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EXECUTIVE SUMMARY 

 
Title:  Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power 

Plants 
Investigator:  Dr. Lee M. Hively (Oak Ridge National Laboratory, Oak Ridge, TN) 
Collaborators: Duke Engineering and Services Inc.; Pennsylvania State University 
Project #   00-109 
Start Date:  August 18, 2000 
End Date:   September 30, 2003 
 
The objective of this project is forewarning of machine failures in critical equipment at next-
generation nuclear power plants (NPP). Test data were provided by two collaborating 
institutions: Duke Engineering and Services (first project year), and the Pennsylvania State 
University (Applied Research Laboratory) during the second and third project years. New 
nonlinear methods were developed and applied successfully to extract forewarning trends from 
process-indicative, time-serial data for timely, condition-based maintenance. Anticipation of 
failures in critical equipment at next-generation NPP will improve the scheduling of maintenance 
activities to minimize safety concerns, unscheduled non-productive downtime, and collateral 
damage due to unexpected failures. This approach provides significant economic benefit, and is 
expected to improve public acceptance of nuclear power. 
 
The approach is a multi-tiered, model-independent, and data-driven analysis that uses ORNL’s 
novel nonlinear method to extract forewarning of machine failures from appropriate data. The 
first tier of the analysis provides a robust choice for the process-indicative data. The second tier 
rejects data of inadequate quality. The third tier removes signal artifacts that would otherwise 
confound the analysis, while retaining the relevant nonlinear dynamics. The fourth tier converts 
the artifact-filtered time-serial data into a geometric representation, that is then transformed to a 
discrete distribution function (DF). This method allows for noisy, finite-length datasets. The fifth 
tier obtains dissimilarity measures (DM) between the nominal-state DF and subsequent test-state 
DFs. Forewarning of a machine failure is indicated by several successive occurrences of the DM 
above a threshold, or by a statistically significant trend in the DM. This paradigm yields robust 
nonlinear signatures of degradation and its progression, allowing earlier and more accurate 
detection of the machine failure.  
 
Project-year-1 (PY1) results were as follows. Long-term failure monitoring of operational 
equipment was not feasible within the scope of this project since such failures typically take 
years to occur. Instead, data were acquired from a motor-driven pump for two test sequences, 
initially in nominal operation and subsequently with progressively larger (seeded) faults. 
Specifically, the experimenters carefully added larger amounts of mass imbalance in one test, 
and increasing misalignment between the motor and pump in the second test. ORNL’s nonlinear 
measures of condition change correlated well with the experimental level of vibration, both 
below and above the applicable international standards (ISO 2372 and ISO 3945). The work 
included a robust implementation of the nonlinear analysis on a desktop computer, not unlike 
that for use at an advanced nuclear reactor. 



 

 

viii

PY2 results involved acquisition and analysis of additional test data, as summarized in Table 1. 
Some test sequences involved seeded faults (denoted by ‘S’ in Table 1), with the equipment 
initially in nominal operation, and subsequently with successively larger (controlled) faults. A 
second class of accelerated failure tests (denoted by ‘A’ in Table 1) likewise began with nominal 
operation. The over-stressed equipment subsequently experienced a gradual (uncontrolled) 
degradation, and ultimately failed. For example, the gearbox failed by the breakage of one or 
more gear teeth. Table 1 also shows the type of diagnostic data that was analyzed for failure 
forewarning. Electrical motor power was obtained from the three-phase motor currents and 
voltages. Vibration power was obtained from tri-axial acceleration data to capture the dynamics 
from all three acceleration directions. ORNL’s patented nonlinear measures show clear change, 
as the tests progress from nominal operation, through degradation to failure for all nine PY2 test 
sequences. (Conventional statistical measures and traditional nonlinear measures give little if 
any forewarning.) This work also yielded a statistical criterion that distinguishes between the 
gradual rise in dissimilarity measures and the abrupt (additional) increase that gives forewarning 
of failure. 
 

Table 1.  Summary of Test Sequences 
___________________________________________________________________________ 
Data Provider  Equipment and Type of Failure    Diagnostic Data   PY  
 
1) EPRI (S)   800-HP electric motor: air-gap offset  motor power    2 
2) EPRI (S)   800-HP electric motor: broken rotor   motor power    2 
3) EPRI (S)   500-HP electric motor: turn-to-turn short motor power    2 
4) Otero/Spain (S)  ¼-HP electric motor: imbalance    acceleration    2 
5) PSU/ARL (A)  30-HP motor: overloaded gearbox   load torque    2 
6) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power   2 
7) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power   2 
8) PSU/ARL (S)  crack in rotating blade      motor power    2 
9) PSU/ARL (A)  motor-driven bearing            vibration power   2 
10) EPRI (S)   800-HP electric motor: air-gap offset  vibration power   3 
11) EPRI (S)   800-HP electric motor: broken rotor   vibration power   3 
12) EPRI (S)   500-HP electric motor: turn-to-turn short vibration power   3 
13) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power   3 
14) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power   3 
15) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power   3 
16) PSU/ARL (A)  30-HP motor: overloaded gearbox   vibration power   3 
17) PSU/ARL (S)  crack in rotating blade      vibration power   3  
___________________________________________________________________________ 
 
PY3 results involved acquisition and analysis of additional test data, as summarized in Table 1. 
Items 10−12 during PY3 involved analysis of vibration power, while items 1−3 during PY2 used 
electrical motor power from the same test sequences. Items 13−15 involved the same test 
apparatus and protocol as items 5−7 to acquire additional test sequences. The PY3 results for 
items 10−16 showed clear forewarning reproducibility. In particular, four accelerated tests of 
gearbox failure gave end-of-life forewarning at 93.8–98.5% of the final failure time, as well as 
indication of the failure onset at 99–99.8% of the final failure time. The present results show no 
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false-negative indications (lack of forewarning when a change actually occurred), and no false-
positive forewarnings (forewarning when no change really occurred). These results provide 
compelling evidence for forewarning of failures via the ORNL nonlinear paradigm. We also find 
that accurate forewarning can markedly reduce failures and improve cost-effectiveness. 
 
Products of this work include U.S. Patents, patents pending, technical publications, oral 
presentations, and software implementation of the nonlinear technology.  In addition, this work 
illustrates the cost-benefits for the prognostication technology via specific examples.  Our work 
also provides a roadmap to bridge the gap from the present research-class technology to a 
commercial prototype. There are no software deliverables for this project. The ORNL nonlinear 
forewarning technology has substantial intellectual property protection in the form of six U.S. 
Patents and two patents pending. Two of these six patents were obtained during this NERI 
project, including an objective statistical test for the end-of-life forewarning and the failure onset 
indication. Both of the patents pending were submitted to the U.S. Patent Office during this 
NERI project to protect ideas that arose from this work. No licensing agreements presently exist 
for use of these patents. We have published six technical reports  and  four  oral  presentations  
on this NERI work. The work was completed on September 30, 2003. 
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1.  TECHNICAL NARRATIVE 
 
This project began in August 2000, and has three tasks. The first project year addressed Task 1, 
namely development of nonlinear prognostication for critical equipment in nuclear power 
facilities. That work is described in the first year’s annual report.  The second project year 
(FY02) addressed Task 2. The third project year addresses Tasks 2−3. This report describes the 
work status for the third (and final) project year, spanning August 2002 through September 2003, 
including the status of the tasks, issues/concerns for each task, cost performance, and status 
summary of tasks. 
 
The objective of the third year’s work is a compelling demonstration of the nonlinear 
prognostication algorithm via additional data and assessment of the economic impact of that 
prognostication. While long-term monitoring of operational utility equipment is possible in 
principle, it was not practically feasible for the following reason. Time and funding constraints 
for this project did not allow us to monitor the many components and machines (thousands) that 
will be necessary to obtain even a few failure sequences, due to relatively low failure/fault rates 
(<10-3/year) in the operational environment. Consequently, we obtained controlled failure 
sequences by seeding progressively larger faults in test equipment. This method is the only way 
to guarantee a known, well-documented fault that leads to failure, but in general is infeasible for 
operational utility machinery. During the second project year, we also used accelerated failure 
testing, which eventually results in equipment breakdown, but in a less controlled fashion. Our 
subcontractor, Applied Research Laboratory at the Pennsylvania State University (PSU), 
provides test-sequence data, that Oak Ridge National Laboratory (ORNL) subsequently analyzes 
for prognostication. Recognizing the inherent constraints outlined above, ORNL contacted other 
researchers for additional data from a variety of test equipment. Consequently, we have revised 
Task 2, with corresponding changes to the work plan as shown in the Status Summary of NERI 
Tasks (below).  
 
Task 2.1: ORNL will obtain test data from PSU/ARL and other researchers for various test 
equipment. This task includes development of a test plan or a description of the historical 
testing, as appropriate: test facility, equipment to be tested, choice of failure mode, testing 
protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will 
analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication.  
 
Task 2.2: ORNL will evaluate the prognostication capability of the nonlinear paradigm. The 
comparison metrics for reliability of the predictions will include the false positives, false 
negatives, and the forewarning times. 
 
Task 2.3: ORNL will improve the nonlinear paradigm as appropriate, in accord with the results 
of Tasks 2.1−2.2, to minimize the number of false positive and false negative indications of 
failure, while maximizing the forewarning time. (See App. A for details for the analysis 
methodology.) 
 
Task 2.4: ORNL will develop advanced algorithms for PS-DF (phase space) pattern change 
recognition, based on the results of Task 2.3.  This implementation will provide a capability for 
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prognostication, as a component of the long-term need for real-time maintenance decision-
making. 
 
