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ABSTRACT 

 

In this paper the implementation plans and preparations for installation of the Fissile Mass Flow 

Monitor (FMFM) equipment at the Siberian Chemical Enterprise (SChE), Seversk, Russia, are 

presented. The FMFM, developed by Oak Ridge National Laboratory, is part of the Blend Down 

Monitoring System (BDMS) for the U.S. Department of Energy Highly Enriched Uranium (HEU) 

Transparency Implementation Program. The BDMS provides confidence to the United States that 

the Russian nuclear facilities supplying the lower assay (~4%) product low enriched uranium (P-

LEU) to the United States from down-blended weapon-grade HEU are meeting the 

nonproliferation goals of the government-to-government HEU purchase agreement signed 

between the Russian Federation and the United States in 1993.  

 

The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since 

February 1999. The second BDMS has been operational at Electro Chemical Plant, Zelenogorsk, 

since March 2003. These systems are successfully providing HEU transparency data to the United 

States. The third BDMS was successfully installed on the HEU down-blending tee in the SChE 

Enrichment Plant in October 2004.  

 

The FMFM makes use of a set of thermalized 252Cf spontaneous neutron sources for modulated 

fission activation of the UF6 gas stream for measuring the 235U fissile mass flow rate. To do this, 

the FMFM measures the transport time of the fission fragments created from the fission activation 

process under the modulated source to the downstream detectors by detecting the delayed gamma 

rays from the fission fragments retained in the flow. The FMFM provides unattended 

nonintrusive measurements of the 235U mass flow of the UF6 gas in the blending tee legs of HEU, 

the LEU blend stock, and the resulting P-LEU. The FMFM also confirms that highly enriched 

UF6 gas identified in the HEU leg flows through the blending tee into the P-LEU leg. This report 

contains details of the SChE FMFM equipment characteristics as well as the technical installation 

requirements and the latest measurement results. 
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1. INTRODUCTION 

 

1.1 BLEND DOWN MONITORING SYSTEM BACKGROUND 

 

The Blend Down Monitoring System (BDMS) is a system for monitoring the down-blending of 

highly enriched uranium (HEU) to low enriched uranium (LEU). The BDMS measures the 

enrichment and flow rate of 235U in the gaseous UF6 flowing in the three lines (legs) of the 

blending facility (Fig. 1). The HEU Transparency Agreement between the United States and the 

Russian Federation requires implementation of transparency measures in the Russian facilities 

that are supplying the lower assay product LEU (P-LEU) to the United States from down-blended 

weapon-grade HEU material. Moreover, this agreement provides for the monitoring of the down-

blending of HEU at an assay of ~90% with blend stock LEU at an assay of ~1.5% to produce 

reactor-grade P-LEU at an assay of ~4% to be used in U.S. nuclear power plants.  

 

The BDMS has been developed to provide unattended and continuous monitoring of the HEU 

blending operations at the Russian facilities as part of the U.S. Department of Energy (DOE) 

HEU Transparency Implementation Program (TIP). The BDMS consists of the Enrichment 

Monitor (EM), developed by the Los Alamos National Laboratory [1], and the Fissile Mass Flow 

Monitor (FMFM), developed at Oak Ridge National Laboratory (ORNL) [2]. The FMFM 

provides measurements of 235U mass flow in the process legs of HEU, the LEU blend stock, and 

the resulting lower-assay P-LEU. The FMFM also traces fission products generated in the HEU 

flow through the blending tee into the resulting down-blended P-LEU flow, thus confirming 

down-blending of the HEU. The HEU material traceability gives the United States significant 

confidence that the HEU is indeed being blended into a lower-assay material, meeting the 

nonproliferation goal of the purchase agreement.  

