.577 0.581 0.585 

2 0.611 0.638 0.673 0.649 0.643 0.663 0.650 0.656 

1 0.674 0.751 0.841 0.836 0.823 0.793 0.721 0.727 

 

The regions identified by the radial mesh – the 17 ―element‖ regions in Table 3.5 - are actually a set of 

independent, single channel models all of which are linked to a common point kinetics model (see Fig. 

1.1).  A representation of a plate model is shown in Fig. 3.7 from [8].  Note that the coolant channel is 

represented by a single zone.   
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Table 3.7.  Relative power distribution for the outer fuel element, LEU, beginning-of-cycle 

Power Level Distribution Outer Fuel Element 

 Radial Mesh 

 

 

 

Axial 

Mesh 

No. 9 10 11 12 13 14 15 16 17 

19 0.821 0.835 0.873 0.924 0.892 0.770 0.526 0.353 0.293 

18 0.733 0.725 0.703 0.691 0.660 0.587 0.441 0.328 0.282 

17 0.648 0.643 0.596 0.555 0.526 0.486 0.397 0.317 0.279 

16 0.584 0.566 0.511 0.464 0.438 0.417 0.363 0.314 0.281 

15 1.034 0.952 0.797 0.703 0.667 0.650 0.611 0.584 0.558 

14 1.060 0.994 0.835 0.744 0.712 0.703 0.677 0.672 0.646 

13 1.271 1.190 1.017 0.920 0.892 0.895 0.886 0.899 0.871 

12 1.535 1.440 1.239 1.137 1.121 1.161 1.223 1.310 1.292 

11 1.658 1.560 1.348 1.236 1.228 1.285 1.371 1.480 1.462 

10 1.668 1.570 1.355 1.244 1.237 1.293 1.381 1.491 1.474 

9 1.648 1.551 1.339 1.230 1.217 1.273 1.352 1.457 1.442 

8 1.492 1.400 1.203 1.098 1.078 1.106 1.151 1.218 1.199 

7 1.205 1.132 0.966 0.870 0.834 0.820 0.784 0.767 0.732 

6 0.997 0.933 0.785 0.699 0.664 0.641 0.605 0.584 0.554 

5 0.960 0.887 0.743 0.650 0.608 0.566 0.507 0.468 0.438 

4 0.544 0.526 0.474 0.422 0.389 0.352 0.280 0.221 0.193 

3 0.598 0.591 0.544 0.498 0.458 0.397 0.286 0.195 0.161 

2 0.667 0.664 0.634 0.612 0.563 0.473 0.310 0.192 0.151 

1 0.747 0.763 0.785 0.813 0.763 0.617 0.369 0.209 0.157 

 

 

One method of modeling HFIR would be to compute an average fuel thickness, create an ―average‖ 

fuel plate – an equivalent involute plate with a constant fuel thickness along its length equal to the 

volumetric average of the real fuel distribution – and use that plate in each of the cylindrical regions 

representing the reactor core.  For such a plate, PARET requires the input of a fuel half thickness and a 

plate half thickness. The computer code assumes symmetry about the center plane of the ‗flat‘ plate; 

however, the HFIR fuel plate is not symmetric about the center plane.  An average fuel thickness is 

calculated for each type of plate, and a new thickness is averaged between the two fuel elements 

weighted with the number of plates in each fuel element. A given fuel plate can be treated as two 

different half-plates, where each has a different fuel meat thickness. Then the correct temperature 

profile across the thickness of the plate is obtained (provided that the ratio of plate thickness to radius 

of curvature is <0.1). 
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Table 3.8.  Relative power distribution for the inner fuel element, LEU, end-of-cycle 

Power Level Distribution Inner Fuel Element 

 Radial Mesh 

 

 

 

Axial 

Mesh 

No. 1 2 3 4 5 6 7 8 

19 0.495 0.650 0.835 0.881 0.877 0.816 0.713 0.725 

18 0.485 0.616 0.749 0.760 0.753 0.730 0.664 0.671 

17 0.472 0.578 0.659 0.642 0.638 0.656 0.616 0.627 

16 0.460 0.531 0.562 0.529 0.533 0.578 0.564 0.575 

15 0.858 0.926 0.888 0.804 0.813 0.936 0.982 1.026 

14 0.888 0.944 0.885 0.794 0.807 0.926 0.983 1.045 

13 0.977 1.083 1.037 0.935 0.944 1.067 1.114 1.186 

12 1.050 1.229 1.217 1.096 1.100 1.231 1.265 1.360 

11 1.077 1.293 1.302 1.175 1.179 1.310 1.344 1.447 

10 1.075 1.295 1.307 1.181 1.184 1.320 1.357 1.454 

9 1.075 1.295 1.299 1.171 1.177 1.308 1.343 1.445 

8 1.048 1.224 1.210 1.091 1.098 1.228 1.263 1.357 

7 0.968 1.071 1.028 0.925 0.933 1.055 1.103 1.175 

6 0.882 0.936 0.871 0.778 0.789 0.910 0.966 1.023 

5 0.858 0.918 0.871 0.782 0.795 0.907 0.960 1.005 

4 0.457 0.528 0.551 0.520 0.521 0.563 0.552 0.564 

3 0.468 0.571 0.639 0.623 0.621 0.643 0.604 0.612 

2 0.477 0.608 0.725 0.733 0.730 0.720 0.655 0.658 

1 0.489 0.637 0.807 0.849 0.850 0.798 0.696 0.700 

 

For this work though, the cylindrical-core-geometry option was not chosen. If the ―nested tube‖ option in 

PARET is selected rather than the ―cylindrical‖ option, then the variable fuel meat transverse width can be 

modeled by the use of multiple channels. The ―nested tube‖ option requires rectangular geometry 

description for the reactor core.  However, in PARET, the geometric configuration of the core, cylindrical 

or rectangular, is only used in the determination of the total heat transfer area and, consequently, the total 

heat flux.  To accommodate the rectangular geometry requirement, the ―along-the-plate‖ fuel thickness 

variation in the HFIR fuel plates can be modeled by creating separate plate models for each of the PARET 

―elements‖ with the fuel thickness in a given plate model corresponding to the radial location along the 

real, HFIR involute plate. Interactions between channels are ignored.  Each portion of the involute plate 

can be modeled as a flat plate with little error because when the tube thickness to radius ratio is less than 