The  third  phase of this work involves evaluation of the nonlinear paradigm, as described in 
Task 3. 
 
Task 3.1: This task will compare the economic and safety improvements for the nonlinear 
prognostication with previous efforts. Economic and quality gains will be documented.  
 
Task 3.2: This task will map the pathway to potential commercialization of the nonlinear 
prognostication technology. Extrapolation of gains to other advanced reactor equipment will be 
included. 
 
We obtained and analyzed archival data from the Electric Power Research Institute (EPRI) 
during the second year’s work of this project, as described in the FY02 annual report. EPRI 
published a report on that data and its analysis, “Electric Motor Predictive Maintenance 
Program,” TR-108773-V2 (1999). The EPRI report included analysis of the safety and cost 
benefits of predictive maintenance that served as a guide for Task 3. Specifically, forewarning of 
an imminent failure allows the operator to anticipate or avoid the failure, thus avoiding 
concomitant damage (maintenance savings), downtime, lost generation capacity, potential 
injuries, and their associated costs.  
 
Progress on Tasks 2.1–2.4 is described most easily for the acquisition and analysis of each 
sequence of  test  data,  as  described  next. No issues or concerns exist for any components 
Tasks 2−3. 
 
1.1  ADDITIONAL ANALYSIS OF EPRI MOTOR POWER DATA FOR THE AIRGAP-
OFFSET FAULT 
 
EPRI report # TR-108773-V2 (1999) included a CD-ROM of actual data from the testing. That 
work involved collaboration by several utilities and EPRI on seeded faults in large electric 
motors. The datasets were recorded in snap-shots of 1.5 s, sampled at 40 kHz (60,000 total time-
serial samples), including three-phase voltages and currents, plus tri-axial accelerations at 
inboard and outboard locations on the motor. Several anomalies were introduced in the motors to 
simulate the most common pre-failure in-service conditions. ORNL has received data via the 
CD-ROM that accompanied the EPRI report for three different seeded faults. The specifications 
of the first motor were as follows. 
 
 Manufacturer:    Allis Chalmers     Bearing type:    sleeve 
 Rated voltage:   4160        Nameplate current:   100 amps 
 Rated HP:     800         Number of rotor bars:  94 
 Winding type:   form wound      Number of stator slots: 40 
 Phases:    3         Hertz:      60 
 RPM:     710        Motor type:    induction 
 Insulation class:F         Poles:      10 
 Enclosure:   TEFC        Bar configuration:        copper 
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One test sequence began with the motor running in its nominal state (first dataset). Two different 
airgap-offset seeded-faults then were imposed via preinstalled jackscrews. The second dataset 
involved an inboard airgap offset of 8 mils from the nominal value of 30 mils. The third dataset 
retained the first fault, and added an additional seeded-fault outboard airgap offset by 20% in the 
opposite direction from the inboard shift. This additional fault resulted in the rotor being skewed 
relative to the stator. These offsets were static, because neither varied relative to the stator with 
the motor running. 
 
We reiterate the PY2 analysis from the PY2 annual report, as a motivation for additional PY3 
analysis. The three datasets for this test were concatenated into a single long dataset. Figure 1 
shows typical three-phase voltages (Vi) and currents (Ii), that were converted into instantaneous 
motor power, P = Σi IiVi, where the sum runs over the three phases. The bottom subplot of Fig. 1 
shows rich dynamical features in P, that are not present in the individual components of three-
phase currents and voltages (upper six subplots). Consequently, we first analyzed the 
instantaneous power, rather than the individual currents or voltages. This power has a slow, low-
amplitude variation with a period of roughly 0.1 s. We removed this artifact with ORNL’s novel 
zero-phase quadratic filter. Otherwise, this artifact confounds the interpretation of our results. 
We split each of the three datasets into five subsets of 12,000 points each, giving fifteen total 
subsets for analysis. This artifact-filtered data showed no data quality problems. A systematic 
search revealed a set of parameters for which the phase-space dissimilarity measures (PSDM) 
are most  sensitive  to the condition change for the airgap seeded-fault test sequence, as shown in 
Fig. 2. An almost linear rise occurs in the connected-phase-space dissimilarities (second from the 
top and bottom plots) from near zero for the nominal state to approximately 20 for the double-
seeded air-gap fault. The rise in non-connected dissimilarity measures is monotonic, but little 
changed between the two faulted states. 
 
We performed additional analysis of this seeded-fault airgap test sequence during PY3. This 
analysis is motivated by the fact that electrical power is the sum of products of the three-phase 
currents and voltages. In principle, condition change should be extractable from one or more of 
the individual three-phase currents and voltages in this linear combination. Consequently, we 
determined the PSDM for each of the three-phase currents and voltages separately, using the 
same parameters as Fig. 2.  Figure 3 shows an almost linear increase in U(χ2) for V1 (upper left 
subplot), and monotonic increases for the other three PSDM of V1 (left column). All four PSDM 
of V2 also increase monotonically (middle column of Fig. 3). Figure 3 also shows that U(χ2) for 
V3 (upper right subplot) increases monotonically, while the other three PSDM of V3 rise from test 
No. 1 to test No. 2, then decrease for test No. 3. Figure 4 shows roughly linear increases in all 
four PSDM of I2 (center column), and monotonic increases in all four PSDM of I3 (right 
column). All four PSDM of I1 increase from test No. 1 to test No. 2, then remain constant from 
test No. 2 to test No. 3. Figure 5 shows the PSDM for each component of three-phase power, 
IiVi. All four PSDM of I2V2 (middle column) show an almost linear increase, and all four PSDM 
of I3V3 increase monotonically. All four PSDM of I1V1 increase from test No. 1 to test No. 2, 
then remain constant from test No. 2 to test No. 3. Thus, we find that the PSDM can extract 
condition change from most of the three-phase currents and voltages separately, as well as from 
two of the components of three-phase electrical power. 
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The EPRI data included tri-axial acceleration from inboard (IB) and outboard (OB) motor 
locations. However, the third component of the OB-acceleration failed the data quality check, 
due to initially small and erratic values, followed by an abrupt rise at 60 ms to a flat-top value. 
This problem continues periodically through the data, thus precluding use of the OB-
accelerometer for condition change. Our analysis indicates adequate quality for the IB-
acceleration data, which we analyze next. Tri-axial acceleration has an important advantage, as 
follows. Acceleration, a, is a three-dimensional vector that can be integrated once in time to give 
velocity (vector), v = ∫ a dt. Mass, m, times acceleration (vector) is force (vector), F = ma. The 
dot-product of force and velocity converts these vector quantities into power (scalar), P = F•v = 
ma•∫ a dt. Figure 6a shows a 20 ms segment of vibration power data with complex, nonlinear 
features. The corresponding statistical measures (Figs. 6b−6e) and traditional nonlinear measures 
(Figs. 6e−6g) do not provide a clear indication of the increasing severity of the seeded fault. 
Figure 7 shows that all four phase-space dissimilarity measures rise linearly with the increasing 
fault severity, thus yielding good change discrimination.  
 
1.2  ADDITIONAL ANALYSIS OF EPRI MOTOR POWER DATA FOR THE BROKEN-
ROTOR-BAR FAULT 
 
A second EPRI test sequence began with the Allis Chalmers motor running in its nominal state 
(first dataset), followed by progressively more severe broken rotor bars. The second dataset 
involved a simulated failure that was one rotor bar cross section cut 50% in half at the 11 o’clock 
position. The third dataset was for the same rotor bar next cut through 100%. The fourth dataset 
was for a second rotor bar cut 100% at the 5 o’clock position, exactly 180° from, and in addition 
to, the first rotor failure. The fifth dataset was for two additional rotor bars cut adjacent to the 
original 11 o’clock bar, with one bar cut on each side of the original, yielding four bars 
completely open. Consequently, this sequence of seeded faults rises exponentially, as measured 
by the number of broken rotor bars (½ to 1 to 2 to 4). The EPRI report notes that the data-
collection personnel noted a definite growling sound and a pulsating vibration during the last test 
(four broken rotors). We concatenated the five datasets into a single long dataset for ease of 
analysis, and converted the three-phase voltages and currents into instantaneous power, as 
described above.  
 
We reiterate the PY2 analysis of this data, as motivation for the addition PY3 analysis. We split 
each of the five datasets into five subsets of 12,000 points each, giving 25 total subsets. The 
electrical power has a slow, low-amplitude variation with a period of roughly 0.1 s. As before, 
we removed this artifact, that otherwise confounds the interpretation of our results. A check of 
this artifact-filtered data revealed no data quality problems. We systematically varied the phase-
space reconstruction parameters to obtain the most monotonic increase in condition change for 
the broken-rotor seeded-fault test sequence. Figure 8 shows that the phase-space dissimilarity 
measures rise by ten-fold over the test sequence. The exponential rise in the seeded-fault 
magnitude (doubling from 0.5 to 1.0 to 2.0 to 4.0) is mirrored in Fig. 8 by a linear rise in the 
logarithm of the dissimilarity measures. 
 
We performed additional analysis of this seeded broken-rotor test during PY3. We focus on this 
analysis of vibration power only, based on the above results for the airgap test. As before, we 
reject the outboard acceleration due to the same data quality problem in the third component. 
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Figure 9a shows a 20 ms segment of vibration power data with complex, nonlinear features. The 
corresponding   statistical   measures   (Figs. 9b−9e)  and  traditional  nonlinear   measures  
(Figs. 9e−9g) do not provide a clear indication of the exponentially-growing severity of the 
seeded fault. Figure 10 shows that all four phase-space dissimilarity measures rise linearly with 
the increasing fault severity, thus yielding good change discrimination.  
 
