
ONRL/Su b/98-ST547/05

EVALUATION OF THE INTRINSIC AND EXTRINSIC FRACTURE
BEHAVIOR OF IRON ALUMINIDES

November 26, 2001

Report Prepared by

Bernard R. Cooper and Bruce S. Kang

West Virginia University
Dept .of Physics and Dept. of Mechanical & Aerospace Engineering

Morgantown, WV 26506-6315

under

19x-ST547C,  WVU-2

for

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831

Managed by
UT-BATTELLE, LLC

for the
U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-OOOR22725



This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, p .O. Box 62, Oak Ridge, TN 37831; prices available from (865) 576-
8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.



ONRL/Sub/9&ST547/05

EVALUATION OF THE INTRINSIC AND
EXTRINSIC FRACTURE  BEHAVIOR  OF IRON

ALUMINIDES

November 26, 2001

Research sponsored by the U.S. Department of Energy,
Office of Fossil Energy

Advanced  Research Materials  Program

Report Prepared by

Bernard R. Cooper  and Bruce S. Kang

West  Virginia  University
Dept .of Physics and Dept. of Mechanical & Aerospace Engineering

Morgantown, WV 26506-63 15

under

19x-ST547C,  WVU-2

for

OAK RIDGE  NATIONAL LABORATORY
Oak Ridge,  Tennessee 3783 1

Managed by
UT-BATTELLE,  LLC

for the
U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-OOOR22725



EVALUATION OF THE INTRINSIC AND EXTRINSIC
FRACTURE BEHAVIOR OF IRON ALUMINIDES*

B.R. Cooper’ and B.S.-J. Kang 2
’ Physics Department

2 Mechanical and Aerospace Engineering Department
West Virginia University
Morgantown, WV 26506

ABSTRACT
Comparative finite element modeling simulations of initial intergranular fracture

of two iron aluminides (FA186 and FA189) were carried out to study the intrinsic and
extrinsic fracture behavior of the alloys as related to hydrogen embrittlement. The
computational simulations involved sequentially-coupled stress and mass-diffusion
analyses to determine the stress/strain distribution and the extent of hydrogen
concentration at the crack tip region. Simulations of initial intergranular fracture of the
two alloys under either air or vacuum conditions were conducted. With judicious
selection of grain boundary failure strains for each alloy and assumed material
degradation at hydrogen diffusion zone, the numerical results agree well with previous
experimental test results.

We have considered the various methods by which the thermal expansion of
Fe3Al can be modeled. As a matter of practicality, we have started with a conceptually
simple continuum medium modeling, which we have used in initial calculations reported
here, despite its limitations in neglecting the effects of optical phonons. This makes the
results increasingly suspect for temperatures above the Debye temperature. However, the
results we obtain are surprisingly good considering this important limitation.

Nevertheless, we regard these results as being suspect. Therefore, in addition, we
discuss a wholly new ab-ilzitio-based method which is both more accurate (preserves the
ab-initio-generated information) and computationally more efficient, This method can
directly transform the all-electron ab initio electronic structure results of the full-
potential LMTO electronic structure behavior, computationally provided in reciprocal
space, to the real space representation needed for the thermal expansion modeling. An
increase of computational speed, use of larger supercells, and more efficient calculations,
can all be achieved by using real space (tight-binding (TB)) calculations. The TB
parameters are obtained from direct Fourier transform of the matrix elements in
momentum space for a specific structure and specific lattice constant. The parameters
that may change significantly are the onsite  parameters, which depend on the onsite
electron density. To make a usable look-up table, good for variable lattice constant in the
same structure, one can perform several runs with different lattice constants and obtain a
fitting function of the onsite  parameter as a function of lattice constant, for each orbital in
each atom. We are at present implementing this method for initial application to Fe3Al
before proceeding to a study of molybdenum silicide systems.

* Research sponsored by the U.S. Department of Energy, Office of Fossil Energy
Advanced Research Materials Program, DOE/FE AA 15 10 10 0, Work
Breakdown Structure Element WVU-2



I. COMPUTATIONAL HYDROGEN EMBRITTLEMENT SIMULATIONS OF
IRON ALUMINIDES

Motivation and Summary of Relevant Experimental Results

Comparative crack growth tests of two iron aluminides subjected to constant tensile
loading in air were conducted at WVU [l]. The two selected iron aluminides are
designated as FA186 with basic composition of Fe-28ALXr  at. % and FA189 with Fe-
28AL2Cr and an addition of 0.5 at. % Zr, 0.05 at. % C and 0.005 at. % B. The purpose of
adding a small amount of boron in FA-189 was to improve the grain boundary cohesive
strength such that intergranular failure can be minimized. However, with micro-alloying
of B and Zr, FA-189 have much smaller grains. The estimated grain sizes are 193pm for
FA186 and 75pm for FA189, respectively. Thus, intrinsically FA- 189 should have higher
fracture toughness than that of FA- 186. However, as indicated by the experimental results
[ 11,  because of their smaller grain size, FA-189 is extrinsically more susceptible to
environmental embrittlement than FA-186 under low strain loading condition. Table 1
shows the test matrix relevant to the computational modeling.

Overall, the experimental results indicated that between the two alloys, the ternary
alloy FA186 has the better fracture resistance, higher fracture toughness and smaller
sensitivity to hydrogen embrittlement. Thus, to further investigate the effect of grain size,
we carried out comparative finite element modeling simulations of intergranular fracture
of FAl86 and FA189, subjected to stress-assisted hydrogen embrittlement.