0.1 as the temperature profile across the thickness of the tube approaches the flat plate solution.   
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Table 3.9.  Relative power distribution for the outer fuel element, LEU, end-of-cycle 

Power Level Distribution Outer Fuel Element 

 Radial Mesh 

 

 

 

Axial 

Mesh 

No. 9 10 11 12 13 14 15 16 17 

19 0.749 0.774 0.872 0.996 1.040 0.978 0.740 0.541 0.463 

18 0.694 0.699 0.737 0.778 0.797 0.777 0.649 0.516 0.449 

17 0.638 0.633 0.632 0.628 0.633 0.642 0.585 0.494 0.441 

16 0.581 0.567 0.543 0.514 0.517 0.545 0.529 0.478 0.437 

15 1.037 0.956 0.840 0.761 0.754 0.813 0.871 0.876 0.851 

14 1.052 0.957 0.841 0.772 0.769 0.827 0.905 0.922 0.895 

13 1.199 1.087 0.980 0.910 0.909 0.977 1.047 1.025 0.983 

12 1.379 1.245 1.139 1.063 1.065 1.142 1.200 1.127 1.071 

11 1.463 1.318 1.215 1.137 1.139 1.218 1.272 1.178 1.115 

10 1.473 1.323 1.220 1.143 1.141 1.224 1.279 1.180 1.117 

9 1.458 1.318 1.212 1.133 1.134 1.215 1.270 1.172 1.112 

8 1.374 1.239 1.132 1.058 1.059 1.135 1.191 1.119 1.065 

7 1.187 1.078 0.966 0.902 0.903 0.969 1.031 1.004 0.965 

6 1.040 0.947 0.830 0.759 0.754 0.808 0.878 0.890 0.861 

5 1.017 0.935 0.821 0.738 0.725 0.767 0.819 0.814 0.784 

4 0.572 0.553 0.524 0.493 0.491 0.507 0.482 0.425 0.385 

3 0.619 0.612 0.610 0.603 0.596 0.593 0.516 0.420 0.372 

2 0.675 0.671 0.710 0.741 0.747 0.709 0.564 0.425 0.370 

1 0.725 0.742 0.839 0.945 0.976 0.889 0.641 0.448 0.378 

 

Peak fuel temperature should be more accurately calculated with the ―nested tube‖ model than with the 

―cylindrical‖ model.  However the requirement that the PARET fuel plate model be symmetrical when 

the HFIR fuel plate is not symmetrical coupled with the thinness of the HFIR plate could render either 

representation as being equally acceptable.  The asymmetry of the HFIR fuel plates can be treated as 

two different half-plates. 

 

Fig. 3.8 illustrates the conversion of a HFIR involute plate to the ―nested tube‖ model.  The approximation 

represented in Fig. 3.8 is appropriate when the plate thickness to segment-length ratio is much less than 

one.  That is, heat conduction and temperature variation through the plate is much greater than the 

variation between the segments that lie along the plate as shown in Fig. 3.8 (segments divided by bars).  

Note that these segment lengths are directly related to radial distance from the center of the core as well as 

the absolute difference between segment boundaries, i.e. in an involute plate, equal radial intervals 

generate different along-the-plate segment lengths. 

 



 

21 
 

 
 

Fig. 3.7.  Plate radial subsectioning used in thermal hydraulic calculation in PARET 

(same plate in each radial element in reactor model). 

 

 

 

 

 

 

 

 

 
           

 

 
Fig. 3.8.  Conversion of HFIR involute plate to “nested tube” model. 

Each ―slice‖ 

from a HFIR 

plate treated 

as a slab 
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A fuel ―meat‖ thickness must be identified for each of the 17 plate models corresponding to the 17 slab 

elements that have been partitioned from an inner plate (8 regions) and an outer plate (9 regions).  

Figure 3.9 shows the fuel meat thickness variation in inner fuel plates for both HEU and LEU fuels. 

 

 
 

Fig. 3.9.  Fuel thicknesses inside plates for inner element. 

 

Fig. 3.10 shows the fuel meat thickness variation inside the outer element fuel plates.  The radial mesh 

spacing in Table 3.5 identifies the location along the plates at which the fuel thicknesses are selected 

for the 17 elements in the ―nested tube‖ model.  The width of the slabs is the quotient of the area of the 

zone divided by the plate thickness.  The equivalent hydraulic diameter is the same as in Table 3.5.  

Derived values are in Table 3.10. 
 

 
 

Fig. 3.10.  Fuel thicknesses inside plates for outer fuel elements. 
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Table 3.10.  Nested tube model dimensions 

PARET Nested Tube Model 

Core 

Region 

Plate Equiv. Hyd. 

Diam. (cm)
a 

Slab Dimensions (cm) 
Plate fuel thickness 

(microns) 

Thickness Length HEU LEU 

1 

0.254 

2.296 7.21 259 127 

2 1.313 18.55 295 127 

3 1.004 25.83 394 188 

4 1.576 35.87 521 257 

5 1.498 41.93 620 300 

6 1.346 51.36 625 310 

7 0.631 58.53 546 277 

8 0.690 67.17 472 213 

9 0.491 70.51 389 229 

10 0.656 75.36 396 251 

11 0.651 78.43 429 356 

12 1.264 84.48 584 457 

13 1.276 88.60 688 457 

14 1.237 96.42 648 401 

15 0.605 102.45 526 259 

16 0.577 110.14 373 170 

17 0.549 113.86 292 135 
a
 See Table 3.5 

 

Finally, it is also necessary to discretize the fuel slab and its cladding such that heat transfer 

calculations can be appropriately done.  Figure 3.11 shows the adopted discretization scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.11.  Fuel plate discretization. 