1.3  ADDITIONAL ANALYSIS OF EPRI MOTOR POWER DATA: TURN-TO-TURN 
SHORTS 
 
The EPRI data included a General Electric motor, with the following specifications. 
   
 Rated voltage:   4000        Bearing type:   sleeve 
 Rated HP:     500         Number of rotor bars: 84 
 Winding type:   form wound      Number of stator slots:108 
 Phases:    3         Hertz:     60 
 RPM:     1185        Motor type:   induction 
 Insulation class:B         Poles:     6 
 Enclosure:    open        Bar configuration:  copper rectangular 
 
This test sequence began with the motor running in its nominal state (first dataset). The second 
dataset had a 2.70 ohm turn-to-turn short, via a large screw between two turns. The third dataset 
had a more severe, 1.35 ohm turn-to-turn, via a smaller screw between two turns. These three 
datasets were concatenated into a single long dataset for this analysis. The analysis sequence 
follows the increasing severity of the fault from the largest turn-to-turn resistance (infinite, 
corresponding to no short), to smaller (2.7 ohms), to smallest (1.35 ohms). We reiterate the PY2 
analysis of this data, as motivation for the addition PY3 analysis. The three-phase voltages and 
currents were converted into instantaneous electrical power, as before. The three datasets were 
split into five subsets of 12,000 points each, giving 15 total subsets. This data has a low-
amplitude, low-frequency artifact with a period of roughly 0.006 s. We remove this artifact, 
which would otherwise confound the analysis. The artifact-filtered power data has no data 
quality problems. Systematic variation of the phase-space reconstruction parameters revealed 
values that are most sensitive to the condition change for the turn-to-turn seeded-fault test 
sequence. Figure 11 shows that all four of the phase-space dissimilarity measures of electrical 
power rise linearly over the test sequence, mirroring the linear rise in the magnitude of the 
seeded faults (from 2.7 to 1.35 ohms).  
 
We performed additional analysis of this turn-to-turn-short test during PY3, focusing on 
vibration power, based on the above results for the airgap test. The third component of outboard 
acceleration showed the same data quality problem as before, forcing its rejection. Figure 12a 
shows a 20 ms segment of vibration power data with complex, nonlinear features. The 
corresponding statistical measures (Figs. 12b−12e) and traditional nonlinear measures (Figs. 
12e−12g) show some consistency with the increasing severity of the seeded fault. The minimum 
(PN) rises and maximum (PX) falls (Fig. 12b) monotonically over the test sequence. Kurtosis 
decreases and skewness increases monotonically (Fig. 12c) over the test sequence. Linear 
increases occur in the average number of time steps per cycle (Fig. 12d) over a very narrow 
range (7.2−7.6), and the first zero in the autocorrelation function (Fig. 12e).  Figure 13 shows 
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that all four phase-space dissimilarity measures rise linearly with the increasing fault severity, 
thus yielding good change discrimination. We obtained the results in Sects. 1.1–1.3 by searching 
over the  range   of  parameters for the best indication of condition change: 2 ≤ d ≤ 26, 2 ≤ S ≤ 
200, and 1 ≤ λ ≤ 100.  
 
1.4  MOTOR DIAGNOSTICS TEST BED DATA FROM THE PENNSYLVANIA STATE 
UNIVERSITY 
 
Appendix B is the statement of work for the subcontract to the Applied Research Laboratory at 
the Pennsylvania State University. Appendix C is the test plan for the Mechanical Diagnostics 
Test Bed (MDTB). This subsection describes details of the data acquisition, the nonlinear 
analysis, and results of the forewarning assessment for each of three MDTB accelerated failure 
test sequences. Previous work during FY2 of this NERI project determined that higher sampling 
rates for the data give superior failure forewarning, and that accelerometer data was more 
appropriate for the MDTB testing. Work during the second quarter of the present project year 
verified the adequacy of the data quality and sampling rate. Consequently, the tri-axial 
accelerometer data were sampled for each MDTB test sequence in ten-second snapshots at a 
sampling rate of 52 kHz. Data quality analysis revealed no problems with the MDTB data. The 
protocol for this test involves a break-in period at the nominal (1X) load (per the test plan in 
App. C) for one h, followed by twice (2X) the normal load until failure; our analysis uses the test 
data only during the overload period. Figure 14 shows the specific end-of-life failure for MDTB 
Run No. 36, including pinion damage, broken teeth, and a sheared shaft. PSU provided data 
snapshots at fifteen-min intervals. The failure occurred after 162.5 h, corresponding to 650 
snapshots. Figure 15 shows the very complex, nonlinear features in the three components of the 
tri-axial accelerometer data (a). The individual snapshots were combined into one long dataset 
(12.7 GB).  Acceleration was subsequently converted to a long stream (4.1 GB) of vibration 
power (Fig. 16), using the previously described method to convert tri-axial acceleration into 
power via time-integration to velocity (v = ∫a dt) with a subsequent vector dot-product to 
produce power (P ~ a•v). We obtained the traditional nonlinear measures for each of ten 50,000-
point cutsets from each snapshot of P; these cutset-based measures were then averaged over all 
ten cutsets of each snapshot and displayed for that snapshot (Fig. 17). Correlation dimension (top 
plot of Fig. 17) varies erratically between 2.9 and 3.1 before 65 h, then rises irregularly to 3.6 as 
a forewarning indication, and finally falls abruptly to < 2 as a failure indication. Kolmogorov 
entropy (middle plot of Fig. 17) varies irregularly between 0.025 and 0.045 prior to 65 hours, 
then rises erratically to > 0.07 as a forewarning of failure, and finally falls to < 0.01 as a failure 
indication. The first minimum in the mutual information function (bottom plot of Fig. 17) is 
constant at one time step, and then decreases abruptly to 0.1 at failure. The forewarnings are 
weak, because the variations are not inconsistent with the previous irregularities. The failure 
indications are unique and clear. The traditional nonlinear measures (TNM) vary erratically over 
small ranges of values, while the PSDM (below) show robust forewarning via variation over a 
much larger range of values. 
 
Figure 18 shows the PSDM for PSU Run No. 36. The phase-space parameters are S = 274, d = 2, 
λ = 1, which are the same values that we used for the PY2 MDTB data to show consistency with 
that earlier analysis. All four measures of dissimilarity rise systematically (Figs. 18a−18d) to 
provide forewarning of the failure. However, a more robust and specific end-of-life (EOL) 
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indicator is needed. We observe that all four of the PSDMs have similar tends, suggesting the 
definition of a composite measure, Ci, as the sum of the four renormalized PSDMs for the i-th 
dataset (Fig. 18e): 
 

Ci = U(χ2) + U(χc
2) + U(L) + U(Lc).        (1) 

 
This composite measure is more robust than any one of the PSDM, while accurately indicating 
condition change. The end-of-life indication from this composite measure is quantified as 
follows. We use contiguous, non-overlapping windows of Ci to obtain the best straight-line fit in 
a least-squares sense: 
 
             yi = ai +b.             (2) 
 
The window length of m = 10 values of Ci (and yi below) is chosen consistent with the number of 
cutsets in each snapshot. Other values of m give inferior indication of condition change. Next, 
the variance, σ2, measures the variability of the Ci values about this straight-line fit: 
 
         σ2 = Σi (yi – Ci)2/(m-1).          (3) 
 
Other fits (quadratic, cubic, and quartic) extrapolate poorly outside the fitting window. Finally, 
G measures the variability of next m values of Ci about an extrapolation of this straight-line: 
 
           G = Σi (yi – Ci)2/σ2.           (4) 
 
The index, i, in Eqs. (2)–(4) runs over the m values of Ci and yi. Note that G has the form of a 
conventional chi-squared statistic, but we do not use that notation to avoid confusion with the 
two χ2 PSDMs, U(χ2) and U(χc

2). A statistical test for G would involve the null hypothesis that 
deviations from the straight-line fit are normally distributed. Standard chi-squared statistical 
tables give the corresponding value of G ≤ 28.5 for m = 10 degrees of freedom with a probability 
of one out of the number (650) of extrapolations (1/650 ~ 1.5 × 10-3). However, we observe that 
many instances, for which G > 28.5 throughout this test sequence. These outliers occur because 
the underlying three-dimensional acceleration has dynamical correlations, thus violating the 
requirement for independent, identically distributed samples. Instead, we use G (solid curve in 
Fig. 18f) as a relative measure of end-of-life. We compare each value of G to the previous values 
to obtain a running maximum Gmax (dashed curve in Fig. 18f), neglecting the first six G-values to 
avoid startup transients. This running maximum rises in modest increments to 376 over the first 
159.75 h of the test, while intermediate values of G fall well below the running maximum. The 
chain curve (-.-) in Fig. 18f is the ratio, R = (Gmax)k/(Gmax)k-1, of the current maximum in G 
(Gmax)k to the  previous  maximum in G (Gmax)k-1. G rises to 2,493 at 160 h, with a corresponding 
R = 6.62, that is substantially more than the largest non-end-of-life value, R = 2.22, at 2 h. Thus, 
G provides clear end-of-life forewarning, plus indication of the failure (G = 244,655). 
 
