
ORNL/TM-2016/687

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale - version 1.0

Saurabh Hukerikar
Christian Engelmann

October 2016Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2016/687

Computer Science and Mathematics Division

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale

version 1.0

Saurabh Hukerikar
Christian Engelmann

Date Published: October 2016

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . iv
LIST OF TABLES . v
ACKNOWLEDGMENTS . vii
ABSTRACT . viii
1. Introduction . 1
2. Resilience Terminology and Concepts . 4

2.1 Reliability . 4
2.2 Availability . 4
2.3 Systems . 4
2.4 Faults . 5
2.5 Errors . 5
2.6 Failures . 6
2.7 The Relationship between Faults, Errors and Failures . 7
2.8 Resilience Capabilities . 7

2.8.1 Detection . 7
2.8.2 Containment . 8
2.8.3 Masking . 8

2.9 Resilience Metrics . 8
2.9.1 Reliability Metrics . 8
2.9.2 Availability Metrics . 9
2.9.3 Error and Failure Detection Metrics . 10
2.9.4 Mean Time to Failure . 11

3. The Resilience Challenge for Extreme-Scale HPC Systems . 12
4. Survey of HPC Resilience Techniques . 14

4.1 Hardware-based Techniques . 14
4.2 Software-implemented Techniques . 14

4.2.1 Operating System & Runtime-based Solutions . 14
4.2.2 Message Passing Library-based Solutions . 15
4.2.3 Compiler-based Solutions . 15
4.2.4 Programming Model Techniques . 16
4.2.5 Algorithm-Based Fault Tolerance . 17

4.3 Cooperative Hardware/Software Approaches . 18
5. Design Patterns for Resilience . 19

5.1 Introduction to Design Patterns . 19
5.2 Design Patterns for HPC Resilience Solutions . 19
5.3 Anatomy of a Resilience Design Pattern . 20

6. Classification of Resilience Design Patterns . 21
7. The Resilience Pattern Catalog . 23

7.1 Describing Design Patterns . 23
7.2 Strategy Patterns . 25

7.2.1 Fault Treatment Pattern . 25
7.2.2 Recovery Pattern . 26
7.2.3 Compensation Pattern . 28

7.3 Architectural Patterns . 29
7.3.1 Fault Diagnosis Pattern . 29
7.3.2 Reconfiguration Pattern . 30

3

7.3.3 Checkpoint Recovery Pattern . 32
7.3.4 State Diversity Pattern . 33
7.3.5 Design Diversity Pattern . 34

7.4 Structural Patterns . 35
7.4.1 Monitoring Pattern . 35
7.4.2 Prediction Pattern . 37
7.4.3 Restructure Pattern . 38
7.4.4 Rejuvenation Pattern . 39
7.4.5 Reinitialization Pattern . 40
7.4.6 Roll-back Pattern . 41
7.4.7 Roll-forward Pattern . 42
7.4.8 N-modular Redundancy Pattern . 44
7.4.9 N-version Design Pattern . 45
7.4.10 Recovery Block Pattern . 46

7.5 State Patterns . 47
7.5.1 Persistent State Pattern . 47
7.5.2 Dynamic State Pattern . 48
7.5.3 Environment State Pattern . 49
7.5.4 Stateless Pattern . 50

8. Building Resilience Solutions using Resilience Design Patterns 52
8.1 Features of Resilience Solutions . 52
8.2 Design Spaces . 52

9. Case Study: Checkpoint and Rollback . 54
10. Case Study: Proactive Process Migration . 56
11. Case Study: Cross-Layer Hardware/Software Hybrid Solution 58
12. Summary . 60

iii

LIST OF FIGURES

1 Relationship between fault, error and failure . 7
2 Anatomy of a Resilient Design Pattern . 20
3 Classification of resilience design patterns . 21
4 Elements of a resilience solution for HPC systems and applications 52
5 Design Spaces for construction of resilience solutions using patterns 53
6 Resilience Solution Case Study: Checkpoint & Restart using BLCR 54
7 Resilience Solution Case Study: Process Migration . 56
8 Resilience Solution Case Study: Cross-Layer Design using ECC with ABFT 58

iv

LIST OF TABLES

1 Availability measured by the “nines” . 10

v

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Early Career Research Program under contract number
DE-AC05-00OR22725.

vii

ABSTRACT

Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Pro-
jections based on the current generation of HPC systems and technology roadmaps suggest that very high
fault rates in future systems. The errors resulting from these faults will propagate and generate various
kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application
crashes. Practical limits on power consumption in HPC systems will require future systems to embrace
innovative architectures, increasing the levels of hardware and software complexities.

The resilience challenge for extreme-scale HPC systems requires management of various hardware and
software technologies that are capable of handling a broad set of fault models at accelerated fault rates. These
techniques must seek to improve resilience at reasonable overheads to power consumption and performance.
While the HPC community has developed various solutions, application-level as well as system-based so-
lutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods
and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope,
handling coverage, and performance & power efficiency across the system stack. Additionally, few of the
current approaches are portable to newer architectures and software ecosystems, which are expected to be
deployed on future systems.

In this document, we develop a structured approach to the management of HPC resilience based on the
concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly
occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, er-
rors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable
design elements. We define a design framework that enhances our understanding of the important con-
straints and opportunities for solutions deployed at various layers of the system stack. The framework may
be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware
and software components. The framework also enables optimization of the cost-benefit trade-offs among
performance, resilience, and power consumption. The overall goal of this work is to enable a systematic
methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that
keep scientific applications running to a correct solution in a timely and cost-efficient manner in spite of
frequent faults, errors, and failures of various types.

viii

1. Introduction

High-performance computing systems enable transformative scientific research and discovery in various
areas of national importance through computational modeling, simulation, data analysis and prediction. The
opportunities to address complex challenges that are important for national security, environmental issues,
as well as to drive fundamental scientific research are the key motivators behind the HPC community’s drive
towards extreme-scale high-performance computing systems. Future extreme-scale systems will enable
computing at scales in the hundreds of petaflops, exaflops, and beyond, which will provide the computing
capability for rapid design and prototyping and big data analysis in a variety of scientific and engineering
disciplines. However, to build and effectively operate extreme-scale HPC systems, there are several key
challenges, including the management of power, massive concurrency and resilience to the occurrence of
faults or defects in system components [25].

In the pursuit of greater computational capabilities, the architectures of future extreme-scale HPC sys-
tems are expected to change radically. Traditional HPC system design methodologies have not had to ac-
count for power constraints, or parallelism on the level designers must contemplate for future extreme-scale
systems [74]. The evolution in the architectures will require changes to the programming models and the
software environment to ensure application scalability. Many of the innovations in the architectures are
expected to be driven by the continued scaling of transistors made possible by Moore’s Law. However, the
reliability of these systems will be threatened by a decrease in individual device reliability due to manufac-
turing defects prevalent at deeply scaled technology nodes, device aging related effects [9]. Additionally,
the chips built using these devices will be increasingly susceptible to errors due to the effects of operational
and environmental conditions on the reduced noise margins arising from the near-threshold voltage (NTV)
operation [26] to meet the limits on power consumption. These effects are expected to increase the rate of
transient and hard errors, such that scientific applications running on these future systems will no longer be
able to assume correct behavior of the underlying machine.

Managing the resilience of future extreme-scale systems is a multidimensional challenge. As these sys-
tems approach exaflops scale, the frequency of faults and errors in these systems will render many of the
existing resilience techniques ineffective. Newer modes of failures due to faults and errors that will only
emerge in advanced process technologies and complex system architectures will require novel resilience
solutions, as well as existing techniques to adapt their respective implementations. Additionally, HPC re-
silience methodologies, both hardware and software, must optimize for some combination of performance,
power consumption and cost while providing effective protection against faults, errors and failures. The HPC
research community has developed a number of hardware and software resilience technologies, but there are
no formalized, comprehensive methods to investigate and evaluate the protection coverage and efficiency of
resilience solutions. The development of HPC resilience solutions no longer relies on the invention of novel
methodologies for dealing with extreme rates and a variety of fault types that may occur; rather, it based
on the selection of the most appropriate solutions among the well-understood resilience techniques and
adapting them to the design concerns and constraints of future extreme-scale systems. Therefore, the de-
signers of HPC hardware and software components have a compelling need for a systematic methodology
for designing resilience solutions for HPC systems and their applications.

In this work, we develop a structured approach for resilient extreme-scale high-performance computing
systems. In general, resilience solutions provide techniques to manage faults and their consequences in a
system through the detection of errors in the system, and providing the means that ensure the limiting their
propagation, and the recovery of the system from the error/failure, or the masking of error/failure. Using
the concept of design patterns for resilience, we identify and evaluate repeatedly occurring resilience prob-
lems and solutions throughout the hardware/software stack and across various system components. These

1

patterns, which are based on best practices for HPC resilience, are abstracted and codified into a catalog of
design patterns. The patterns in this document present solutions for each of the three aspects of resilience,
which are the detection, containment, and recovery from an error or a failure. The resilience design patterns
describe solutions that are free of implementation details, and these have the potential to shape the design
of HPC applications’ algorithms, numerical libraries, system software, and hardware architectures, as well
as the interfaces between layers of system abstraction.

In addition to the catalog of resilience design patterns, which provides HPC designers with a collection
of reusable design elements, we define a discipline that enables designers to combine an essential set of de-
sign patterns into productive, efficient resilience solutions. We define a layered hierarchy of these resilience
design patterns, which facilitates the design process of combining the various patterns in the catalog. The
classification scheme provides guidelines for designers to distinctly solve problems of detection, contain-
ment and mitigation/recovery, to stitch these patterns together, and refine the design of the overall system
based on the roles of the individual patterns, and how they interact. We define a framework based on design
spaces that guides hardware and software designers and architects, as well as application developers, in nav-
igating the complexities of developing effective resilience solutions within the constraints of hardware and
software implementation challenges, performance and power considerations. The construction of resilience
solutions using the design patterns and using the design spaces framework makes the design choices explicit
and the critical issues addressed by a solution clear. The structured, pattern-based approach enables:

• Development of resilience solutions with a clear understanding of their protection coverage and effi-
ciency

• Evaluation and comparison of alternative resilience solutions through qualitative and quantitative eval-
uation of the coverage and handling efficiency of each solution

• Design portable resilience solutions that are effective on different systems, since each HPC system
architecture has different resilience features and solutions are not universally applicable

The rest of this document is organized as follows:

• Section 2. provides a summary of the terminology used in fault tolerance and the basic concepts of
resilience to enable HPC designers, as well as system operators and users to understand the essence
of the resilience patterns and use them in their designs, whether hardware or software.

• Section 3. describes the challenges in managing the resilience of future extreme-scale HPC systems.

• Section 4. surveys the various HPC resilience solutions, including those used in production HPC
systems, as well as research proposals. The aim of this section is to provide a comprehensive overview
of the various HPC resilience techniques.

• Section 5. introduces the design pattern concept and discusses the potential for capturing the HPC
resilience techniques in the form of patterns.

• Section 6. describes a classification scheme to organize the various resilience techniques in a layered
hierarchy to enable designers to understand the capabilities of each resilience solution.

• Section 7. presents the catalog of resilience design patterns that capture well-understood HPC re-
silience techniques for error detection, recovery and masking in a structured format.

• Section 8. presents a structured methodology to use the resilience design patterns for the construction
of effective and efficient resilience solutions. The design framework forms the basis for HPC design-
ers and programmers to use patterns from the catalog to develop complete resilience solutions with
specific properties.

2

• Sections 9., 10., 11. present case studies that demonstrate how these patterns may be used to under-
stand and evaluate existing resilience solutions, as well as develop new solutions using the pattern-
based design framework.

3

2. Resilience Terminology and Concepts

The terminology is largely based on prior work on establishing agreed upon definitions and metrics for HPC
Reliability, Availability & Servicability (RAS) [79, 49, 83, 30, 32, 65].

2.1 Reliability

Reliability is the property of a system that characterizes its probability to have an error or failure, i.e., it
provides information about the error- or failure-free time period.

2.2 Availability

Availability is the property of a system that defines the proportion of time it provides a correct service,
instead of incorrect service.

2.3 Systems

• System: An entity that interacts with other entities.

• Component: A system that is part of a larger system.

• State: A system’s information, computation, communication, interconnection, and physical condi-
tion.

• Behavior: What a system does to implement its function, described by a series of states.

• Service: A system’s externally perceived behavior.

• Functional specification: The description of system functionality, defining the threshold between:

– Correct service: The provided service is acceptable, i.e., within the functional specification.

– Incorrect service: The provided service is unacceptable, i.e., outside the functional specifica-
tion.

• Life cycle: A system has life cycle phases in the following order:

1. Development: A system is in development, including designed, constructed, deployed and
tested.

2. Operational: A system is in operation, providing correct or incorrect service.

3. Retired: A system is not in operation anymore.

• Operational status: A system has the following operational states:

1. Scheduled service outage: A system is delivering an incorrect service due to a planned outage.

2. Unscheduled service outage: A system is delivering an incorrect service due to an unplanned
outage.

3. Service delivery: A system is delivering a correct service.

The terms fault, error and failure are sometimes used interchangeably. However in fault tolerance
literature, these terms are associated with distinct formal concepts which are defined as follows [6]:

4

2.4 Faults

Fault is an underlying flaw or defect in a system that has potential to cause problems. A fault can be
dormant and can have no effect, e.g., incorrect program code that lies outside the execution path. When
activated during system operation, a fault leads to an error. Fault activation may be due to triggers that are
internal or external to the system.

• Fault classes: {benign,dormant,active} {permanent,transient,intermittent} {hard,soft}

These fault classes have the following categories:

• Benign: An inactive fault that does not become active.

• Dormant: An inactive fault that does become active at some point in time.

• Active: A fault that causes an error at the moment of becoming active.

• Permanent: A fault’s presence is continuous in time.

• Transient: A fault’s presence is temporary.

• Intermittent: A fault’s presence is temporary and recurring.

• Hard: A fault that is systematically reproducible.

• Soft: A fault that is not systematically reproducible.

The following common terms map to these fault classes:

• Latent fault: Any type of dormant fault.

• Solid fault: Any type of hard fault.

• Elusive fault: Any type of soft fault.

For example, a radiation-induced bit-flip in memory is a dormant transient soft fault that becomes an
active transient soft fault when the memory is read. The fault disappears when the memory is written. A
radiation-induced bit-flip in memory is a dormant permanent soft fault if the memory is never written. It
becomes an active permanent soft fault when the memory is read.

2.5 Errors

Errors result from the activation of a fault and cause an illegal system state. For e.g., a faulty assignment to
a loop counter variable may result in an error characterized by an illegal value for that variable. When such
a variable is used for control of a for-loop’s execution, it may lead to incorrect program behavior.

The following error classes exist:

• Error classes: {undetected,detected} {unmasked,masked} {hard,soft}

These error classes have the following categories:

• Undetected: An error that is not indicated.

• Detected: An error that is indicated, such as by a message or a signal.

• Unmasked: An error that is propagating.

• Masked: An error that is not propagating.

• Hard: An error caused by a permanent fault.

5

• Soft: An error caused by a transient or intermittent fault.

The following common terms map to these error classes:

• UE: Any type of undetected error.

• Latent error: Any type of undetected error.

• Silent error: Any type of undetected error.

• SDC: An undetected unmasked hard or soft error.

• DE: Any type of detected error.

For example, an active transient soft fault, created by a radiation-induced bit-flip in memory being read,
causes an undetected masked soft error, when the read value is used in a multiplication with another value
that happens to be 0. It causes an undetected unmasked soft error, or SDC, when the read value is used as
an index in a memory address calculation.

A detectable correctable error is often transparently handled by hardware, such as a single bit flip in
memory that is protected with single-error correction double-error detection (SECDED) error correcting
code (ECC) [60]. A detectable uncorrectable error (DUE) typically results in a failure, such as multiple
bit flips in the same addressable word that escape SECDED ECC correction, but not detection, and ulti-
mately cause an application abort. An undetectable error may result in silent data corruption (SDC), e.g., an
incorrect application output.

2.6 Failures

Failure occurs if an error reaches the service interface of a system, resulting in system behavior that is
inconsistent with the system’s specification. For e.g., a faulty assignment to a pointer variable leads to
erroneous accesses to a data structure or buffer overflow, which in turn may cause the program to crash due
to an attempt to access an out-of-bound memory location.

The following failure classes exist:

• Failure classes: {undetected,detected} {permanent,transient,intermittent} {complete,partial,Byzantine}

These failure classes have the following categories:

• Undetected: A failure that is not indicated.

• Detected: A failure that is indicated, such as by a message or a signal.

• Permanent: A failure’s presence is continuous in time.

• Transient: A failure’s presence is temporary.

• Intermittent: A failure’s presence is temporary and recurring.

• Complete: A failure causing a service outage.

• Partial: A failure causing a degraded service within the functional specification.

• Byzantine: A failure causing an arbitrary deviation from the functional specification.

The following common terms map to these error classes:

• Fail-stop: An undetected or detected permanent complete failure.

6

Figure 1. Relationship between fault, error and failure

For example, an active transient soft fault, created by a radiation-induced bit-flip in memory being read,
causes an undetected unmasked soft error, when the read value is used as an index in a memory address
calculation. A memory access violation caused by using a corrupted calculated address results in a detected
permanent complete failure, as the executing process is killed by the operating system (OS), and a message
is provided to the user. However, if using the corrupted calculated address results in an incorrect service that
is not indicated, such as erroneous output, an undetected intermittent Byzantine failure occured.