 

PARET requires as input the total volume of fuel in the reactor as well as the total area of flow. The 

first calculation is relatively simple, based on the known mass of fuel per plate, the total number of 

plates and the density of the fuel. The second calculation requires a more heuristic approach. It is 

known that the channel thickness is the same as the fuel plate thickness, then the area of flow must be 

half of the total area available between the two fuel elements. Table 3.11 summarizes the geometric 

properties of the fuel and the core. 
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Table 3.11.  Core and fuel plate geometric data 

HFIR fuel plate geometric data 

Component HEU LEU 

Total fuel ‗meat‘ volume in core 0.00980 m
3 

0.00534 m
3
 

Nominal fuel half thickness 0.2460 mm 0.1341 mm 

Nominal ―intermediate‖ filler half thickness 0.3810 mm 0.3810 mm 

Plate half thickness 0.6350 mm 0.6350 mm 

Fuel – clad gap 0.0 m 0.0 m 

Active fuel length 0.508 m 0.508 m 

Center of fuel – center of coolant channel  distance 1.27 cm 1.27 cm 

Total area of flow 0.0498 m
2 

0.0498 m
2 

Fraction of fission heat deposited  

in the fuel assembly 
0.975 0.975 

 

3.2 Core Materials Description 

 

The reactor core of the HFIR operates with pressurized light water and is fueled with highly enriched 

uranium clad in aluminum metal and possesses a variety of control systems for criticality. It is 

important to define precisely the materials which make up the core in order to accurately predict 

property changes under transients, however, the HFIR model requires only the properties of the basic 

components of the core, namely, the fuel, the cladding, and the coolant. Given that PARET targets the 

analysis of thermal transients as part as the safety analysis, the thermal properties are defined only for 

the materials mentioned. 

 

Clearly, the thermal properties of materials are different when they are at different temperatures. For 

this reason, PARET utilizes a system that allows this temperature variation to be taken into account. It 

is assumed that the property can be represented by a polynomial function with exponents ranging from 

-1 to 2. Namely, the properties can be established by declaring the coefficients alpha and beta in two 

functions.  The alphan, (n = 1,2,
 
..., 5) are the thermal conductivity coefficients of the material for an 

equation of the form k T T Tn 1/2

m

1

2

2 3
4

      


 
.  The betan (n = 1, 2,... , 5) are the 

volumetric heat capacity coefficients of the material for an equation of the form 

g T T + Tn 1/2

m

1

2

2 3
4

     


. 

 

It can be easily observed from the mathematical relations above that the conductive heat transfer 

coefficient and the volumetric heat capacity variation can be easily established for the specified 

operating conditions.  Figure 3.12 shows the dependence of the conductive heat transfer coefficient on 

the temperature for various levels of enrichment of U-Al fuels as reported by Ref. 21. 
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Fig. 3.12.  Thermal conductivity variation as a function of temperature for 

typical U-Al fuel for various enrichments. 

 

It can be inferred from the graph above that the thermal conductivity changes linearly with 

temperature, however the value almost seems constant over such large temperature range, especially 

for the high enrichment case, as it is the case with HFIR. Thus, it seems reasonable to assume a 

constant k coefficient. Similarly, it can be shown that the volumetric heat capacity does not change 

much over large temperatures, therefore constant thermal properties for the fuel plates. HFIR, though, 

having fuel that is a mixture of U3O8 and Al has somewhat lower thermal conductivity than shown in 

Fig. 3.12.  Table 3.12 summarizes the data obtained from Refs. 21 and 30 and utilized in PARET for 

both the fuel and the cladding.   
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Table 3.12.  Fuel and clad material thermal property coefficients 

HFIR fuel thermal properties 

Coefficient HEU Value LEU Value (U-10Mo) 

α1, α2, α4, α5 

(T in Kelvin) 
All 0.0 0.0, 0.0240, 0.0, 0.0 

α3 

174.5 W/m 
o
K 

[Ref. 30a values are 132.8 inner 

element; 110.0 outer element] 

11.36 

β1, β2, β4, β5 All 0.0 2.82, -578, 0, 0 

β3 6.81(10
5
) J/m

3 o
K 19.4(10

5
) J/m

3
K 

 

HFIR clad thermal properties 

Coefficient Value 

α1, α2, α4, α5 0.0 

α3 186.9 W/mK 

β1, β2, β4, β5 0.0 

β3 7.64(10
5
) J/m

3
K 

thermal expansion coefficient 2.43(10
-5

) cm/(cm
o
C) 

 

 

For coolant thermal properties, PARET utilizes a library that includes more thermal properties than 

those specified for the fuel or the clad. The code only requires the input of a reference coolant density, 

temperature and pressure as a starting point of the transient. 

 

3.3 Neutronic Parameters 

 

The model requires the input of certain neutronic parameters of the reactor core. Since PARET is a 

reactor kinetics code, the amount of information necessary to be input is much less than that if the code 

had been a neutron diffusion or transport code, in which case cross sections would have been 

necessary, among other parameters. Table 3.13 contains the neutronic parameters assumed for HEU 

fuel.  The delayed neutron fraction data are from ENDF/B-VI via the methodology described in 

Appendix A.  The values for the parameters for low enriched uranium (LEU) fuel were also derived 

via the methodology described in Appendix A.  ENDF/B-VII data are reported for LEU in Table 3.14. 
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Table 3.13.  Reactor kinetics parameters for HEU fuel 

Parameter Value 

No. of delayed groups βi (from Appendix A) 6 

relative delayed neutron 

fraction, decay constant (from 

Appendix A) 

β1, λ1 (s
-1

) 0.031976, 0.012495
 

β2, λ2 (s
-1

) 0.166406, 0.031833 

β3, λ3 (s
-1

) 0.161350, 0.109416 

β4, λ4 (s
-1

) 0.459789, 0.317095 

β5, λ5 (s
-1

) 0.133571, 1.354406 

β6, λ6 (s
-1

) 0.046908, 8.639475 

Effective delayed neutron fraction βeff [BOL, EOL; from Appendix A] 0.00762, 0.00752 

Prompt neutron lifetime Λ [BOL, EOL; (10
-6

) s, from Appendix A) 52, 94 

Fuel Doppler temperature coefficient  

[BOL, EOL; corrected from Ref. 1†] 

-2.41(10
-6

), -2.46(10
-6

)  

(k/k)/oC 

Coolant temperature feedback coefficient (from Ref. 19) 
-1.71(10

-4
) (k/k)//

o
C  

(at T = 25 
o
C) 

Coolant void feedback coefficient (inner fuel element)  

[BOL, EOL; from Ref. 1] 

-0.243 $/% void, 

 -0.179 $/% void 

Coolant void feedback coefficient (outer fuel element)  