The protocol for MDTB Run No. 37 involves a break-in period at the nominal 1X load (per the 
test plan in App. C) for 1 h, followed by 3X the normal load until failure; our analysis uses only 
the test data during the overload period. Figure 19 shows the specific end-of-life failure for 
MDTB Run No. 37, including pinion damage and broken teeth. PSU provided snapshots of 
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accelerometer data at 1 min intervals until the failure. The three components of acceleration as 
well as vibration power are not unlike Run No. 36, and are not shown. The individual snapshots 
were combined into one long dataset (10 GB), and  subsequently  converted  to  a long stream 
(3.5 GB) of vibration power, as described above. We obtained the traditional nonlinear measures 
for each of ten 50,000-point cutsets from each snapshot; these cutset-based measures were then 
averaged over all ten cutsets and displayed for each snapshot (Fig. 20). Correlation dimension 
(top plot of Fig. 20) decreases from 3.7 gradually but irregularly to 3.5 at 5.3 h. The next 
irregular decrease to 2.3 at 8 h is an early forewarning, while the more abrupt drop to <0.5 is an 
indication of failure onset. Kolmogorov entropy (middle plot of Fig. 20) likewise decreases 
erratically from 0.09 to 0.04 at 8 h. The abrupt drop to near zero after 8 h is an indication of 
failure onset. The first minimum in the mutual information function (bottom plot of Fig. 20) is 
constant at one time step over the entire test. Moreover, the TNM vary erratically over small 
ranges of values, while the PSDM (below) show robust forewarning via variation over a much 
larger range of values. 
 
Figure 21  shows the PSDM for PSU Run No. 37. The phase-space parameters also are S = 274, 
d = 2, λ = 1, which are the same as those for the PY2 MDTB data to show consistency with the 
earlier analysis. All four measures of dissimilarity rise systematically (Figs. 21a−21d) to provide 
forewarning of the failure. As before, we use G as a relative measure of end-of-life, as shown in 
Fig. 21f. We compare each value of G to the previous values to obtain a running maximum Gmax 
(dashed curve in Fig. 21f), neglecting the first five values to avoid startup transients. This 
running maximum rises in modest increments to 333 over the first 5 h of the test, while 
intermediate values of G fall well below the running maximum. The chain-dashed curve (-.-) in 
Fig. 21f shows the ratio, R = (Gmax)k/(Gmax)k-1, of the current maximum in G (Gmax)k to the 
previous   maximum  in G (Gmax)k-1.  G rises to 2,690  at 8.1 h,  with   a  corresponding  value of 
R = 8.07 that is much more than the largest non-end-of-life value at 0.5 h (R = 1.79). Thus, G 
provides  clear  end-of-life  forewarning,  as  well  as  distinct  indication  of  the  failure  itself 
(G = 16,284).   
 
The protocol for this MDTB test involves a break-in period at the nominal 1X load (per the test 
plan in App. C) for 1 h, followed by 3X the normal load until failure; our analysis uses only the 
test data during the overload period. Figure 22 shows the specific end-of-life failure for MDTB 
Run No. 38, including broken/rounded off teeth on both the pinion and the gear. PSU provided 
snapshots at one-minute intervals until the failure. The three components of acceleration as well 
as vibration power are not unlike Run No. 36, and are not shown. The individual snapshots were 
combined into one long dataset (4.7 GB), and subsequently converted to a long stream (1.6 GB) 
of vibration power, as described above. We obtained the traditional nonlinear measures for each 
of ten 50,000-point cutsets from each snapshot; these cutset-based measures were then averaged 
over all ten cutsets and displayed for each snapshot (Fig. 23). Correlation dimension (top plot of 
Fig. 23) is roughly constant at 2.85 until 1.3 hours, and then rises slowly and irregularly to 3 at 
2.5 h. Finally, correlation dimension decreases very irregularly to < 0.3 at 4 h, as a failure 
indication. Kolmogorov entropy (middle plot of Fig. 23) likewise is roughly constant (but very 
erratic) at 0.02 until 2 h, and then rises irregularly to a peak of 0.04 at 2.7 h. Kolmogorov 
entropy then decreases erratically to near zero at 4 hours, as a clear failure indication. The first 
minimum (M1) in the mutual information function (bottom plot of Fig. 23) is constant at one time 
step until 4 h, and then falls abruptly to a 0.1 at 4 h, as a failure indication. The TNM vary 
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erratically over small ranges of values, while the PSDM (below) show robust forewarning via 
variation over a much larger range of values. 
 
Figure 24 shows the PSDM for PSU Run No. 38. The phase-space parameters again are S = 274, 
d = 2, λ = 1, which are the same as those for the PY2 MDTB data to show consistency with the 
earlier analysis. All four measures of dissimilarity rise systematically (Figs. 24a−24d) to provide 
forewarning of the failure. As before, we use G as a relative measure of end-of-life, as shown in 
Fig. 24f. We compare each value of G to the previous values to obtain a running maximum Gmax 
(dashed curve in Fig. 24f), neglecting the first five values to avoid startup transients. This 
running maximum rises in modest increments to 374 over the first 2.6 h of the test, while 
intermediate values of G fall well below the running maximum. The chain-dashed curve (-.-) in 
Fig. 24f shows the ratio, R = (Gmax)k/(Gmax)k-1, of the current maximum in G, (Gmax)k, to the 
previous maximum in G, (Gmax)k-1. G rises to 13,486 at 3.77 h, with a corresponding R = 11.71, 
which is substantially more than the largest non-end-of-life value at 0.6 h (R = 6.20). Thus, G 
provides end-of-life forewarning, as well as indication of the failure (G = 48,379). 
 
Run No. 39 involves a somewhat different test protocol with a one-hour break-in period at the 
nominal load 1X, followed by twice the normal load (2X) for 2 h, after which the load alternated 
between three times normal load 3X and 2X loads for 10 and 5 min, respectively. This 
experiment seeks failure forewarning in the presence of load changes. Figure 25 shows the 
failure state, including broken and rounded teeth on both the gear and pinion. Since the 
conventional statistical measures and traditional nonlinear measures previously provided no 
consistent failure forewarning, we show only the PSDM for PSU Run No. 39 in Figs. 26−27. 
The sawtooth features in each of the six subplots correspond to the transition between 2X and 3X 
loading with the straight-line portion in Fig. 26 corresponding to the 3X segment in Fig. 27, and 
inversely. The phase-space parameters again are S = 274, d = 2, λ = 1, which are the same as 
those for the PY2 MDTB data to show consistency with the earlier analysis. Figure 26 shows the 
PSDM results only for the 2X-portion of the experiment. All four PSDM rise systematically 
(Figs. 26a−26d) to provide forewarning of the failure, with a corresponding systematic rise in the 
composite  measure, Ci. As before, we use G as a relative measure of end-of-life, as shown in 
Fig. 26f. We compare each value of G to the previous values to obtain a running maximum Gmax 
(dashed curve in Fig. 26f), neglecting the first six values to avoid startup transients. This running 
maximum rises in modest increments to Gmax = 853 over the first 3.68 h of the test, with a 
corresponding non-end-of-life value for R = (Gmax)k/(Gmax)k-1 = 3.89, as shown by the chain-
dashed   curve  in  Fig.  26f.  Subsequently, G  rises  to  5,231  at  8.43 h, with  a  corresponding 
R = 3.89. Thus, G provides end-of-life forewarning, but no indication of the failure onset (GONSET 
= 5,231), because the failure for this test is driven by the 3X loading. We analyze the 3X portion 
of MDTB Run No. 39 separately, as shown in Fig. 27. All four PSDM rise systematically (Figs. 
27a−27d) to provide forewarning of the failure, with a corresponding systematic rise in the 
composite measure, Ci. We again use G as a relative measure of end-of-life, as shown in Fig. 
27f, comparing each value of G to the previous values to obtain a running maximum Gmax 
(dashed curve in Fig. 27f), neglecting the first six values to avoid startup transients. This running 
maximum rises in modest increments to Gmax = 1,151 over the first 7.92 h of the test, with a 
corresponding non-end-of-life value for R = (Gmax)k/(Gmax)k-1 = 2.88, as shown by the chain-
dashed   curve  in  Fig. 27f.  Subsequently,  G  rises  to  33,415 at 8.35 h, with  a  corresponding 
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R = 29.03. Thus,  G  provides end-of-life forewarning, as well as indication of the failure onset 
(G = 44,552) at 8.55 h.  
 
The results for PSU Runs No. 36−39 are summarized in Table 2, which gives: (a) the largest 
non-EOL value of R (RNEOL) and the corresponding value of G (GNEOL); (b) values of R (REOL) 
and G (GEOL) that indicate the end of life, and the matching time (TEOL/TFAIL); (c) the value of G 
at failure onset (GONSET) and the corresponding time (TONSET/TFAIL); and (d) the  failure-endpoint 
time (TFAIL). Runs No. 36−38 have largest non-EOL values: RNEOL = 6.20 and GNEOL = 376. The 
smallest EOL values are: REOL = 6.62 and GEOL = 2,493. Thus, limits (for example) of R > 6.4 
and G > 1,800  provide  EOL  forewarning. Moreover, we find that the largest EOL value of 
GEOL = 13,486, while the smallest failure-onset value is GONSET = 16,284. Thus, an intermediate 
value (for example) of G > 15,000 distinguishes the EOL from failure onset forewarning. This 
approach gives quantitative limits for transitions from nominal operation (green-light for “go” in 
a traffic signal metaphor), to forewarning of failure (yellow light for “caution”), and finally to 
failure onset (red-light for “stop”). 
 