 

The first BDMS has been operational at the Ural Electrochemical Integrated Plant (UEIP), 

Novouralsk, since February 1999. The second BDMS has been operational at the Electro 

Chemical Plant (ECP), Zelenogorsk, since March 2003. These systems are successfully providing 

HEU transparency data to the United States. The third BDMS was successfully installed on the 

HEU down-blending tee in the Siberian Chemical Enterprise (SChE) Enrichment Plant in October 

2004. In this report, details of the FMFM implementation in the SChE Enrichment Plant are 

discussed. 
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1.2 FMFM OPERATIONAL DESCRIPTION 

 

The principle behind the FMFM operation is that the fissile mass flow rate can be determined 

from measurements of delayed gamma rays emitted by induced fission fragments (Fig. 2). The 

source neutrons modulated by a neutron-absorbent shutter induce fissions in UF6, and the fission 

fragments carried in the flowing UF6 emit delayed gamma rays. The induced fissions are time-

modulated by the neutron-absorbing shutter to create a time signature in the UF6 gas flow. 

Gamma-ray detectors located downstream of the source measure the delayed gamma rays (> 0.3 

MeV) emitted by the fission fragments. Then, the FMFM determines the fissile mass flow rate 

from two independent measurements from the detector signal waveform (Fig. 3): (1) the observed 

time delay, τ, in the time-correlated measurement between the source and the detector signal 

provides the velocity, ~1/τ, of the UF6, and (2) the signal’s amplitude is related to the 235U 

concentration in the UF6. The details of the FMFM models employed to predict the FMFM 

detector response are discussed in earlier publications [3, 4].  

 

The major FMFM assemblies and components are shown in Fig. 4. The FMFM source modulator 

(SM) assembly is an annular sleeve that surrounds the pipe in which UF6 flows. It contains 

thermalized 252Cf neutron sources in a moderator material (high-density polyethylene).  

 

The principle of the FMFM HEU traceability measurement is that the highly enriched UF6 

flowing through the blending tee can be traced by detecting in the P-LEU leg the delayed gamma 

rays emitted by fission products generated by the SM in the HEU leg (Fig. 1). The fission 

fragments that are created from the 252Cf-induced fissions are relatively long-lived [4]. Thus their 

delayed gamma rays can be detected at long distances from the source. This technique is used to 

monitor flow continuity from the FMFM SM on the HEU leg to the FMFM detector on the P-

LEU leg.  

 

The FMFM tracing calculation is based on the difference in total count rate at the P-LEU detector 

with and without the HEU leg shutter in operation. The FMFM reports the HEU tracing results in 

terms of confidence level, which is a measure of the probability that the HEU flowed through the 

blending tee. The time constant for the low-frequency “tagging signal” must be optimized based 

on the source-detector time delay and the number of mixing volumes. For the SChE system the 

FMFM cycles the HEU leg shutter open and closed every 10 s for a 10-min period and then is 

closed for the next 10-min period (Fig. 5). The 20-min cycle results in a buildup and decay of 
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fission products that allow for continuity monitoring by comparing the difference in the P-LEU 

leg detector counts with and without induced fissions. Disabling the HEU-leg shutter periodically 

(every other 10 min) affects the shutter-correlated background level at the P-LEU leg detector. 

Therefore, for traceability, the FMFM only uses the data when all shutters are closed. An on-line 

FMFM computer, located in the cabinet assembly (see Fig. 4), controls all three leg SM shutters 

synchronously, processes acquired detector data, and reports results on the flow and trace 

measurements. 



 



 

5 

2. SChE BDMS FMFM DESIGN STRATEGY 

 

The FMFMs implemented at the UEIP and the ECP were designed for nominal 10-cm-diam UF6 

process pipes. In the case of low enriched UF6 flow measurements on the LEU leg (~ 1.5% 

enriched) and the P-LEU leg (~ 4% enriched), the detector signal, Ns, from the delay gamma rays 

needs to be increased in order to achieve the measurements within a short period of time (less 

than the process duration) with statistically acceptable measurement results (measurement 

confidence level > 90%) because the measurement convergence time τc ~ Nb/ Ns
2, where Nb is the 

room background. This is only possible by increasing the delay gamma ray source that results 

