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1. INTRODUCTION 

 
 
Although the speed of LAN and WAN networking is growing at an exponential rate, the applications that 
use those networks have not followed suit.  With fiber optic interconnects, gigahertz processor speeds, 
and 10 gigabit per second network interface cards, hardware does not seem to be the limiting factor.  It is 
becoming increasingly obvious that the protocols that are the basis of networking today are ill-suited to a 
new generation of networking technology.  For this reason, Oak Ridge National Laboratory is particularly 
interested in improving bulk transfers over high-bandwidth, high-latency networks because of its 
involvement in storage and in the transfer of data for cutting-edge scientific applications.  This report 
summarizes our evaluation of a new group of protocols specifically designed to get more useful 
bandwidth from today's high speed, wide area networks. 
 
 

2. BACKGROUND 
 
 
2.1 TCP 
 
TCP is the most widely used protocol to transfer data over IP networks.  This is due in large part to the 
fact that TCP guarantees in order delivery, no loss of data, and fairness.  Unfortunately, the 
implementation of these features makes TCP ill-suited to get optimal bandwidth from high-speed, high-
latency network links.  One approach to getting more bandwidth is to fix the problems inherent in TCP. 
Extensive tests have been conducted to pinpoint problems and suggest possible solutions for these 
problems. ORNL is a partner in the NET100/WEB100 project.  This project  endeavors to look inside the 
kernel by expanding kernel instrumentation and making these kernel variables available for reading and 
tuning through the linux /proc interface. ORNL has written and modified a number of tools which make 
use of this newly accessible information: the WAD (Work Around Daemon) , iperf100, ttcp100, WEBD, 
TRACED, and a web100-enabled bandwidth tester. ORNL has also simulated TCP using the TCP-over-
UDP test harness, atou, to simulate the effects of changes to TCP proposed by Sally Floyd and others.   
Most of these proposals center around Slow Start and Congestion Avoidance. 
 
TCP 's Slow Start  and Congestion Avoidance algorithm work in concert to avoid inundating a network 
link with an initial blast of data, then keeping the flow of data at a rate which will avoid congestion and 
promote fairness amongst network flows.  Congestion Avoidance and Slow Start require that two 
variables be kept for each connection: a congestion window(cwnd) and a slow start threshold size 
(ssthresh).  Initially, the Slow Start algorithm restricts the sending rate to match the rate at which 
acknowledgments are returned by the other end of the connection.  Unfortunately, long round-trip times 
can result in large delays in achieving the available rate of the connection. As the connection progresses, 
cwnd is doubled for each packet acknowledgment (ACK) received until a timeout occurs or duplicate 
ACK (indicating a lost packet) is received. Upon receiving 3 duplicate ACKs, cwnd is halved and its 
value stored in ssthresh. If there is a timeout, cwnd is reset to 1 or 2 segments. If cwnd is less than or 
equal to ssthresh, TCP is in Slow Start; otherwise, Congestion Avoidance takes over and cwnd is 
incremented by 1/cwnd for each ACK. This is an additive increase, compared to Slow Start's exponential 
increase. Again, a flow is penalized when round-trip times are long and the available capacity of the path 
may never be reached. 
 
 
2.2 NETBLT 
 
NETBLT is a transport layer protocol proposed in 1987 and described in RFC 998.  It was specifically 
designed for high-bandwidth, high-latency networks including satellite channels. NETBLT differs from 
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TCP in that it uses a rate-based flow control scheme rather than a window-based flow control. The rate 
control parameters are negotiated during the connection initialization and periodically throughout the 
connection. The sender uses timers rather than ACKS to maintain the negotiated rate. Since the overhead 
of timing mechanisms on a per packet basis can lower performance, NETBLT's rate control consists of a 
burst size and a burst rate with burst_size/burst_rate equal to the average transmission time per packet. 
Both size and rate should be based on a combination of the capacities of the end points as well as that of 
the intermediate gateways and networks. NETBLT separates error control and flow control so that losses 
and retransmissions do not affect the flow rate. NETBLT uses a system of timers to ensure reliability in 
delivery of control messages and both sender and receiver send/receive control messages. 
 