Finite Element Analysis Model

In this research, a finite element model coupled with a hydrogen diffusion model
was developed to simulate the intergranular crack growth due to hydrogen embrittlement.
The numerical analyses were carried out using the commercial finite element code
ABAQUSTM. A submodeling technique was implemented to obtain detailed near-tip
stress and strain fields by using a refined mesh for the area ahead of the crack tip. The
crack-tip submodel is designed to represent qualitatively the grain sizes of FA186 or
FA189. The concept of submodeling consists of performing two independent analyses,
one on the global model with a coarse mesh, and the other on a locally refined mesh
(submodel), with the only link being the transfer of interfacial boundary displacements.
The nodal displacements of the global model are interpolated onto the boundary of the
submodel providing a detailed solution in the area of interest.

Due to the symmetry of loading, only half of the specimen size was modeled in the
global model. This model consists of 1744 plane stress elements with a tine mesh in the
region around the crack tip, as shown in Figure1 .

Near the crack tip region, two submodels were designed to represent qualitatively
the grain size of FA186 and FA189, respectively. A multi-grain crack tip cell was used
in the local finite element mesh composed of a periodic array of regular hexagonal grains.
As shown in Figure 2, the hexagon used in the submodel for FA186 represents the typical
grain size of 193pm  and the submodel contains a total of 8,448 elements. The hexagon
used for FA189 represents the typical grain size of 75pm and the submodel contains a
total of 22,528 elements.
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Validity Of Finite Element Submodeling

The first assumption made in modeling the grains and grain boundaries was that the
grain boundary is weaker than the matrix. Also, due to the addition of small amount of B
in FA189, the grain boundary cohesive strength of FA189 is stronger than that of FA186.
According to this assumption, we chose the following Young’s modulus values:

EGB  (FA-I  86) = 40% E matrix = 40% * 1.41E+5 = 0.564E+5 MPa

EGB  (FA-189) = 70%  E matrix = 70% * 1.41E+5 = 0.987E+5 MPa

The next assumption was needed to ensure that the submodeling approach will
satisfy the (deformation) compatibility condition. A homogenization procedure based on
the rule of mixture (ROM) was adopted in this study. In this approach, the heterogeneous
material in the submodel  (with two different Young’s modulus values for matrix and
grain boundaries) is replaced with an equivalent homogeneous one having the same
Young’s modulus values as that of the global model. The ROM formula was written in
terms of area fractions, i.e.

Esubmodel  -- Ematrix Amatrix  + EGB  AGB

where Amatrix (= area of grain elements / total area) is the area fraction of grains, and
Aos (= area of grain boundaries / total area) is the area fraction of grain boundaries.
The results of the Emahx  and Eoa values obtained for FA186 and FA189 are shown in
Table 2.

The validity of the proposed homogenization procedure and submodeling
technique can be verified by examining the contour plots of principal strains near the
interfacial boundaries of the submodeled region. As shown in Figure 3, which shows
superimposed contour plots of principal strains of the global model and submodel, the
compatibility condition is indeed satisfied.

Hydrogen Diffusion Model

The hydrogen diffusion model is based on the concept of an elastic interaction
between the hydrostatic pressure (or the volumetric component of a crack tip stress
tensor) and the dilatation associated with an interstitial hydrogen atom [2]. The
localization of hydrogen atoms can be explained by the effect of hydrostatic stress on the
chemical potential of hydrogen atoms. For the simple case of spherical hydrogen, the
enhanced hydrogen concentration by oii/3 in the region has been shown to follow
Boltzman statistics

C, = Co exp
1 I
qivFi

3RT

3 where CO is the initial concentration and Vn is the partial molar volume of hydrogen.



The governing equations for hydrogen diffusion used in ABAQUSTM  are an extension of
Fick’s equations: they allow for nonuniform solubility of the diffusing substance in the
base material and for hydrogen diffusion driven by the gradient of pressure.

.,=_,.(g+s&J.

where J is the flux of concentration of the hydrogen gas, D is the diffusivity,  S is the
solubility of the hydrogen gas, I$ is the pressure stress factor andp is the pressure stress.

In our analysis the basic solution variable (used as the degree of freedom at the
nodes of the mesh) is the “normalized concentration” (often also referred to as the
“activity” of the diffusing material) defined by

# = c/s,

where C is the mass concentration of the diffusing hydrogen and S its solubility. This
variable was chosen because the mesh includes dissimilar materials (i.e. different
Young’s modulus values for grains and grain boundaries) and in this case the normalized
concentration is continuous across the interface between the grain and grain boundary.

Stress-assisted diffusion of hydrogen is specified by defining the pressure stress
factor, Kp, using the analytical solution presented by Liu [3], as

where R = 8.31432 J/molK is the universal gas constant, YH = 2.0~10~  mm3/mol  is the
partial molar volume of hydrogen in iron-based metals.

Finally, the following material properties are selected for the computational
calculations [4].

Diffusivity: D = 2.10x 10m7 gexp
6.88/G/01  -’

-
s R T

Solubilitv:

where S is the solubility expressed in atoms of HZ gas per m3 of iron, P is the partial
pressure of hydrogen gas and T the is temperature. For this research, we set P = 1 atm
and T=300K.  Note that the initial concentration is dictated by Sievart’s law: C = P”*x S

The crack surface is assumed to be “open” and to allow equilibration with the
hydrogen gas, such that the dominant process will be the transport of hydrogen from the
crack tip. A steady state hydrogen diffusion analysis is conducted and the rate of change
of concentration with respect to time is omitted from the governing equations.