from the fission activation of the UF6 flowing in the process pipe. Using more 252Cf is not a viable 

option because the facility dose rate requirement must be maintained. Therefore, the desired 

higher detector signal is achieved by increasing the active volume of the fission process (i.e., by 

using a larger-diameter process pipe) and thus having a higher volume of fission fragments 

flowing in the UF6 gas stream. The FMFMs for the SChE LEU and P-LEU legs were designed for 

nominal 20-cm-diam process pipes, and the facility modified the enrichment plant process pipes, 

which are part of a dedicated BDMS room, to accommodate the equipment, as discussed in detail 

in Ref. [5]. 

 

2.1 FMFM SM ASSEMBLY AND SUPPLEMENTAL SHIELDING 

 

The FMFM SM assembly (Figs. 6 and 7) is located upstream from the FMFM detector assembly. 

The purpose of the SM is to imprint a time-dependent signature on the fissile stream by 

modulating the 252Cf source neutrons. The four 252Cf sources that provide the neutrons required 

for activation of the UF6 process gas stream are mounted in source plugs that fit into the 

moderator subassemblies (Fig. 8). The sources are oriented perpendicularly to the process pipe 

and are spaced at 90-degree intervals. The subassemblies and plugs are made of high-density 

polyethylene, which moderates the fast neutrons emitted by the sources.  

 

The modulation of the neutron flux intensity is accomplished by using a cylindrical aluminum 

shutter with a lithium-epoxy (neutron absorber) lining (Fig. 8). A voided section in the lithium-

epoxy lining creates a window region. The shutter mounts to the linear positioner subassembly. 

The linear positioner subassembly moves the shutter to modulate the neutron flux intensity. The 

movement of the shutter assembly results in a modulation of the neutron flux intensity in the UF6 

process gas stream. The positioner contains an integral stepping motor (Fig. 9) that is powered by 
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the FMFM cabinet assembly and controlled by the FMFM software and by a controller mounted 

in the SM assembly.  

 

The SM assembly is shielded to reduce the surface radiation levels, as shown in Figs. 6 and 7. A 

layer of lead shielding encloses the moderator (Fig. 9). A layer of lithium-impregnated (5 wt %) 

polyethylene shielding surrounds the lead shielding (Fig. 10). The shielding was designed in 

segments so that the weight and size of shielding components are reduced for easier handling 

during installation and maintenance operations. Sheets of high-density polyethylene shielding are 

also installed at each end of the SM assembly frame (Fig. 10). Both high-density polyethylene 

and lead supplemental shielding components are provided for installation on the process pipe to 

augment SM assembly shielding as needed to meet facility radiation standards. In addition, the 

SM assembly is covered with about 7.5-cm thick polyethylene shielding panels on the front, the 

back, and the top. 

 

2.2 FMFM DETECTOR ASSEMBLY 

 

More detectors are needed for the large-diameter (20-cm) process pipes than the number used in 

10-cm-diam pipes (see Fig. 4). Increasing the number of detectors results in a higher detection 

efficiency, or higher detector solid angle, Ωd, which results in a higher detection signal because 

the signal value, Ns, is related to the Ωd of the detector as seen from the gamma ray source. (Here, 

Ωd is defined by an integral over the detector area that faces the gamma ray source.) In reference 

[6], a detailed design description and the performance characteristics are presented for the FMFM 

gamma ray detector system developed to be used on 20-cm-diam process pipes. Four pairs of 

bismuth germinate (BGO) scintillation detectors are placed around the process pipe, on the top, 

bottom, front, and back (see Figs. 4, 11, 12, and 13). The BGO is a novel scintillation material (a 

rugged, nonhygroscopic, neutron-insensitive, high-density and high-Z material) with high 

absorption power. It has high photo peak efficiency for high-energy delay gammas (> 0.3 MeV). 