2.7 The Relationship between Faults, Errors and Failures

While a fault (e.g., a bug or stuck bit) is the cause of an error, its manifestation as a state change is considered
an error (e.g., a bad value or incorrect execution), and the transition to an incorrect service is observed as
a failure (e.g., an application abort or system crash) [79]. A failure in a HPC system is typically observed
through an application abort or a full/partial system outage. There is a causality relationship between fault,
error and failure, as shown in Figure 1. A Fault-error-failure chain is a DAG representation with faults,
errors and failures as vertices. When the system is composed of multiple components, the failure of a single
component causes a permanent or transient external fault for the other components that receive service from
the failed component. Therefore, errors may be transformed into other errors and propagate through the
system, generating further errors. A failure cascade is a failure of component B that cascades to component
C if it causes a failure of C. For example, a faulty procedure argument leads to erroneous computation and
may manifest as a failure in the form of an illegal procedure return value. To the caller of the function, this
may activate a chain of errors that propagate until service failure occurs, i.e., a program crash.

2.8 Resilience Capabilities

There are three key components to designing a resilience strategy:

2.8.1 Detection

Detection entails the discovery of an error in the state of the system, either in the data, or in the instructions.
It is typically accomplished with the help of redundancy; the extra information enables the verification of
correct values.

Errors are detected by identifying the corresponding state change. Failures are detected by identifying
the corresponding transition to an incorrect service. An error or a failure is indicated by a detector. This
detector can fail as well.

The following detection classes exist:

• Detection classes: {true,false} {positive,negative}

These detection classes have the following categories:

7

• True: A correct detection.

• False: An incorrect detection.

• Positive: An indication, such as a message or a signal.

• Negative: No indication.

2.8.2 Containment

A containment capability enables limiting the effects of an error from propagating. Containment is achieved
by reasoning about the modularity of components or sub-systems that make up the system. In terms of
resilience of the system, a containment module is an unit that fails independently of other units and it is also
the unit of repair or replacement.

2.8.3 Masking

Masking enatils recovery or mitigation, which ensures correct operation despite the occurrence of an error.
Masking is usually accomplished by providing additional redundant in order to discover correct, or at least
acceptably close, values of the erroneous state. When the masking involves the change of incorrect state
into correct state, it is called error correction.

A detected error may be masked by an error correction method, such as using ECC. The following error
classes exist that are equivalent to already defined error classes:

• Error classes: {uncorrected,corrected}

These error classes have the following categories:

• Uncorrected: An error that is not corrected, i.e., an undetected or detected unmasked error.

• Corrected: An error that is detected and corrected, i.e., a detected masked error.

The following common terms map to these error classes:

• DUE: An uncorrected error, i.e., a detected unmasked error.

• DCE: A corrected error, i.e., a detected masked error.

In practice, a resilience mechanism may merge the implementation of two or even all three of the capa-
bilities to provide a complete solution.

2.9 Resilience Metrics

2.9.1 Reliability Metrics

The following reliability metrics exist:

• Error or failure reliability: A system’s probability not to have an error or failure during 0 ≤ t, R(t).

• Error or failure distribution: A system’s probability to have an error or failure during 0 ≤ t, F(t).

• PDF: The relative likelihood of an error or failure, f (t).

• Error or failure rate: A system’s error or failure frequency, λ(t).

8

• MTTE: A system’s expected time to error, MTT E.

• MTTF: A system’s expected time to failure, MTT F.

• FIT rate: A system’s number of expected failures in 109 hours of operation, FIT .

• Serial reliability: The reliability of a system with n dependent components, R(n, t)s.

• Parallel reliability: The reliability of a system with n redundant components, R(n, t)p.

• Identical serial reliability: The serial reliability with n identical components, R(n, t)is.

• Identical parallel reliability: The parallel reliability with n identical components, R(n, t)ip.

R(t) = 1 − F(t) =

∫ ∞
t

f (t)dt (1)

F(t) = 1 − R(t) =

∫ t

0
f (t)dt (2)

λ(t) =
f (t)
R(t)

(3)

MTT E or MTT F =

∫ ∞
0

R(t)dt (4)

FIT =
109

MTT F
(5)

R(n, t)s =

n∏
i=1

Ri(t) (6)

R(n, t)p = 1 −
n∏

i=1

(1 − Ri(t)) (7)

R(n, t)is = R(t)n (8)

R(n, t)ip = 1 − (1 − R(t))n (9)

2.9.2 Availability Metrics

Availability is the property of a system that defines the proportion of time it provides a correct service,
instead of incorrect service. The following availability metrics exist:

• Availability: A system’s proportion of time it provides a correct service, instead of incorrect service,
A.

• PU: A system’s service delivery time, tpu.

• UD: A system’s unscheduled service outage time, tud.

• SD: A system’s scheduled service outage time, tsd.

• MTTR: A system’s expected time to repair/replace, MTTR.

9

• MTBF: A system’s expected time between failures, MT BF.

• Serial availability: The availability of a system with n dependent components, As.

• Parallel availability: The availability of a system with n redundant components, Ap.

• Identical serial availability: The serial availability with n identical components, Ais.

• Identical parallel availability: The parallel availability with n identical components, Aip.

A =
tpu

tpu + tud + tsd
(10)

=
MTT F

MTT F + MTTR
(11)

=
MTT F
MT BF

(12)

MT BF = MTT F + MTTR (13)

As =

n∏
i=1

Ai (14)

Ap = 1 −
n∏

i=1

(1 − Ai) (15)

Ais = An (16)

Aip = 1 − (1 − A)n (17)

A system can also be rated by the number of 9s in its availability figure (Table 1). For example, a
system with a five-nines availability rating has 99.999% availability and an annual UD of 5 minutes and
15.4 seconds.

Table 1. Availability measured by the “nines”

9s Availability Annual Downtime
1 90% 36 days, 12 hours
2 99% 87 hours, 36 minutes
3 99.9% 8 hours, 45.6 minutes
4 99.99% 52 minutes, 33.6 seconds
5 99.999% 5 minutes, 15.4 seconds
6 99.9999% 31.5 seconds

2.9.3 Error and Failure Detection Metrics

• Precision: The fraction of indicated errors or failures that were actual errors or failures.

• Recall: The fraction of errors or failures that were detected and indicated.

10

Precision =
True Positives

True Positives + False Positives
=

True Positives
Indicated Errors or Failures

(18)

= 1 −
False Positives

True Positives + False Positives
= 1 −

False Positives
Indicated Errors or Failures

(19)

Recall =
True Positives

True Positives + False Negatives
=

True Positives
Errors or Failures

(20)

= 1 −
False Negatives

True Positives + False Negatives
= 1 −

False Negatives
Errors or Failures

(21)

For example, a true positive detection corresponds to an existing error or failure being indicated, while
a false positive detection corresponds a non-existing error or failure being indicated. A true negative de-
tection corresponds to a non-existing error or failure not being indicated, while a false negative detection
corresponds to an existing error or failure not being indicated.

2.9.4 Mean Time to Failure

Resilience is measured by vendors and operators from the system perspective, e.g., by system mean-time
to failure (SMTTF) and system mean-time to repair (SMTTR). Users measure resilience from the applica-
tion perspective, e.g., by application mean-time to failure (AMTTF) and application mean-time to repair
(AMTTR) [79]. Both perspectives are quite different [17]. For example, an application abort caused by a
main memory DUE does not require the system to recover, i.e., the SMTTR is 0. However, the aborted
application needs to recover its lost state after it has been restarted, i.e., the AMTTR may be hours. Con-
versely, a failure of a parallel file system server may only impact a subset of the running applications, as the
other ones access a different server. In this case, the server failure is counted toward the SMTTF, while the
AMTTF differs by application.

11

3. The Resilience Challenge for Extreme-Scale HPC Systems

Various studies that analyze faults, errors and failures in HPC systems indicate that faults are not rare events
in large-scale systems and that the distribution of failure root cause is dominated by faults that originate in
hardware. These may include faults due to radiation-induced effects such as particle strikes from cosmic
radiation, circuit aging related effects, and faults due to chip manufacturing defects and design bugs that
remain undetected during post-silicon validation and manifest themselves during system operation. With
aggressive scaling of CMOS devices, the amount of charge required to upset a gate or memory cell is
decreasing with every process shrink. For very fine transistor feature sizes, the lithography used in patterning
transistors causes variations in transistor geometries such as line-edge roughness, body thickness variations
and random dopant fluctuations. These lead to variations in the electrical behavior of individual transistor
devices, and this manifests itself at the circuit-level in the form of variations in circuit delay, power, and
robustness [4]. The challenge of maintaining resilience continues to evolve as process technology continues
to shrink and system designers will use components that operate at lower threshold voltages. The shrinking
noise margins makes the components inherently less reliable and leads to a greater number of manufacturing
defects, as well as device aging-related effects. The use of system-level performance and power modulation
techniques, such as dynamic voltage/frequency scaling, also tend to induce higher fault rates. It is expected
that future exascale-capability systems will use components that have transistor feature sizes between 5 nm
and 7 nm, and that these effects will become more prevalent, thereby causing the system components to be
increasingly unreliable [16]. The modeling and mitigation of these effects through improved manufacturing
processes and circuit-level techniques might prove too difficult or too expensive.

Today’s petascale-class HPC systems already employ millions of processor cores and memory chips to
drive HPC application performance. The recent trends in system architectures suggest that future exascale-
class HPC systems will be built from hundreds of millions of components organized in complex hierarchies.
However, with the growing number of components, the overall reliability of the system decreases proportion-
ally. If p is the probability of failure of an individual component and the system consists of N components,
the probability that the complete system works is (1 - p)N when the component failures are independent. It
may therefore be expected that some part of an exascale class supercomputing system will always be experi-
encing failures or operating in a degraded state. The drop in MTTF of the system is expected to be dramatic
based on the projected system features [48]. In future exascale-class systems, the unreliability of chips due
to transistor scaling issues will be amplified by the large number of components. For long running scientific
simulations and analysis applications that will run on these systems, the accelerated rates of system failures
will mean that their executions will often terminate abnormally, or in many cases, complete with incorrect
results. Finding solutions to these challenges will therefore require a concerted and collaborative effort on
the part of all the layers of the system stack.

Resilience is an approach to fault tolerance for high-end computing (HEC) systems that seeks to keep
the application workloads running to correct solutions in a timely and efficient manner in spite of frequent
errors [21]. The emphasis is on the application’s outcome and the reliability of application level information
in place of or even at the expense of reliability of the system. Resilience technologies in HPC embrace
the fact that the underlying fabric of hardware and system software will be unreliable and seek to enable
effective and resource efficient use of the platform in the presence of system degradations and failures [16].
A complete resilience solution consists of detection, containment and mitigation strategies.

Performance, resilience, and power consumption are interdependent key system design factors. An
increase in resilience (e.g., though redundancy) can result in higher performance (as less work is wasted) and
in higher power consumption (as more hardware is being used). Similarly, a decrease in power consumption
(e.g., through NTV operation) can result in lower resilience (due to higher soft error vulnerability) and

12

lower performance (due to lower clock frequencies and more wasted work). The performance, resilience,
and power consumption cost/benefit trade-off between different resilience solutions depends on individual
system and application properties. Understanding this trade-off at system design time is a complex problem
due to uncertainties in future system hardware and software reliability. It is also difficult due to a needed
comprehensive methodology for design space exploration that accounts for performance, resilience, and
power consumption aspects across the stack and the system. Similarly, runtime adaptation to changing
resilience demands, while staying within a fixed power budget and achieving maximum performance, is
currently limited to checkpoint placement strategies. While resilience technologies seek to provide efficient
and correct operation despite the frequent occurrence of faults and defects in components that lead to errors
and failures in HPC systems, there is no methodology for optimizing the trade-off, at design time or runtime,
between the key system design factors: performance, resilience, and power consumption.

13

4. Survey of HPC Resilience Techniques

This section surveys various fault-tolerance techniques used in practical computing systems, as well as
research proposals.

4.1 Hardware-based Techniques

Dual-modular redundancy (DMR) and triple-modular redundancy (TMR) approaches have been success-
fully used in mission-critical systems using hardware-based replication. Examples of fault-tolerant servers
include the Tandem Non-Stop [56] and the HP NonStop [7] that use two redundant processors running in
locked step. The IBM G5 [76] employs two fully duplicated lock-step pipelines to enable low-latency de-
tection and rapid recovery. While these solutions are transparent to the supervisor software and application
programmer, they require specialized hardware.

Error correction codes (ECC) use a flavor of redundancy in memory structures that typically add ad-
ditional bits to enable detection and correction of errors. Single bit-error correction and double bit-error
detection (SECDED) is the most widely used variant of ECC, while researchers have also explored Bose-
Chaudhuri-Hocquenghem (BCH) and double-bit error correction and triple-bit error detection (DECTED)
[62] for multi-bit detection and correction. Chipkill [23] is a stronger memory protection scheme that is
widely used in production HPC systems. It accommodates single DRAM memory chip failure as well as
multi-bit errors from any portion of a single memory chip by interleaving bit error-correcting codes across
multiple memory chips.

HPC vendors have also developed a number of hardware resilience technologies, including: SECDED
ECC for main memory, caches, registers and architectural state, as well as, Chipkill [22] for main mem-
ory, redundant power supplies and voltage regulators [43], and reliability, availability and serviceability
management systems for monitoring and control.

4.2 Software-implemented Techniques

Software-based redundancy promises to offer more flexibility and tends to be less expensive in terms of
silicon area as well as chip development and verification costs; it also eliminates the need for modifications
of architectural specifications.

4.2.1 Operating System & Runtime-based Solutions

The most widely used strategies in production HPC systems are predominantly based on checkpoint and
restart (C/R). In general, C/R approaches are based on the concept of capturing the state of the application
at key points of the execution, which is then saved to persistent storage. Upon detection of a failure, the
application state is restored from the latest disk committed checkpoint, and execution resumes from that
point. The Condor standalone checkpoint library [54] was developed to provide checkpointing for UNIX
processes, while the Berkeley Labs C/R library [28] was developed as an extension to the Linux OS. The
libckpt [66] provided similar OS-level process checkpointing, albeit based on programmer annotations.

In the context of parallel distributed computing systems, checkpointing requires global coordination, i.e.,
all processes on all nodes are paused until all messages in-flight and those in-queue are delivered, at which
point all the processes’ address spaces, register states, etc., are written to stable storage, generally a parallel
file system, through dedicated I/O nodes. The significant challenge in these efforts is the coordination among

14

processes so that later recovery restores the system to a consistent state. These approaches typically launch
daemons on every node that form and maintain communication groups that allow tracking and managing
recovery by maintaining the configuration of the communication system. The failure of any given node in
the group is handled by restarting the failed process on a different node, by restructuring the computation,
or through transparent migration to another node [2] [13] [51].

Much work has also been done to optimize the process of C/R. A two-level recovery scheme proposed
optimization of the recovery process for more probable failures, so that these incur a lower performance
overhead while the less probable failures incur a higher overhead [81]. The scalable checkpoint/restart
(SCR) library [59] proposes multilevel checkpointing where checkpoints are written to storage that use
RAM, flash, or local disk drive, in addition to the parallel file system, to achieve much higher I/O bandwidth.
Oliner et al. propose an opportunistic checkpointing scheme that writes checkpoints that are predicted to be
useful - for example, when a failure in the near future is likely [64]. Incremental checkpointing dynamically
identifies the changed blocks of memory since the last checkpoint through a hash function [1] in order to
limit the amount of state required to be captured per checkpoint. Data aggregation and compression also
help reduce the bandwidth requirements when committing the checkpoint to disk [44]. Plank et al. eliminate
the overhead of writing checkpoints to disk altogether with a diskless in-memory checkpointing approach
[68].

Process-level redundancy (PLR) [75] creates a set of redundant application processes whose output
values are compared. The scheduling of the redundant processes is left to the operating system (OS). The
RedThreads API [41] provides directives that support error detection and correction semantics through the
adaptive use of redundant multithreading.

4.2.2 Message Passing Library-based Solutions

In general, automatic application-oblivious checkpointing approaches suffer from scaling issues due to the
considerable I/O bandwidth for writing to persistent storage. Also, practical implementations tend to be
fragile [29]. Therefore, several MPI libraries have been enabled with capabilities for C/R [52]. The CoCheck
MPI [80], based on the Condor library, uses synchronous checkpointing in which all MPI processes commit
their message queues to disk to prevent messages in flight from getting lost. The FT-MPI [33], Open MPI
[42], MPICH-V [10] and LAM/MPI [73] implementations followed suit by incorporating similar capabilities
for C/R. In these implementations, the application developers do not need to concern themselves with failure
handling; the failure detection and application recovery are handled transparently by the MPI library, in
collaboration with the OS.

The process-level redundancy approach has also been evaluated in the context of a MPI library imple-
mentation [34], where each MPI rank in the application is replicated and the replica takes the place of a
failed rank, allowing the application to continue. The RedMPI library [31] [35] replicates MPI tasks and
compares the received messages between the replicas in order to detect corruptions in the communication
data. Studies have also proposed the use of proactive fault tolerance in MPI [61] [85]. However, with the
growing complexity of long running scientific applications, complete multi-modular redundancy, whether
through hardware or software-based approaches, will incur exorbitant overhead to costs, performance and
energy, and is not a scalable solution to be widely used in future exascale-class HPC systems.