We consider the results of MDTB Run No. 39 separately, because this experiment involves a 
different test protocol.  Table 2 shows that the above limits for G and R also distinguish between 
the non-EOL (green) and EOL (yellow) states for the 3X portion of this test, because the higher 
overload drives the failure. These limits do not apply to the 2X test, due to the reduced damage 
at the lower overload. Unsurprisingly, a different limit of G > 38,000 (for example) distinguishes 
between the EOL and failure onset forewarnings, due to the change in test protocol. The green-
yellow-red approach still applies for MDTB Run No. 39. Ignoring the Run No. 39 2X results, we 
find TEOL/TFAIL ≥ 0.938 and TONSET/TFAIL ≥ 0.990. 
 

Table 2.  Summary of MDTB Test Results 
 

Run Over
-load 

∆τ 
min. 

RNEOL GNEOL REOL GEOL TEOL 
TFAIL 

GONSET TONSET 
TFAIL 

TFAIL 
hr. 

36 2X 15 2.22    376  6.62   2,493 0.985 244,655 0.998 162.50
37 3X 1 1.79    333  8.07   2,690 0.956   16,284 0.996     8.55
38 3X 1 6.20    374 11.71 13,486 0.938   48,379 0.990     4.02
39 2X 1 2.32    853   3.89   5,231 0.980     5,231 0.980     8.60
39 3X 1 2.88 1,151 29.03 33,415 0.972   44,552 0.994     8.60

 
1.5  SHAFT-CRACK SEEDED-FAULT DATA FROM THE PENNSYLVANIA STATE 
UNIVERSITY 
 
ORNL received tri-axial accelerometer data from PSU for Run No. 17 of the Shaft-Crack test 
(see App. D for the test plan). The data sampling rate of the tri-axial acceleration is 128 kHz for 
each 10-s snapshot. Our analysis of the corresponding vibration power revealed inadequate 
quality for two reasons. First, the signal range for baseline data is between -18.9 and 15.5. This 
range drops abruptly for the first shaft notch (-10.9 to 8.6), then increases abruptly for the second 
shaft notch (-24.9 to 24.2), and rises still further for the third shaft notch (-32.5 to 28.0). The 
fourth through ninth shaft notches have roughly a consistent range between ±20. This unusual 
range variability in the first four datasets implies a problem with initial signal calibration or 
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scaling. A second data quality problem is that the first minimum (M1) in the mutual information 
function is one time step, corresponding to under-sampling of the data. The value of M1 should 
be four or more time steps for adequately sampled data. These quality problems prohibit further 
useful analysis of the acceleration data. PSU also supplied time-serial angle data from a toothed 
wheel (see App. D for details). ORNL analysis of this data revealed two additional quality 
problems. First, the width of the solid teeth and intervening gaps was not the same over the 
circumference.  Second,  the  rotation  speed  was  23 Hz,  corresponding to roughly 0.06 ms 
(16.6 kHz) between samples of the angular motion for each of the 360 teeth. However, the 
angular motion varied much faster than 16 kHz, resulting in under-sampling of the angular 
dynamics. These quality problems prohibit further useful analysis of the time-serial angle data. 
 
ORNL received additional tri-axial accelerometer data from PSU for Run No. 18 of the seeded-
fault Shaft-Crack test, also according to the test plan of App. D. The data were provided at two 
sampling rates: 128 kHz and 196 kHz. We analyzed the 196 kHz data with 1,000,000 data points 
(5.1 s) for each of ten snapshots, due to the data under-sampling problem with Run No. 17, as 
discussed above. The first minimum (M1) in the mutual information function of the vibration 
power is constant at two time steps, which is substantially less than four time steps, indicating 
that this data also is under sampled at 196 kHz. This quality problem prohibits further useful 
analysis of the data.  
 
ORNL received data for Run No. 19 of the Shaft-Craft test at 196 kHz sampling rate, with 
improvements in the experimental hardware to eliminate grounding loops that introduced high-
frequency noise. Quality analysis of this data revealed that the sampling rate was adequate, as 
was the data precision (12−14 bits). However, the range of signal variation was markedly 
different between the baseline and the subsequent test cases. Moreover, the distribution function 
for the number of signal occurrences vs signal value is also very different between the baseline 
(abrupt rise to a peak at small signal values, followed by a gradual decrease at high values) and 
subsequent test cases (rise to central sinusoidal peak than roughly symmetry decrease). This 
difference arises because the waveforms are very different between the baseline (sharp positive 
spikes) and test cases (complex, nonlinear oscillations). Documentation for this test showed that 
the old tri-axial acceleration sensor was used for the baseline data, while the new acquisition 
hardware (three separate acceleration sensors) was used for the subsequent test cases. This 
change in sensors produced the confounding differences between the baseline and subsequent 
test cases. PSU later provided a new set of baseline data that is consistent with the other datasets, 
allowing further analysis. As before, data from the individual tests were concatenated into one 
long dataset (234 MB) for ease of analysis. Figure 28 shows a resultant segment of vibration 
power (Fig. 28a), along with conventional statistical measures (Figs. 28b−28e), and traditional 
nonlinear measures (Fig. 28e–28g). The magnitudes of minimum and maximum in vibration 
power (Fig. 28b) and constant, then rise abruptly for the last test. The number of time steps per 
cycle (Fig. 28d) rises slowly and monotonically, showing a large increase for the largest cut 
depth. None of the other measures in Fig. 28 show a consistent change over this test sequence. 
Figure 29 shows that all four PSDM rise monotonically by one-hundred-fold as the cut depth 
increases from zero (baseline) to 3/8 in. These strong indications of change are in sharp contrast 
to the weak ones of Fig. 28. 
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1.6  GENERATOR SEEDED-FAULT DATA FROM THE PENNSYLVANIA STATE 
UNIVERSITY 
 
We analyzed additional PSU data with operator-imposed turn-to-turn shorts in the rotor of a 
motor-driven, three-phase electrical generator. The generator is a Kato Engineering, Model 
A267890000, (5 kW, 3-phase, 60 Hz, synchronous alternating current). The drive motor is a 
Kato Engineering, Model D267880000 (7.5 HP, synchronous, brushless, direct current). The 
sequence test states were: (a) nominal operation, (b) short across five rotor turns, (b) short across 
ten rotor turns, (c) short across twenty-five rotor turns, (d) short across fifty rotor turns, and (e) 
short across one hundred rotor turns, out of five hundred turns in one of four poles. The tri-axial 
accelerometer data were sampled at 102.4 kHz, concatenated into one long dataset for analysis, 
and converted to vibration power, as described above. The data are acquired under different 
resistive loads, corresponding to four different output powers: 0, 1.2kW, 2.4kW, and 3.6 kW. 
Figure 30a shows 5.9 ms of vibration power data at the zero load, displaying complex, nonlinear 
features. Conventional statistics and traditional nonlinear measures (Fig. 30b−30g) do not 
indicate the rising seeded-fault severity. Plots for other load levels are not unlike Fig. 30, and are 
not shown. Further analysis is beyond the scope of this present work. 
 
1.7  COLLABORATION WITH ORNL’S HIGH FLUX ISOTOPE REACTOR (HFIR) 
 
Lee Hively met with HFIR staff (Steve Burnette, Dave Davenport, Eric Griffis, and Mark 
Matthews) on January 17, 2003 to initiate collaboration. These discussions identified nuclear-
grade equipment for condition monitoring. Specifically, the hot-off-gas fan No. 6 (HOG6) has a 
long and continuing failure history; this fan is belt-driven by a 10HP three-phase electric motor. 
Present predictive maintenance approaches at HFIR include vibration analysis (displacement, 
velocity, and acceleration), thermography, lubrication oil analysis, and motor current signature 
analysis. Acquisition of accelerometer data is covered by the present HFIR configuration control, 
and presently is by a hand-held instrument (Computational Sciences Inc., Knoxville, Tennessee) 
that samples 1024 points over 100 ms. This data is insufficient in both the sampling frequency 
and the total number of data points. Consequently, improved data acquisition is required, for 
which Hively committed $10K under this NERI project for the HFIR effort. Changes to the 
HFIR configuration control are necessary to acquire motor current and voltage data, which 
therefore may not be available for this project. Hively met with HFIR instrumentation and 
controls staff (Ken Hardin, Randy Welch, and Karl Zimmerman) on February 10, 2003 to outline 
the data acquisition needs for tri-axial accelerometer data from HOG6. Hively provided a 
personal computer, monitor, data acquisition board, isolation block, and associated LabViewTM 
software to HFIR staff (Ron Miller and Sam Henley) on February 11, 2003. The data acquisition 
hardware and software were acquired under this project during PY2. Hively also provided a 
written description of the data acquisition needs to the appropriate supervisor (Karl Zimmerman) 
on February 11, 2003. The computer and software have been set up and are functional. However, 
two HFIR outages delayed the procurement of the sensors, final setup, and acquisition of 
operational data beyond the end of this project. 
 
 
 
 



 

 

13

1.8  TASK 3.1 – ILLUSTRATION OF COST-BENEFIT FOR PROGNOSTICATION 
 
A general and unambiguous cost-benefit evaluation of machinery health assessment technologies 
has remained an elusive goal of engineering planning. Indeed, an exhaustive cost-benefit 
evaluation would involve a complex risk assessment with fuzzy parameters, probabilities, 
confidence levels, and information gaps. Such an evaluation was attempted under the NERI 
program to track the cost of various machinery condition and maintenance scenarios for optimal 
scheduling.1 Development of a systematic cost-benefit approach is beyond the scope of this 
project. Instead, we consider several scenarios that reflect actual plant problems to illustrate the 
benefits of timely failure forewarning via nonlinear analysis. This anecdotal approach provides 
insight into the cost benefits, while avoiding the issue of precise costs that are usually 
questionable at best. 
 