Steps Of Simulating Intergranular Fracture Due To Hydrogen Embrittlement

(1) Finite element stress/strain analysis of the global model,
(2) Finite element stress/strain analysis of the submodel at the crack-tip region,
(3) Steady state hydrogen diffusion analysis based on the hydrogen diffusion model

coupled with the results from step (2),
(4) Degrade the material properties in the high hydrogen concentration zone in submodel,
(5) Finite element stress/strain analysis of the updated specimen configuration (similar to

steps  (1) and G9),
(6) Apply maximum principal strain failure criterion and simulate intergranular crack

growth,
(7) Go to step (1) and repeat the cycle.

For this simulation, it is proposed that a material degradation will occur at the
stress-assisted hydrogen concentration region. To the best of our knowledge, no similar
modeling work or actual experimental material property degradation measurement has
been done to substantiate this assertion. Nevertheless, we believe that this is a reasonable
assumption that the probable cause of the initial intergranular crack growth is due to
material property degradation at the crack-tip stress-assisted hydrogen concentration
zone. Accordingly, the material property (Young’s modulus in this analysis) is reduced
both at the matrix and grain boundary region by the following formula:

Normalized concentration ratio % of reduction of Young’s modulus
1 to 3 20 %
3 to 6 30 %

6to 10 40 %
10 to 15 50%

After degrading the material properties, a new static analysis of the submodel is
carried out to determine the updated crack tip stress/strain state; and, based on the
selected failure strains for FA186 and FA189, the possibility of inter-granular cracking is
evaluated and proper boundary conditions in the crack tip submodel region are then
adjusted. A failure strain of 4% for FA186 and a failure strain of 6% for FA189 are
selected in this numerical analysis. Because both the geometric configuration and
material properties in the submodel were changing with the updated crack growth, it is
necessary to satisfy the compatibility of displacements at the interfacial boundary region.
This was accomplished by updating the crack length in the global model together with
modifying the elastic modulus of the elements in the global model corresponding to the
submodel  area. This was done at every three to four steps at which the new Young’s
modulus of the submodel was determined based on the rule of mixture approach and
modified material properties of grains and grain boundaries, as shown in Figure 4.
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Results and Discussions

Table 3 shows the finite element simulation matrix. As shown, a total of 12
comparative finite element simulations under vacuum and air at two different stress
intensity factors and two different failure strains were carried out in this research.

Figures 5 and 6 show examples of intergranular crack growth due to hydrogen
embrittlement for FA186 under applied stress intensity factors of 17.36 MPadm  and
36.9MPadm,  respectively. Figure 7 show the intergranular crack growth due to hydrogen
embrittlement of FA189 under applied stress intensity factor of 17.36 MPadm.  As
shown, the results indicate small maximum principal strain distribution at the crack tip
region for FA186 (all are below 6%) and thus small amount of crack growth is predicted
compared to FA189 which shows a continuous crack growth up to failure. However, if
the applied stress intensity factor is increased to Kr=36.9  MPa.\lm, a much larger diffusion
zone with higher hydrogen concentrations is noted for the case of FA-186, and, thus,
multiple cracks can be initiated from the very beginning, which will further lead to an
expanding damage zone as observed in the experimental results. This feature of extensive
multiple cracks is also observed in the vacuum simulations(see Figure 8), leading to the
conclusion that extrinsically FA186 is less sensitive to hydrogen embrittlement than
FA189. As for the case of FA-189, the hydrogen diffusion zone for FA189 is larger with
three times higher hydrogen concentrations than those for FA186, as shown in Figure 7.
This leads to much faster crack growth rate as observed in the experiment. Figures 9 and
10 show the intergranular crack growth in vacuum of FA189 under applied stress
intensity factors of 17.36 and 36.9 MPadm,  respectively. As shown, the results for
FA189 indicate minimal crack growth (0.0325mm crack growth under Kt = 17.36
MPadm  and 0.56 mm crack growth under Kr = 36.9 MPadm)  which shows that,
intrinsically, FA189 has better fracture resistance than FA186 (0.63mm crack growth
under Kr = 17.36 MPa.\jm  and a widespread micro-cracking under Kr = 36.9 MPadm).

Part I Summary

Summarized numerical results are as follows:
(1) Under the same applied load and in vacuum condition, FA-189 showed a better

fracture resistance than FA-186,
(2) Under the same applied load and initial hydrogen concentration, FA- 189 showed a

larger hydrogen diffusion zone, with concentrations three times higher than those of
FA-186,

(3) Grain boundary size plays an important role to the extrinsic environmental fracture
behavior of iron aluminides, and

(4) Our modeling predictions showed good qualitative agreement to the experimental
results. Both results indicated that intrinsically FA-189, which has stronger grain
boundary cohesive strength but smaller grain size, has better fracture resistance than
that of FA-186, however, extrinsically it is more susceptible to hydrogen
embrittlement under low strain loading conditions.
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II. CALCULATION OF THERMAL EXPANSION

Introduction

We have considered the various methods by which the thermal expansion of
FejAl can be modeled starting with a conceptually simple continuum medium modeling,
which we have used in initial calculations reported here, despite its limitations in
neglecting the effects of optical phonons. This makes the results increasingly suspect for
temperature above the Debye temperature. The results we obtain are surprisingly good
considering this important limitation.