4.2.3 Compiler-based Solutions

SWIFT [70] is a compiler-based transformation which duplicates all program instructions and inserts com-
parison instructions during code generation so that the duplicated instructions fill the scheduling slack. The

15

DAFT [90] approach uses a compiler transformation that duplicates the entire program in a redundant thread
that trails the main thread and inserts instructions for error checking. The SRMT [86] uses compiler analysis
to generate redundant threads mapped to different cores in a chip multi-processor and optimizes performance
by minimizing data communication between the main thread and trailing redundant thread. Similarly, EDDI
[63] duplicates all instructions and inserts “compare" instructions to validate the program correctness at ap-
propriate locations in the program code. The ROSE::FTTransform [53] applies source-to-source translation
to duplicate individual source-level statements to detect transient processor faults.

4.2.4 Programming Model Techniques

Most programming model approaches advocate a collaborative management of the reliability requirements
of applications through a programmer interface in conjunction with compiler transformations, a runtime
framework and/or library support. Each approach requires different levels of programmer involvement,
which has an impact on amount of effort to re-factor the application code, as well as on the portability of the
application code to different platforms.

HPC programs usually deploy a large number of nodes to implement a single computation and use MPI
with a flat model of message exchange in which any node can communicate with another. Every node that
participates in a computation acquires dependencies on the states of the other nodes. Therefore, the fail-
ure of a single node results in the failure of the entire computation since the message passing model lacks
well-defined failure containment capabilities [29]. User-level failure mitigation (ULFM) [8] extends MPI by
encouraging programmer involvement in the failure detection and recovery by providing a fault-tolerance
API for MPI programs. The error handling of the communicator has changed from MPI_ERRORS_ARE
_FATAL to MPI_ERRORS_RETURN so that error recovery may be handled by the user. The proposed API
includes MPI_COMM_REVOKE, MPI_COMM_SHRINK to enable reconstruction of the MPI communi-
cator after process failure and the MPI_COMM_AGREE as a consistency check to detect failures when the
programmer deems such a sanity check necessary in the application code.

The abstraction of the transaction has also been proposed to capture a programmer’s fault-tolerance
knowledge. This entails division of the application code into blocks of code whose results are checked for
correctness before proceeding. If the code block execution’s correctness criteria are not met, the results
are discarded and the block can be re-executed. Such an approach was explored for HPC applications
through a programming construct called Containment Domains by Sullivan et al. [15] which is based on
weak transactional semantics. It enforces the check for correctness of the data value generated within
the containment domain before it is communicated to other domains. These containment domains can be
hierarchical and provide the means to locally recover from an error within that domain. A compiler technique
that, through static analysis, discovers regions that can be freely re-executed without checkpointed state or
side-effects, called idempotent regions, was proposed by de Kruijf et al. [20]. Their original proposal
[19], however, was based on language-level support for C/C++ that allowed the application developer to
define idempotent regions through specification of relax blocks and recover blocks that perform recovery
when a fault occurs. The FaultTM scheme adapts the concept of hardware-based transactional memory
where atomicity of computation is guaranteed. The approach requires an application programmer to define
vulnerable sections of code. For such sections, a backup thread is created. The original and the backup
thread are executed as an atomic transaction, and their respective committed result values are compared
[89].

Complementary to approaches that focus on resiliency of computational blocks, the Global View Re-
silience (GVR) project [36] concentrates on application data and guarantees resilience through multiple

16

snapshot versions of the data whose creation is controlled by the programmer through application annota-
tions. Bridges et al. [11] proposed a malloc_failable that uses a callback mechanism to handle memory
failures on dynamically allocated memory, so that the application programmer can specify recovery actions.
The Global Arrays implementation of the Partitioned Global Address Space (PGAS) model presents a global
view of multidimensional arrays that are physically distributed among the memories of processes. Through
a set of library API for checkpoint and restart with bindings for C/C++/FORTRAN, the application pro-
grammer can create checkpoints of array structures. The library guarantees that updates to the global shared
data are fully completed and any partial updates are prevented or undone [24]. Rolex [40] provides vari-
ous resilience semantics for error tolerance and amelioration through language-based extensions that enable
these capabilities to be embedded within standard C/C++ programs.

4.2.5 Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance (ABFT) schemes encode the application data to detect and correct errors,
e.g., the use of checksums on dense matrix structures. The algorithms are modified to operate on the encoded
data structures. ABFT was shown to be an effective method for application-layer detection and correction
by Huang and Abraham [39] for a range of basic matrix operations including addition, multiplication, scalar
product, transposition. Such techniques were also proven effective for LU factorization [18], Cholesky fac-
torization [38] and QR factorization [46]. Several papers propose improvements for better scalability in the
context of parallel systems, that provide better error detection and correction coverage with lower applica-
tion overheads [71] [67] [72]. The checksum-based detection and correction methods tend to incur very high
overheads to performance in sparse matrix-based applications. Sloan et al. [77] have proposed techniques
for fault detection that employ approximate random checking and approximate clustered checking by lever-
aging the diagonal, banded diagonal, and block diagonal structures of sparse problems. Algorithm-based
recovery for sparse matrix problems has been demonstrated through error localization and re-computation
[78] [14].

Various studies have evaluated the fault resilience of solvers of linear algebra problems [12]. Iterative
methods including Jacobi, Gauss-Seidel and its variants, the conjugate gradient, the preconditioned conju-
gate gradient, and the multi-grid begin with an initial guess of the solution and iteratively approach a solution
by reducing the error in the current guess of the answer until a convergence criterion is satisfied. Such al-
gorithms have proved to be tolerant to errors, on a limited basis, since the calculations typically require a
larger number of iterations to converge, based on magnitude of the perturbation, but eventual convergence
to a correct solution is possible. Algorithm-based error detection in the multigrid method shown by Mishra
et al. [57], uses invariants that enable checking for errors in the relaxation, restriction and the interpolation
operators.

For fast Fourier transform (FFT) algorithms, an error-detection technique called the sum-of-squares
(SOS) was presented by Reddy et al. [69]. This method is effective for a broader class of problems called
orthogonal transforms and therefore applicable to QR factorization, singular-value decomposition, and least-
squares minimization. Error detection in the result of the FFT is possible using weighted checksums on the
input and output [87].

While the previously discussed methods are primarily for numerical algorithms, fault tolerance for other
scientific application areas has also been explored. In molecular dynamics (MD) simulations, the property
that pairwise interactions are anti-symmetric (Fi j = - F ji) may be leveraged to detect errors in the force
calculations [88]. The resilience of the Hartree-Fock algorithm, which is widely used in computational
chemistry, can be significantly enhanced through checksum-based detection and correction for the geometry
and basis set objects. For the two-electron integrals and Fock matrix elements, knowing their respective

17

value bounds allows for identifying outliers and correcting them with reasonable values from a range of
known correct values. The iterative nature of the Hartree-Fock algorithm helps to eliminate the errors
introduced by the interpolated values [82]. The fault-tolerant version of the 3D- protein reconstruction
algorithm (FT-COMAR) proposed by Vassura et al. [84] is able to recover from errors in as many as 75%
of the entries of the contact map.

4.3 Cooperative Hardware/Software Approaches

Cross-layer resilience techniques [58] employ multiple error resilience techniques from different layers of
the system stack to collaboratively achieve error resilience. These frameworks combine selective circuit-
level hardening and logic-level parity checking with algorithm-based fault tolerance methods to provide
resilient operation.

18

5. Design Patterns for Resilience

5.1 Introduction to Design Patterns

A design pattern describes a generalizable solution to a recurring problem that occurs within a well-defined
context. Patterns are often derived from best practices used by designers and they contain essential elements
of the problems and their solutions. They provide designers with a template for how to solve a problem that
can be used in many different situations. The patterns may also be used to describe design alternatives to a
specific problem.

The original concept of design patterns was developed in the context of civil architecture and engineering
problems [3]. The patterns were defined with the goal of identification and cataloging solutions to recurrent
problems codify and solutions in the building and planning of neighborhoods, towns and cities, as well as
in the construction of individual rooms and buildings. In the domain of software architecture, the intent
of design patterns isn’t to provide a finished design that may be transformed directly into code. Rather,
design patterns are used to enhance the software development process by providing proven development
paradigms. With the use of design patterns, there is sufficient flexibility for software developers to adapt
their implementation to accommodate any constraints, or issues that may be unique to specific programming
paradigms, or the target platform for the software.

In the context of object-oriented programming design patterns provide a catalog of methods for defining
class interfaces and inheritance hierarchies, and establish key relationships among them [37]. In many
object-oriented systems, reusable patterns of class relationships and communicating objects are used to
create flexible, elegant, and ultimately reusable software design. In the pursuit of quality and scalable
parallel software, patterns for parallel programming were developed [55] and a pattern language, called Our
Pattern Language (OPL) [47], was used as the means to systematically describe these parallel computation
patterns and use them to architect parallel software. In each of these domains of design and engineering,
design patterns capture the essence of effective solutions in a succinct form that may be easily applied in
similar form to other contexts and problems.

5.2 Design Patterns for HPC Resilience Solutions

Since the early days of computing, designers of computer systems repeatedly used well-known techniques
to increase reliability: redundant structures to mask failed components, error-control codes and duplication
or triplication with voting to detect or correct information errors, diagnostic techniques to locate failed com-
ponents, and automatic switchovers to replace failed subsystems [5]. In general, every resilience solution
consists of the following capabilities:

• Detection: Detecting the presence of errors or failures in the data or control value is an important
aspect of any resilience management strategy. The presence of errors in the system are typically
detected using redundant information.

• Containment: When an error is detected in a system, its propagation must be limited. The contain-
ment of an error requires specification of well-defined modular structures and interfaces. Containment
strategies assist in limiting the impact of errors on other modules of the system.

• Recovery: The recovery aspect of any resilience strategy is needed to ensure that the application
outcome is correct in spite of the presence of the error. Recovery may entail preventing faults from
resurfacing or eliminating the error completely. Rollback and roll-forward are used to position the
system state to a previous or forward known correct state. Alternatively, the error may be compensated

19

Figure 2. Anatomy of a Resilient Design Pattern

through redundancy. Recovery may also include system reconfiguration or reinitialization where the
system is reset to a set of known parameters which guarantees correct state.

Every resilience strategy must contain these core capabilities. However, many design decisions in HPC
resilience are unique and the approach to designing a solution may vary considerably based on the layer of
system abstraction and the optimization constraints. Each resilience technique provides different guarantees
regarding the properties associated to the system qualities such as the time or the space overhead introduced
to the normal execution of the system, the efficiency of the reaction to a failure, the design complexity added
to the system.

5.3 Anatomy of a Resilience Design Pattern

The basic template of a resilience design pattern is defined in an event-driven paradigm based on the insight
that any resilience solution is necessary in the presence of, or sometimes in the anticipation of an anomalous
event, such as a fault, error, or failure. The abstract resilience design pattern consists of a behavior and a
set of activation and response interfaces (Figure 2). The appeal of defining the resilience design patterns
in such an abstract manner is that they are universal. The abstract definition of the resilience design pattern
behavior enables description of solutions that are free of implementation details. The instantiation of pattern
behaviors may cover combinations of detection, containment and mitigation capabilities. The individual
implementations of the same pattern may have different levels of performance, resilience, and power con-
sumption. Also, the resilience pattern definition abstracts a pattern’s interfaces from the implementation of
these interfaces.

20

Figure 3. Classification of resilience design patterns

6. Classification of Resilience Design Patterns

Architecting a HPC system and its software ecosystem is a complex process. In order to make the incor-
poration of resilience capabilities an essential part of the design process, the resilience design patterns are
presented in a layered hierarchy. The hierarchy enables different stakeholders to reason about resilience
capabilities based on their view of the system and their core expertise — system architects may analyze
protection coverage for the various hardware and software components that make up the system based on
the patterns applied by each component; the designers of individual components may operate within a single
layer of system abstraction and focus on instantiation of patterns based on local constraints and without the
need to understand the overall system organization.

Resilience has two dimensions: (1) forward progress of the system and (2) data consistency in the
system. Therefore, the design patterns are broadly classified into:

• State Patterns: These patterns describe all aspects of the system structure that are relevant to the
forward progress of the system. The correctness and consistency of the system state ensures that the
correct operation of the system. The state implicitly defines the scope of the protection domain that
must be covered by a resilience mechanism.

• Behavior Patterns: These design patterns identify common detection, containment, or mitigation
actions that enable the components that realize these patterns to cope with the presence of a fault,
error, or failure event.

This classification enables designers to separately reason about scope of the protection domain, and the
semantics of the pattern behavior. The notion of state may be classified into three aspects [50]:

• Persistent/Static State, which represents the data that is computed once in the initialization phase of
the application and is unchanged thereafter.

21

• Volatile/Dynamic State, which includes all the system state whose value may change during the com-
putation.

• Operating Environment State, which includes the data needed to perform the computation, i.e., the
program code, environment variables, libraries, etc.

While certain behavior patterns may be applied to individual aspects of the system state, the state patterns
may also be fused in order to enable the application of a single behavior pattern to more than one state
pattern. Certain resilience behaviors may be applied without regard for state; such patterns are concerned
with only the forward progress of the system. The classification of state patterns also includes a stateless
pattern to enable designers to create solutions that define behavior without state.

The behavior patterns are presented in a layered hierarchy (Figure 3) to provide designers with the
flexibility to organize the patterns in well-defined and effective solutions:

• Strategy Patterns: These patterns define high-level polices for a resilience solution. Their descrip-
tions are deliberately abstract to enable hardware and software architects to reason about the overall
organization of the techniques used and their implications on the full system design.

• Architecture Patterns: These patterns convey specific methods of construction of a resilience solu-
tion. They explicitly convey the type of fault/error/failure event that they handle and provide detail
about the key components and connectors that make up the solution.

• Structure Patterns: These patterns provide concrete descriptions of implementation strategies. They
comprise of recipes that may be directly realized in hardware/software components. The implemen-
tation of these patterns is closely related to the state patterns.

Implementation patterns bridge the gap between the design principles and the concrete details. These
are compound patterns, i.e., patterns of patterns, and consist of a structure pattern and a state pattern. The
specification also defines a complete resilience solution as one which provides detection/diagnosis of a fault,
error or failure event, containment of its effects, and capabilities for mitigation to enable the affected system
to continue intended operation.

22

7. The Resilience Pattern Catalog

7.1 Describing Design Patterns

Patterns are expressed in a written form in a highly structured format to enable HPC architects and designers
to quickly discover whether the pattern is relevant to the problem being solved. For convenience and clarity,
each resilience pattern follows the same prescribed format. There are three key reasons behind this pattern
format: (1) to present the pattern solution in a manner that simplifies comparison of the capabilities of
patterns and their use in developing complete resilience solutions, (2) to present the solution in a sufficiently
abstract manner that designers may modify the solution depending on the context and other optimization
parameters, and (3) to enable these patterns to be instantiated at different layers in the system.

23

Name:
Identifies the pattern and provides a convenient way to refer to it, typically using a short phrase.

Problem:
A description of the problem indicating the intent behind applying the pattern. This describes the intended goals and objec-
tives that will accomplished with the use of this specific pattern.

Context:
The preconditions under which the pattern is relevant, including a description of the system before the pattern is applied.

Forces:
A description of the relevant forces and constraints, and how they interact or conflict with each other and with the intended
goals and objectives. This description clarifies the intricacies of the problem and make explicit the trade-offs that must be
considered.

Solution:
A description of the solution that includes specifics of how to achieve the intended goals and objectives. This description
identifies the core structure of the solution and its dynamic behavior, including its collaborations with other patterns. The
description may include guidelines for implementing the solution as well as descriptions of variants or specializations of the
solution.

Capability:
The resilience management capabilities provided by this pattern, which may include detection, containment, mitigation, or a
combination of these capabilities. The listing of capabilities enables designers to determine whether other patterns must be
employed to compose a complete resilience solution.

Protection Domain:
The resiliency behavior provided by the pattern extends over a certain scope, which may not always be explicit. Also, a
solution may be suitable for a specific fault model. The description of scope and nature of fault model that is supported by
the pattern enables designers to reason about the coverage scope in terms of the complete system.

Resulting Context:
A brief description of the post-conditions arising from the application of the pattern. There may be trade-offs between
competing optimization parameters that arise due to the implementation of a solution using this pattern. The resulting
context describes what aspects of the systems have been provided with protection, and which remain unprotected. This
indicates other patterns that may be applied for supplementing the protection domain.

Examples:
One or more sample applications of the pattern, which illustrate the use of the pattern for a specific problem, the context, and
set of forces. This also includes a description of how the pattern is applied, and the resulting context.

Rationale:
An explanation of the pattern as a whole, with an elaborate description of how the pattern actually works for specific situ-
ations. This provides insight into its internal workings of a resilience pattern, including details on how the pattern accom-
plishes the desired goals and objectives.

Related Patterns:
The relationships between this pattern and other relevant patterns. These patterns may be predecessor or successor patterns
in the hierarchical classification. The pattern may collaborate to complement, or enhance the resilience capabilities of other
patterns. There may also be dependency relationships between patterns, which necessitate the use of co-dependent patterns
in order to develop complete resilience solutions.

Known Uses:
Known applications of the pattern in existing HPC systems, including any practical considerations and limitations that arise
due to the use of the pattern at scale in production HPC environments.

24

Terminology: The aim of defining a catalog of resilience design patterns is to provide reusable solu-
tions to specific problems in a way that they may be instantiated in various ways, in hardware and software.
Hardware design covers design of microarchitecture blocks, processor architecture, memory hierarchy de-
sign, network interface design, as well as design of racks, cabinet and system-level design. The scope of
software design spans the spectrum of operating systems; runtimes for scheduling, memory management,
communication frameworks, performance monitoring tools, computational libraries; compilers; program-
ming languages; and application frameworks. In order to make the resilience pattern relevant to these
diverse domains of computer system design, we describe solutions in a generic manner. The desrciptions
use system to refer to an entity that has the notion of structure and behavior. A subsystem is a set of ele-
ments, which is a system itself, and is a component of a larger system, i.e., a system is composed of multiple
sub-systems or components. For a HPC system architect, the scope of system may include compute nodes,
I/O nodes, network interfaces, disks, etc., while an application developer may refer to a library interface,
a function, or even a single variable as a system. The instantiation of the pattern descriptions interpret the
notion of system to refer to any of these hardware or software-level component. A full system refers to the
HPC system as a whole, and which is capable of running an application.