[BOL, EOL; from Ref. 1] 

-0.101 $/% void, 

 -0.074 $/% void 

 

 

Table 3.14.  Reactor kinetics parameters for LEU fuel 

Parameter Value 

No. of delayed groups βi (from Appendix A) 6 

relative delayed neutron 

fraction, decay constant 

(BOL, from Appendix A) 

β1, λ1 (s
-1

) 0.031223, 0.012502 

β2, λ2 (s
-1

) 0.164661, 0.031795 

β3, λ3 (s
-1

) 0.160244, 0.109708 

β4, λ4 (s
-1

) 0.459758, 0.318138 

β5, λ5 (s
-1

) 0.137204, 1.353875 

β6, λ6 (s
-1

) 0.046910, 8.691927 

Effective delayed neutron fraction βeff [BOL, EOL; from Appendix A] 0.00749, 0.00717 

Prompt neutron lifetime Λ  [BOL, EOL; (10
-6

) s, from Appendix A] 47, 72 

Fuel Doppler temperature coefficient  

[BOL, EOL; corrected from Ref. 1] 

-2.42(10
-5

), -2.38(10
-5

) 

(k/k)/
o
C 

Coolant temperature feedback coefficient (from G. Ilas, ORNL) 
-0.78(10

-4
) (k/k)/

o
C  

(at T = 27 
o
C) 

Coolant void feedback coefficient (inner fuel element)  

[BOL, EOL; from Ref. 1] 

-0.208 $/% void,  

-0.189 $/% void 

Coolant void feedback coefficient (outer fuel element)  

[BOL, EOL; from Ref. 1] 

-0.105 $/% void, 

 -0.095 $/% void 

                                                 
† R. J. Ellis, ORNL, reported that the %dk/k in Ref. 1 should be dk/k.  The heu_ref case (with fuel temp = 

300K; all other temps = 299.8K) -> k=0.99909 at BOC; k=1.00879 at EOC (controlled).  The heu_ref case 

(with fuel temp  = 500K; all other temps = 299.8K) -> k=0.99861 at BOC; k=1.00829 at EOC (controlled).  

This gives the fuel temp (Doppler) coefficients for HEU of:  at BOC:  -4.811E-4 dk per 200
o
C = -2.41E-6 

dk/k/
o
C (or -1.34E-6 dk/k/

o
F) and at EOC:  -4.916E-4 dk per 200

o
C = -2.46E-6 dk/k/

o
C (or -1.37E-6 dk/k/

o
F). 

Though Doppler and moderator temperature coefficients are negative for HFIR, for PARET input, these are 

entered as positive values. 
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3.4 Operating Parameters 

 

Various parameters of operation are needed for modeling transients for the core of the HFIR.  Table 

3.15 includes steady state reactor operation data, however, most of these parameters will change 

depending on the analysis of each accident scenario being performed.  Note that for equivalent flux 

performance at experimental facilities, the LEU fuel must operate at 100 MW whereas the HEU fuel 

operates at 85 MW. 

 

Table 3.15.  Assumed operational parameters 

Parameter Nominal Operating Data 

Power 85 MW (HEU); 100 MW (LEU) 

Inlet Pressure 3.227 MPa 

Outlet Pressure 2.482 MPa 

Temperature 49 
o
C 

Reference Coolant Density 993.0 kg/m
3 

Coolant primary mass flux 2.088(10
4
) kg/cm

2
s 

Core average heat flux 2.0808(10
6
) W/ m

2
 (HEU); 2.448(10

6
) W/ m

2
 (LEU) 

 

 

3.5 Control Systems 

 

The control system of the HFIR is composed of the control cylinder and the safety plates. The control 

cylinder is a movable cylinder which is located between the beryllium reflector and the outer fuel 

element and is inserted from the bottom of the reactor. The safety plates consist of four plates that are 

quadrants of a cylinder of larger inner diameter than the control cylinder and are inserted in the core 

from the top of the reactor. Each safety plate is independent of the other plates, and only one plate is 

necessary to scram the reactor at any fuel cycle stage.  Since PARET does not consider these three 

dimensional effects of the control systems, it is sufficient to establish rod worth at certain locations 

along the core. The system also requires the input of the nominal control rod insertion speed and the 

delayed time from reactor scram to start of insertion.  

 

In addition, PARET was constructed such that the user can specify external reactivity insertions (i.e. 

control rod drop) or actually scram the reactor as a consequence of certain limit being exceeded 

(overpower, underflow of coolant).  Furthermore, the user is also able to specify hydrodynamic 

changes in order to explore the reactivity feedback effect of changes as such primary coolant pressure 

changes and mass flux changes.  Notice in this case, the control rod worth is specified as a function of 

length inserted.  In this case, PARET assumes linearity between the reactivity inserted as a function of 

time between two points.  Then, a non linear relation may be input with the use of more than one pair 

of data points.  Tables 3.16 and 3.17 provide data regarding operation of the control system. 
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Table 3.16.  Control systems data for HEU model 

Parameter Value 

Safety plate insertion rate 1.524 m/s 

Time delay of rod drop 0.01 s 

Overpower trip HEU 89.0 MW; LEU 105 MW 

Low flow trip 76.9 % of nominal full power flow 

Safety plate worth -$15.00 

Length of plate where this worth is reached 0.508 m 

 

 

a 
Ref. 26a. 

b 
Ref. 1a. 

 

 

Since control/safety element differential worth for LEU fuel is essentially the same as HEU fuel, the 

HEU worth values were used in LEU studies.  The difference in worth at 16 inches withdrawn is likely 

due to differing critical configurations at beginning-of-life for the two fuels. 

 

3.6 Thermal Hydraulic Parameters 

 

PARET requires the input of certain hydrodynamic and heat-transfer data to the model; some related to 

the geometry of the reactor core. Table 3.18 shows the geometric data and assumptions input to 

PARET calculations reported subsequently. 