fc998 gives the following explanation of the protocol: "the sending client loads a buffer of data and calls 
down to the NETBLT layer to transfer it. The NETBLT layer breaks the buffer up into packets and sends 
these packets across the network in datagrams. The receiving NETBLT layer loads these packets into a 
matching buffer provided by the receiving client. When the last packet in the buffer has arrived, the 
receiving NETBLT checks to see that all packets in that buffer have been correctly received. If some 
packets are missing, the receiving NETBLT requests that they be resent. When the buffer has been 
completely transmitted, the receiving client is notified by its NETBLT layer. The receiving client 
disposes of the buffer and provides a new buffer to receive more data. The receiving NETBLT notifies the 
sender that the new buffer is ready and the sender prepares and sends the next buffer in the same manner."  
 
As described, the NETBLT protocol is "lock-step". However, a multiple buffering capability together 
with various timeout/retransmit algorithms give rise to the claim that NETBLT gets good performance 
over long-delay channels without impairing performance over high-speed LANs. NETBLT, however, is 
not widely implemented. Unfortunately, being a transport layer design, NETBLT must be implemented at 
the kernel level.  This has caused an impediment to the wide spread implementation of NETBLT.  
Although it is not being actively implemented, it is noteworthy because many UDP protocols borrow 
from its design and/or are based on its principals. 
 
 

3. UDP BASED PROTOCOLS 
 
 
We evaluated several UDP-based protocols, including SABUL, TSUNAMI, FOBS, UDT, QUANTA, and 
Hurricane.  Each protocol differs on how it manages packet rate and packet loss.  Table 1 summarizes the 
characteristics of SABUL, FOBS, and TSUNAMI. 
 
 
3.1 CONTROL CHANNELS 
 
With the exception of UDT and QUANTA, all of the proposals use one or more TCP connections for 
sending/receiving control information in addition to a UDP connection for sending/receiving data. In the 
case of SABUL and TSUNAMI, the control information is a unidirectional from receiver to sender. 
FOBS, however, sends control packets in both directions. 
 
 
3.2 RATE CONTROL 
 
Rate control is used to control the burstiness often observed in TCP flows. This burstiness may cause 
losses as router queues suddenly fill up and packets are dropped or network interface cards cannot keep 
up. Also, rate control allows a flow to more quickly fill a pipe without going through the initial ramping-
up process characteristic of TCP. Rate control or inter-packet delay, which adjusts to packet loss and/or 
network congestion as reported by the receiver, has been added in some form to all the UDP protocols to 
counter the charges of unfair use of capacity and potential to create network problems.  
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3.2.1 TSUNAMI 
 
TSUNAMI gives the user the ability to initialize many parameters including UDP buffer size, tolerated 
error rate, sending rate and slowdown/speedup factors with the 'set' command. If the user does not set 
sending rate, however, it starts out at 1000Mbs with a default tolerated loss rate of 7.9%. Since a block of 
file data(default 32768) is read and handed to UDP/IP, the rate control is actually implemented per block 
rather than per packet. The receiver uses the combination of the number of packets received (a multiple of 
50) and a timed interval (>350ms) since the last update to determine when to send a 
REQUEST_ERROR_RATE packet containing a smoothed error rate. If the error rate is greater than the 
maximum tolerated rate, the sending rate is decreased; if it is less, the sending rate is increased. 
 
3.2.2 SABUL 
 
SABUL begins with a preset IPD (inter-packet delay) of 10 usec which it converts to CPU cycles. The 
receiver generates a SYN packet based on a timed interval(200ms) which signals the sender to use both 
the number of lost packets and the number of packets--including retransmits--sent since the last SYN time 
to calculate a current loss rate. This loss rate is then input to a weighted moving average formula to give a 
history-rate. If the history-rate is greater then a preset limit(.001), the IPD is increased; if less than the 
limit, the IPD is decreased; if equal, .1 is added. In a former release, SABUL attempted to keep the loss 
rate between an upper and lower limit. The latest implementation is similar in concept to TSUNAMI's in 
that both keep the delay between blocks/packets between an upper and lower limit. 
 