7.2 Strategy Patterns

7.2.1 Fault Treatment Pattern

Name: Fault Treatment Pattern

Problem: The Fault Treatment pattern solves the problem of discovering and treating the presence
of defects or anomalies in the system that have the potential to activate, leading to error or failure conditions
in the system.

Context: The pattern applies to a system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring sub-system to discover the presence
of anomalies in the behavior of a monitored sub-system.

• The interaction between the monitored and monitoring sub-systems is bounded in terms of time.

• The monitoring sub-system may have the capability modify the parameters of the monitored sub-
system that enables the anomaly or defect to be removed before it results in an error or a failure.

Forces:

• The interactions of the monitoring and monitored sub-systems may interfere with the operation of the
monitored sub-system. The frequency of these interactions must be bounded.

• The time interval for the monitoring sub-system to gather data about the monitored sub-system and
infer the presence of an anomaly or a defect incurs overhead to the operation of the monitored sub-
system.

Solution: The Fault Treatment pattern provides a method that attempts to recognize the presence of
an anomaly or a defect within a system, and creates conditions that prevents the activation of the fault into
an error or failed state.

Capability: The pattern provides fault mitigation semantics, which supports the following capabilities:

• Fault detection, to detect anomalies during operation before they impact the correctness of the system
state, and cause errors and failures.

25

• Fault mitigation, which includes methods to enable an imminent error or failure to be prevented, or
the defect to be removed.

The Fault Treatment pattern may support either one, or both of these capabilities.

Protection Domain: The protection domain extends to the scope of the monitored sub-system, about
which the monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to
detect and alleviate a fault before activation, the protection domain implicitly extends to other sub-systems
that are interfaced to the monitored sub-system.

Resulting Context: The Fault Treatment pattern requires the designer to identify parameters that
indicate the presence of faults. The system design must include a monitoring sub-system, which introduces
design complexity in the overall system design. When the monitoring sub-system is extrinsic to the mon-
itored sub-system, the design effort may be simplified, and the interference between the sub-systems may
be kept minimal. However, when the monitoring sub-system is intrinsic to the design of the monitored sub-
system, the complexity of the design process increases, as well as the interaction between the sub-systems.

Examples: Various hardware-based solutions for fault detection observe the attributes of a system, such
as thermal state, timing violations in order to determine the presence of a defect in the behavior of the system
that may potentially cause an error or failure. Similarly, software-based solutions detect the anomalies in
the behavior of a system’s data or control flow attributes to determine the presence of a fault.

Rationale: The key benefit of incorporating fault mitigation patterns in a design, or deploying it during
system operation is to preemptively recognize faults in the system, before they are activated and result in
errors or partial/complete failures of the subsystem. The preventive actions avoid the need for expensive
recovery and/or compensation actions.

Related Patterns: The recovery and compensation patterns are complementary to the fault treatment
patterns. Those patterns are necessary only the fault has been activated and an error or failure state exists in
the system.

Known Uses:

• Processor chips used in HPC systems contain thermal sensors that detect anomalous thermal con-
ditions in the processor cores. When the temperature reaches a preset level, the sensor trips and
processor execution is halted to prevent failure of the chip.

• Software-based heartbeat monitoring for liveness checking of MPI processes enables detection of
faults in a processor rank, before it may activate to result in failure of the MPI communicator.

• The Cray RAS and Management System (CRMS) supports real-time fault monitoring of the status
of Cray XT series system components, including the cabinets, blades, CPUs, Seastar processors and
Seastar links.

7.2.2 Recovery Pattern

Name: Recovery Pattern

Problem: The Recovery pattern solves the problem of errors in the system, or failure of the system
leading to catastrophic failure, which results in fail-stop behavior. In an HPC environment, the occurrence
of errors or failures in the system results in catastrophic crashes, or incorrect results.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is
defined in terms of the input state to the system and the execution steps completed since system initialization.
The system must also have the following characteristics:

26

• The error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit error/failure detection.

• The system has well-defined intervals that enables the pattern to transition the system to a known
correct interval in response to an error/failure.

• The system is capable of compartmentalizing its state that is accurately representative of the progress
of the system since initialization at the time such state is captured.

Forces:

• The pattern requires stable storage to capture system state, which increase overhead in terms of re-
sources required by the system.

• The process of compartmentalizing and capturing system state interferes with system operation. The
error/failure-free overhead penalty must be minimized.

• The amount of state captured during each creation of a recovery point incurs space and time overheads.

• The frequency of creation of system state snapshots determines overhead: more frequent creation of
recovery points increases system execution time, but reduces amount of lost work upon occurrence of
an error/failure.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The interval between recovery from consecutive errors/failures must be less than the interval to create
a stable recovery point from the present state of the system to enable system to make forward progress.

Solution: The solution suggested by the Recovery pattern is based on the creation of snapshots of the
system state and maintenance of these checkpoints on a stable storage system. Upon detection of an error
or a failure, the checkpoints are used to recreate last known error/failure-free state of the system. Based on
a temporal view of the system’s progress, the error recovery may be either forward or backward.

Capability: The Recovery pattern periodically preserves the essential aspects of the system state that
may be subsequently used to resume operation from a known stable and correct version. The pattern handles
an error or a failure by substituting an error-free state in place of the erroneous state. The pattern enables a
system to tolerate errors/failures by resuming operation from a stable checkpointed version of the system that
is free of the effects of the error/failure. The solution offered by this pattern is not dependent on the precise
semantics of the error/failure propagation. The pattern does not offer error/failure detection capabilities.

Protection Domain: The protection domain for a Recovery pattern is determined by the extent of state
that is captured during checkpoint operation, which accurately representatives the complete execution of the
system. The broader the scope of the system state that is preserved, the larger is the scope of the system
state that may be protected from an error/failure event.

Resulting Context: With a recovery pattern, a system is capable of tolerating failures by substitution
of erroneous/failed system state to a known previous stable state (backward recovery), or to an inferred
future stable state (forward recovery). The frequency of creation of checkpoints determines the overhead to
system operation; frequent checkpointing incurs proportionally greater overheads during error/failure-free
operation, but reduces the amount of lost work when an error/failure event does occur. The latency of saving
and restoring state influence the overhead during error/failure-free operation and the overhead of recovering
from an error/failure respectively.

Examples:

27

• Various checkpoint and restart libraries enable HPC applications to capture program state and commit
the checkpoint files to parallel file systems. C/R capabilities in the OS such as BLCR [28] and libckpt
[66] enables checkpointing the process state.

Rationale: Since the solution offered by this pattern is not dependent on either the type of error/failure,
or the precise semantics of the error/failure propagation, the design effort and complexity in using this
pattern in any system design in low.

Related Patterns: The Compensation pattern is complementary to the recovery pattern, although they
both seek to create conditions to recreate correct state. The key difference between the Recovery and the
Compensation patterns is the method used to maintain any additional state that is used for error/failure
processing. While the compensation pattern use replication of the system, a recovery pattern relies on
committing error/failure-free versions of the system to stable storage.

Known Uses:

• The Berkeley Labs C/R library (BLCR) [28] is an extension to the Linux OS that supports creation
checkpoint & restart capabilities for Linux processes and also provides an interface for programmers
to checkpoint application program state.

7.2.3 Compensation Pattern

Name: Compensation Pattern

Problem: The Compensation pattern solves the problem of errors in the system, or failure of the system
leading to catastrophic failure, which results in fail-stop behavior. In an HPC environment, the occurrence
of errors or failures in the system results in catastrophic crashes, or incorrect results.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is
defined in terms of the input state to the system and the execution steps completed since system initialization.
The system must also have the following characteristics:

• The error or failure in the system that the pattern handles must be detected, although the pattern may
offer implicit error/failure detection.

• The error/failure must not be in the inputs provided to the system.

Forces:

• The pattern introduces penalty in terms of time (increase in execution time), or space (increase in
resources required) independent of whether an errors or failure occurs.

• The error/failure-free overhead penalty must be minimized.

Solution: The Compensation pattern is based on creation of a group of system replicas. The replicas
are functionally identical and each replica receives identical inputs.

Capability: The pattern provides error/failure detection and correction, depending on the level of repli-
cation. The replicas of the system permit the system to continue operation despite the occurrence of a
fail-stop failure by substituting a failed system replica with another. In order to recover from 2N failures in
the system, there must be 2N + 1 distinct replicas. For the detection and correction errors, the outputs of the
replicas of the system are compared by a monitor sub-system. When there are at least two replicas of the
system, the monitor system compares the outputs to determine the presence of an error or failure in either
replica. When the number of replicas is greater than two, and an odd number, the monitor performs majority

28

voting on the outputs produced by the replicas, which enables incorrect outputs from replicas in error/failed
state to be filtered out.

Protection Domain: The protection domain of the Compensation pattern extends to the scope of the
system that is replicated.

Resulting Context: The pattern requires the replication of the system and its inputs. The design effort
and complexity of replication of the system depends on the replication method. A naive replication requires
low design effort; the design of functionally identical but independently designed versions of the replicas
requires higher design effort. The preparedness of the replica during system operation to compensate for
the error/failure state determines the level of overhead: The replica may active or passive; the replica state
may be classified hot, warm and cold are the forms of replication configurations based on the levels of
intervention required for compensating for an error/failure.

Examples:

• Dual-modular redundancy for error detection; triple-modular redundancy for error detection and cor-
rection

• Redundant information for compensation of data errors

Rationale: The Compensation patterns enable systems to tolerate errors/failures by relying on the
replicated versions of the system to substitute a failed system, or to infer and compensate for errors/failures
by comparing the outputs of the replicas.

Related Patterns: The Recovery pattern is complementary to the compensation pattern, although they
both seek to create conditions to recreate correct state. The key difference between the Recovery and the
Compensation patterns is the method used to maintain any additional state that is used for error/failure
processing. Unlike Recovery pattern, which uses a temporally forward or backward error/failure-free ver-
sion of the system, a compensation pattern utilizes some form of redundancy to tolerate errors/failures in the
system.

Known Uses:

• Production HPC systems use memory modules that contain SECDED ECC, which maintain redundant
bits per memory line. These redundant bits compensate for bit flip errors within the memory lines and
enables detection and correction of certain errors.

• The MR-MPI is an implementation of the MPI that transparently replicates and detects errors in MPI
messages through active comparison between redundant execution instances of an application.

7.3 Architectural Patterns

7.3.1 Fault Diagnosis Pattern

Pattern Name: Fault Diagnosis Pattern

Problem: The Fault Diagnosis pattern solves the problem of identifying the presence of a defect or
anomaly in the system. A fault in the system has the potential to activate, leading to the occurrence of an
error or a failure.

Context: The pattern applies to a system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring sub-system to discover the presence
of anomalies in the behavior of a monitored sub-system.

29

• The interaction between the monitored and monitoring sub-systems is bounded in terms of time.

• The monitoring sub-system has the capability to analyze the behavior of the monitored sub-system.

Forces:

• The interactions of the monitoring and monitored sub-systems may interfere with the operation of the
monitored sub-system. The frequency of these interactions must be bounded.

• The time interval for the monitoring sub-system to gather data about the monitored sub-system and
infer the presence of an anomaly or a defect incurs overhead to the operation of the monitored sub-
system.

Solution: The Fault Diagnosis pattern contains a monitoring sub-system that observes specific pa-
rameters of a monitored sub-system. The monitoring sub-system contains a range of acceptable values for
the observed parameter to establish the notion of normal operation of the monitored sub-system. The moni-
toring sub-system observes deviations in the parameters to determine the presence of a fault, and the location
of the fault.

Capability: The pattern provides a method that attempts to recognize the presence of an anomaly or a
defect within a system and identifies the fault location and type.

Protection Domain: The protection domain extends to the scope of the monitored sub-system, about
which the monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to
detect and alleviate a fault before activation, the protection domain implicitly extends to other sub-systems
that are interfaced to the monitored sub-system.

Resulting Context: The Fault Diagnosis pattern requires the designer to identify parameters that
indicate the presence of faults. The system design must include a monitoring sub-system, which introduces
design complexity in the overall system design. When the monitoring sub-system is extrinsic to the mon-
itored sub-system, the design effort may be simplified, and the interference between the sub-systems may
be kept minimal. However, when the monitoring sub-system is intrinsic to the design of the monitored sub-
system, the complexity of the design process increases, as well as the interaction between the sub-systems.

Rationale: The fault diagnosis patterns enable error/failure avoidance by detecting an anomaly in the
system before it results in an error/failure.

Examples: Various hardware faults are detected through analysis of software symptoms, such as obser-
vation of latency of operations.

Related Patterns: In contrast to the error/detection recovery and compensation patterns, the fault diag-
nosis pattern is a passive pattern that observes system behavior and infers the presence of a fault based on
the deviation from specified normal behavior of the system.

Known Uses:

• SMART (Self-Monitoring and Reporting Technology) is used in disk systems.

7.3.2 Reconfiguration Pattern

Pattern Name: Reconfiguration Pattern

Problem: The Reconfiguration pattern prevents a fault, error or failure in the system state affecting
the correct operation of a system.

Context: The pattern applies to a system that has the following characteristics:

30

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

Forces:

• The system must be able to be partitioned into a sub-set of sub-systems that is functionally equivalent
to the fault, error, or failure-free version of the system.

• The reconfiguration may require the system to operate in degraded state using fewer than N sub-
systems. The performance degradation of the system must be minimized.

Solution: The Reconfiguration pattern is based on isolation of the part of a system affected by a fault,
error or failure, excluding the affected sub-system from interaction with other sub-systems, and restructuring
the system to remain functionally equivalent to the system before the occurrence of the fault, error or failure
event.

Capability: The pattern enables systems to tolerate the impact of a fault, error or failure by enabling the
system to continue operation by preventing the affected part of the system from affecting the correctness of
the system.

Protection Domain: The protection domain of the Reconfiguration pattern spans the part of system
whose state may be reconfigured, and yet is able to continue operating in a functionally equivalent operating
state.

Resulting Context:

• The reconfiguration of the system may result in the operation of the system in degraded condition.
This incurs additional time overhead to the system.

• The pattern introduces additional design complexity since the system must remain functionally correct
in multiple configurations.

Examples:

• Cluster management systems dynamically adapt the cluster configuration based on the health of vari-
ous compute nodes in the system.

Rationale: The Reconfiguration pattern enables a system to tolerate to a fault, error or failure by
adapting itself to the impact of the event and continuing to operate. The pattern enables systems to make
forward progress by relying on the reconfigured version of the system.

Related Patterns: Like the Checkpoint-Recovery pattern, the Reconfiguration pattern is also sup-
ports recovery of the system from the impact of a fault, error or failure event. While the Checkpoint-Recovery
pattern maintains snapshots of the system to stable storage to perform forward or backward recovery, the
Reconfiguration pattern requires the system to adapt itself to isolate the impact of the event.

Known Uses: The ULFM implementation of the MPI interface [8] supports enables parallel applica-
tions to survive process failures during application execution by isolating the failed process, establishing
agreement between the remaining processes in a MPI communicator and reconfiguring the communicator
to include the remaining process ranks.

31

7.3.3 Checkpoint Recovery Pattern

Pattern Name: Checkpoint Recovery Pattern

Problem: The Checkpoint-Recovery pattern solves the problem of errors in the system, or failure of
the system leading to catastrophic failure, which results in fail-stop behavior.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is
defined in terms of the input state to the system and the execution steps completed since system initialization.
The system must also have the following characteristics:

• The error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit error/failure detection.

• The error or failure that the pattern handles must be transient, i.e., the error/failure must not repeatedly
occur post-recovery

• The system has well-defined intervals that enables the pattern to transition the system to a known
correct interval in response to an error/failure.

• The system is capable of compartmentalizing its state that is accurately representative of the progress
of the system since initialization at the time such state is captured.

Forces:

• The pattern requires stable storage to capture system state, which increase overhead in terms of re-
sources required by the system.

• The process of compartmentalizing and capturing system state interferes with system operation. The
error/failure-free overhead penalty must be minimized.

• The amount of state captured during each creation of a recovery point incurs space and time overheads.

• The frequency of creation of system state snapshots determines overhead: more frequent creation of
recovery points increases system execution time, but reduces amount of lost work upon occurrence of
an error/failure.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The interval between recovery from consecutive errors/failures must be less than the interval to create
a stable recovery point from the present state of the system to enable system to make forward progress.

Solution: The solution suggested by the Checkpoint-Recovery pattern is based on the creation of
snapshots of the system state and maintenance of these checkpoints on a stable storage system. Upon
detection of an error or a failure, the checkpoints are used to recreate last known error/failure-free state of
the system. Based on a temporal view of the system’s progress, the error recovery may be either forward or
backward.

Capability: The Checkpoint-Recovery pattern periodically preserves the essential aspects of the sys-
tem state that may be subsequently used to resume operation from a known stable and correct version. The
pattern handles an error or a failure by substituting an error-free state in place of the erroneous state. The
pattern enables a system to tolerate errors/failures by resuming operation from a stable checkpointed ver-
sion of the system that is free of the effects of the error/failure. The solution offered by this pattern is not
dependent on the precise semantics of the error/failure propagation. The pattern does not offer error/failure
detection capabilities.