However, we regard these results as being suspect. Therefore, we discuss a
wholly new ab-initio-based  method which is both more accurate (preserves the ab-initio-
generated information) and computationally more efficient, for use in computational
thermal expansion simulations of iron aluminides. This method can directly transform the
all-electron ab initio electronic structure results of the full-potential LMTO electronic
structure behavior, computationally provided in reciprocal space, to the real space
representation needed for the thermal expansion modeling. Speedup,  use of larger
supercells, and more efficient calculations, can all be achieved by using real space (tight-
binding (TB)) calculations. The TB parameters are obtained from direct Fourier
transform of the matrix elements in momentum space for a specific structure and specific
lattice constant. The parameters that may change significantly are the onsite parameters,
which depend on the onsite  electron density. To make a usable look-up table, good for
variable lattice constant in the same structure, one can perform several runs with different
lattice constants and obtain a fitting function of the onsite parameter as a function of
lattice constant, for each orbital in each atom. We are at present implementing this
method for initial application to Fe3Al before proceeding to a study of molybdenum
silicide systems.



II. 1 Initial Study of Thermal Expansion of FesAl

Continuum media approximation.
When temperature is relatively low, for the calculation of thermal properties of a

material one can neglect the exact atomic and electronic structure of material and use a
continuum media approximation. This approximation can be obviously valid only when
the characteristic phonon wavelength is much longer than the size of the unit cell, or at or
below the Debye  temperature. Nevertheless, in practice, results of good quality are
sometimes obtained well above the Debye temperature.

Harmonic approximation.
The validity and the range of the next approximation is not so obvious, in fact it

can be shown that the harmonic approximation is not self consistent [5]. We will briefly
discuss it later. For a perfectly harmonic system (E-u*) there is no thermal expansion.
Therefore, thermal expansion is entirely anharmonic effect. At the same time, it is a well-
known fact that it can be described by including the dependency of the (harmonic)
phonon frequencies on the crystal volume/deformation. Atoms in their thermal motion do
not deviate much from their corresponding average positions (which are depend on the
temperature) even at the melting temperature. Therefore this motion can be accurately
described by harmonic approximation. This methodology was successfully used to
describe thermal expansion of FeAl[6]  and Mo-Si compounds [7].

The energy of a system of noninteracting phonons is equal:
E = C(ni + 1/2)w(k,)

The partition function for this system is’ given by:

(1)

z = n e-w(kw .

k 1 _ e-wlT ’ (2)

Therefore, the Helmholtz free energy of this system of oscillators is:

Fphonons =-In2 =T~lnf2sinh[w(k)/2T]] (3)

The total free energy of the system can be fknd as a sum of the phonon free energy (3)
and the energy associated with an average elastic expansion of the lattice:

F = ’ (‘) + Fphonons =U(a)+T~ln(2sinh[w(k,a)/2T]] (4)
k

The energy U(a) can be easily obtained directly from the ab-initio calculations, by
interpolating the uniform expansion curve. The phonon spectrum also depends on the
lattice constant a, or in the case of uniform expansion on volume V. (w(k) = w(k,a))

Minimizing (4) with respect to the lattice constant a while holding temperature T as a
constant would yield equilibrium lattice constant so(T),  and therefore, the coefficient of
thermal expansion. However, this expression can be further simplified. (see, for example,
Ashcroft Mermin).
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The first term of this equation does not depend on the temperature and therefore should
be zero, since P=O at T=O.

(5)

(6)
For a crystal with a cubic symmetry coefficient of thermal expansion can be found from
(6) as:

As was mentioned above, the Harmonic Approximation is not entirely self-
consistent. Generally, the coefficient of thermal expansion found from (7) is different
from the one obtained by a direct minimization of (4) with respect of the lattice constant
a, although results from both approaches are usually similar [5].

From the practical point of view, all we need from the ab-initio calculations is a
dependency of elastic constants on the lattice constant. The phonon energies for a given
lattice constant can be determined from the Christoffel relationship [for example, see 81:

IC,,k, kj - ~I+%,,~I  = 0 m
where C, i jv are elastic constants, p is a density of the material and w are the phonon
frequencies. For a cubic system there are only three independent elastic constants: Cii,
CD, and G4.

Calculations of EIastic Constants.
In order to determine these three independent elastic constants we, following

methodology of Ref. [9], considered three deformations. First deformation is a simple
uniform expansion of the DO3 lattice of FejAI in the range of 10.1 to 10.9 a.u. Calculated
energies were fit with the third order polynomial:

E=Eo+&2(a-a,)2+q(a-aa,)3; (9)
We found &2=0.2085  Ry/(a.u)*  and ~3 = -0.064 Ry/(a.u.)3  .In order to ensure the accuracy
of calculations these numbers were checked using several FP-LMTO calculations with
different numbers of k-points and Fourier harmonics. It was found that the numbers
remain the same with the accuracy about 2%.
In terms of elastic constants, the bulk modulus of Fe3AI is equal:

B(a) =-$X4 +2G2W) (10)

To find Cl1 and Cl2  independently, we considered the following deformation:

9



x’=x(l+A)

y’=y(l-A)

(11)

Energy of such deformation is equal:
E = E,(a)+V(C,,(a)-C,,(a))A2+0[A4];

Since we need to obtain dependency of elastic constants on the lattice constant we
considered deformation (11) for 6 different lattice constants (see Fig. 11).