Each 10-cm-diam, 5-cm-thick BGO scintillation crystal is coupled to an 8-cm-diam 

photomultiplier tube. Both are shielded with lead to reduce the background signal (Fig. 14). Each 

detector pair is housed in a metal enclosure that also contains an electronics board for signal 

shaping and counting (Figs. 15 and 16). 



 

7 

3. FMFM IMPLEMENTATION SPECIFICATIONS 

 
The block diagram of the BDMS equipment installation layout on the SChE HEU blending 

system is shown in Fig. 17. Typical examples of the FMFM equipment, the SM, and the detector 

assemblies installed on a test stand is shown in Fig. 18. The EM and FMFM cabinet sections are 

shown in the main cabinet housing in Fig. 19. The blending system process pipes that directly 

support the FMFM equipment where the BDMS is installed are about 1 m off the floor in order to 

have easy access to the equipment for maintenance. The major FMFM assembly dimensions and 

approximate weights are given in Table 1. The facility radiation dose rate requirement, which is 

2 mrem/h at 1 m from the surface of the equipment that houses the radioactive sources, is met by 

the design of the FMFM SM assemblies and has been verified with measurements for 

certification.  

 

3.1 FMFM 252Cf NEUTRON SOURCES 

 

The FMFM SM on the each leg of the blending system uses a total of four neutron sources. Each 

has 3 µg of 252Cf (half-life ~2.65 years), the equivalent of 1.65 mCi. These sources provide a total 

of about 2.6 × 107 neutrons per second for fission activation of the UF6 gas flow under the SM. 

As shown in Fig. 8, the four high-density polyethylene source plugs that hold the sources in the 

SM are evenly distributed around the SM. The radial location of the sources was determined from 

Monte Carlo modeling studies for maximizing the thermal neutron flux under the SM [2]. The 

sources need to be replaced about every two years to maintain FMFM performance. 

 

3.2 UF6 GAS PRESSURE AND FMFM FLOW REGIME OPERATIONS 

 

The recommended UF6 gas pressure range for the FMFM equipment operation is between 50 and 

60 Torr (regulated) at the locations of the FMFM equipment. The FMFM can operate with either 

laminar or turbulent UF6 gas flow. At SChE, the FMFM is designed to measure the laminar flow 

of the HEU leg and the turbulent flow of the LEU and P-LEU legs. Table 2 specifies the range of 

gas velocities that the FMFM can measure.  
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3.3 FMFM MEASUREMENT PERFORMANCE PARAMETERS 

 

Table 3 shows the system performance specifications for the range of variables over which the 

FMFM is designed to operate, along with their measurement uncertainty. 

 

3.4 RECOMMENDED FMFM EQUIPMENT INSTALLATION CONFIGURATION FOR 

SChE  

 

Figures 20 and 21 show the recommended installation configuration for the FMFM assemblies 

for the HEU, LEU, and P-LEU legs at the SChE facility. The SM-to-detector separation 

distances, L, optimized for these process legs, are obtained from simulation modeling studies [3] 

to achieve the design performance (i.e., given the shutter period and detector background, the 

time delay, τ, was optimized for the expected velocity, L/τ, range of measurements). The FMFM 

assemblies include supplemental polyethylene neutron shielding (Figs. 20 and 21). Figure 22 

shows the recommended schematic of the complete FMFM system equipment installation 

configuration for the blending system. In order to improve the measurement convergence time, τc, 

the proposed configuration lowers the crosstalk (background signal, Nb) from sources such as 

minimum back shine from the SM to detectors between the HEU, P-LEU, and LEU process legs. 

In addition, as shown in Fig. 21, supplemental gamma shielding may be installed to further lower 

the FMFM detector background signal from the sources in the SM on the HEU, LEU, and P-LEU 

legs. 
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4. BDMS IMPLEMENTATION STATUS AT SChE AND MEASUREMENT RESULTS 

 
4.1 IMPLEMENTATION STATUS 

 

In May 2004, a Russian delegation participated in a week of training at ORNL on the operation 

and installation of the BDMS equipment (see Figs. 23 through 25). In June 2004, after more than 

a month of complete system operational testing at ORNL, the BDMS equipment was packed in 

37 crates and was shipped to SChE. The joint U.S. and SChE inventory of the crates was 

performed in September 2004, and the required 30-day security inspection by the Russian Federal 

Atomic Energy Agency (RosAtom) was also completed. DOE prepared the recommended 

installation schedule and provided it to RosAtom.  