Protection Domain: The protection domain for a Checkpoint-Recovery pattern is determined by the
extent of state that is captured during checkpoint operation, which accurately representatives the complete

32

execution of the system. The broader the scope of the system state that is preserved, the larger is the scope
of the system state that may be protected from an error/failure event.

Resulting Context: With a recovery pattern, a system is capable of tolerating failures by substitution
of erroneous/failed system state to a known previous stable state (backward recovery), or to an inferred
future stable state (forward recovery). The frequency of creation of checkpoints determines the overhead to
system operation; frequent checkpointing incurs proportionally greater overheads during error/failure-free
operation, but reduces the amount of lost work when an error/failure event does occur. The latency of saving
and restoring state influence the overhead during error/failure-free operation and the overhead of recovering
from an error/failure respectively.

Rationale: Since the solution offered by this pattern is not dependent on either the type of error/failure,
or the precise semantics of the error/failure propagation, the design effort and complexity in using this
pattern in any system design in low.

Examples: Application and system-level libraries that provide interfaces for creating checkpoints and
restoring state are examples of the checkpoint-recovery pattern.

Related Patterns: The State Diversity and Design Diversity patterns are complementary to the
Checkpoint-Recovery pattern, although they both seek to create conditions to recreate correct state. The
key difference between these classes of patterns is the method used to maintain any additional state that
is used for error/failure processing. While the diversity patterns use replication of the system, a recovery
pattern relies on committing error/failure-free versions of the system to stable storage.

Known Uses: In order to tolerate fail-stop errors, current production-quality technologies rely on the
classic rollback recovery approach using checkpoint restart (application-level or system-level) such BLCR,
SCR.

7.3.4 State Diversity Pattern

Pattern Name: State Diversity Pattern

Problem: The State Diversity pattern solves the problem of detecting and correcting errors or fail-
ures in the system state.

Context: The pattern applies to a system that has the following characteristics:

• The system must be deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern introduces penalty in terms of time (increase in execution time), or space (increase in
resources required) independent of whether an errors or failure occurs.

• The error/failure-free overhead penalty introduced by the replication of state must be minimized.

Solution: The State Diversity pattern creates a group of N replicas of a system’s state. The re-
dundancy may include replication of the system’s operation and/or the inputs to the system. Each of the N
copies of the system state exist simultaneously. The redundant state versions of the systems are provided
with the identical inputs, and their respective outputs are compared in order to detect and potentially correct
the impact of an error or a failure in either replica of the systems.

Capability: The availability of replicated versions of the system state enable the following capabilities:

33

• Fail-over, which entails substitution of a replica in error or failed state with another replica that is
error/failure-free.

• Comparison, which entails observing the likeness of each replica’s outputs as means to detect the
presence of an error or failure in either replica.

• Majority voting on the outputs produced by each replica system enables the detection of errors and
failures, and filtering out the outputs that fall outside the majority.

Protection Domain: The protection domain of the pattern extends to the scope of the system state that
is replicated.

Resulting Context: The design effort and complexity of replication of the system state requires low
design effort since the replication entails creation of identical copies of the system state.

Rationale: The State Diversity patterns enable systems to tolerate errors/failures by relying on
the replicated versions of the system state to substitute a failed system, or to infer and compensate for
errors/failures by comparing the outputs of the replicas.

Examples:

• Dual-modular redundancy for error detection; triple-modular redundancy for error detection and cor-
rection

• Redundant information for compensation of data errors

Related Patterns: The State Diversity and Design Diversity patterns are based on inclusion of
redundancy in order to compensate for errors or failures. The diversity in the State Diversity pattern
stems from the replication of the system’s state unlike the Design Diversity pattern, which uses inde-
pendently implemented versions of the system’s design to tolerate errors or failures.

Known Uses: The use of ECC memory and Chipkill in production HPC systems are known uses of the
State Diversity pattern.

7.3.5 Design Diversity Pattern

Pattern Name: Design Diversity Pattern

Problem: The Design Diversity pattern solves the problem of detecting and correcting errors or
failures in the behavior of the system that may occur due design faults in the system.

Context: The pattern applies to a system that has the following characteristics:

• The system has a well-defined specification for which multiple implementation variants may be de-
signed.

• There is an implicit assumption of independence of between multiple variants of the implementation.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern requires distinct implementations of the same design specification, which are created by
different individuals or teams.

• The pattern increases the system complexity due to the need additional design and verification effort
required to create multiple implementations.

34

• The error/failure-free overhead penalty due to disparity in the implementation variants must be mini-
mized.

Solution: The pattern enables systems to tolerate design faults in that may arise out of and incorrect
interpretation of the specifications, or due to mistakes during implementation. The design diversity pattern
entails partitioning the system into N replica sub-systems that are variants of a system design. These replicas
are developed separately but are designed to a common specification. These design variants are applied in
a time or space redundant manner. The redundant systems are provided with the identical inputs and their
respective outputs are compared in order to detect and potentially correct the impact of an error or a failure
in either replica of the systems.

Capability: The pattern relies on independently created, but functionally equivalent sub-system versions
of a system specification. Since the sub-systems operate in parallel, in a time or space redundant manner,
they are able to account for errors or failures caused by design flaws.

Protection Domain: The protection domain extends to the scope of the system that is described by the
design specification, of which multiple implementation variants are created.

Resulting Context: Although the primary intent of the Design Diversity pattern is to enable systems
to tolerate errors and failures due to design faults, the pattern also supports resilience transient errors/failures.
Since the replica sub-systems are functionally identical and are deployed in a redundant manner, the likeli-
hood that each replica is affected by the same transient error or failure is small.

Rationale: The intent behind applying this pattern is to eliminate the impact of human error during the
implementation of a system. Due the low likelihood that different individuals or teams introduce identical
bugs in their respective implementations, the pattern enables compensating for errors or failures caused by
a bug in any one implementation of the same design.

Examples: The concept of N-modular (NMR) programming is used in developing software develop-
ment in which variants of a software developed by different teams, but to a common specification. These
implementations may be applied in a time or space redundant manner to detect and correct errors or failures
that are caused by bugs in the implementation.

Related Patterns: The Design Diversity and State Diversity patterns are based on inclusion of
redundancy in order to compensate for errors or failures. In contrast to the State Diversity pattern,
which replicates the system state, the Design Diversity pattern typically uses multiple versions of the
system that are only functionally equivalent.

Known Uses: Applications that require high precision floating point arithmetic, particularly application
that require multiple-precision floating-point computations use multiple alternative compiler toolchains and
library implementations that are functionally equivalent to ensure high precision in the computations.

7.4 Structural Patterns

7.4.1 Monitoring Pattern

Pattern Name: Monitoring Pattern

Problem: The Monitoring pattern solves the problem of analyzing the behavior of a system that indi-
cates the immediate presence of a defect or anomaly in the system that has the potential to cause errors or
failures in the system.

Context: The pattern applies to a system that has the following characteristics:

35

• The system has well-defined parameters that enable a monitoring sub-system to discover the presence
of anomalies in the behavior of a monitored sub-system.

• The interaction between the monitored and monitoring sub-systems is bounded in terms of time.

• The monitoring sub-system has the capability to readily analyze the behavior of the monitored sub-
system in order to identify anomalous behavior.

Forces:

• The interactions of the monitoring and monitored sub-systems may interfere with the operation of the
monitored sub-system. The frequency of these interactions must be bounded.

• The time interval for the monitoring sub-system to gather data about the monitored sub-system and
infer the presence of an anomaly or a defect incurs overhead to the operation of the monitored sub-
system.

Solution: The Monitoring pattern contains a monitoring sub-system that observes specific parameters
of a monitored sub-system. The monitoring sub-system contains a range of acceptable values for the ob-
served parameter to establish the notion of normal operation of the monitored sub-system. The monitoring
sub-system observes deviations in the parameters and the location of the anomaly to determine the root
cause, type and precise location of a fault.

Capability: The pattern provides a method that attempts to recognize the presence of an anomaly or a
defect within a system and identifies the fault location and type.

Protection Domain: The protection domain extends to the scope of the monitored sub-system, about
which the monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to
detect and alleviate a fault before activation, the protection domain implicitly extends to other sub-systems
that are interfaced to the monitored sub-system.

Resulting Context: The Monitoring pattern requires the designer to identify parameters that indicate
the presence of faults. The system design must include a monitoring sub-system, which introduces design
complexity in the overall system design. When the monitoring sub-system is extrinsic to the monitored
sub-system, the design effort may be simplified, and the interference between the sub-systems may be kept
minimal. However, when the monitoring sub-system is intrinsic to the design of the monitored sub-system,
the complexity of the design process increases, as well as the interaction between the sub-systems.

Rationale: The pattern enables the monitored sub-system to determine the presence of a fault and to
analyze its root cause and location. The pattern enables the system to take precise corrective actions to
prevent the activation of the fault to cause an error or failure event in the system.

Examples: Various hardware and software systems provide the capabilities to observe system behavior
for the purpose of inferring the presence of faults, such as online self-tests.

Related Patterns: The structure of the Monitoring pattern is closely related to the Prediction pattern
since they both contain monitoring and monitored sub-system entities. The key difference between these
patterns is the amount of temporal information used by the patterns to assess the presence of a defect or
anomaly in the system. The Monitoring pattern uses presently observed system parameters in contrast to
the Prediction pattern, which uses historical trend information to forecast future fault events.

Known Uses: The Intelligent Platform Management Interface (IPMI) provides message-based interface
to collect sensors readings for health monitoring, including the data on temperature, fan speed, and voltage
for the purpose of monitoring the hardware components in the system.

36

7.4.2 Prediction Pattern

Pattern Name: Prediction Pattern

Problem: The Prediction pattern solves the problem of identifying patterns of behavior that indicate
the potential for future errors or failures in the system.

Context: The pattern applies to a system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring sub-system to discover the presence
of anomalies in the behavior of a monitored sub-system.

• The interaction between the monitored and monitoring sub-systems is bounded in terms of time.

• The monitoring sub-system has the capability to store historical data about the behavior of the moni-
tored sub-system in order to analyze trends in fault occurrences.

Forces:

• The interactions of the monitoring and monitored sub-systems may interfere with the operation of the
monitored sub-system. The frequency of these interactions must be bounded.

• The time interval for the monitoring sub-system to gather data about the monitored sub-system and
infer the presence of an anomaly or a defect incurs overhead to the operation of the monitored sub-
system.

Solution: The Prediction pattern contains a monitoring sub-system that observes specific parameters
of a monitored sub-system. The monitoring sub-system contains storage of the history of observed parameter
values and fault events in the monitored sub-system. The monitoring sub-system uses past experiences of
correlating the parameter values and fault occurrences to establish trends. These trends are used to predict
occurrence of future faults based on observed deviations in the parameters.

Capability: The pattern provides a method that anticipates the occurrence of fault events based on pat-
terns of behavior of the monitored sub-system that attempts to recognize the potential for future occurrences
of an anomaly or a defect within a system.

Protection Domain: The protection domain extends to the scope of the monitored sub-system, about
which the monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to
detect and alleviate a fault before activation, the protection domain implicitly extends to other sub-systems
that are interfaced to the monitored sub-system.

Resulting Context: The Prediction pattern requires the designer to identify parameters that may
be used to forecast the occurrence of fault events. The system design must include a monitoring sub-
system, which introduces design complexity in the overall system design. When the monitoring sub-system
is extrinsic to the monitored sub-system, the design effort may be simplified, and the interference between
the sub-systems may be kept minimal. However, when the monitoring sub-system is intrinsic to the design of
the monitored sub-system, the complexity of the design process increases, as well as the interaction between
the sub-systems.

Rationale: The pattern enables the monitored sub-system to use historical trends in system behavior
before and during fault events to predict future fault events. If future fault events are predicted with high
precision, then avoidance or preventive actions may be used.

Examples: Hardware and software systems use correlations between past behaviors to predict the future
occurrences of fault events, such as a memory device tends to show, for a given address, multiple repetitive
correctable errors before showing an uncorrectable error.

37

Related Patterns: The structure of the Prediction pattern is closely related to the Monitoring pattern
since they both contain monitoring and monitored sub-system entities. The key difference between these
patterns is the amount of temporal information used by the patterns to assess the presence of a defect or
anomaly in the system. The Prediction pattern uses historical trend information to forecast future fault
events in contrast to the Monitoring pattern, which uses presently observed system parameters.

Known Uses: IPMI compliant servers have a System Event Log (SEL) which is a centralized, nonvolatile
repository for all events generated. The trends in the SEL are used to make predictions of future events in
the system.

7.4.3 Restructure Pattern

Pattern Name: Restructure Pattern

Problem: The Restructure pattern solves the problem of a fault, error, or failure event affecting the
correct operation of a system.

Context: The pattern applies to a system that has the following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

Forces:

• The system must be able to be partitioned into a sub-set of sub-systems that is functionally equivalent
to the fault, error, or failure-free version of the system.

• The reconfiguration may require the system to operate in degraded state using fewer than N sub-
systems. The performance degradation of the system must be minimized.

Solution: The Restructure pattern is based on modifying the configuration between the N inter-
connected sub-systems to isolate the sub-system affected by a fault, error or failure. This reconfiguration
excludes the affected sub-system from interaction with other sub-systems. The restructured system includes
N-1 sub-systems, and yet seeks to remain functionally equivalent to the system before the occurrence of the
fault, error or failure event.

Capability: The pattern enables systems to tolerate the impact of a fault, error or failure by enabling the
system to continue operation by preventing the affected part of the system from affecting the correctness of
the system.

Protection Domain: The protection domain of the Restructure pattern spans the part of system whose
state may be reconfigured, and yet is able to continue operating in a functionally equivalent operating state.

Resulting Context:

• The reconfiguration of the system may result in the operation of the system in degraded condition.
This incurs additional time overhead to the system.

• The pattern introduces additional design complexity since the system must remain functionally correct
in multiple configurations.

38

Rationale: The Restructure pattern enables a system to tolerate to a fault, error or failure by adapting
itself to the impact of the event and continuing to operate. The pattern enables systems to make forward
progress by relying on the reconfigured version of the system.

Examples: Dynamic page retirement schemes are an example of the restructure pattern, in which pages
that have an history of frequent memory errors are removed from the pool of available pages.

Related Patterns: The remaining reconfiguration patterns - the rejuvenation and reinitialization patterns
- are closely related since they all seek to isolate the error/failed state of the system and prevent it from
affecting the remaining error/failure-free part of the system.

Known Uses: Chipkill memory provides the capabilities to reduces the amount of available system
memory when a DIMM experiences an escalated sequence of ECC memory errors. The reconfiguration
enables HPC system operation to continue with degraded performance until the defective memory module
is replaced.

7.4.4 Rejuvenation Pattern

Pattern Name: Rejuvenation Pattern

Problem: The Rejuvenation pattern solves the problem of a fault, error, or failure event affecting the
correct operation of a system.

Context: The pattern applies to a system that has the following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

• The fault, error, or failure must not be persistent.

Forces:

• The system must be able to be partitioned into a sub-set of sub-systems that is functionally equivalent
to the fault, error, or failure-free version of the system.

• The rejuvenation is often a slow process that requires substantial additional overhead to identify the
part of the system affected by the fault, error or failure, and to selectively reinitialize the system, in
addition to overhead incurred due to any lost work.

Solution: The Rejuvenation pattern requires isolating the specific part of the system affected by an
error/failure and restoring or recreating the affected state such that the system may resume normal operation.

Capability: The pattern requires the system operation to be halted and identifying the part of the system
affected by the error/failure. Only the affected part of the system is restored to ensure correct operation of
the system.

Protection Domain: The protection domain of the Restructure pattern spans the part of system whose
state may be reconfigured, and yet is able to continue operating in a functionally equivalent operating state.

Resulting Context:

• The rejuvenation of the system expects the result in the operation of the system in degraded condition.
This incurs additional time overhead to the system.

39

• The overhead in terms of time to identify the specific state affected by the fault, error or failure, and
restore the it to known correct state may be considerable.

Rationale: The Rejuvenation pattern enables a system to tolerate to a fault, error or failure by restoring
the affect part of the system to known state that will ensure correct operation. Such targeted recovery
prevents complete reset, or restructuring the system, both of which carry considerable overhead to the system
operation.

Examples: The targeted recovery of data structures in system software, such as kernel modules, permits
recovery without the need to reinitialize the complete system.

Related Patterns: The remaining reconfiguration patterns - the reinitialization and restructure patterns
- are closely related since they all seek to isolate the error/failed state of the system and prevent it from
affecting the remaining error/failure-free part of the system.

Known Uses: Algorithm-based recovery methods for data corruptions in data structures that are used in
numerical analysis problems use interpolation of neighboring data values to rejuvenate a data structure in
error state.

7.4.5 Reinitialization Pattern

Pattern Name: Reinitialization Pattern

Problem: The Reinitialization pattern solves the problem of a fault, error, or failure event affecting
the correct operation of a system.

Context: The pattern applies to a system that has the following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

• The fault, error, or failure must not be persistent.

Forces:

• The system must be able to be partitioned into a sub-set of sub-systems that is functionally equivalent
to the fault, error, or failure-free version of the system.

• The reinitialization is often a slow process that requires substantial additional overhead to reinitialize
the system, in addition to overhead incurred due to lost work.

Solution: To recover the error/failure, the pattern restores the system to its initial state. This causes sys-
tem operation to restart and a pristine reset of state, which implicitly cleans up the effects of the error/failure.

Capability: The Reinitialization pattern performs a reset of the system state to restore pristine state
before system operation is resumed.