In order to find Cd4 we considered the following shear deformation:
x’=x+Ay

y’=y+Ax

A E [0,0.05]

(12)

with energy of such deformation given by
E = E,(a)  + 2YC4,(a)A2 + 0[A”];

Again, six different lattice constants were considered (see Fig 12).
At calculated equilibrium lattice constant at a=%, using numbers obtained by ab-

initio calculations we obtained the following elastic constants: Crt=303GPa  ,
C12=242GPa,  and C44=183GPa. These number deviate significantly from the reported
experimental values. This kind of error in elastic constant is common for ab-initio
calculations. However, elastic constants calculated at experimental lattice constant
usually are much closer to the experimental values. Our predicted lattice constant is 3.8%
less than experimental value. For the experimental lattice constant (10.8 a.u.) for FeJAl
our calculated bulk modulus is 144 Gpa, which is very close to the reported experimental
[lo] value at OK 147 GPa. Other calculated (experimental) elastic constants are the
following Cl1 = 166 GPa (179 GPa), Cl2  = 133 GPa (131 GPa) , and C44= 117 GPa (138
GPa).

Thermal Expansion
Thermal expansion has been calculated using Eq. (7-8). The calculations were

done at the experimental lattice constant. The results are presented on Fig. 13. The
agreement with experiment is generally good, considering that error in calculated elastic
constants reaches 14% (for C44). Such a deviation of LDA calculations from the
experimental values is quite common for iron based alloys.

Crystal Structure Instability.
Yet another source of discrepancy between experiment and calculations could be

the phase instability. Throughout these calculations we assumed that Fe3Al  has a DO3
cubic structure at any temperature and/or volume. Experimentally, it is known that DO3

10
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structure is only a low temperature structure for a pure FejAl. In our calculations of
tetragonal deformation (11) the cubic structure has a minimum energy only at the
equilibrium lattice constant (a=10.4 c(.u.). Starting with a=10.5 a.~. a structure with one
edge slightly longer than another (about lo/,) has a lower energy (the length of the third
edge for these calculations varied, in such a way, that the resulting volume was a
constant). The result of such a deformation (for a unit cell with a volume equal to (10.9
a.~.,)~  ) is shown on Figure 14. The effect is very small (less than 0.1 mRy which is about,
or even less than, the maximum accuracy achievable with the LDA calculations). At the
same time, since it is present in all our calculations with the volume per unit cell
exceeding the calculated equilibrium volume, it may be real.

Our calculations are not sufficient to predict the exact configuration that has the
minimum energy since other possible deformations have to be also considered.

Further Improvement
The first step in improving our results is to ease the approximation about

continuum media because this approximation fails at high temperatures. However, when
temperature is sufficiently high (at or above Debye temperature) another approximation
can be used. In the local harmonic approximation (LHA), each atom oscillates
independently of others, in the “frozen” cage of neighbors. This model is similar to the
Einstein model of solids, but in LHA each atom in the unit cell has its three own distinct
eigenfiequencies  of vibration. These frequencies are also volume/configuration
dependent. LHA calculations can be undertaken ab-initio using a supercell methodology.
These calculations should work very well for temperatures much higher than the Debye
temperature. However, it has been shown that LHA works in the range from the Debye to
the melting temperature. Therefore, such calculations should successfully complement
continuum media calculations as presented here.



11.2. Development of New ab-initio-based Methodology
A. Overview of Possible Methodologies

Because the cause of thermal expansion in solids is the elastic anharmonicity, the
modeling of thermal expansion is a difficult task. There are several approximations that
can be implemented to model this process. The particular choice will depend on material
properties and the temperature range of interest.

We have considerable previous experience [ 11,121 in ab-initio-based
computational modeling for predicting thermal expansion of nickel-based materials. In
these calculations the technique was developed [ 11,131  to extract information from the
ab-initio full-potential linearized muffin-tin orbitals electronic structure calculations
[14,15] results, in order to generate the atomistic potentials. However this technique, was
rather indirect and phenomenological. This led to limitations in easily capturing
important effects providing directionality to the interatomic bonding. We have therefore
developed a new technique, described below, that very directly transforms the all-
electron ab initio electronic structure results of the full-potential LMTO electronic
structure behavior, computationally provided in reciprocal space, to the real space
representation needed for the thermal expansion modeling.

The most direct, accurate, and straightforward approach is to use direct ab-initio
calculations augmented with ab-initio molecular dynamics or Monte Carlo calculations.
However this approach would require an extraordinarily large amount of computations.
While our FPLMTO is a highly accurate type of calculation, a direct use of it in MD/MC
would exceed the capacity of modern computers.