SABUL is the only one of the three to implement the IPD(inter-packet delay) between individual packets 
as opposed to groups of packets. The delay is implemented by repeated calls to rtdsc() until the requisite 
number of clock cycles have passed. FOBS checks the sending rate after a burst of packets(25) and 
implements the delay with a gettimeofday() calculation until time to send the next burst. TSUNAMI uses 
a timed select() to implement the delay between blocks of data.  
 
3.2.3 RBUDP 
 
RBUDP(QUANTA) will not be evaluated at this time. QUANTA has some very interesting ideas such as 
forward error correction but has not implemented this and does not yet do file transfers as it is still in the 
very early stages of development. 
 
3.2.4 FOBS 
 
FOBS asks for the local and remote network interface card speed which it uses to determine a maximum 
beginning rate. The default tolerated loss rate is 1%. FOBS calculates a table of rates during sender 
initialization, linking these rates to a network state machine. After a segment of data(about 10000 1466-
byte packets) has been transferred, the sender requests an update from the receiver. The reported packet 
loss from the receiver is used then to calculate the current bandwidth. The current bandwidth is compared 
against the pre-calculated table values to determine the current state of the network and pull a 
corresponding rate from the table. 
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Table 1: Comparison of UDP Protocols 
 

Feature SABUL Tsunami FOBS 
TCP Control Port Yes--Control packets are 

sent from receiver to 
sender 
The sender can also 
generate and process a 
pseudo control packet 
upon the expiration of a 
timer 

Yes--Control packets are 
sent from receiver to 
sender 

Yes--2 control ports are 
used 
Control packets are sent 
both ways 

UDP Data Port Yes--Data is sent from 
sender to receiver 

Yes--Data is sent from 
sender to receiver 

Yes--Data is sent from 
sender to receiver 

Threaded Application Main thread does file I/O
2nd thread keeps track of 
timers and 
sends/receives packets 

Server forks a process to 
handle receiver's request
Receiver creates a thread 
for disk I/O 

The sender and receiver 
are NOT threaded 
fobsd is but was not used 
for these tests 

Rate Control Yes--Inter-packet delay 
implemented by 
continuous calls to 
rtdsc() 

Yes--Inter-block delay 
implemented by calls to 
gettimeofday() and 
select() 

Yes--Inter-block delay 
implemented by 
continuous calls to 
gettimeofday() 

Tolerated Loss 0.1% user can set--7.9% 
default 

1.0% 

Authentication No Yes--via a shared secret No 

Packet Size 1472 32768 (default) 1470 

Socket Buffers  40960000 20000000 DATA Socket 
SO_SNDBUF: 100000; 
SO_RCVBUF: Not Set? 

Congestion Control Adjusts sending rate 
every 200ms based on 
lost pkt info from recvr 

Adjusts sending rate 
after receiving a ctrl pkt: 
REQUEST_ERROR_RA
TE from recvr sent after 
every 350ms or 50 Pkts 

Very Limited adjustments 
are made after a "chunk" 
of data has been sent--
does NOT assume lost 
packets are result of 
Congestion 

Reorder resilience None None Not built in but approx. 
10000 pkts are sent 
before checking so 
sometimes things resolve 
themselves 

Duplicates  Yes--losses and 
reordering cause 
unecessary retransmits. 
Most losses occur at 
start of transfer as IPD 
is not user adjustable 

Since IP fragmentation is 
used, if one packet is lost 
in the block, all are 
resent. Also the last pkt 
is resent until a 
REQUEST_STOP pkt is 
recvd 

Yes--Often resends the 
last 10000 pkts while 
waiting for 
WRITECOMPLETEPKT 
from recvr 

Diagnostics  None Some error messages are 
displayed 

Prints out a summary of 
the transfer as it 
progresses 
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4. TESTING 

 
 
To evaluate the protocols, a series of tests were conducted over the Internet and a NISTNET testbed. 
 
 
4.1 INTERNET TESTS 
 
4.1.1 TEST SETUP 
 
Firebird was used as the test host at ORNL.  It has a single 1.4GHz Intel Pentium IV and 512MB of RAM 
running a Linux 2.4.20 kernel with web100 enhancements.  It is connected with a SysKonnect Gigabit 
Ethernet NIC via a jumbo frame enabled VLAN to a Cisco 6500 switch.  Tests indicate speeds of 
approximately 27MB/s writing to and 31MB/s reading from disk. 
 