Table 3.17.   Control systems reactivity worth for HEU fuel 

Control/safety plate position 
Differential reactivity worth 

(combined control and safety plates; $/inch) 

(inches withdrawn) (cm from top) HEU
a
 LEU

b
 

16 27.94 3.17 2.44 

17 25.4 3.00 - 

18 22.86 2.79 2.76 

19 20.32 2.57 - 

20 17.78 2.31 2.44 

21 15.24 2.06 - 

22 12.7 1.80 1.78 

23 10.16 1.50 - 

24 7.62 1.20 1.06 

25 5.08 0.91 - 

26 2.54 0.66 0.65 

27 0 0.40 - 
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Table 3.18.  Thermal hydraulic data and correlations used 

Parameter Value 

Inlet non-fueled length 0.0508 m 

Outlet non-fueled length 0.0508 m 

Inlet to plenum area ratio 0.5 

Outlet to plenum area ratio 0.5 

Length inlet plenum >1.0 m 

Length outlet plenum >1.0 m 

Single phase correlation Sieder Tate 

Two phase correlation McAdams 

Transient two phase scheme Original Model 

DNB and flow stability correlation Original DNB 

Single phase heat transfer subroutine Original 

Average core heat flux 

(used by certain correlations only) 

HEU 4.035(10
5
) W/m

2 

LEU 4.747(10
5
) W/m

2
 

 

3.7 Channel Dependent Flow Rates 

 

In [9], the author notes that the output of the PLTEMP [29] computer program is needed to establish 

relative flow rates among the channels of the nested tube model.  For HFIR, the HFIR Steady State 

Heat Transfer Code (HSSHTC) [30] provides the flow rate data (as well as other parameters) that 

correspond to the data generated by PLTEMP for various reactors studied by the RERTR program. 

 

The involute plate design for HFIR was chosen, in part, to assure that the coolant flow rate through the 

core would not be position dependent – the coolant channel-to-fuel plate area ratio is constant 

throughout the core.  If one is only interested in transient response at beginning-of-life, the detailed 

core representation discussed in this section is not needed.  Only the hot channel need be identified 

from the neutronics calculation and then only that single channel modeled.  A second, "average" 

channel is needed for reactivity feedback from core heatup.  However, given that the power 

distribution changes over time during a fuel cycle and given that phenomena such as oxide growth, 

radiation swelling, thermal-induced bowing of fuel plates, fuel clad interactions and other physical 

phenomena occur, then if one wishes to calculate the transient response at various times during the fuel 

cycle, the multichannel representation developed in this section is useful.  Unlike beginning-of-life, 

due to the various factors, it may not be obvious which of the channels will be limiting in terms of 

peak temperature.  Having a multichannel representation allows one to couple the output of time-

dependent neutronics calculations and the output from plate modeling codes such as PLTEMP and 

HSSHTC directly to PARET with a minimum of effort from the user.  Still, of course, it will be results 

from a single channel – the one with the highest coolant and/or fuel temperature - that will ultimately 

be of interest to the user. 

 

Experience with the HSSHTC program has shown that flow rates along an involute plate in HFIR can 

vary by as much as 10% at end-of-cycle.  This phenomena has not been included in the analyses that 

will be reported in the next section but could be included in future analyses with a minimum of effort. 
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4.0 RESULTS OF CALCULATIONS 

 

Transients were analyzed for each HEU and LEU fuel type, and the results are plotted in the same 

graph, such that a comparison can be easily done.   In some cases, the transients analyzed were 

compared to published data from the most recent Updated Safety Analysis Report (USAR) of the 

HFIR to further benchmark the code.  In the analysis of the safety systems of the HFIR, the decrease in 

primary flow rate transient was studied.  There are multiple scenarios within each category. The initial 

conditions prescribed for each scenario are detailed in the Updated Safety Analysis Report (USAR) of 

the HFIR [27, 28].  

 

This family of transients refers to the sudden reduction or loss of cooling capacity in the reactor core. 

Various transients related to decrease in primary flow are documented in the USAR section 15.3.3 and 

include considerations of a loss of off-site power, primary coolant pump coast down, primary coolant 

pump shaft seizure and blockages of fuel element coolant channels. For this work, only the primary 

coolant pump shaft seizure was considered.  It is defined as follows: 

 

A mechanical failure within the primary pumps could cause a pump shaft to shear or 

seize. The transient resulting from this failure is similar to a single pump coastdown 

except that the reduction in flow is immediate. Also, a mechanical pump failure 

prevents operation of the associated pony motor. Primary pump seizures are virtually 

unknown in the power reactor industry, so this event is assumed to be an infrequent 

event.  

[27a, p. 15.3.3-2] 

 

Because primary pump seizure represents the most severe case of flow reduction, it was chosen for 

study.  Table 4.1 summarizes the parameters used in this problem.  Additional details regarding the 

description of the transient are provided subsequently. 

 

Table 4.1.  Primary coolant pump seizure initial and boundary conditions 

HFIR Primary Coolant Pump Seizure 

Parameter Value 

Transient time 100.0 s 

Reactivity insertion None from control system; no SCRAM 

Boundary conditions 
$0.0 at 0.0 s 

$0.0 at 100 s 

Flow rate 

(kg/m
2
s) 

2.044(10
4
) from 0.0 s – 10.0 s 

1.589(10
4
) from10.0 s – 100.0 s 

Time step 

(s) 

10
-3

 (0.0 s- 9.0 s)  

10
-4

 (9.0 s – 29.0 s)    

10
-3

 (29.0 s – 100.0 s) 
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A primary pump seizure is assumed to result in an immediate drop in flow, resulting in a lack of heat 

removal from the core until a reactor scram, if required, can occur. This event results in a decrease in 

margin to critical heat flux.   Possible mitigating actions for a primary pump seizure include automatic 

closure of the failed pump outlet check valve and the reactor scram. Letdown block valve closure is not 

important because a depressurization does not occur during this event.  Failure of the check valve to 

close after the pump seizes results in some backflow of coolant  through the pump body. This failure 

reduces the flow available to the core from the remaining two pumps. The frequency of the pump 

seizure/check valve failure event is approximately 1 × 10
−6

 per year.   Nonetheless, the results of this 

event are included in the discussion of the bounding infrequent event.  Though a SCRAM function 

would be initiated in such an event, the results that are presented … show that this mitigating function 

is not needed because the process variables do not exceed the limiting safety system setting (LSSS) 

values, even if the pump outlet check valve also fails. Thus, a reactor scram failure does not need to be 

considered and (is not included in the model of this accident.)  