The next possible approximation would be use of a pseudopotential. Techniques
based on first-principal norm-conserving pseudopotentials [ 161 often can preserve the
accuracy of all-electron ab-initio calculations; while at the same time they provide a
significant speed-up. This is because the most difficult regions for computations, around
the nuclei, are excluded from calculations. The electronic potential is relatively flat in the
interstitial area where most of the interatomic bonding occurs. However, in the region
immediately around the nuclei the electronic potential varies significantly. Moreover,
unlike valence electrons, the deeper energy level electrons that form a core around the
nuclei are insensitive to the surroundings and do not participate in bonding directly. The
pseudopotential technique takes advantage of these properties of electrons in crystals.
First, core level electrons are treated in the “frozen core” approximation, and their
contribution to the total potential is taken from initial calculations for isolated atoms.
Second, these potentials are changed around the nuclei in such a way that they are smooth
inside some spherical cutoff region, but at the same time they accurately reproduce initial
wave functions outside this sphere and the total charge inside it. Because the
pseudopotentials are smooth by construction, the motion of the valence electrons can be
calculated easily and much more quickly than in an all-electron type of calculations. At
the same time, because the electron scattering properties of the nuclei are preserved,
pseudopotential calculations can accurately reproduce most of the electronic properties.
When the highest level core electrons significantly overlap with valence electrons, as in
the case of copper, zinc and some other elements, it is possible to include nonlinear
corrections [ 171. There are several modem approaches for constructing pseudopotentials
[e.g. based on 18-201; however, for describing a transition metal based system, ultrasoft
pseudopotentials [21] are most likely to be successful. In addition, a pseudopotential code
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can be adapted to a parallel computer and has been successfully run on a Cray T3E and
on Linux clusters. Despite all of these conveniences, the size of the supercell for such
calculations is still limited to about 50 atoms. Therefore, a contribution of phonons with
wavelength exceeding the size of about 15 A is neglected. While this might be a good
approximation for very high temperature, these are still very demanding calculations.
Thus they are basically useful as a last resort if other approximations fail to describe the
thermal expansion of materials of interest.

An alternative to molecular dynamics (MD) and monte carlo (MC) simulations is
to use a quasiharmonic approximation. In this approximation, while atomic oscillations
(phonons) are treated harmonically, the frequencies of phonons are volume dependent. If
this dependence is known, as well as the dependence of the internal energy on volume,
the entire equation of state can be found and thermal properties are easily obtained
through thermodynamic equations. This approximation should work well even above the
Debye temperature, and it has been demonstrated that it successfully provides the melting
temperature for several metals, e.g., silver [22].

The phonon dispersion at various volumes can be found without having to study
various deformations of the lattice directly in a supercell. This involves use of recent
developments of linear response theory based on density functional theory [23-251.  The
harmonic force constants of crystals are determined by their static linear electronic
response. Application of the Hellmann-Feynman theorem describes the linear variation of
electronic density in response to an external periodic lattice perturbation caused by
phonons. Using this approach, the phonon spectrum was accurately calculated for several
transition metals, including magnetic Fe and Ni [26], and for the perovskite material
KNb03 [27].

Further speedup,  and therefore larger supercells and lower cost of calculations,
can be achieved by using real space (tight-binding) calculations. This approach is also
suitable for parallel computers and allows treating supercells with several hundred atoms.
Since this approach is based on quantum mechanics, it is still capable of providing many
effects of electron gas contributions. While matrix elements of the TB Hamiltonian for
elements have been recently determined [28], there are significant difficulties in finding
effective interactions between different types of atoms. Below in B we describe our
approach which, by a direct transformation technique, avoids such difficulties. Recent
development of parallel methods of diagonalization of large matrices makes this
approach very promising for the calculation of thermal properties of high-temperature
alloys. When an effective TB Hamiltonian capable of describing a system in an arbitrary
configuration (positions of atoms) is known, the equilibrium volume at a given
temperature and pressure (NPT ensemble, where N denotes a constant number of atoms)
can be found via molecular dynamics or monte carlo  simulations. Alternatively, pressure
as a function of temperature (NVT ensemble) can be determined if the simulations are
performed with fixed volume and temperature. A volume dependence can be
subsequently found using standard thermodynamic technique. Which ensemble to use
depends on the system. Usually NPT simulations converge more quickly, while NVT are
easier to implement.

When we compare MD and MC, it can be seen that both techniques have some
benefits and disadvantages. In the case of TB they both heavily rely on a fast
diagonalization of the TB Hamiltonian matrix. Generally, MD provides faster
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convergence and can provide additional useful information about specifics of atom
motions. However, MD requires calculation of forces, and therefore obtaining
eigenvectors (for use in the Helmann-Feynman theorem) in addition to eigenvalues;
whereas only energy calculations are necessary in MC. Modem diagonalization
techniques provide much faster calculation of eigenvalues without eigenvectors, and this
most likely can wipe out all benefit of faster convergence of MD. Our particular choice
of a technique will be determined after initial testing.

Also, we should mention that implementing a TBMD on a parallel computer is
limited to a diagonalization technique. MC, contrary to popular belief, is an inherently
sequential approach, since for a proper sampling of the configuration space, steps should
be taken in sequence. However recent modifications [29] allow increased parallelization
of the MC algorithm itself.

B. Approach Combining FP-LMTO and Tight-Binding for the Calculation of the Thermal
Expansion Coefficients of Complex Materials

There are two separate parts to this approach. First, one has to extract the tight-
binding parameters from the FP-LMTO results. Second, one uses these parameters to
actually calculate the thermal expansion coefficient. The method we intend to use in the
thermal expansion calculation is the real space method as described in the final part of
Section A above. Therefore, we now describe the method used for the bridging from the
full  potential LMTO results to the real space (tight-binding) basis needed for the thermal
expansion modeling.

B. I Extraction of TB parameters from FP-LMTO results
The ideal TB parameters would be accurate, localized, and transferable.