Net100 is the test endpoint at LBL.  It has a single 1.4GHz AMD Athlon 4 and 256MB of RAM running a 
Linux 2.4.10 kernel with web100 enhancements. It is connected via Fast Ethernet. Tests indicate speeds 
of approximately 22MB/s writing to and 30MB/s reading from disk. 
  
Ping shows a round-trip time of 68ms between firebird and net100. 
 
4.1.2 MEMORY TO MEMORY 
 
200 MByte Memory-to-memory tests were run from ORNL to LBL with the following results (Lost is the 
total figure the receiver reports to the sender as lost--based on how the application reports losses, the 
same losses could be reported more than once):  

 

 

 

Table 2: 200MB Memory to Memory test from ORNL to LBL 

Application Rate 
(Mb/s) 

Sent Received Lost Re-sent Duplicate 

Tsunami 307.23 13361 13102 55 259 204
SABUL 343.49 140015 140005 15 15 5
FOBS 317.17 143147 138436 2816 6720 2009
Quanta 358.28 137742 137669 73 73 0
Iperf 489 145499 145499 0 0 0
Iperf100 -P 3 279.7 171303 171299 6 6 3
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Table 3: 200MB Memory to Memory test from LBL to ORNL 

Application Rate 
(Mb/s) 

Sent Received Lost Re-sent Duplicate 

Tsunami 243.92 14963 13330 1689 1689 228
SABUL 151.76 184895 142441 47838 44895 2441
FOBS 256.17 142530 138484 2170 6103 2057
Quanta 310.37 142157 137742 4415 4415 0
iperf 420 142846 142843 3 0 0
Iperf100 -P 3 229.8 145491 145484 5 7 2

 

 

4.1.3 DISK TO DISK 
 
 

Table 4: 200MB file transfer from LBL to ORNL (Best Case/Worst Case) 

Application Rate (Mb/s) Sent Received Lost Duplicate 
Tsunami 47.17/8.2 146419/- 181840/- 44400/- 35421/-
SABUL 52.14/ 

37.25 
146220/
146220

178297/
216482

5463/ 
4200 

32077/
70262

FOBS 45.01/ 
28.52 

146421/
146421

151624/
147787

2668/ 
3503 

5203/
1366

 

 

4.2 NISTNET 
 
To validate results obtained over the broader Internet where conditions are unpredictable and constantly 
changing, tests were performed under more controlled conditions using NISTNET. NISTNET is running 
on an old, slow Gateway machine, viper, with 64MB of memory and two 100Mbs Network Interface 
cards. One NIC is connected into a NETGEAR Fast Ethernet Switch and one into a local area network. 
The other two machines involved are dual processor pcs previously used in a cluster and have 512MB of 
memory and a 100Mbs Network Interface card. Pinto is connected into the same local area network and 
pinto10 is connected into the NETGEAR Switch. Conditions are not completely controlled in the local 
area network, but are observed to be mostly stable with rare exceptions.  
 
4.2.1 TEST SETUP 
 
NISTNET was configured to impart a 35ms delay in each direction.  Ping verified the configuration, 
showing a round-trip time of 71ms. 
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4.2.2 MEMORY TO MEMORY 
 
 

Table 5: 200MB memory to memory transfers over NISTNET (0 drop rate). 

Application Rate (Mb/s) Sent Re-sent Lost Duplicate 
Tsunami 83.1 13103 1 0 1
SABUL 87.1 157823 0 0 0
FOBS 80.8 136570 143 1 142
Quanta 89.9 137742 0 0 0
iperf(TCP) -P 
3 78.8 150571 7 7 0
iperf(UDP) 90.5 153849 0 0 0

 

 

Table 6: 200MB memory to memory transfers over NISTNET (.0107 drop rate). 

Application Rate (Mb/s) Sent Re-sent Lost Duplicate 
Tsunami 82.5 13151 18 18 49
SABUL 83.5 154172 14172 47744 4230
FOBS 79.3 137642 1215 16 1199
Quanta 87.5 137727 15 15 0

 

 

4.2.3 DISK TO DISK 
 

Table 7: 200MB file transfer over NISTNET (0.0107 drop rate). 