 

To analyze the pump seizure event, the following assumptions are made: 

 

1. The speed of the primary coolant pump is assumed to change from full speed to zero speed within 

0.01 s to model an almost instantaneous pump seizure event. 

 

2. The effects of reactivity feedback (with conservative uncertainties applied) are included in the 

computations. 

 

3. No credit is taken for any control system functions (electric motor servo or fast air motor). The 

control cylinder is assumed to be stationary throughout the event. 

 

4. The normal secondary actions that would follow a reactor scram are assumed to occur during the 

event. However, prior to reactor scram, the secondary system temperature control valve is not 

allowed to open beyond the steady-state position that it was at prior to the initiating event.  

 

5. The check valve downstream of the seized primary coolant pump may be assumed to fail to close. 

 

6. The initial conditions considered in these analyses are [27a, p. 15.3.3-21, -22]: 

• Reactor power = HEU 87.6 MW, LEU 103 MW 

• Reactor inlet temperature = 126.2°F (52.33°C) 

• Reactor inlet pressure = 406.0 psig (420.7 psia [2.9Mpa]) 

• Secondary basin temperature = 88.2°F 

• Primary flow rate = 15,840 gpm 

• Letdown flow rate = ~120 gpm 

 

Figs. 4.1 through 4.10 depict the power, reactivity and temperature of the fuel and the coolant for the 

transients.  Corresponding graphs from the HFIR USAR [27] are presented for comparison.  Note that 

the operating power of the reactor for LEU fuel is greater than that for HEU fuel. 
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Fig. 4.1.  Mass flux functions for transient in discussion. Note negative values of mass flux,  

as they indicate the downward direction of flow that exists in the HFIR core. 

 

 
 

Fig. 4.2.  Volumetric flow rate for this transient as found in the most recent version of the USAR 

of the HFIR. Both initial and final values of the flow are equivalent to the ones shown 

in the previous graph, only expressed in different parameters. 
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Fig. 4.3.  Power profile for primary pump seizure at beginning-of-life. 

 

 

 
Fig. 4.4.  Power profile for HEU transient as found in the USAR. 
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The post transient power level at 100 seconds from the current calculation is approximately 5% greater 

than the value reported in the HFIR safety analysis report.  The feature of consequence, though, is that 

the time dependence of the transient for LEU fuel is very similar to that of HEU fuel but with slightly 

less percentage reduction in power from the pre-transient reactor condition. 

 

Fig. 4.5 shows the reactivity change due to the transient as a function of time (data plotted are for the 

hot channel in the HEU and LEU cases, respectfully).  Though small, the reactivity change due to the 

transient is greater for the HEU fuel than for the LEU fuel.  The phenomenon is consistent with the 

percentage decrease in power for the HEU fuel being slightly greater than that for the LEU fuel. 

 

During initial calculations, two anomalies were visible in the results shown in Fig. 4.5.  During the 

time frame of 0-10 seconds, the PARET code was calculating some small, but negative, reactivity 

input, perhaps indicating inconsistencies among input parameters.  Second, at the point at which the 

time step is changed from 1 millisecond to 0.1 millisecond, there was a slight increase in negative 

reactivity.  During the course of this work, both anomalies were corrected and a new version of 

PARET (7.4) was issued by A. Olson of Argonne National Laboratory.  Fig. 4.5 was generated with 

version 7.4 of PARET. 

 

Fig. 4.6 provides temperature profile as a function of time for several locations in the core.  Note that 

the peak temperature in the fuel is 396K.  Figure 4.7 from the HFIR Safety Analysis Report shows the 

peak clad ―wall‖ temperature as being 487K.  The significant disparity between these two values 

prompted further investigation. 

 
 

Fig. 4.5.  Reactivity profile of the reduction in primary flow transient as calculated with PARET 
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Fig. 4.6.  Fuel temperature profile for several core regions for HEU for pump seizure transient. 

 

 

 
Fig. 4.7.  Fuel temperature for transient as reproduced by the USAR. 
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Reference 24 provides information as to the assumptions that were the basis of the calculation shown 

in Fig. 4.7.  Whereas the current work is based on the nominal power density from reactor physics 

calculations, the calculation reported in Fig. 4.7 included the following assumptions not made in the 

current calculation.  The following are assumed to occur simultaneously: 
 

(1) uncertainty in the calculated power distribution (value for a given, calculated, local power density) 

– 10%, 

(2) allowance for power tilt associated with experiments loaded to the reactor – 9%, 

(3) tolerance on fuel loading in plates accepted from manufacturer – 10% (current value is 12%), 

(4) fuel plate length uncertainty – 2.5%, 

(5) non-bond of fuel meat to filler or clad – 8%, 

(6) maximum allowable peak segregation of U3O8 from Al in fuel meat – 27%, and 

(7) thermal conductivity of segregated fuel – 13.0 W/m 
o
K. 

 

In the current, HFIR SAR methodology, these uncertainty values are assumed to be multiplicative and 

yield a multiplier factor of 1.85 to the local power density at the base of the fuel plate in the hot 

channel. A more reasonable assumption would be to assume that these individual effects are 

independent. If so, they can be added in quadratures, reducing the multiplier factor to about 1.13. 

 

The PARET HEU model was modified to include the reduced thermal conductivity of the fuel and the 

multiplier factor to account for uncertainties.  The calculated clad surface temperature at the hot spot 

was 408 K, 20% less than the value shown in Fig. 4.7 but certainly in better agreement than before the 

uncertainties and the SAR thermal conductivity were applied.  The fuel hot spot temperature for these 

conditions was 485 K. 

 

Fuel temperatures at selected locations for LEU fuel in a pump seizure transient without any 

multiplicative factor are shown in Fig. 4.8.  Note that the peak temperature in the LEU fuel is 41K 

higher than for the HEU fuel that is shown in Fig. 4.6. 