Accuracy. The TB parameters are extracted from a FP-LMTO calculation using a single
negative kappa, for a specific crystal structure (supercell). The accuracy of these TB
parameters therefore can only be as good as the accuracy of the single-kappa FP-LMTO
result. Calculations using the FP-LMTO method usually use 3 different kappas (e.g., see
[30,311),  h hw ic can be of either sign, positive or negative. For our initial work in
extracting the TB parameters, we will use a negative kappa since we want the basis
function to be localized. The magnitude of the chosen kappa should not be too large since
the optimal kappas (the kappa set which give the lowest total energy) typically have
values around zero. Thus the choice of basis functions will be rather limited initially.
However, as part of the research, as described in (3) below, we will refine the
methodology to remove this limitation.
Localized Basis. The spatial extent of the basis functions used is set by the value of
kappa. The more negative it is, the more localized is the function. From our experience
with NiAl, setting kappa = -0.2 effectively makes irrelevant the matrix elements between
orbitals separated by a distance more than 7-8 lattice constants of NiAl. (While the matrix
elements decay exponentially with distance, the number of neighboring orbitals within
that distance goes quadratically with distance.) This means that the basis function spreads
as far as about 20 Angstroms from its center. The range of the basis function also
determines the size of the grid in the Brillouin zone that we need to use in the LMTO
calculation. In the case of NiAl, we used a finite cubic crystal consisting of a 16 x 16 x 16
unit cell of NiAl, with periodic boundary conditions. This means we have to calculate the
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matrix elements in momentum space, H(k) and S(k) corresponding to the Hamiltonian
and overlap matrices, in the Brillouin zone with 16 x 16 x 16 points. Using symmetry, for
NiAl this number was reduced to 165 inequivalent k points in the irreducible region. The
dimension of the matrix for NiAl was 18 (9 spd orbitals for each atom, and 2 atoms/unit
cell).
Transferability. In this approach, the TB parameters are obtained from direct Fourier
transform of the matrix elements in the momentum space for a specific structure and
specific lattice constant. For relatively small changes in the lattice constant (keeping the
same structure), as are pertinent to the thermal expansion, the parameters between
orbitals located on different atoms are expected to be obtainable from smooth
extrapolation/interpolation from the parameters for the starting lattice constant. The
parameters that may change significantly are the onsite parameters, which depend on the
onsite  electron density. To make a usable look-up table, good for variable lattice constant
in the same structure, one may therefore perform several runs with different lattice
constants and obtain a fitting function of the onsite parameter as a function of lattice
constant, for each orbital in each atom. We will investigate the quality this provides for
the calculation of the bulk modulus. To deal with the transferability of the parameters
between different structures, we will calculate the TB parameters using as close a
structure as possible to the structure for which the TB parameters are to be used.
Comparison with other approaches. The first proposal to obtain directly the TB
parameters from muffin-tin based LDA methods was by Andersen and Jepsen in 1984. In
their method they used the LMTO method within the atomic sphere approximation
(ASA). In LMTO-ASA,  the parameter kappa is set to zero, and the muffin-tin tails decay
in a power law fashion with distance. Furthermore, in the ASA the interstitial region is
completely neglected. To transform their long-ranged basis function to an exponentially-
decaying basis, they used an additional constant: the screening parameter. They stated
that the resulting TB parameters are very localized (vanish beyond 2-3 lattice constant)
and highly transferable, within the ASA. The introduction of the screening parameter in
their method is possible because the interstitial region is neglected in the ASA. The full-
potential methods, however, treats the interstitial region as well as the muffin-tin region.
For dynamic applications, one may use the FP-LMTO output as input in fitting
approaches, as we have done previously [ 1 l-l 31,  or as more recently has been done by
the Naval Research Laboratory group for their tight binding methodology [28].

B.2 Modeling of the thermal expansion behavior
As stated above, we plan to use the real space methodology described in the final

part of Section A. However, as resources and time allow, we will examine the
possibilities offered by quasiharmonic and pseudopotential calculations.

B.3 Possible routes to improving the quality of the TB parameters
As discussed in (1) above, in our technique, at present the TB parameters are

obtained from direct Fourier transform of the LMTO result (in k-space) using a single
negative kappa. This gives a minimal set of basis function (9 spd orbitals for each atom).
The limitation in this approach is that the most accurate result (within LDA-FPLMTO) is
obtained typically with 3 kappas, which can be of either sign. One can perform the same
direct Fourier transform on this result also, but this is not very practical since one is then



dealing with 27 basis functions for each atom. Furthermore the physical interpretation of
these multiple orbitals in each atom will not be as straightforward as in the single-kappa
case. What is desirable is a minimal set of basis functions that reproduces the physically
relevant bands of an accurate LMTO result, i.e., the bands below and slightly above the
Fermi level,. Each basis function would preferably also have a definite angular
momentum symmetry (s, p, or d state, but not a mixture of two or more angular
momenta). We plan to investigate two possible ways, described immediately below, to
carry out the desired improvement in quality of the TB parameters.

Fitting the 3-kappa LMTO result.
In this approach, we use the TB parameters from the single-kappa result as a

starting set for fitting the 3-kappa result. The computational procedure is rather
straightforward: parametrize the TB parameters using analytical functions and minimize
the deviation of the fitting functions from the actual bands. The parameters, however,
become semi-empirical---instead of first principle---and there is no a priori way to assess
their accuracy.