Two of the most important factors for nuclear power plant (NPP) equipment failures are the risk 
of forced outage time and the cost of make-up power. Table 3 shows the ranking of the industry 
experience with system failures in terms of forced outage time.2  The cost of make-up power is 
quite variable, as seen in the estimated costs of Fig. 31 (ref. 3).  Thus, correct timing of 
maintenance is extremely important in determining and eventually minimizing the cost of outage 
make-up power. 
 
The following examples are representative of the actual failure-forewarning equipment tests that 
were performed under this NERI project. We selected four pieces of equipment for cost-benefit 
analysis, as summarized in Table 4, based on the failure rates in Table 3 and the availability of 
cost information. We  take  the cost of replacement electrical power at $0.7M per 24-h/day.1 This 
value assumes a 1300 MW plant at $22/Mwh, and should be adjusted for plant size. 

 
The first example involves a turbine generator, which is responsible for a 16% of forced outages, 
as shown in Table 3. Our analysis assumes: (a) timely shutdown, (b) the outage time is the same 
for a forced-failure outage as for a planned outage, and (c) the maintenance/repair costs are the 
same in both cases. We consider only the replacement power cost, following the analysis of an 
earlier NERI project, “Smart Equipment in NPP.” For details, see the work by Campbell, et al, 
“Virtual Machine Equipment Simulation [Task 3.1 (ref. 2)].” This example postulates a 
forewarning on June 10, 2002 that a turbine failure would occur within 1 to 2 weeks.  We 
analyze two cases.  The first case allows the turbine to fail with a trip. The second case schedules 
turbine maintenance within a day of the forewarning. We further assume that the time-to-repair 
distribution for this second case is the same as the run-to-failure case. Cost calculations assume a 
1300 MW plant. The average wholesale price for electricity, provided by Reliadigm, a subsidiary 
of Public Service Company of New Mexico for 2002 (Fig. 31), ranges from less than $20/Mwh 
to about $130/Mwh.  Consequently, the timing of a plant outage may have a dramatic effect on 
the cost of lost generation. Figure 32 shows that the mean run-to-failure cost is $6.7M vs $2.9M 
when maintenance is scheduled immediately, based on the failure forewarning indication. 
  
As a result of the greater wholesale electricity cost for the next few days after the forewarning, 
the cost rises with the increasing delay in maintenance time. If the forewarning occurs when the 
cost of electricity was projected to decline, a delay in the maintenance would be cost-effective, 
subject to the expected timing of the failure. Thus, ongoing condition assessment of the turbine-
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generator system with a one-week forewarning window would result in substantial savings when 
projected make-up power costs are integrated with machinery health information in the 
maintenance decision process. 
 

Table 3. Lost Availability Ranking of U.S. PWR Plant Systems/Components (1990-1995) 

 

Rank System/Component
Outage 
Time 

(Hours)

Percent of 
Outage

Number of 
Failures

MTTR 
(Hours)

1 Transformer 14,442.20 10.64 39 370.3
2 Main Generator 10,955.30 8.07 70 156.5
3 Turbine 10,654.10 7.85 115 92.6
4 Steam Generator 10,597.60 7.81 46 230.4
5 Reactor Coolant Pump 10,004.10 7.37 47 212.9
6 Service Water System 6,369.50 4.69 6 1061.6
7 Steam Extraction Piping 6,362.80 4.69 4 1590.7
8 Diesel Generator 5,828.10 4.29 12 485.7
9 Control Rod System 4,194.60 3.09 51 82.2
10 Main Feedwater Valve 4,147.40 3.06 60 69.1
11 Pressurizer 4,073.40 3 20 203.7
12 Safety Injection System 3,899.40 2.87 8 487.4
13 Reactor Coolant System 3,327.40 2.45 22 151.2
14 Main Steam Valve 3,319.70 2.45 33 100.6
15 Circuit Breaker 3,067.10 2.26 14 219.1
16 Steam Generator Feedpump 2,854.50 2.1 18 158.6
17 Auxiliary Feedwater Pump 2,776.40 2.05 4 694.1
18 Moisture Separator Reheater 2,413.60 1.78 19 127
19 Inverter 2,399.80 1.77 12 200
20 Condenser 2,185.10 1.61 19 115
21 Main Feedwater Pump 1,983.50 1.46 37 53.6
22 Main Steam System 1,225.80 0.9 15 81.7
23 Relay 1,183.70 0.87 12 98.6
24 Intake Valve 1,142.20 0.84 2 571.1
25 Circulating Water 955.4 0.7 8 119.4  
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Table 4.  Sample Equipment Used in the Cost Benefit Analysis 
 

Component(s) Item 
Number in 

Table 3 

Reasons for Selection 

 
Turbine/Generator  

 
2 & 3 

 
Total of 16% of forced outage time is associated 
with these components.  Failure results in full 
unit outage. 

Centrifugal Charging Pump NA Although not specifically listed in Table 3, 
failure is considered to be a thorn in the side of 
utility maintenance personnel, and results in 
LCOs that are “black marks” against the utility. 

Steam Generator Feedpump 16 & 21 Total of 2.5% of outage time.  These pumps are 
the heart of the secondary system. 
 

Reactor Coolant Pump 5 Failure results in 8 % of forced outage time.  In 
addition, the issue of RCP shaft cracking has 
become very important. 

 
 
The second example involves a centrifugal charging pump. Usually, plants have redundant pump 
components. Most Westinghouse pressurized water reactors (PWRs) have three pumps: one 
normal charging pump and two emergency charging pumps; see Figs. 33−34 for typical pump 
layouts. (Note that many plants originally had one of these pumps as a positive displacement 
pump, which now has been replaced in almost all plants by an additional centrifugal charging 
pump.)  The abnormal operation or loss of one pump is considered to be a safety condition, and 
the subject pump must be reported to the NRC as “inoperable.”  The NRC may opt to issue a 
Limited Condition of Operation (LCO), requiring that restorative maintenance must be 
performed within 72 (normal) to 90 h (extended). If the equipment restoration cannot be 
completed within this time window, the unit must be shut down.  Typical component failures in 
these pumps involve the motor, bearings, gears, and shaft cracking.  Many experts believe that 
much of this damage may be accumulated during the mandated quarterly in-service testing (IST), 
since the flow conditions during those tests are more extreme than the normal design conditions. 
Consequently, most utilities maintain a spare pump on site, due to high pump-failure rates. 
However, pump replacement may require more time than the LCO allows, resulting in a unit 
shutdown. 
 
Forewarning may allow maintenance during LCO, thus avoiding a unit outage or derating in 
some cases. We assume in this example that forewarning of a bearing failure allows a simple 
repair during the LCO. The total repair cost would be about $14,000: $4500 for parts; $9720 for 
labor (3 person crew, 90 work-hours per person); and no derating or unit trip. The second case 
involves running the bearing to failure, which would require a pump replacement. We estimate 
114 h for the repair and declaration of inoperative status in this second case with the unit off-line 
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for 24 h (unit shutdown after the 90-h LCO), plus an equivalent of 12 h for unit startup. The 
pump replacement would cost $200,000, plus 36 h of lost electrical generation cost, for a total 
cost of $1.25M. The saving would be over $1.2M. 
 
Under the current regulatory environment, knowledge of the specific condition of the centrifugal 
charging pump may be less than beneficial. Specifically, failure forewarning with a long 
remaining life would require that the pump must immediately be declared inoperative, and an 
LCO requested. A corresponding change in the regulatory environment is needed to accept that 
condition assessment of safety-related equipment is good, allowing the utility to ensure that the 
equipment is in the best possible operating state.  Moreover, proper interpretation of such 
information may allow the reduction of redundancy, rather than the present heavy reliance on 
redundancy, because equipment health is unknown. Additionally, continuous machinery health 
monitoring may allow elimination of pump IST, thus reducing the damaging affects of non-
nominal flow.  IST could be performed only when the remaining useful life of the pump is 
deemed to be short enough to indicate the need for rotation to the stand-by pump. 
 
The third example involves a steam generator feedpump/turbine. A unit trip is the typical result 
of the unexpected loss of a Steam Generator Feedpump (SGFP) in a PWR, or a Reactor 
Feedpump (RFP) in a boiling water reactor (BWR), with subsequent operation at reduced power. 
This pump is on the secondary side, but is the very heart of power production.  When one pump 
is out of service, the unit cannot operate above approximately 70% power. For instance, the loss 
of a SGFP due to turbine shaft cracking occurred at Plant Vogtle (Southern Nuclear) in the mid-
90’s. The result was a unit trip, and the usual 3−4 days to get back on line. Subsequently, the unit 
operated at approximately 70% power for approximately one week during turbine repair. The 
resulting makeup power cost was approximately $3.5M.  
 
When bearing overload is detected, the unit is derated to 70% and pump realignment is 
performed.  If the fault is not detected, damage may progress to bearing failure, rotating element 
failure, or catastrophic failure of the entire pump. Consequently, we analyze four scenarios (from 
top to bottom in Table 5) as follows: (a) correction of bearing overload after failure forewarning 
via nonlinear analysis; (b) repair of failed bearing; (c) repair of failed rotating assembly; and (d) 
replacement of failed pump.  Table 5 shows that the resulting cost savings are between $2.2M 
and $4.2M. 