 

BDMS implementation was accomplished at SChE in two steps. In October 2004, the BDMS 

hardware was successfully installed to the SChE Enrichment Plant (Fig. 26) [5]. In February 

2005, the system was calibrated and was accepted for operation by RosAtom to be used for the 

DOE HEU TIP. The main BDMS implementation activities during February 2005 were to (1) 

perform background measurements on the evacuated piping, (2) complete calibration of the 

system, (3) work with the Russian Certification Commission selected by RosAtom to verify that 

the system met its criteria and that the system was placed into transparency operation, and (4) 

confirm operation of the installed system. All four objectives were successfully accomplished, 

and the Russian Commission approved the SChE BDMS for transparency operation. The 

following details of the SChE implementation and results are discussed in Ref. [5]: (1) the 

characteristic features of the BDMS configuration at the SChE Enrichment Plant blending 

facility; (2) the process technology of the pipelines preparation for the BDMS installation; (3) 

personnel training; (4) installation of the system together with the sources of ionizing radiation; 

and (5) the BDMS setup, testing, and certification process.  

 

4.2 FMFM MEASUREMENT RESULTS 

 

The FMFM has been operational without any hardware failure since its installation and has not 

required any maintenance activity. The FMFM measurement results are summarized in Table 4, 

where the ranges of UF6 gas pressure and the flow values relative to the SChE plant 

measurements are given for each flow monitor location [5]. The flow measurement results from 

the FMFM are in good agreement with the plant data, and the measurement uncertainties are well 
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below the FMFM design specifications (as indicated in Table 3). The measurements of the 

traceability of highly enriched UF6 to the P-LEU leg were also very good; the measured FMFM 

values were in the range of 65 to 99%, confirming the HEU down blending [5]. 
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Fig. 1. BDMS installed on an HEU blending tee. 
 
 
 
 

 
 
Fig. 2. The FMFM system operational principle is based on fission activation of UF6 gas in the flow 
stream. When the shutter opens, fissions are induced and the UF6 stream carries the fragments 
downstream. Fissile Mass Flow Rate (g/s) = Velocity (m/s) × 235U Concentration (g/m). 
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Fig. 3. Measured FMFM detector signal waveform and the detector counts are collected every 100 
ms as the shutter cycles. 
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Fig. 4. FMFM operational principle and the major assemblies and components. 
 

 
   
Fig. 5. Illustration of the FMFM HEU leg shutter motion pattern that 
generates the low-frequency modulation required for tracing the HEU flow 
to the P-LEU leg. 
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Fig. 6. Details of the FMFM source modulator and components. 
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Fig. 7. Details of the FMFM SM assembly and components. 

 

 
 

Fig. 8. FMFM source modulator shutter and source moderator subassembly. 
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Fig. 9. Photograph of the FMFM SM showing the lead shielding around the SM and the shutter 
positioner together with its motor and the controller. 
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Fig. 10. Photograph of the FMFM source modulator showing the lithiated (5 wt %) polyethylene 
shielding placed around the lead-covered source moderator and the additional high-density 
polyethylene biological neutron shielding panels placed on the sides. 
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Fig. 11. The FMFM gamma ray detector is a commercially available BGO scintillation detector (on 
the left) with a preamplifier, as shown from the top on the right. 

 

 

 

 
Fig. 12. FMFM detector housing for the dual BGO detectors, including the detector electronics cards, 
DIEC, and SNC. The VGA and SA, shown separately for illustration, are part of the DIEC. 
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Fig. 13. FMFM detector assembly designed for 8-in.-diam UF6 process pipes. 