Application Rate 
(Mb/s) 

Sent Received Lost Re-sent Duplicate 

Tsunami 33.2 354961 176184 181210 207317 29765
SABUL 87.2 166131 148317 11544 19911 2097
FOBS 71.4 151175 150537 17 4754 4116
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5. ANALYSYS 
 

 
Figure 1: Losses reported by the receiver. 

 
5.1 PACKET LOSS 

 
The FOBS client reports losses upon notification from the server that a segment or chunk of data has been 
sent. The client sends a bitmap indicating the status of all packets it expects to receive in the current 
transfer. Figure 1 illustrates the reporting of losses at the end of each segment. FOBS reported a total of 
35 lost packets, which is within the range expected. 
 
SABUL notifies the server of losses in two ways. As soon as the SABUL client receives a packet number 
greater than the one expected, the server is notified of the loss. Also, every 20ms a collective loss report is 
sent. The client in this instance reported losses of 11544 packets and re-reported 8497 of these losses 
again in the periodic reports. The reason for SABUL's high loss rate is unknown. The IPD(inter-packet 
delay) starts out at 10us but in this transfer, was slowly increased to 118 us and generally stayed between 
110 and 117 us. Many of the losses occur at the beginning of the transfer when the sending rate is high. 
The IPD cannot be adjusted by the user.  
 
The TSUNAMI client also keeps a tally of lost packets and sends retransmit requests after receiving a 
multiple of 50 blocks if a preset interval(>350ms) has passed since the last request. Before sending the 
requests, the list of lost blocks is cross-checked with a tally of all blocks received so far to eliminate any 
lost blocks that may have come in. Even with the cross check, the client in this transfer issued 181210 
retransmit requests. As shown in the graph, many of the requests were repeats and a large portion occur at 
the end of the transfer. Looking at the data reveals that 223 packets in a range between packet number 
142033 and packet number 146411 were received over 100 times. Each packet was sent 722 times with 
the last packet being sent 1616 times and received 708 times.  
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5.2 DUPLICATE PACKETS 
 

 
Figure 2: Duplicates reported by the receiver. 

 
Most of SABUL's duplicate packets come at the beginning of the flow. Looking at the duplicates reported 
by the SABUL client, each of the 2097 duplicate packets were received exactly twice but the server sent 
the 19911 retransmits anywhere from 2 to 10 times. This may be the result of duplicate reporting or the 
fact that ACKS are perhaps spaced too far apart (ACKS are sent every 100ms).  
 
The graph of TSUNAMI's duplicates seems to indicate some confusion or mis-communication near the 
end of the transfer. In addition, TSUNAMI continues to retransmit the last block/packet until receiving a 
REQUEST_STOP from the receiver. In one short, loss-free transfer from ORNL to LBL of 8,135 
blocks/packets of size 1466, the last block was observed being transmitted 11,876 times. The client 
actually received 7,835 of the 11,876 before it quit. REQUEST_RESTART requests seem to cause the 
instability. When REQUEST_RESTARTs are sent by the receiver, often both sender and receiver had to 
be manually stopped as both somehow seemed to get confused and the rate fell below 4Mbps. This 
happened regularly on transfers from ORNL to LBL with files of 100mb or more. The message, "FULL! -
- ring_reserve() blocking" also appeared at the client regularly during the transfer of large files. In order 
to complete the necessary file transfers with TSUNAMI, the retransmit table was enlarged and a block 
size of 16384 used in an attempt to eliminate REQUEST_RESTART requests. 
 
FOBS keeps sending packets while waiting to hear from the client that a "chunk" of data has been written 
to the file. This means that the duplicates are mostly clustered at the end of each chunk. FOBS also 
transmits many unnecessary packets. In a file transfer involving 146,421 data packets(214649928 Bytes) 
and no losses, FOBS actually sent 150,100 packets. These packets are apparently sent while the sender is 
awaiting instructions from the receiver telling it what needs to be done next. In this case, after sending the 
first chunk, packets 70000-71229 were re-transmitted. Similar re-transmissions occurred after the second 
and third chunks. The receiver read all 71527 packets in the first chunk, sent a COMPLETEDPKT, and 
got ready for the next chunk. Before reading the first packet in the next chunk, packets 70000-71229 were 
read and thrown away. A 'scaleFactor' is used to keep the packets in sync with the correct iteration or the 
receiver might assume these retransmits are part of the next chunk. 
 