Protection Domain: Since the reinitialization causes reset of the system state, the protection domain of
the Reinitialization pattern spans the complete system.

Resulting Context: The restoral of the system state to the initial state causes lost work, but guarantees
the impact of the fault/error/failure is completely removed before service is resumed.

40

Rationale: The Reinitialization pattern is applied in conditions in which the recovery from the
fault/error/failure instance is deemed impossible, or excessively expensive in terms of overhead to perfor-
mance.

Examples: A system reboot is an instance of the Reinitialization pattern.

Related Patterns: The remaining reconfiguration patterns - the rejuvenation and restructure patterns - are
closely related since they all seek to isolate the error/failed state of the system and prevent it from affecting
the remaining error/failure-free part of the system.

Known Uses: Various cluster management software systems enable malfunctioning nodes in the cluster
to be reset by initiating reboot sequence for a specific node without disrupting the remaining nodes in the
system.

7.4.6 Roll-back Pattern

Pattern Name: Roll-back Pattern

Problem: The Roll-back pattern solves the problem of errors in the system, or failure of the system
leading to catastrophic failure, which results in fail-stop behavior.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is
defined in terms of the input state to the system and the execution steps completed since system initialization.
The system must also have the following characteristics:

• The error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit error/failure detection.

• The error or failure that the pattern handles must be transient, i.e., the error/failure must not repeatedly
occur post-recovery

• The system has well-defined intervals that enables the pattern to transition the system to a known
correct interval in response to an error/failure.

• The system is capable of compartmentalizing its state that is accurately representative of the progress
of the system since initialization at the time such state is captured.

Forces:

• The pattern requires stable storage to capture system state, which increase overhead in terms of re-
sources required by the system.

• The process of compartmentalizing and capturing system state interferes with system operation. The
error/failure-free overhead penalty must be minimized.

• The amount of state captured during each creation of a recovery point incurs space and time overheads.

• The frequency of creation of system state snapshots determines overhead: more frequent creation of
recovery points increases system execution time, but reduces amount of lost work upon occurrence of
an error/failure.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The interval between recovery from consecutive errors/failures must be less than the interval to create
a stable recovery point from the present state of the system to enable system to make forward progress.

41

Solution: The solution suggested by the Roll-back pattern is based on the creation of snapshots of the
system state and maintenance of these checkpoints on a stable storage system. Upon detection of an error or
a failure, the checkpoints are used to recreate last known error/failure-free state of the system. Based on a
temporal view of the system’s progress, the error/failure recovery is backward, i.e., the restored system state
is a previous correct state of the system.

Capability: The Roll-back pattern enables the system to recovery and resume operation from the
point of occurrence of an error or a failure. However, the recovery of the system state typically leverages
previously captured checkpointed state and repeats operations from the last stable known system state.

Protection Domain: The protection domain for a Roll-back pattern is determined by the extent of state
that is captured during checkpoint operation, which accurately representatives the complete execution of the
system. The broader the scope of the system state that is preserved, the larger is the scope of the system
state that may be protected from an error/failure event.

Resulting Context: The time overhead introduced by the application of the Roll-back pattern during
error-free operation depends on the frequency of taking checkpoints. For recovery, the amount of work lost
also correlates with the frequency of the checkpoint operations. The worst-case scenario for recovery using
this pattern is rolling-back to the start-up of the system.

Rationale: The solution offered by this pattern is not dependent on either the type of error/failure, or the
precise semantics of the error/failure propagation, the design effort and complexity in using this pattern in
any system design in low.

Examples: The classic rollback recovery approach is implemented using various application-level or
system-level checkpoint and restart frameworks.

Related Patterns: The roll-forward pattern is closely related to the roll-back pattern. The key difference
between the two patterns is the temporal relation between the recovered state and the error/failure state. In
the roll-back pattern the recovered state is based on a previous stable version of the system state.

Known Uses:

• System-level checkpoint used in production HPC systems uses BLCR. Recent research in this domain
focuses on the integration of incremental checkpointing in BLCR

7.4.7 Roll-forward Pattern

Pattern Name: Roll-forward Pattern

Problem: The Roll-forward pattern solves the problem of errors in the system, or failure of the system
leading to catastrophic failure, which results in fail-stop behavior.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is
defined in terms of the input state to the system and the execution steps completed since system initialization.
The system must also have the following characteristics:

• The error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit error/failure detection.

• The error or failure that the pattern handles must be transient, i.e., the error/failure must not repeatedly
occur post-recovery

• The system has well-defined intervals that enables the pattern to transition the system to a known
correct interval in response to an error/failure.

42

• The system is capable of compartmentalizing its state that is accurately representative of the progress
of the system since initialization at the time such state is captured.

• The time to recover from an error or a failure must be minimized.

Forces:

• The pattern requires stable storage to capture system state, which increase overhead in terms of re-
sources required by the system.

• The process of compartmentalizing and capturing system state interferes with system operation. The
error/failure-free overhead penalty must be minimized.

• The amount of state captured during each creation of a recovery point incurs space and time overheads.

• The frequency of creation of system state snapshots determines overhead: more frequent creation of
recovery points increases system execution time, but reduces amount of lost work upon occurrence of
an error/failure.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The interval between recovery from consecutive errors/failures must be less than the interval to create
a stable recovery point from the present state of the system to enable system to make forward progress.

Solution: The solution suggested by the Roll-forward pattern is based on the creation of snapshots
of the system state and maintenance of these checkpoints on a stable storage system. Upon detection of
an error or a failure, the checkpoints are used to create a new correct error/failure-free state of the system,
which enables the system to move forward.

Capability: The pattern enables forward recovery, which entails steps that may involve access to check-
points from previous stable checkpoints or external state information to recover from the impact of the
error/failure. However, based on a temporal view of the system’s progress, the error/failure recovery is for-
ward, i.e., the restored system state enables forward progress from the point of occurrence of the error/failure
in the system.

Protection Domain: The protection domain for a Roll-forward pattern is determined by the extent of
state that is captured during checkpoint operation, which accurately representatives the complete execution
of the system. The broader the scope of the system state that is preserved, the larger is the scope of the
system state that may be protected from an error/failure event.

Resulting Context: The Roll-forward pattern enables the system to recovery and resume operation
from the point of occurrence of an error or a failure. However, the recovery of the system state may leverage
previously captured checkpointed state but does not require the system to repeat operations from the last
stable checkpoint.

Rationale: The solution offered by this pattern is not dependent on either the type of error/failure, or the
precise semantics of the error/failure propagation, the design effort and complexity in using this pattern in
any system design in low.

Examples: Applications that contain some form of algorithmic fault tolerance are capable of forward
recovery provided an error keeps the application process alive. The application is able to compensate for the
presence of an error and resume operation without the need to roll-back execution.

Related Patterns: The roll-back pattern is closely related to the roll-forward pattern. The key difference
between the two patterns is the temporal relation between the recovered state and the error/failure state. In
the roll-forward pattern the recovered state is based on a stable version of the system state that represents
forward progress from the point of error/failure occurrence.

43

Known Uses:

• The fault-tolerant MPI (FT-MPI) library supports roll-forward recovery of MPI applications.

• The GVR system versioning of these distributed arrays for resilience through which application-
specified forward error recovery is made possible.

7.4.8 N-modular Redundancy Pattern

Pattern Name: N-modular Redundancy Pattern

Problem: The N-modular Redundancy pattern solves the problem of detecting and correcting errors
or failures in the system state.

Context: The pattern applies to a system that has the following characteristics:

• The system must be deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern introduces penalty in terms of time (increase in execution time), or space (increase in
resources required) independent of whether an errors or failure occurs.

• The error/failure-free overhead penalty introduced by the replication of state must be minimized.

Solution: The N-modular redundancy pattern creates a group of N replicas of a system’s state. The
redundancy may include replication of the system’s operation and/or the inputs to the system. Each of the
N copies of the system state exist simultaneously. The redundant state versions of the systems are provided
with the identical inputs, and their respective outputs are compared in order to detect and potentially correct
the impact of an error or a failure in either replica of the systems.

Capability: The availability of replicated versions of the system state enable the following capabilities:

• Fail-over, which entails substitution of a replica in error or failed state with another replica that is
error/failure-free.

• Comparison, which entails observing the likeness of each replica’s outputs as means to detect the
presence of an error or failure in either replica.

• Majority voting on the outputs produced by each replica system enables the detection of errors and
failures, and filtering out the outputs that fall outside the majority.

Protection Domain: The protection domain of the pattern extends to the scope of the system state that
is replicated.

Resulting Context: The design effort and complexity of replication of the system state requires low
design effort since the replication entails creation of identical copies of the system state.

Rationale: The N-modular redundancy patterns enable systems to tolerate errors/failures by relying
on the replicated versions of the system state to substitute a failed system, or to infer and compensate for
errors/failures by comparing the outputs of the replicas.

Examples:

• Dual-modular redundancy for error detection; triple-modular redundancy for error detection and cor-
rection

44

• Redundant information for compensation of data errors

Related Patterns: The N-modular redundancy and the N-version patterns are based on inclusion of
redundancy in order to compensate for errors or failures. The diversity in the N-modular pattern stems from
the replication of the system’s state unlike the N-version pattern, which uses independently implemented
versions of the system’s design to tolerate errors or failures.

Known Uses:

• Implementations of the MPI interface, such as rMPI, MR-MPI, RedMPI support various forms of
n-modular redundancy through replication of processes, the messages between MPI processes

• Charm++ prototypes also offer process-level replication

• Production HPC systems also contain built-in n-modular redundancy for critical components, such as
power supply modules, fans, etc.

7.4.9 N-version Design Pattern

Pattern Name: N-version Design Pattern

Problem: The N-version Design pattern solves the problem of detecting and correcting errors or
failures in the behavior of the system that may occur due design faults in the system.

Context: The pattern applies to a system that has the following characteristics:

• The system has a well-defined specification for which multiple implementation variants may be de-
signed.

• There is an implicit assumption of independence of between multiple variants of the implementation.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern requires distinct implementations of the same design specification, which are created by
different individuals or teams.

• The pattern increases the system complexity due to the need additional design and verification effort
required to create multiple implementations.

• The error/failure-free overhead penalty due to disparity in the implementation variants must be mini-
mized.

Solution: The N-version design pattern enables dealing with errors or failures due to Bohrbugs,
although Heisenbugs may also be treated using this design pattern. The pattern entails creations of N in-
dependent versions of the system that are functionally identical, but designed independently. A majority
voting logic is used to compare the results produced by each design version.

Capability: In this pattern, each of the N (N >= 2) versions of the designs are independently imple-
mented, but the versions are functionally equivalent systems. The versions are operated independently and
the critical aspects of the system state are compared in order to detect and correct errors/failures due to
Bohrbugs or Heisenbugs.

Protection Domain: The protection domain extends to the scope of the system that is described by the
design specification, of which multiple implementation variants are created.

45

Resulting Context: The extent to which each of the n design versions are different affects the ability
of the pattern to tolerate errors/failures in the system. The use of the n-version design pattern requires
significant design overhead in implementing and testing independent versions of a specification. Differences
in the design may cause differences in timing in generating output values for comparison and majority voting
- these differences incur overhead to the overall system operation.

Rationale: The intent behind applying this pattern is to eliminate the impact of human error during the
implementation of a system. Due the low likelihood that different individuals or teams introduce identical
bugs in their respective implementations, the pattern enables compensating for errors or failures caused by
a bug in any one implementation of the same design.

Examples: Various versions of the same software are used for the detection of errors due to bugs in the
implementation of either version.

Related Patterns: The pattern is similar to the n-modular redundancy pattern, which entails creating
replica versions of the state associated with the pattern and accounting for the presence of errors/failures
through majority voting. The key difference between the patterns is the independence of design between the
replica versions of the system.

Known Uses:

• The DIVA processor architecture includes an out-of-order core as well as a simple in-order pipelined
core. The in-order pipeline is functionally equivalent to the primary processor core and is used to
detect errors in the design of the out-of-order processor core.

7.4.10 Recovery Block Pattern

Pattern Name: Recovery Block Pattern

Recovery Block Problem: The Recovery Block pattern solves the problem of detecting and correcting
errors or failures in the behavior of the system that may occur due design faults in the system.

Context: The pattern applies to a system that has the following characteristics:

• The system has a well-defined specification for which multiple implementation variants may be de-
signed.

• There is an implicit assumption of independence of between multiple variants of the implementation.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern requires distinct implementations of the same design specification, which are created by
different individuals or teams.

• The pattern increases the system complexity due to the need additional design and verification effort
required to create multiple implementations.

• The error/failure-free overhead penalty due to disparity in the implementation variants must be mini-
mized.

Solution: The Recovery block pattern is a flavor of the N-version design pattern in which a recovery
block is invoked when the result from the primary version of the system fails an acceptance test. The recov-
ery block is another implementation version of the same design specification based on which the primary
system is implemented.

46

Capability: With the use of the Recovery block pattern, the system is composed of functional blocks.
Each block contains at least a primary design and exceptional case handler along with an adjudicator. If the
adjudicator does not accept the results of the primary system, it invokes the exception handler subsystem.
This indicates that the primary system could not perform the requested service operation. An acceptance
test is used to test the validity of the result produced by the primary version. If the result from the primary
version passes the acceptance test, this result is reported and execution stops. If, on the other hand, the
result from the primary version fails the acceptance test, another version from among the multiple versions
is invoked and the result produced is checked by the acceptance test.

Protection Domain: The protection domain extends to the scope of the system that is described by the
design specification, of which the recovery block implementation variant is created.

Resulting Context: The extent which the primary design and recovery block versions of the system
specification are different affects the ability of the pattern to tolerate errors/failures in the system. The use of
the Recovery block design pattern requires significant design overhead in implementing and testing inde-
pendent versions of a specification. Differences in the design may cause differences in timing in generating
output values for comparison and majority voting - these differences incur overhead to the overall system
operation.

Rationale: This pattern relies on multiple variants of a design which are functionally equivalent but
designed independently. The secondary recovery block design is used to perform recovery, if the system
implementation of the primary design produces an output that suggests the presence of an error/failure of
the primary system. This determination is made by the adjudicator sub-system.

Examples: Various application-based fault tolerance methods include verification routines that check
for the validity of a computation.

Related Patterns: The significant differences in the recovery block approach from N-version program-
ming are that only one version is executed at a time and the acceptability of results is decided by an adjudi-
cator test rather than by majority voting.

Known Uses:

• Containment Domains provide recovery blocks in order to recover from errors in the computation
included within the domain in order to generate correct output values.

• The SwiFT library provides language based implementation of the recovery block for use in C lan-
guage programs.

7.5 State Patterns

7.5.1 Persistent State Pattern

Pattern Name: Persistent State Pattern

Problem: The Persistent State Pattern solves the problem of the separating the part of the system
state that remains unchanged for the entire duration of system operation.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by
the input state.

• The system state may be described in terms of state that remains invariant for the duration of the
system operation and state that changes during system operation.

47

Forces:

• The state patterns present an application-centric view of systems. The precise definition of aspects of
the system state are invariant and those that change depends on the layer of system abstraction. At the
application-level, the separation of this state is straightforward. However, in the hardware and system
software layers, distinguishing between these types of state is non-trivial.

Solution: The persistent state refers to all aspects of a system’s state that is computed when the system
is initialized, but is not modified during the system operation. From the perspective of an HPC applica-
tion, the persistent state includes program instructions and variable state that is computed upon application
initialization.

Capability: The correctness of the persistent state is essential to correct execution of a program. The
presence of any errors in the persistent state may not necessarily lead to immediate catastrophic failure of
an application program’s execution, but might lead the program on divergent paths that cause a failure at a
future point in the system’s operation.

Protection Domain: The Persistent State pattern defines the scope of the application program state
that is computed during initialization.

Resulting Context: The persistent state pattern defines the scope of the static program state. Such scope
forms the protection domain for a resilience behavioral pattern.

Examples: Various algorithm-based fault tolerance methods leverage the property of invariance in the
persistent state. These methods maintain redundant information about the application variables in the static
state that enables recovery to their default data values at any time during application execution.

Rationale: The isolation of the state that is persistent throughout an application program execution is
supported by this pattern. The state invariance feature provided by this pattern enables the use of resilience
behavioral patterns that leverage this property to detect and recovery errors/failure of such state.

Related Patterns: Together with the Dynamic State pattern and Environment State pattern, the
Persistent State pattern defines the overall state of a system.

7.5.2 Dynamic State Pattern

Pattern Name: Dynamic State Pattern

Problem: The Dynamic State Pattern solves the problem of the encapsulating the part of the system
state that changes during system operation.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by
the input state.

• The system state may be described in terms of state that remains invariant for the duration of the
system operation and state that changes during system operation.

Forces:

• The state patterns present an application-centric view of systems. The precise separation of aspects of
the system state that will be invariant and those that change depends on the layer of system abstraction.
At the application-level, the separation of this state is straightforward. However, in the hardware and
system software layers, distinguishing between these types of state is non-trivial.

48

Solution: The Dynamic State Pattern encapsulates the system state that changes as the system
makes forward progress.

Capability: The state refers to all aspects of the program state that continuously changes as an application
program executes. This includes the data values that are computed during system operation, or those that
enable forward progress of the system (control-flow variables).

Resulting Context: For the perspective of an HPC program, the encapsulation of the dynamic state for
the purpose of defining its resilience behavior enables correct operation and forward progress of the system.

Examples: Algorithm-based fault tolerance strategies that guarantee resilience of the dynamic state
actively track changes to state. Redundancy methods maintain copies of the change to the dynamic state in
order to recover the version that is impacted by an error or failure.