Projection Method.
In this approach one starts with the ab-initio LMTO result with 3 kappas and

extracts the states with the lowest energy by projecting out the higher energy states. The
limitation of this approach is that the states may not have a definite angular momentum,
which may give some problems related to its interpretation. However, a symmetry-based
transformation may overcome this difficulty, i.e., something like the Lowdin
orthogonalization where one transforms a non-orthogonal basis set into an orthogonal one
which has the same symmetry.

Currently, the computational modeling methodoligies discussed above are being
applied to thermal expansion calculations of iron aluminides and the results will be
reported soon.
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Iron
Aluminide

FA-186

Specimen

86-1

Structure
Condition

B2

Initial Fracture Environment Initial K Lasting Time
Mode MPaJm
mixed Air 36.9 7 min

86-10 DO3 mixed Air 25 94 min
28.3 1 min

FA-189 89-2 B2 intergranular Air 17.36 7 min

89-7
I I I I I

DO3 intergranular Air 17.36 3 min

Table1 . Test matrix for the specimens studied

Alloy Total Area
o f

Submodel
(mm*>

Area of Grain
Boundaries

(mm*)

Area Fraction E GB
of GB (MW

E Global
(MPG

E matrix new
(MW

FA-186 1.5054 0.064 4.25% 0.564E+5 1.41E+5 1.447E+5
FA-189 0.62352 0.05 8% 0.987E+5 1.41E+5 1.443E+5

Table 2. Material properties



.

Stress Failure Environment Fracture  behavior Fracture  behavior
[ntensity Strain FA 186 FA 189
Factor, K

Slow and straight Very slow, blunting effect
Vacuum Stopped after 0.6mm Stopped after 0.51mm

4% Very slow and straight, Straight crack growth, after
Air Stopped afier 0.63 mm 0.4 mm it changed to

K=17.3MPadm
multiple cracking

Slow and straight Stopped immediately after
Vacuum Stopped after 0.376mm 0.0325 mm

6 % (5%) Almost no crack growth
No growth Straight slow crack

Air extension to failure
Wide spread micro-cracks;

Vacuum relatively fast and stopped

4% after 1.08 mm
Wide spread initial micro-

Air cracks; more pronounced

K=36.9MPadm
blunting effect, expanding
damage zone growth
Slow and straight, blunting Straight crack growth;

Vacuum effect, stopped after 0.56 mm
stopped after 0.89mm

6 %

Air
Less initial micro cracks
(comparing to 4%) and less
initial crack tip blunting

Table 3. Finite element simulation matrix



,5mm ,
Initial crack tip

Figure 1. Global model 0.2mm Figure 2. Fine mesh at crack tip
Region (submodels)

Figure 3. Superposed contour plots of principal strains of global model and submodel
(a) FA 186 and (b) FA 189
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E global

Figure 4. Submodel and corresponding adjusted global model



Hydrogen difhsion zone, step 17 Principal strain distribution, step 17 crack growth

Hydrogen diffusion zone, step 33 Principal strain distribution, step 33 (stopped)

Figure 5. Hydrogen difhsion  zones and principal strain distributions for FA-186, Air, &=17.36MPadm



Hydrogen diffusion zone, step 1 Principal strain distribution, step 1 crack growth

Hydrogen diffusion zone, step 2

Hydrogen diffusion zone, step 4

Hydrogen difision  zone, step 6 Principal strain distribution, step 6 crack growth

Figure 6. Hydrogen diffusion zones and principal strain distributions for FA-186, Air, Kt=36.9MPadm

Principal strain distribution, step 2 crack growth



Hydrogen diffusion zone, step 16

Hydrogen diffusion zone, step 37

Principal strain distribution, step 16 crack growth

Principal strain distribution, step 37 crack growth

Principal strain distribution, step 48 crack growthHydrogen difision  zone, step 48

Figure 7. Hydrogen Diffusion zones and principal strain distributions for FA-189, Air,KI=17.36MPadm



Principal strain distribution, step 1 Principal strain distribution, step 3 crack growth

Principal strain distribution, step 5 Principal strain distribution, step 9 crack growth

Principal strain distribution, step 17 crack growth

Figure 8. Principal strain distribution for FA186, KI=36.9MPadm,  Vacuum



Initial principal strain distribution Principal strain distribution, step 5 (stopped)

Figure 9. Principal strain distribution for FA189, Kr=l7.36MPadm, Vacuum

Principal strain distribution, step 18 crack growth

Principal strain distribution, step 45 crack growth

Principal strain distribution, step 63 (stopped)

Figure 10. Principal strain distribution for FA189, Kr=36.9MPadm,  Vacuum
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Figure 11. Calculation of Crr-Crz. The deformation of the unit cell is described by
the transformation of coordinates: XI = x(1+ d), y’ = Y(I- d), ,z’ = z /(I - &). For small
values of parameter d the energy of the unit cell is equal toE = I?,, + E2d2 ,where

Figure 12 Calculation of C&. The deformation of the unit cell is described by
the transformation of coordinates: X’ = X+ yd, y ’ = y + xd, Z’ = z/(1 - d’). For small

values of parameter d the energy of the unit cell is equal to E = E, + E2d2 ,where
E2 = O.Nc,.



Figure 13 Linear expansion of FedI as a function of temperature.
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Figure 14. Dependence of unit cell energy as a function of deformation parameter d.
The deformation of the unit cell is described by the transformation of coordinates:
X’ = x + yd,  y’ = y + xd, Z' = z /(l - d*). . Minimum of energy found at non-zero value of d,
therefore, the DO3 is not the lowest energy phase at this lattice constant (a=10.9 a.u.)