 



10 

5.3 AVERAGE BANDWIDTH 
 

 
Figure 3: Average bandwidth reported by receiver. 

 
 
The SABUL sender implements a delay between each packet whereas the other two applications 
implement a delay between blocks of packets similar to NETBLT. Even more important with regard to 
comparisons, SABUL attempts to adjust the sending rate about every 200ms based on lost-packet 
information. As mentioned above, the IPD starts out at 10us and, in this case, gradually increases to 
118us. It then settles in at 110-118us for the main part of the transfer. There were 132 rate calculations 
performed by the sender during the transfer time of 18.79 seconds. The other two protocols operate in a 
more lock-step manner by transmitting new data in blocks or groups of packets before doing any 
retransmits or rate adjustments.   
 
In the LAN file transfers above, SABUL usually wins the bandwidth prize. The exceptions occur when 
there are EXP(expiration) events. These are generated by the server if no ACK or ERR packet has been 
received during a specified interval(1000ms). The server then assumes all packets sent in the current 
period have been lost and adds them to the lost list. In runs using the NISTNET testbed, throughputs of 
84.1, 87.2, and 87.4 Mbs were observed. But in one case where EXP events were generated, SABUL only 
achieved 30.9 Mbs. 
 
FOBS transmits 10000 packets(size 1466) before recalculating the sending rate and a chunk-size of new 
data before doing any retransmits. FOBS actually calculates the bandwidth for the last 25 packets sent 
and, if it is greater than the desired rate, spins until it is less than or equal to the desired rate. In this case, 
the desired sending rate started out at 86 Mbs and because of the low packet loss, did not change. There 
were 17 rate calculations in the transfer time of 22.95 seconds.  
 
FOBS' file transfer performance suffers because it is lock-step. In doing actual file transfers, the sender 
transmits one chunk of data and then waits for the receiver to signal that it has written the whole chunk to 
disk. Depending on RTT and disk speed, that can add up. With the 70ms RTT, FOBS achieved 79.9Mbs 
if the time spent writing the file was not counted. To be fair however, FOBS is the most consistent in it's 
performance with measured throughput of 72.1, 71,4, and 72.1 Mbs on runs in the NISTNET testbed. 
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TSUNAMI's algorithm is a little more obscure in that the receiver sends a rate request after a combination 
of 50 blocks(you define block size) and a preset interval(>350ms) has passed since the last rate request. 
The receiver in this example sent 87 rate requests in a transfer time of 51.72 seconds. The sender checks 
the sending rate between each block. If blocksize is the default(32768), this means the delay is 
implemented every 23 or so packets. If blocksize is 1466, as in this example, the delay becomes a true 
inter-packet delay. The max rate can be set by the user with the TSUNAMI client set command. In this 
case the rate was set to 80 Mbs giving a beginning inter-block delay of 438 us. This is not implemented 
directly however. After calculating the sending time for the last block, the delay is calculated as: 
 
  delay = ((sending-time + 50) < ipd_current) ?  
    (ipd_current - delay - 50)) : 0; 
 
A select() call is used to implement the delay.  
 
TSUNAMI gives the least consistent performance even in the semi-controlled NISTNET environment. 
Using NISTNET, throughputs of 18.7, 33.2, 42.6, and 84.1 Mb/s were observed. The results illustrate the 
prolonged sending at the end of the transfer that has been mentioned before. 
 
 
5.4 REORDERING/LOSS 
 
TSUNAMI, SABUL and FOBS all do well as long as there is little reordering or loss. Reordering and/or 
loss seem to cause them all to transmit unneeded duplicates. FOBS gives priority to new data and 
transmits a chuck (default 100MB) of data before doing retransmits. TSUNAMI and SABUL give priority 
to requests for retransmits. The SABUL client reports any missing packets immediately as well as 
periodically every 20ms. The TSUNAMI client reports missing packets after the requirements for 
numbers of packets received (a multiple of 50) and amount of time since the last report (more than 
350ms) have been satisfied.  
 