 
 

Fig. 4.8.  Fuel temperature profile for several core regions for LEU for transient. 
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The PARET LEU model was then modified to include the multiplier factor for local power density that 

accounts for HEU fuel uncertainties.  The uncertainty values for LEU/Mo fuel are unknown because 

no manufacturing experience exists for this fuel.  No change was made to the thermal conductivity of 

the LEU fuel as segregation of the uranium from the molybdenum was not considered credible.  The 

calculated clad surface temperature at the hot spot was 420 K, only 3% higher than for HEU fuel.  The 

coolant temperature at the hot spot location (exit of hot channel) was 367 K (94 C).  The fuel hot spot 

temperature for these conditions was 468 K, slightly lower than for HEU.  The higher HEU value for 

hot spot conditions while lower for nominal conditions is due to the higher local power density at the 

exit of the HEU fuel as compared to the LEU fuel and the hot spot power density for each fuel being 

the same percentage increase over nominal not the same absolute increase. 
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5.0. CONCLUSIONS 

 

The reduction in primary coolant flow transient that was analyzed demonstrated that LEU fuel behaves 

as expected. Under a sudden and large temperature change, the insertion of negative reactivity due to 

temperature feedback both of the fuel and the coolant causes the LEU fueled core to level off at a 

lower power than the HEU fuel, which is due to the large self-insertion of negative reactivity caused by 

the temperature excursion. 

 

Also, based on the tests performed at the high power trip point, it can be observed that the fuel plates 

of the LEU model reach temperatures higher than those reached by the HEU. While this decreases the 

margin of safety of the reactor core under this particular transient, the highest temperatures reached 

(~350 
o
C) are still acceptable, therefore the safety of the fuel is not compromised. 

 

PARET proved itself to be a code which can be benchmarked easily against problems analyzed with 

more powerful tools such as RELAP, as Woodruff has demonstrated [4]. In the case of the HFIR, 

PARET shows an acceptable degree of agreement, but not in all cases. The computational model of the 

HFIR employed in PARET evolved many times, for instance, by implementing the variable fuel 

thickness in each of the 17 core regions in order to better represent the actual conditions and maintain 

flat plate geometry, instead of using half rectangle geometry. On the other hand, PARET can still be 

further developed. The first author of this report concludes that the restriction to 21 axial mesh 

segments is not enough to accommodate for large temperature gradients. Also, PARET can still be 

developed further to accommodate for the curved plates used at the HFIR. To this point, PARET still 

assumes the use of a flat plate, even while using the half rectangle geometry, which does not reflect the 

actual conditions.  

 

Another way PARET can still be improved is by further developing the data collection procedures. 

The code uses a subroutine called POSTPROS which collects the data used in runs and stores them in 

text files. This subroutine works almost perfectly when the model of the core uses 4 or less core 

regions. In the case of the HFIR, where 17 core regions were used, this subroutine collects the data in a 

very cumbersome and impractical way. This is due to the old limitation of 72 characters per line that 

can be written, a limitation which is no longer present. Another way this data gathering subroutine can 

be improved is by specifying the interval where certain data points can be skipped by pointing at the 

time during the transient where this may take place, instead of specifying this by the time step number. 

In severe transients such as those studied here, small time steps can generate billions of time steps. In 

such a case, it is impractical to keep track of the time step number where the subroutine can skip 

certain data points in any given interval of time.  Newer (unreleased) versions of PARET have 

improved filtering of individual channel output data. After the desired time is achieved, these data files 

are examined for relative change from time point to time point. A time point where the data change is 

too small compared to the previous saved time point data is filtered out automatically. These files are 

written as text, to enable their direct use in spread sheet and plotting programs. 
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APPENDIX A 

 

 

CALCULATION OF DELAYED NEUTRON PARAMETERS FOR THE HIGH FLUX 

ISOTOPE REACTOR 

 

Delayed neutron parameters were computed for the High-Flux Isotope Reactor (HFIR) to support the 

LEU feasibility study.  Parameters specified in the Safety Analysis Report (SAR) [A.1] are available 

for the HEU core and are used for both the conversion of reactivity values from absolute units to 

relative (dollar) units and for the safety analysis using the effective delayed neutron fractions and 

decay constants for six precursor groups.  The current effective delayed neutron fraction specified in 

the SAR is 0.0076, which was adjusted from the original value of 0.0070 – 0.0071 [A.2] based on the 

value of the delayed neutron yield in ENDF/B-V. 

 

The calculations performed for this work used nuclear data from both the ENDF/B-VI.8 and the 

ENDF/B-VII.0 data files [A.3].  The total fission neutron yield, delayed neutron yield, six precursor-

group decay constants, relative delayed neutron yields, and delayed neutron emission spectra were 

extracted from the evaluated nuclear data files and processed to obtained data consistent with a 20 

energy-group HFIR BOLD VENTURE model [A.4].  Data was extracted for U-235, U-238, Pu-239 

and Pu-241, which are the primary fissioning nuclides in HFIR.  Detailed data tables for each of these 

nuclides are shown in Figs. A.1 (ENDF/B-VI.8 data) and A.2 (ENDF/B-VII.0 data).  The tables show 

small changes for the fission neutron yield at high energies for Pu-239, in addition to the delayed 

neutron yield for U-235.  All other values (spectra, and neutron yields for other nuclides) are the same 

between ENDF/B-VI.8 and ENDF/B-VII.0.  These data were processed and formatted into a 

DLAYXS interface file for use by BOLD VENTURE for calculating effective delayed neutron 

fractions using the PERTUBAT module [A.5]. 

 

Note that one significant change in ENDF/B-VII.0 from that of ENDF/B-VI.8 is that the delayed 

neutron yield at thermal energies for U-235 was reduced by about 5% to a value of 0.01585, which 

brings it to closer agreement with Keepin‘s value [A.5].  A comparison of the delayed neutron yield 

values is shown in Figure A.3.  The ENDF/B-VI.8 evaluation held the delayed neutron yield constant 

at 0.0167 up to 4 MeV.  The ENDF/B-VII.0 evaluation uses a value of 0.01585 up to 0.0253 eV and 

then ramps linearly to the ENDF/B-VI.8 value of 0.0167 at 50 keV and has this value up to 4 MeV 

[A.6].  Thus, the ENDF/B-VII.0 evaluation provides a different value for the U-235 delayed neutron 

yield at thermal and fast energies, which is consistent with previous measurements of the delay neutron 

yields [A.7].  The ENDF/B-VII.0 delayed neutron yield is more consistent with the data originally used 

in the determination of the HFIR effective delayed neutron fraction while the ENDF/B-VI.8 value is 

identical to that used in ENDF/B-V and is the basis for the value of the effective delayed neutron 

fraction in the HFIR SAR. 