Rationale/Capability: The isolation of the dynamic state that is updated throughout an application pro-
gram execution is supported by this pattern. The dynamic feature of this state pattern implies that any
errors/failure in such state amounts to lost work. However, this isolation of dynamic state enables the use
of resilience behavioral patterns that leverage this property to recover the error/failure without the need to
abort and restart an application program.

Related Patterns: Together with the Dynamic State pattern and Environment State pattern, the
Persistent State pattern defines the overall state of a system.

7.5.3 Environment State Pattern

Pattern Name: Environment State Pattern

Problem: The Environment State Pattern solves the problem of encapsulating the system state
that supports the operation of the system.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by
the input state.

• The system state may be described in terms of state relevant to the core function of the system, called
the primary state and the system state that supports its function, called the ecosystem.

Forces:

• The state patterns present an application-centric view of systems. The aspects of the system state
that serves the primary function of the system and those that form the ecosystem is easier due to the
convention of defining system layers of abstractions and the availability of well-defined interfaces
between the layers. These interfaces enable designers to distinguish between the system’s primary
state and the environment state.

Solution: The Environment State pattern defines state that a system relies on to access the system
resources and services that enable the system to fulfill its function. The environment also facilitates and
coordinates the operation of various sub-systems.

Capability: An error/failure in the environment state is often immediately catastrophic to the operation
of the primary system. The encapsulation of the environment state provided by this pattern enables the
development of separate resilience strategies for the ecosystem.

49

Protection Domain: The Environment State pattern defines the scope of the components in the
ecosystem that support the operation of the primary system. For an HPC program, this scope includes pro-
ductivity tools and libraries, a runtime system, the operating system, file systems, communication channels,
etc.

Resulting Context: The system does not normally have complete control over its environment, but
may have partial control to affect the environment through well-defined interfaces. Any changes to the
environment typically affect the system operating within the environment directly. The encapsulation of the
environment enables the resilience behavior of the environment state to be reasoned about separately from
the resilience behavior of the primary system state.

Examples: Operating-system based resilience mechanisms focus on the correctness of the data structure
state within the kernel without concern for the resilience features of the application program.

Rationale: The encapsulation of the supporting sub-systems from the primary system state enables the
application of specific behavioral resilience patterns that are general-purpose, which do not rely on any
feature of the primary system.

Related Patterns: Together with the Persistent State pattern and Dynamic State pattern, the
Environment State pattern defines the overall state of a system.

7.5.4 Stateless Pattern

Pattern Name: Stateless Pattern

Problem: The Stateless Pattern solves the problem of defining resilience strategies that are inde-
pendent of state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by
the input state.

• The behavior and the progress of the system is does not depend on specific parts of the system state.

Forces:

• The state patterns present an application-centric view of systems. The precise separation of aspects of
the system state that will be invariant and those that change depends on the layer of system abstraction.
At the application-level, the separation of this state is straightforward. However, in the hardware and
system software layers, distinguishing between these types of state is non-trivial.

Solution: The Stateless pattern provides the notion of the null state in order to define resilience
solutions that are independent of system state.

Resulting Context:

• The stateless pattern is utilized together with behavioral resilience patterns whose actions do not
necessitate operating on any aspect of the application program state.

• The behavioral pattern used to build a resilience solution using the stateless pattern must be capable
to deal with any additional side-effects in the system.

Examples: The use of the transaction model to provide resilient behavior is an example of the Stateless
pattern. Transactions support execution of a sequence of operations that may complete as a unit, or fail; the
notion of partial execution is not supported. While the transaction may entail performing computation on

50

data variables, the resilience of the data is independently managed; the resilience solution may be defined
with a Stateless pattern.

Rationale/Capability: The pattern is the equivalent of a null pattern that enables resilience solutions to
be constructed without the requirement for the behavioral patterns to operate on the program state.

Related Patterns: While the Persistent State pattern Dynamic State pattern, and the Environment
State pattern defines the complement of the overall state of a system, the Stateless pattern offers the no-
tion of null state.

51

8. Building Resilience Solutions using Resilience Design Patterns

Figure 4. Elements of a resilience solution for HPC systems and applications

8.1 Features of Resilience Solutions

The resilience design patterns presented in the catalog offer solutions to problems that repeatedly occur in
the design of resilience capabilities for HPC. Each pattern in the catalog presents a solution to a specific
problem in detecting, recovering from, masking an error, or the scope of system state that is of interest to
the resilience solution. These key constituents of a complete solutions are shown in Figure 4.

The artifacts of a design process that uses the resilience design patterns are complete resilience solutions
that provide fault/error/failure detection, containment and mitigation capabilities for a specific fault model.
These solutions may be instantiated at multiple layers of system abstraction, and are relevant to various
application and system scales. However, many of the patterns in the catalog individually provide partial so-
lutions by supporting only one or two out of the detection, containment and mitigation solutions. For system
and application designers to use these patterns in the construction of resilient versions of their designs, these
patterns must be organized into a well-defined system of patterns.

A pattern framework enables the creation of the outline of the resilience solution that captures the di-
mensions and capabilities of the patterns, reveals and clarifies the relationships between the patterns. The
combination of these patterns based on the guidelines offered by the hierarchical classification scheme en-
ables the complete solutions for resilience to specific fault models in HPC systems. However, there is
sufficient flexibility to adapt the solution to specific situations.

8.2 Design Spaces

We define a framework that enables the composition of the resilience design patterns into practical solutions.

In order to articulate a systematic method for customized designs, the framework is based on design
spaces (Figure 5). These design spaces provide guidelines for the decision making in the design process,
which consists of selection of the appropriate patterns based on the requirements of protection and the cost
of using specific patterns.

52

Figure 5. Design Spaces for construction of resilience solutions using patterns

• Capability: The patterns must support capabilities that enable the detection, containment, mitigation
of faults/errors/failure events.

• Fault model: The identification of the root causes of fault events and their impact and propagation
through the system must be well-understood to provide effective solutions.

• Protection domain: The definition of the protection domain enables clear encapsulation of the system
scope over which the resilience patterns operate.

• Interfaces: The identification and implementation of the activation and response interfaces for be-
havioral patterns affect the propagation of fault/error/failure event information.

• Implementation mechanisms: The implementation design space is concerned with constraints im-
posed by specific features of hardware, execution or programming models, software ecosystems.

The structured design process enabled by these design spaces supports various approaches to create
resilience solutions, including (i) a top-down approach; (ii) a bottom-up approach, as well as (iii) various
hybrid approaches that enable designers to create solutions in the presence of practical constraints imposed
by any hardware or software system features. Design spaces also provide a framework to guide the creation
of cross-layered resilience solutions that leverage capabilities from multiple layers of the system abstraction.
With the use of resilience patterns in the context of the framework provided by the design spaces, HPC
system designers, users and application developers may evaluate the feasibility and effectiveness of novel
resilience techniques, as well as analyze and evaluate existing solutions.

53

9. Case Study: Checkpoint and Rollback

Figure 6. Resilience Solution Case Study: Checkpoint & Restart using BLCR

Checkpoint and restart (C/R) solutions are the most widely-used resilience solution in HPC systems.
These solutions capture the image, or snapshot, of a running process and preserve it for later recovery. For
parallel applications, the C/R framework’s coordination protocols produce a global snapshot of the appli-
cation by combining the state of all the processes in the parallel application. The checkpoint is typically
committed to parallel file system on disk. Since C/R is a well-understood resilience strategy used in produc-
tion HPC systems, the goal of this case study is to breakdown this solution and cast it within the resilience
design patterns-based framework. The reexamination of this well-known resilience solution demonstrates
the utility of the pattern-based framework in understanding the protection domain, capabilities, as well as
the limitations of the C/R solution.

For this case study, the resilience solution, which is illustrated in Figure 6, is built using the BLCR
(Berkley Lab’s Checkpoint/Restart) [28] framework for a single process. In order to deconstruct this solution
based on the structured pattern-based approach, we navigate the design spaces to methodically construct the
solution. we focus on developing a complete resilience solution that enables systems to contend with single
process failure. Since the fault model that our solution addresses is process failure, it is not necessary to
identify the root cause of the fault and error that cause this failure.

We identify patterns for:

• Detection: For the detection of a process failure, we require an instantiation of the Fault Treatment
pattern. Specifically, the solution requires Fault Diagnosis pattern to discover the location of the

54

failure and the type of event, which is enabled by a Monitoring pattern. The instantiation of the
Monitoring pattern is a kernel-level heartbeat monitor, which is deployed in the system to detects
whether the process is alive.

• Containment: The BLCR framework provides containment by recovering a failed process from the
last known stable process state from disk, which prevents the propagation of the failure.

• Recovery: BLCR also manages the recovery of the failure by instantiating the Recovery pattern,
specifically the Roll-back structure pattern, whose architecture is framed using the Checkpoint-Recovery
pattern.

• Domain: Since the solution aims to provide resilience capabilities for the complete process, the solu-
tion fuses the Persistent and Dynamic state patterns. Therefore, the protection domain associated
with the system-level checkpointing solution extends to the entire memory associated with a process.

BLCR provides a completely transparent checkpoint of the process, which saves the current state of a
process. The framework uses a coarse-grain locking mechanism to interrupt momentarily the execution of
all the threads of the process, giving them a global view of its current state, and reducing the problem of
saving the process state to a sequential problem. Since the entire state is saved (from CPU registers to the
virtual memory map), the function call stack is saved. From the perspective of an application programmer,
the checkpoint routine returns with a different error code, to let the caller know if this calls returns from a
successful checkpoint or from a successful restart. The recovery after the detection of a process failure by
the instantiation of the Monitoring pattern (the heartbeart monitor), entails restoring the checkpoint from
the parallel file system on the same hardware, with the same software environment.

55

10. Case Study: Proactive Process Migration

Figure 7. Resilience Solution Case Study: Process Migration

Various resilience strategies are inherently reactive, i.e., they respond to the occurrence of a fault, error
or failure event and seek to prevent the event from affecting the correct execution of an HPC application.
In this case study, we evaluate a proactive resilience solution using the resilience design pattern framework
that enables a system to anticipate failures and provides failure avoidance capability through a process-level
live migration mechanism [85]. The solution uses a combination of hardware and system software to handle
resiliency in a manner that is transparent to the application developer. Also, the solution requires no changes
in the application codes.

For the systematic study of the construction of the complete resilience solution based on the structured
pattern-based approach, we address the specific design constraints that are imposed within each of the design
spaces. For this case study, our emphasis is on the development of a complete resilience solution that avoids
single process failure (Figure 7). We do not concern ourselves with the root cause of the fault and error that
may cause the failure.

We identify patterns for:

• Detection: In order to proactively anticipate the occurrence of a failure, the solution must observe crit-
ical indicators that will predict the likelihood of a failure. We require the Fault Treatment strategy
pattern, which must be instantiated as a Fault Diagnosis pattern within the system architecture.
Since the detection entails anticipation of a future failure event, the structure pattern selected is the

56

Prediction pattern, whose implementation requires reading board-level thermal sensors for health
monitoring for each of the processors on the compute node.

• Containment: A kernel level module provides containment for the fault by identifying the process that
is executing on the CPU for which the Prediction pattern has assessed as vulnerable to a failure.

• Recovery: The live migration is a kernel level module that is integrated with the MPI execution
environment to support parallel applications. The Recovery strategy pattern is used by this solution.
The architecture of the system must instantiate the Reconfiguration pattern and specifically the
Restructure structural pattern in order to isolate the processor on which failure is predicted by the
Prediction pattern and move the process to an alternative processor.

• Domain: Since the solution aims to provide resilience capabilities for the complete process, the solu-
tion fuses the Persistent and Dynamic state patterns. Therefore, the protection domain associated
with the system-level checkpointing solution extends to the entire memory associated with a process.

The Prediction pattern instantiation uses the standardized Intelligent Platform Management Interface
(IPMI) which provides message-based interface to collect sensors readings for health monitoring, including
the data on temperature, fan speed, and voltage. The instantiation of the Restructure pattern gathers the
sensor data, and when the sensor reading exceeds a threshold value, the scheduler determines the availability
of new destination nodes to complete the restructure of the job. If no spare nodes are available, the scheduler
selects a compute node with lowest utilization. With the use of these pattern instantiations, this solution
supports migration of a process as a precaution to potentially imminent failure by monitoring the health of
each node.

57

11. Case Study: Cross-Layer Hardware/Software Hybrid Solution

Figure 8. Resilience Solution Case Study: Cross-Layer Design using ECC with ABFT

The pattern-based structured approach enables the design of resilience solutions that combine tech-
niques across various layers of the system stack, which is referred to as cross-layer resilience. The aim of
this case study is to use the framework of resilience design patterns to systematically explore various tech-
niques available at multiple layers of the system stack and design a cross-layer combination that supports
targeted, cost-effective resilience capabilities for a specific data structure within an application. The case
study demonstrates practicality and effectiveness of our framework in developing novel resilience solutions.
The proposed solution (Figure 8) is intended to provide resilience capabilities for a matrix data structure in
an application that uses a numerical method. The solution is designed to protect the matrix structure A from
the impact of multi-bit corruptions due to errors in the DRAM memory.

We identify patterns for:

• Detection: Since the memory is protected by error correcting codes (ECC), the solution leverages
the hardware-based ECC. This is an instantiation of the Compensation pattern, and specifically the
State Diversity pattern that supports the single error correction and double error detection capa-
bility.

• Containment: The presence of double-bit error corruptions is detected by the State Diversity
pattern and is communicated to the operating system via an interrupt mechanism. The containment is
support by a module in the OS kernel that maps the physical address to the application address space,
and notifies the library that provides the recovery pattern instantiation.

58

• Recovery: The matrix A is protected by an algorithm-based fault tolerance (ABFT) method, specifi-
cally a checksum routine. This routine is an instantiation Compensation pattern, and specifically the
State Diversity that is implemented within the numerical library.

• Domain: The solution is designed in order to guarantee the resilience of the data structure A, which
as an operand matrix is an instantiation of the Persistent state pattern, since it is initialized during
the initialization of the numerical method and does not change until the application converges.

59

12. Summary

The key to addressing the resilience challenge for future extreme-scale HPC systems make the design of
resilience techniques an essential part of the system architecture and software development efforts. Towards
the development of a systematic methodology for designing resilience solutions, design patterns provide
reusable templates that may be used to build and refine resilience solutions. In this document we presented
a set of design patterns that provide solutions to problems specific to the management of resilience in HPC
systems. We identified and presented solutions that support detection, containment, recovery and masking in
a structured design pattern format. We developed a classification scheme to enable designers to understand
the capabilities of each pattern and the relationship between the various patterns in the pattern catalog.
We developed a design framework to enable the composition and refinement of resilience solutions using
the design patterns. The resilience design patterns and the design framework offer a systematic way to
investigate the effectiveness and efficiency of a resilience solution. They also provide a structured approach
for optimizing the trade-off, at design time or runtime, between the key system design factors: performance,
resilience, and power consumption.

60

References

[1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira. Adaptive incremental check-
pointing for massively parallel systems. In Proceedings of the 18th annual International Conference
on Supercomputing, ICS ’04, pages 277–286, 2004.

[2] A.M. Agbaria and R. Friedman. Starfish: Fault-tolerant Dynamic MPI Programs on Clusters of Work-
stations. In Proceedings of The Eighth International Symposium on High Performance Distributed
Computing, pages 167–176, 1999.

[3] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York, August 1977.

[4] T. Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable systems on unreliable fabrics. IEEE Design
Test of Computers, 25(4):322–332, 2008.

[5] Algirdas Avižienis. Toward systematic design of fault-tolerant systems. Computer, 30(4):51–58, April
1997.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable Secure Computing,
pages 11–33, January 2004.

[7] D. Bernick, B. Bruckert, P.D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen. NonStop
Advanced Architecture. In International Conference on Dependable Systems and Networks, pages
12–21, 2005.

[8] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra. Post-failure
recovery of mpi communication capability: Design and rationale. International Journal of High Per-
formance Computing Applications, 27(3):244–254, 2013.

[9] Shekhar Borkar. Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation. IEEE Micro, 25(6):10–16, November 2005.

[10] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. MPICH-V: Toward a Scalable Fault Tolerant
MPI for Volatile Nodes. In Supercomputing, ACM/IEEE 2002 Conference, pages 29–29, 2002.

[11] Patrick G. Bridges, Mark Hoemmen, Kurt B. Ferreira, Michael A. Heroux, Philip Soltero, and Ron
Brightwell. Cooperative application/os dram fault recovery. In 4th Workshop on Resiliency in High
Performance Computing in Clusters, Clouds, and Grids, Bordeaux, France, September 2011.

[12] Greg Bronevetsky and Bronis de Supinski. Soft error vulnerability of iterative linear algebra methods.
In Proceedings of the 22Nd Annual International Conference on Supercomputing, pages 155–164,
2008.

[13] Jeremy Casas, Dan Clark, Phil Galbiati, Ravi Konuru, Steve Otto, Robert Prouty, and Jonathan
Walpole. MIST: PVM with Transparent Migration and Checkpointing. In In 3rd Annual PVM Users’
Group Meeting, 1995.

[14] Zizhong Chen. Algorithm-based recovery for iterative methods without checkpointing. In Proceedings
of the 20th international symposium on High performance distributed computing, pages 73–84, 2011.

[15] Jinsuk Chung, Ikhwan Lee, Michael Sullivan, Jee Ho Ryoo, Dong Wan Kim, Doe Hyun Yoon, Larry
Kaplan, and Mattan Erez. Containment domains: a scalable, efficient, and flexible resilience scheme

61

for exascale systems. In Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, pages 58:1–58:11, 2012.