SABUL also has problems when there is significant reordering/loss. Since the client reports every 
perceived loss immediately, this can mean a lot of control packets. In one case, the sender was observed 
having to deal with one control packet for nearly every data packet it was sending. Since a tabulation of 
lost packets is also sent every 20ms, the same loss may be reported more than once and the sender will 
count it again. This gives rise to an interesting phenomenon. If the tabulation of losses for the last period 
is greater than the number of packets sent during the same period, the sender solves the problem by 
assuming 100% loss for that period. With a shorter RTT (this scenario was with 150 usecs), perhaps 
fewer packets would be sent; but it is assumed these UDP protocols are meant for transferring large files 
on high-bandwidth, high-delay networks. 
After much testing and studying, it is still not clear why SABUL and TSUNAMI report so many losses. 
One clue may be that the protocols that wait 10000 packets(FOBS) or more (iperf & quanta) to report 
losses do much better. That would seem to indicate that packets may not be received in strict order but 
more study needs to be done on this problem. 
 
 

6. RESULTS & SUBSEQUENT WORK 
 
 
Our tests over the Internet and NISTnet indicate that each of the UDP protocols has a number of 
shortcomings. Tsunami has several instabilities and often yields poor throughput as well as sending many 
duplicate packets. FOBS suffers because of its lock-step protocol. SABUL yields the best performance, 
and we expect its follow-on, UDT, to perform even better. None of the protocols perform well with 
packet re-ordering. Though all three protocols attempt to adapt to congestion, it is not clear how fair these 
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protocols are to competing TCP protocols. They don't appear to have a clear advantage over aggressive 
TCP protocols like Kelly's scalable TCP or Sally Floyd's HS TCP, but the UDP protocols do not require 
kernel modifications. They are probably best suited to enterprise subnets of the Internet. 
As a follow-on to this work, ORNL is currently investigating and developing UDP protocols to be used 
solely on high-speed, dedicated links.   One such protocol, Hurricane, was tested along with Tsunami, 
UDT, and FOBS over a dedicated loopback connection between ORNL and Atlanta.  
 
 
6.1 SETUP 
 
In order to incur a delay in packet transit, a loopback connection was created between ORNL and Atlanta 
(Figure 4).  Since a dedicated circuit was not available for this route, one was emulated over a lightly 
loaded OC-192 circuit.  The test host's throughput was limited to 1Gb/s per host to the ORNL router.  
Since there was plenty of unused bandwidth on the OC-192, each host is able to get the full line rate over 
the loopback connection. 
 

 
Figure 4: ORNL to Atlanta loopback testbed. 

 
Filter Based Forwarding was used on the ORNL Juniper router to make it subvert its normal behavior of 
routing local interfaces to each other.  Instead, the router forwards the packets to the Atlanta router.  In 
turn, the Atlanta router sends the packets back to the ORNL router, completing the loopback connection.  
The 250 mile round trip resulted in a 10ms round trip time. 
 
In order to attain the enough throughput from the host's filesystems to drive the network connection, a 
series of tests and modifications were made to the hosts's I/O susbsystems.  With the modifications, each 
hosts was able to deliver more than the 1Gb/s needed. 
 
 
6.2 UDT 
 
Between the time of the previous tests and the dedicated link tests, UDT was released as a follow on to 
SABUL.  UDT differs from SABUL in that it does not use a TCP based control channel.  The lack of 
TCP control channel made UDT particularly interesting since Hurricane is also a UDP only protocol. 
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6.3 RESULTS 
 

Table 8: ORNL to Atlanta loopback test results. 

 
Application Rate (Mb/s) 

Hurricane 991 
Tsunami 919 

UDT 890 
FOBS 708 

 
The results were very promising.  Hurricane out performed the other protocols tested and matched the 
bandwidth attained by iperf.  With further development, it is hoped that Hurricane can provide the high 
data rate and low jitter needed by applications on dedicated networks such at the UltraScience Network. 
 
 
  