 

Using the HFIR BOLD VENTURE models of the HEU and LEU (monolithic U-10Mo fuel) cores, 

effective delayed neutron parameters and the prompt neutron lifetimes were calculated as a function of 

exposure.  The PERTUBAT modules compute the importance-weighted values of these parameters. 

The BOLD VENTURE models were modified to perform adjoint-flux calculations at each depletion 

step to be used by the PERTUBAT module.  The results of the calculations are provided in Table A.1 

and Table A.2 for the HEU and LEU cases.  Note that the effective delayed neutron fractions for the 

HEU core are consistent with the SAR value (0.0076) for the ENDF/B-VI.8 library and the original 

HFIR values (0.0071 in Ref. A.2) for the ENDF/B-VII.0 library.  For the current work, the ENDF/B-

VI.8 values are used to be consistent with the SAR safety analysis for the HEU core. 
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The prompt neutron lifetimes differ for the values quoted in the SAR and Cheverton and Sims report 

(33 s in Ref. A.2 vs 50 s in this work).  This may require more investigation of the specific 

conditions that the neutron lifetimes were measured (ranges are given 33 – 74 s), which likely do not 

correspond to the conditions calculated.  In addition, different definitions of neutron lifetime are 

possible and they may not be consistent. 

 

Another item of interest is the contribution of the different fissioning nuclides to the total effective 

delayed neutron fraction.  Table A.3 provides the contributions for both the HEU and LEU cores.  This 

table shows the larger U-238 contribution to the delayed neutron fraction for the LEU core in 

comparison to the HEU core.  In addition, Pu-239 makes a much larger contribution at EOC for the 

LEU core than for the HEU core. 

 

In addition to the total effective delayed neutron fraction, six group parameters are available for each 

fissioning nuclide.  Given that U-235 fission for both HEU and LEU dominates the delayed neutron 

yield, it is reasonable to use the parameters for U-235 scaled to the appropriate total effective delayed 

neutron fraction. 
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Fig. A.1.  Selected data from ENDF/B-VI.8 library. 



 

48 
 

 

 

 
 

 Fig. A.1.  Selected data from ENDF/B-VI.8 library (continued). 
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Fig. A.2.  Selected data from ENDF/B-VII.0 library. 



 

50 
 

 

 

 
 

Fig. A.2.  Selected data from ENDF/B-VII.0 library (continued). 

 

 
Figure A.3.  Comparison of the number of delayed neutrons from 235U fission from ENDF/B-VI.8 

and ENDF/B-VII.0 (ENDF/B-VI.8 is identical to ENDF/B-V data). 
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Table A.1. Prompt neutron lifetime and effective delayed neutron fractions for the HFIR HEU core  

(critical conditions throughout the cycle) 

    ENDF/B-VI.8 ENDF/B-VII.0 

Full Power Prompt Neutron   Beta-eff/   Beta-eff/ 

Days Lifetime (sec) Beta Beta-eff Beta Beta Beta-eff Beta 

0.00 5.20E-05 6.80E-03 7.62E-03 1.12 6.46E-03 7.24E-03 1.12 

0.59 5.19E-05 6.80E-03 7.61E-03 1.12 6.46E-03 7.23E-03 1.12 

1.78 6.12E-05 6.80E-03 7.62E-03 1.12 6.46E-03 7.24E-03 1.12 

7.18 6.76E-05 6.79E-03 7.60E-03 1.12 6.45E-03 7.22E-03 1.12 

14.12 7.50E-05 6.78E-03 7.57E-03 1.12 6.44E-03 7.19E-03 1.12 

18.82 8.24E-05 6.78E-03 7.55E-03 1.11 6.44E-03 7.17E-03 1.11 

21.18 8.89E-05 6.78E-03 7.53E-03 1.11 6.44E-03 7.15E-03 1.11 

23.53 9.02E-05 6.78E-03 7.53E-03 1.11 6.44E-03 7.15E-03 1.11 

26.00 9.43E-05 6.78E-03 7.52E-03 1.11 6.44E-03 7.14E-03 1.11 

 

 

 
Table A.2. Prompt neutron lifetime and effective delayed neutron fractions for the HFIR LEU 

(monolithic U-10Mo) core (critical conditions throughout the cycle) 

    ENDF/B-VI.8 ENDF/B-VII.0 

Full Power Prompt Neutron   Beta-eff/   Beta-eff/ 

Days Lifetime (sec) Beta Beta-eff Beta Beta Beta-eff Beta 

0.00 4.68E-05 6.90E-03 7.49E-03 1.09 6.57E-03 7.13E-03 1.09 

0.59 5.02E-05 6.90E-03 7.46E-03 1.08 6.57E-03 7.11E-03 1.08 

1.78 5.71E-05 6.89E-03 7.47E-03 1.08 6.56E-03 7.12E-03 1.08 

7.18 5.95E-05 6.84E-03 7.41E-03 1.08 6.52E-03 7.06E-03 1.08 

14.12 6.44E-05 6.77E-03 7.31E-03 1.08 6.45E-03 6.97E-03 1.08 

18.82 7.04E-05 6.72E-03 7.24E-03 1.08 6.41E-03 6.90E-03 1.08 

21.18 7.11E-05 6.70E-03 7.22E-03 1.08 6.39E-03 6.88E-03 1.08 

23.53 7.14E-05 6.68E-03 7.19E-03 1.08 6.36E-03 6.85E-03 1.08 

26.00 7.17E-05 6.65E-03 7.17E-03 1.08 6.34E-03 6.83E-03 1.08 

 

 

 

 
Table A.3. Contributions to effective delayed neutron fraction by nuclide 

for the HEU and LEU cores computed with ENDF/B-VII.0 data 

 HEU LEU 

BOC EOC BOC EOC 

U-235 7.24E-03 7.12E-03 6.88E-03 6.43E-03 

U-238 2.19E-06 2.09E-06 2.56E-04 2.58E-04 

Pu-239 3.69E-08 1.23E-05 3.50E-08 1.26E-04 

Pu-241 3.91E-09 5.30E-06 3.70E-09 1.29E-05 

Total 7.24E-03 7.14E-03 7.13E-03 6.83E-03 
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