[16] John Daly, Bill Harrod, Thuc Hoang, Lucy Nowell, Bob Adolf, Shekhar Borkar, Nathan DeBardeleben,
Mootaz Elnozahy, Mike Heroux, David Rogers, Rob Ross, Vivek Sarkar, Martin Schulz, Mark Snir,
Paul Woodward, Rob Aulwes, Marti Bancroft, Greg Bronevetsky, Bill Carlson, Al Geist, Mary Hall,
Jeff Hollingsworth, Bob Lucas, Andrew Lumsdaine, Tina Macaluso, Dan Quinlan, Sonia Sachs, John
Shalf, Tom Smith, Jon Stearley, Bert Still, and John Wu. Inter-agency workshop on hpc resilience at
extreme scale. February 2012.

[17] John T. Daly, Lori A. Pritchett-Sheats, and Sarah E. Michalak. Application mttfe vs. platform mttf:
A fresh perspective on system reliability and application throughput for computations at scale. In
Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid)
2008: Workshop on Resiliency in High Performance Computing (Resilience). IEEE Computer Society,
May 2008.

[18] Teresa Davies, Christer Karlsson, Hui Liu, Chong Ding, and Zizhong Chen. High performance linpack
benchmark: a fault tolerant implementation without checkpointing. In Proceedings of the international
conference on Supercomputing, ICS ’11, pages 162–171, 2011.

[19] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: an architectural framework
for software recovery of hardware faults. In Proceedings of the 37th annual international symposium
on Computer architecture, ISCA ’10, pages 497–508, 2010.

[20] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static analysis and compiler design
for idempotent processing. In Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI ’12, pages 475–486, 2012.

[21] Nathan DeBardeleben, James Laros, John T Daly, Stephen L Scott, Christian Engelmann, and Bill
Harrod. High-end computing resilience: Analysis of issues facing the hec community and path-forward
for research and development. Whitepaper, December 2009.

[22] Timothy J. Dell. A white paper on the benefits of chipkill-correct ecc for pc server main memory.
Technical report, IBM Microelectronics Division, November 1997.

[23] T.J. Dell. A white paper on the benefits of chipkill-correct ecc for pc server main memory. Technical
report, IBM Microelectronics Division Whitepaper, November 1997.

[24] J. Dinan, A. Singri, P. Sadayappan, and S. Krishnamoorthy. Selective recovery from failures in a task
parallel programming model. In IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), pages 709–714, 2010.

[25] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude Andre,
David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, Franck Cappello, Barbara
Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill
Gropp, Robert Harrison, Mark Hereld, Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka
Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway, David Keyes, Bill Kramer, Jesus Labarta,
Alain Lichnewsky, Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka, Paul Messina,
Peter Michielse, Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima, Michael E
Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc Snir, Thomas Sterling,
Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto, William Tang, John Taylor, Rajeev Thakur,
Anne Trefethen, Mateo Valero, Aad Van Der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski,

62

and Kathy Yelick. The International Exascale Software Project Roadmap. International Journal on
High Performance Computing Applications, pages 3–60, February 2011.

[26] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-threshold comput-
ing: Reclaiming moore’s law through energy efficient integrated circuits. Proceedings of the IEEE,
98(2):253–266, February 2010.

[27] Peng Du, Aurelien Bouteiller, George Bosilca, Thomas Herault, and Jack Dongarra. Algorithm-based
Fault Tolerance for Dense Matrix Factorizations. In Proc. of the 17th ACM SIGPLAN Symp. on Prin-
ciples and Practice of Parallel Programming, pages 225–234, 2012.

[28] J. Duell, P. Hargrove, and E. Roman. The design and implementation of berkeley lab’s linux check-
point/restart. Technical report, Lawrence Berkeley National Lab (LBNL), December 2002.

[29] E.N.Elnozahy, Ricardo Bianchini, Tarek El-Ghazawi, Armando Fox, Forest Godfrey, Adolfy Hoisie,
Kathryn McKinley, Rami Melhem, James Plank, Partha Ranganathan, and Josh Simons. System Re-
silience at Extreme Scale. Technical report, DARPA, 2008.

[30] Christian Engelmann. Symmetric Active/Active High Availability for High-Performance Computing
System Services. PhD thesis, Department of Computer Science, University of Reading, UK, 2008.
Thesis research performed at Oak Ridge National Laboratory. Advisor: Prof. Vassil N. Alexandrov
(University of Reading).

[31] Christian Engelmann and Swen Böhm. Redundant execution of hpc applications with mr-mpi. In
Proceedings of the 10th IASTED International Conference on Parallel and Distributed Computing and
Networks (PDCN), pages 15–17, 2011.

[32] Irene Eusgeld, Felix C. Freiling, and Ralf Reussner, editors. Dependability Metrics: Advanced Lec-
tures [Result from a Dagstuhl seminar, October 30 - November 1, 2005], volume 4909 of Lecture Notes
in Computer Science. Springer, 2008.

[33] Graham E. Fagg and Jack Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications
in a Dynamic World. In Proceedings of the 7th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface, pages 346–353, 2000.

[34] Kurt Ferreira, Jon Stearley, James H. Laros, III, and et al. Evaluating the viability of process repli-
cation reliability for exascale systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12, 2011.

[35] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell.
Detection and correction of silent data corruption for large-scale high-performance computing. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 78:1–78:12. IEEE Computer Society Press, 2012.

[36] Hajime Fujita, Robert Schreiber, and Andrew A. Chien. It’s time for new programming models for
unreliable hardware, provocative ideas session. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2013.

[37] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[38] D. Hakkarinen and Zizhong Chen. Algorithmic cholesky factorization fault recovery. In IEEE Inter-
national Symposium on Parallel Distributed Processing, pages 1–10, 2010.

63

[39] Kuang-Hua Huang and J.A. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE
Transactions on Computers, C-33(6):518 –528, june 1984.

[40] Saurabh Hukerikar and Robert F. Lucas. Rolex: Resilience-oriented language extensions for extreme-
scale systems. The Journal of Supercomputing, pages 1–33, 2016.

[41] Saurabh Hukerikar, Keita Teranishi, Pedro C. Diniz, and Robert F. Lucas. Redthreads: An interface for
application-level fault detection/correction through adaptive redundant multithreading. International
Journal of Parallel Programming, pages 1–27, 2016.

[42] J. Hursey, J.M. Squyres, T.I. Mattox, and A. Lumsdaine. The design and implementation of check-
point/restart process fault tolerance for open mpi. In IEEE International Symposium on Parallel and
Distributed Processing, pages 1–8, 2007.

[43] Cray Inc. Cray xc40 computing platform, 2014.

[44] Tanzima Zerin Islam, Kathryn Mohror, Saurabh Bagchi, Adam Moody, Bronis R. de Supinski, and
Rudolf Eigenmann. Mcrengine: a scalable checkpointing system using data-aware aggregation and
compression. In Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’12, pages 17:1–17:11, 2012.

[45] J.-Y. Jou and J.A. Abraham. Fault-tolerant fft networks. IEEE Transactions on Computers, 37(5):548–
561, 1988.

[46] Jing-Yang Jou and Jacob A. Abraham. Fault-tolerant matrix operations on multiple processor systems
using weighted checksums. pages 94–101, 1984.

[47] K. Keutzer and T. Mattson. Our pattern language (opl): A design pattern language for engineering
(parallel) software. In ParaPLoP Workshop on Parallel Programming Patterns, 2009.

[48] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dallya,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman Karp, Stephen Keck-
ler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas
Sterling, R. Stanley Williams, and Katherine Yelick. Exascale Computing Study: Technology Chal-
lenges in Achieving Exascale systems. Technical report, DARPA, September 2008.

[49] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann Publishers, Burlington,
MA, USA, July 2007.

[50] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns for iterative methods in a parallel
unstable environment. SIAM Journal Scientific Computing, 30:102–116, November 2007.

[51] Juan Leon, Allan L. Fisher, and Peter Steenkiste. Fail-safe pvm: A portable package for distributed
programming with transparent recovery. Technical report, 1993.

[52] Wei-Jih Li and Jyh-Jong Tsay. Checkpointing Message-Passing Interface (MPI) Parallel Programs. In
Proceedings of Pacific Rim International Symposium on Fault-Tolerant Systems, pages 147–152, 1997.

[53] J. Lidman, D.J. Quinlan, C. Liao, and S.A McKee. ROSE::FTTransform - a Source-to-Source Trans-
lation Framework for Exascale Fault-tolerance Research. In Dependable Systems and Networks Work-
shops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on, pages 1–6, June 2012.

[54] Michael Litzkow and Miron Livny. Supporting checkpointing and process migration outside the UNIX
kernel. In Proceedings of the Winter 1992 USENIX Conference, pages 283–290, San Francisco, CA,
January 1992.

64

[55] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for Parallel Programming.
Addison-Wesley Professional, first edition, 2004.

[56] Dennis McEvoy. The architecture of tandem’s nonstop system. In Proceedings of the ACM ’81 con-
ference, New York, NY, USA, 1981. ACM.

[57] A. Mishra and P. Banerjee. An algorithm-based error detection scheme for the multigrid method. IEEE
Transactions on Computers, 52(9):1089–1099, 2003.

[58] S. Mitra, K. Brelsford, and P. N. Sanda. Cross-layer resilience challenges: Metrics and optimization.
In 2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010), pages 1029–1034,
March 2010.

[59] Kathryn Mohror, Adam Moody, Greg Bronevetsky, and Bronis R. de Supinski. Detailed modeling
and evaluation of a scalable multilevel checkpointing system. IEEE Transactions on Parallel and
Distributed Systems, 99:1, 2013.

[60] Todd K Moon. Error correction coding: Mathematical methods and algorithms. 2005.

[61] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive fault
tolerance for hpc with xen virtualization. In Proceedings of the 21st Annual International Conference
on Supercomputing, ICS ’07, pages 23–32. ACM, 2007.

[62] R. Naseer and J. Draper. Parallel double error correcting code design to mitigate multi-bit upsets in
srams. In 34th European Solid-State Circuits Conference, pages 222–225, 2008.

[63] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error Detection by Duplicated Instructions
in Super-scalar Processors. IEEE Transactions on Reliability, pages 63–75, 2002.

[64] Adam J. Oliner, Larry Rudolph, and Ramendra K Sahoo. Cooperative checkpointing: a robust ap-
proach to large-scale systems reliability. In Proceedings of the 20th Annual International Conference
on Supercomputing, pages 14–23, 2006.

[65] Hoang Pham. System Software Reliability. Springer Series in Reliability Engineering. Springer, 2007.

[66] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under Unix. In
Usenix Winter Technical Conference, pages 213–223, January 1995.

[67] J.S. Plank, Youngbae Kim, and J.J. Dongarra. Algorithm-based diskless checkpointing for fault toler-
ant matrix operations. In Proceedings of the Twenty-Fifth International Symposium on Fault-Tolerant
Computing, pages 351–360, 1995.

[68] J.S. Plank, K. Li, and M.A. Puening. Diskless checkpointing. IEEE Transactions on Parallel and
Distributed Systems, 9(10):972–986, 1998.

[69] A.L.N. Reddy and P. Banerjee. Algorithm-based fault detection for signal processing applications.
IEEE Transactions on Computers, 39(10):1304–1308, 1990.

[70] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. SWIFT: Software Implemented
Fault Tolerance. In International Symposium on Code Generation and Optimization, 2005, pages
243–254, 2005.

[71] J. Rexford and N.K. Jha. Algorithm-based fault tolerance for floating-point operations in massively
parallel systems. In Proceedings of IEEE International Symposium on Circuits and Systems, volume 2,
pages 649–652 vol.2, 1992.

65

[72] A. Roy-Chowdhury and P. Banerjee. Algorithm-based fault location and recovery for matrix compu-
tations on multiprocessor systems. IEEE Transactions on Computers, 45(11):1239–1247, 1996.

[73] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The LAM/MPI Check-
point/Restart Framework: System-Initiated Checkpointing. In In Proceedings of LACSI Symposium,
Sante Fe, pages 479–493, 2003.

[74] J. Shalf, D. Quinlan, and C. Janssen. Rethinking hardware-software codesign for exascale systems.
Computer, 44(11):22–30, November 2011.

[75] A. Shye, J. Blomstedt, T. Moseley, V.J. Reddi, and D.A. Connors. Plr: A software approach to transient
fault tolerance for multicore architectures. IEEE Transactions on Dependable and Secure Computing,
pages 135–148, 2009.

[76] T.J. Slegel, III Averill, R.M., M.A. Check, and et. al. IBM’s S/390 G5 Microprocessor Design. IEEE
Micro, pages 12–23, 1999.

[77] J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic approaches to low overhead fault detection for
sparse linear algebra. In Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pages 1–12, 2012.

[78] J. Sloan, R. Kumar, and G. Bronevetsky. An algorithmic approach to error localization and partial
recomputation for low-overhead fault tolerance. In Proceedings of the 43rd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pages 1–12, 2013.

[79] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi, Pavan Balaji,
Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, Andrew A Chien, Paul Coteus, Nathan A
DeBardeleben, Pedro C Diniz, Christian Engelmann, Mattan Erez, Saverio Fazzari, Al Geist, Rinku
Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd
Munson, Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. Addressing failures in exascale com-
puting. International Journal of High Performance Computing Applications, 28(2):129–173, 2014.

[80] G. Stellner. CoCheck: Checkpointing and Process migration for MPI. In Proceedings of The Tenth
International Parallel Processing Symposium, pages 526–531, 1996.

[81] Nitin H. Vaidya. A case for two-level distributed recovery schemes. In Proceedings of the 1995 ACM
SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems,
pages 64–73, 1995.

[82] Hubertus J. J. van Dam, Abhinav Vishnu, and Wibe A. de Jong. A case for soft error detection and
correction in computational chemistry. Journal of Chemical Theory and Computation, 9(9):3995–
4005, 2013.

[83] Enrique Vargas. High availability fundamentals. Sun Blueprints, November 2000.

[84] Marco Vassura, Luciano Margara, Pietro Di Lena, Filippo Medri, Piero Fariselli, and Rita Casadio.
Ft-comar: Fault tolerant three-dimensional structure reconstruction from protein contact maps. Bioin-
formatics, 24(10):1313–1315, 2008.

[85] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive process-level live
migration in hpc environments. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
SC ’08, pages 43:1–43:12, 2008.

66

[86] Cheng Wang, H. Kim, Y. Wu, and V. Ying. Compiler-Managed Software-based Redundant Multi-
Threading for Transient Fault Detection. In International Symposium on Code Generation and Opti-
mization, 2007, pages 244–258, 2007.

[87] Sying-Jyan Wang and N.K. Jha. Algorithm-based fault tolerance for fft networks. In IEEE Interna-
tional Symposium on Circuits and Systems, volume 1, pages 141–144 vol.1, 1992.

[88] S. Yajnik and N.K. Jha. Synthesis of fault tolerant architectures for molecular dynamics. In Proceed-
ings of the IEEE International Symposium on Circuits and Systems, volume 4, pages 247–250 vol.4,
1994.

[89] Gulay Yalcin, Osman Unsal, Ibrahim Hur, Adrian Cristal, and Mateo Valero. FaulTM: Fault-Tolerance
Using Hardware Transactional Memory. In Workshop on Parallel Execution of Sequential Programs
on Multi-core Architecture, Saint Malo, France, 2010.

[90] Yun Zhang, Jae W. Lee, Nick P. Johnson, and David I. August. DAFT: Decoupled Acyclic Fault Tol-
erance. In Proceedings of the 19th international conference on Parallel architectures and compilation
techniques, PACT ’10, pages 87–98, 2010.

67

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT
	Introduction
	Resilience Terminology and Concepts
	Reliability
	Availability
	Systems
	Faults
	Errors
	Failures
	The Relationship between Faults, Errors and Failures
	Resilience Capabilities
	Detection
	Containment
	Masking

	Resilience Metrics
	Reliability Metrics
	Availability Metrics
	Error and Failure Detection Metrics
	Mean Time to Failure

	The Resilience Challenge for Extreme-Scale HPC Systems
	Survey of HPC Resilience Techniques
	Hardware-based Techniques
	Software-implemented Techniques
	Operating System & Runtime-based Solutions
	Message Passing Library-based Solutions
	Compiler-based Solutions
	Programming Model Techniques
	Algorithm-Based Fault Tolerance

	Cooperative Hardware/Software Approaches

	Design Patterns for Resilience
	Introduction to Design Patterns
	Design Patterns for HPC Resilience Solutions
	Anatomy of a Resilience Design Pattern

	Classification of Resilience Design Patterns
	The Resilience Pattern Catalog
	Describing Design Patterns
	Strategy Patterns
	Fault Treatment Pattern
	Recovery Pattern
	Compensation Pattern

	Architectural Patterns
	Fault Diagnosis Pattern
	Reconfiguration Pattern
	Checkpoint Recovery Pattern
	State Diversity Pattern
	Design Diversity Pattern

	Structural Patterns
	Monitoring Pattern
	Prediction Pattern
	Restructure Pattern
	Rejuvenation Pattern
	Reinitialization Pattern
	Roll-back Pattern
	Roll-forward Pattern
	N-modular Redundancy Pattern
	N-version Design Pattern
	Recovery Block Pattern

	State Patterns
	Persistent State Pattern
	Dynamic State Pattern
	Environment State Pattern
	Stateless Pattern

	Building Resilience Solutions using Resilience Design Patterns
	Features of Resilience Solutions
	Design Spaces

	Case Study: Checkpoint and Rollback
	Case Study: Proactive Process Migration
	Case Study: Cross-Layer Hardware/Software Hybrid Solution
	Summary