 
 

Table 5.  Steam Generator Feedpump Cost Savings 
 

 

Workers
Crew 
Hours

Work 
Hours

Labor 
Cost per 

Hour
Labor 
Cost Parts Cost

Unit 
Outage

Unit 
Derate 
Hours

Unit 
Derated to 

percent

Cost of 
Replacement 

Power Total Cost Savings
3 24 72 36 2,592$  -$          0 36 0.7 315,000$     317,592$    
3 30 90 36 3,240$  4,500$      72 48 0.7 2,520,000$  2,527,740$ 2,210,148$  
4 36 144 36 5,184$  50,000$    72 144 0.7 3,360,000$  3,415,184$ 3,097,592$  
4 62 248 37 9,176$  200,000$ 72 250 0.7 4,287,500$ 4,496,676$ 4,179,084$ 
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The fourth example involves a reactor coolant pump (RCP), that is a vital part of the power 
production cycle. Although not a safety-related component, its continued operation is essential to 
unit function.  We consider the failure of an actual pump at the Tennessee Valley Sequoyah plant 
in early September of 2000 (six months after a refueling outage). A RCP on Unit 1 was brought 
down for balancing after exceeding the administrative limit for vibration of 10 mils peak-to-
peak. The vibration increased on  each  successive  balance  test,  subsequently  exceeding the 
15-mil alarm limit at 17 mils (peak to peak), and approaching the 20-mil required shutdown 
limit. Inspection revealed a crack encompassing 252 degrees circumferentially (Figs. 35−36).4 
The lack of a spare pump shaft resulted in a 40-day outage. 
 
This scenario assumes forewarning of the crack fault allowed a spare pump shaft to be ordered 
and completion of the maintenance during the scheduled outage 6 months earlier. If the cost per 
day for make-up power is $0.7M (ref. 1), and the maintenance cost is the same whether it had 
been done during the scheduled or unscheduled outage, the resulting savings would be $28M. 
 
We summarize the results of this cost-benefit analysis as follows. Timely forewarning and 
accurate diagnosis of just one NPP failure is sufficient to justify extensive monitoring of vital 
and safety related systems.  Table 6 shows a summary of the scenarios used in evaluating the 
cost benefit.  In each case, actual failures have occurred on the in-plant equipment. Typical cost 
savings range from $1M to $28M, depending on the specific equipment and failure scenario. 
While the precise cost savings vary with the underlying assumptions, the conclusion is that 
failure forewarning will allow millions of dollars in cost savings for each NPP unit, as well as 
important improvements to safety. 
 
1.9  TASK 3.2 – COMMERCIALIZATION ROADMAP AND FUTURE WORK 
 
The final component of this task is a roadmap to a commercial product from the current state-of-
the-art. The present technology has the attributes, as shown on the left-hand side of Table 7. The 
highly desirable features of a commercial product are on the right-hand side of Table 7. Much 
work remains to bridge the wide gulf between today’s retrospective analysis of archival data on a 
desktop computer to a future stand-alone commercial device for prospective analysis of real-time 
data on a portable computing platform. 
 
Current technology will enable some improvements almost immediately, as shown by the center 
column in Table 7. Implementation of this approach on a portable computer platform (e.g., 
laptop) is possible now, because the typical size of the forewarning analysis is < 28 MB. 
Moreover, PSDM analysis is faster on a 2 GHz Pentium-4TM desktop computer than the wall-
clock time to acquire the corresponding archival data. Modern laptop and digital-signal 
processor speeds are ≥ 3 GHz and have ≥ 64 MB of memory, so speed and memory are not a 
limitation for portability. The research-class FORTRAN software has been developed and used 
on a variety of different computers and operating systems over the past nine years: IBM 
RISC/6000 under IBM’s version of UNIX, DEC-alpha under DEC’s version of UNIX, Intel-PII 
under Windows NT and Windows 2000, and AMD-AthlonTM and Intel Pentium-4TM



 
 

Table 6.  Summary of Cost-Benefit Scenarios 
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System/Component Demonstration Scenario Source of Savings
Approx. Cost 

Savings
(Per Event)

Environmental 
Cleanup

Turbine-Generator Unit outage required for 
repair/maintenance.  Outage time and 
maintenance cost assumed to be 
essentially uneffectied by choice of 
maintenance interval.  

Cost difference based on difference in 
projected make-up power costs only.

$3.8 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Centrifugal Charging 
Pump

Maintenance resulting from failure will 
result in exceeding normal 72-90 hour LCO, 
therefore requiring unit shutdown.  

Preventative maintenance based on 
machinery health monitoring may be 
accomplished during LCO window, thus 
eliminating unit outage.

$1.2 Million Potentially major X* X* X X X

Steam Generator Feed 
Pump

Thermal misalignment results in bearing 
failure, unit trip, then operation at 
approximately 70% power during repair.  
Bearing health monitoring allows repair 
during low-cost makeup power cost time, 
and avoids the unit trip.

Preventative maintenance based on 
machinery health monitoring averts unit 
trip, shortens repair $2.2 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Steam Generator Feed 
Pump

Thermal misalignment results in rotating 
assembly failure (shaft or blade), unit trip, 
then operation at approximately 70% power 
during repair.  Bearing health monitoring 
allows repair during scheduled outage, and 
avoids the unit trip.

Preventative maintenance based on 
machinery health monitoring is performed 
during scheduled outage, averts unit trip, 
shortens repair $3.1 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Steam Generator Feed 
Pump

Thermal misalignment results in complete 
pump failure, unit trip, then operation at 
approximately 70% power during repair.  
Bearing health monitoring allows repair 
during scheduled outage, and avoids the 
unit trip.

Preventative maintenance based on 
machinery health monitoring is performed 
during scheduled outage, averts unit trip, 
shortens repair $4.5 Million

PWR: Minimal 
(non-radioactive)
BWR: Potentially 
major

X X X X

Reactor Coolant Pump Failure results in unit trip, followed by 
extended unscheduled 40 day outage.

With timely indication of crack in shaft, 
maintenance for pump shaft replacement, 
could be accomplished during refeuling 
outage, thus avoiding forced outage. 

$28 Million Potentially major X** X X
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under Windows2000TM and Windows-XPTM. The software required little (and usually no) 
change to move from one computer and/or operating system to the next. Thus, we anticipate no 
problems with implementation on a portable computer. Further improvements in speed and the 
memory requirement are possible by reducing unnecessary arrays and subroutines. In addition, 
real-time data acquisition is now available commercially: sensors, data acquisition software, data 
transfer, storage, and analysis. With the previous two improvements, prospective analysis is 
likewise possible in the near-term via software improvements and upgrades to analyze (near-) 
real-time data, including a user-friendly graphical user interface for interaction with the machine 
operator. Other aspects of the technology will require much more development, as discussed 
next. 
 
 

Table 7.  Summary of Improvements for Commercialization 
 

Current state-of-the art for PSDM 
Forewarning 

 
Bridge 

 
Ideal for commercial forewarning device 

(a) analyst-intensive ≤ 3 years (a’) analyst-independent 
(b) retrospective analysis of now (b’) prospective analysis of 
(c) archival data via now (c’) (near) real-time data via 
(d) desktop computer to give now (d’) portable computer to give 
(e) binary forewarning that is ≤ 3 years (e’) the remaining time to failure that is 
(f) machine- and fault-specific, after 
which the  

> 3 years (f’) independent of specific machine or 
fault 

(g) failure occurs in an uncontrolled 
fashion 

> 3 years (g’) allowing failure avoidance or control

(h) at high cost of laboratory 
resources 

≥ 5 years (h’) at reasonable cost 

(i) depending on laboratory 
infrastructure 

> 5 years (i’) reliably/independently for years 

 
  

 
A first-generation commercial device will need one additional and vital feature: analyst-
independence. The specific tasks develop this computational infrastructure involve: (1) choosing 
suitable process-indicative data, (2) checking the data quality and providing feedback to correct 
any quality problems, (3) identifying and removing artifacts in the data, and (4) determining the 
best forewarning parameters for PSDM analysis. We anticipate the algorithmic advancements 
will include: implementation of a robust, multi-channel phase-space analysis; improved filtering 
to remove signal artifacts with wide variations in time scale; and improved measures of 
forewarning that robustly indicate the increasing severity deterioration. A three-year effort will 
be needed to accomplish these tasks. 
 
Longer-term effort is necessary for other desirable features of a commercial prognostication 
device. For example, determination of the remaining-time-to-failure requires substantial 
advancement of the data-driven, model-independent, nonlinear statistical paradigm for 
prognostication over a range of operational loads and usage scenarios, including appropriate 
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confidence intervals and/or error bounds. Development of forewarning that is independent of the 
specific machine or fault will require extensive tests to demonstrate the prognostics on many 
types of surrogate equipment and representative faults, because critical operating equipment is 
unavailable for testing. Moreover, generic forewarning requires an answer to the question, 
“What qualitative and quantitative changes in condition does phase-space dissimilarity 
measure?” The answer to this question probably will require an extensive library of test data 
across many different faults and machines, from which generic features are identified for specific 
faults and used for prognostication across a variety of machinery. Such data should also show 
forewarning consistency across multiple failures for the same fault and machine. Other desirable 
features are: global-positioning for mobile equipment; spread-spectrum wireless data 
transmission to minimize noise; and integrated computer-chip implementation with sensors and 
battery power. Finally, a commercial device must function reliably and independently in adverse 
environments for a long time at a reasonable cost. 
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2.  ADDITIONAL WORK 

 
 
Hively and Protopopescu prepared the third annual (and final) NERI2000-109 project 
presentation, including the results as of the middle of May 2003. At the request of the 
Department Of Energy (DOE) NE-20 program manager, Lisa Herrera, the principal investigator 
(Hively) traveled to Rockville, Maryland and gave the presentation. Based on the presentation 
and quarterly reports to date, our DOE Project Manager (Dr. Madeline Feltus) summarized the 
results of this NERI2000-109 work as “outrageously successful.” During the three-day review 
meeting, Hively also served as a peer reviewer for other NERI project presentations under the 
category of advanced instrumentation and controls.  
 