 

 

 
Fig. 14. Detailed engineering design drawing of the FMFM detector assembly, showing a cross-
sectional view around the process pipe. 
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Fig. 15. Detailed view of the FMFM detector housing together with the DIEC 
and SNC. 

 

 
Fig. 16. Photographs of (left) the FMFM detector assembly showing the additional 
lead gamma shield located toward the FMFM sources to reduce the detector 
background signal and (right) the DSPD box. 
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Fig. 17. Block diagram of the BDMS installation on the HEU blending system 
at SChE. 

 

 
Fig. 18. Typical SChE FMFM equipment. The source modulator and detector 
assemblies are installed on a test stand. Additional lead gamma shielding to reduce the 
detector background signal is also shown. 
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Fig. 19. BDMS main cabinet, which houses the EM 
and FMFM cabinet sections. 

 

 

 

Fig. 20. Recommended FMFM installation configuration for HEU leg. 
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Fig. 21. Recommended FMFM installation configuration for the LEU and P-LEU 
legs. 

 
 

 
 

Fig. 22. Recommended FMFM installation configuration for all three legs are 
designed to reduce the crosstalk between the sources in the source modulators and 
the detectors. Pipes are about 1 m off the floor. 
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Fig. 23. SChE BDMS training for the Russian delegation at ORNL, May 17–21, 
2004. 

 

 
 
Fig. 24. The Russian delegation practicing on the source modulator installation. 
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Fig. 25. The Russian delegation in a classroom discussion of the BDMS installation. 

 

 
 
Fig. 26. BDMS equipment in the SChE Enrichment Plant BDMS room (installed in 
October 2004). Source: V. Afanasyev et al., “Installation of the Blend Down Monitoring 
System at the Siberian Group Of Chemical Enterprises, Seversk, Russia,” 46th Annual 
Meeting of the INMM, Phoenix, Arizona, July 20, 2005. 
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Table 1. FMFM assembly dimensions and weights 

Major assembly 
Number of 
assemblies 

Dimensions, L × W × H 
(cm) 

Weight 
(kg) 

Control cabinet (consists of combined 
EM and FMFM sections) 1 183 × 153 × 92 367 

FMFM source and modulator assembly 
(10.8-cm OD Pipe) 1 150 × 100 × 120 740 

FMFM source and modulator assembly 
(21.9-cm OD pipe) 2 150 × 110 × 130 950 

FMFM detector and gamma-ray 
shielding assembly (10.8-cm OD pipe) 1 58 × 91 × 91 210 

FMFM detector and gamma-ray 
shielding assembly (21.9-cm OD pipe) 

2 58 ×105 × 105 420 

 
 
 

Table 2. FMFM UF6 gas velocity ranges during operation 
Leg Flow regime Velocity range (m/s) 

HEU Laminar, 10.8-cm OD pipe 0.02–0.2 
LEU Turbulent, 21.9-cm OD pipe 0.4–1.5 
P-LEU Turbulent, , 21.9-cm OD pipe 0.4–1.5 

 
 
 

Table 3. FMFM flow measurement range and associated uncertainty 
Leg Flow parameter Measurement range Uncertainty (%) 

HEU Gas velocity (m/s) 0.06–0.12 ± 5 
LEU Gas velocity (m/s) 0.4–1.0 ± 5 
P-LEU Gas velocity (m/s) 0.4–1.0 ± 5 
HEU 235U fissile mass flow (g/s) 0.27–0.54 ± 25 
LEU 235U fissile mass flow (g/s) 0.12–0.3 ± 25 
P-LEU 235U fissile mass flow (g/s) 0.4–0.9 ± 25 

 
 

 
Table 4. BDMS operating pressures and the FMFM measurement results 

Flow monitor 
location 

Pressure at the BDMS 
location (Torr) 

Fissile mass flow rate relative to plant 
measurement (%) 

HEU leg 44 ± 2 1.5 
LEU leg 55 ± 2 8.8 
P-LEU leg 55 ± 2 0.2 
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