Hively diagnosed premature termination of long FORTRAN computational analyses as arising 
from numerous reads from very long data files. Hively constructed a test code that demonstrated 
the failure after 4.3 x 109 data points. The FORTRAN vendor (Compaq Visual FORTRAN) 
provided an alternative compilation approach (release configuration) that eliminated the problem 
and also increased the computational speed by two- to four-fold (depending on the application) 
by avoiding numerous internal diagnostic checks. The problem arose from overflow of a 32-bit 
unsigned-integer diagnostic counter in the default compilation mode (debug configuration) after 
232 (= 4.3 × 109) advances. 
 
Hively and Protopopescu are collaborating on development of analytic models that show chaos 
in individual variables (channels), but that also display very regular behavior when two (or 
more) of the channels are combined. This work demonstrates under well controlled and 
characterized conditions that very complex, chaotic processes can produce simple behavior that 
is very counter-intuitive but necessary for complex systems (such as robots or the human brain) 
to operate smoothly (e.g., continuous arm motion). This work also has been funded by the 
companion DOE/Basic Energy Sciences (BES) project under ORNL’s Center for Engineering 
Science and Research (CESAR). 
 
Vladimir Protopopescu gave a presentation, “Predictability and Control Issues in Complex 
Dynamical Systems,” to the DOE/NSF/SIAM Workshop on Predictability of Complex 
Phenomena  in  Santa  Fe  on December 17, 2002. The co-authors on the paper were J. Barhen, 
Y. Braiman, and L. M. Hively. This work was funded by a companion CESAR project. 
 
The DOE/NE-20 program office requested a full fiscal year’s summary of the FY02 work in a 
prescribed three-page format. ORNL revised our earlier submission (described in the Q1/PY3 
quarterly report) and sent it via e-mail to Marty Martinez on October 22, 2002. Martinez 
confirmed receipt of our submission in a return e-mail on October 23, 2002. A second revision 
was received from Martinez in PDF format. ORNL responded to Martinez with revisions on 
December 17, 2002. The final PY2 summary for this NERI2000-109 project was included in the 
DOE/NE-20 NERI 2002 Annual Report. 
 
Hively and Protopopescu prepared and submitted an extended abstract, “Forewarning of 
Machine Failure via Nonlinear Analysis,” to the San Diego meeting (June 1−5, 2003) of the 
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American Nuclear Society (ANS). This paper was presented by Protopopescu and summarizes 
work under this NERI project. 
 
Hively presented a paper, “Detection of Changing Dynamics in Physiological Time Series,” to 
the ANS meeting in Gatlinburg, Tennessee (April 8, 2003). This paper (and a companion 
proceeding paper with Protopopescu) describes forewarning of biomedical events: epileptic 
seizures from brain wave data, cardiac fibrillations from heart wave data, breathing difficulty 
from lung sounds, and sepsis onset in experimental rats from ECG data. This work has been 
funded by the ORNL Laboratory-Directed Research and Development (LDRD) program, a 
funds-in Cooperative Research and Development Agreement (CRADA), DOE/BES, DOE/Office 
of Emergency Management (OEM), and DOE/Office of Science (OS) under the Laboratory 
Technology Research Program. The paper also was published in the meeting proceedings. 
Hively gave another invited presentation, “Forewarning of Biomedical Events,” to medical staff 
at Cincinnati Children’s Hospital Medical Center (Cincinnati, Ohio) on December 20, 2002. 
Subsequent discussions with the physicians identified potential areas for collaboration on new 
proposals, focusing in forewarning of epileptic seizures in children via nonlinear analysis of 
scalp EEG. 
 
The ORNL nonlinear technology has substantial intellectual property protection in the form of 
six U.S. Patents and two patents pending; see App. F. Two of these six patents were obtained 
during this NERI project. Both of the patents pending (items 1 and 4 of App. F) were submitted 
to the U.S. Patent Office to protect ideas that arose from work under this NERI project. No 
licensing agreements presently exist for use of these patents. Appendix G lists the technical 
publications and oral presentations of this NERI work. Appendix H lists recent technical 
publications and conference papers for related projects in forewarning of biomedical event and 
structural failures. 
 
A graphical user interface (GUI) will facilitate practical use of this forewarning technology. 
Hively mentored an undergraduate student (Talisha Haywood) during the summer of 2003 to 
implement such a GUI. The user-friendly features include visualization of results and intuitively-
obvious use with no user training. The implementation can work on many different computer 
platforms that run various operating systems. Remote use of the GUI is possible via the Internet 
using an appropriate server. The summer work included development of the functional 
requirements, software design, implementation using MatLabTM, and testing for typical data. The 
work was funded by DOE’s Research Alliance for Minorities (RAM) program. Hively verified 
that the same MATLAB procedure files yield the same results for the same data files on his own 
WindowsXPTM PC. See App. I for further details. 
 
2.1  PERFORMANCE 
 
The objective of this project is development of failure prognostication and extensive testing to 
provide compelling evidence that the forewarning technology is accurate and robust. This report 
provides a detailed description of the prognostication methodology, which is protected by six 
U.S. Patents and two patents pending (App. F). This report also presents results of extensive 
tests, showing that the same methodology provides robust and timely failure forewarning for a 
variety of equipment. One previous NERI5 project showed failure forewarning for a single 
pump-lube system. Another previous NERI project6 provided different scaling relationships for 
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each machine failure. In contrast to these very limited demonstrations, this project provides a 
single, general, robust approach for failure prognostication for several machines and different 
kinds of failure. 
The project was completed on time and within budget. Total project spending (Fig. 37) through 
the fourth quarter of the third project year is $1,117,000 ($157K in PY1, $481K in PY2, and 
$479K in PY3). This project accomplished all of the original objectives, as follows: development 
of the prognostication capability, acquisition of the test data for a variety of equipment (by 
subcontractors at the Applied Research Laboratory of the Pennsylvania State University and at 
Duke Engineering and Services), demonstration of failure forewarning on those seeded-fault and 
accelerated-failure test sequences, cost-benefit analysis, and roadmap for commercialization of 
the technology. The work developed a novel approach to machine failure forewarning; two 
patent applications were submitted during the project to the U.S. Patent Office to protect this 
intellectual property. The project is complete, as summarized in Table 8 and as documented in 
detail by this final report. 
 
2.2 ISSUES/CONCERNS 
 
The PY2 subcontract with DE&S was set in place on 14 January 2002. Later that same week, 
DE&S informed the ORNL principal investigator (Lee Hively) of several project management 
concerns. First, DE&S had previous commitments that required their staff to work on weekends 
and evenings under this subcontract. Second, DE&S committed their data acquisition equipment 
to a different project for the first three weeks of February in California. Third, the combination 
of the previous two items required work by DE&S during the last week of February to meet the 
Task 1 delivery date. Fourth, DE&S informed the ORNL principal investigator on Monday 
February 25, 2002 that they had exceeded the Task 1 budget ($15K) by $2K. The DE&S request 
for additional funds to cover the $2K overage was declined. Both of the deliverables were 
complete by the Task 1 deadline of 1 March 2002 (two test sequences and characterization of 
those sequences). Fifth, a quality check of new DE&S data revealed that the data-sampling rate 
was too low, so no further analysis of their data was appropriate. These concerns mean that 
DE&S lost control of staff time, equipment resources, schedule, cost for the subcontract, and 
quality of the deliverables. Consequently, the principal investigator decided not to continue the 
subcontract beyond Task 1, which was ORNL’s only commitment to DE&S under PY2 
subcontract.  
 
In light of the continuing delays by DE&S during the first quarter of the second project year, 
ORNL initiated a subcontract with the Applied Research Laboratory at the Pennsylvania State 
University to acquire test sequence data. The ORNL principal investigator (Lee Hively) obtained 
the concurrence of Dr. Madeline Feltus (DOE/NE-20) on 9 January 2002, before proceeding 
with this second subcontract, which was set in place on 12 February 2002. Deliverables from 
PSU were received by ORNL in a timely fashion and were of high quality. No further 
programmatic difficulties were encountered during this project. These issues did not impact cost 
performance or project schedule. 
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Table 8. Status Summary of NERI Tasks for First, Second, and Third Project Years 
 

  Milestone/task description 
Planned  

Completion 
Date  

Actual 
Completion 

Date  

Task 1.1: ORNL set subcontract in place for DE&S 
                Subcontractor provide preliminary test data to ORNL 
                Subcontractor construct test plan for accelerated testing 
                Subcontractor provide datasets to ORNL 

     09/00 
     09/00 
     11/00 
     01/01 

10/00 
02/01 
04/01 
06/01 

Task 1.2: ORNL analyze quality of DE&S test data 
                Subcontractor replace any inadequate data  

02/01 
02/01 

06/01 
06/01 

Task 1.3: ORNL perform condition change analysis on data 08/01 08/01 
Task 1.4: ORNL construct library of condition change signatures 08/01 08/01 
Task 1.5: ORNL correlate condition change to failure 08/01 08/01 
Task 1.6: ORNL procure new computer 
                ORNL implement nonlinear analysis on new PC 

08/01 
08/01 

05/01 
06/01 

Task 2.1: Subcontractor provide test-sequence data 03/02, 06/03 06/02 

Task 2.2: ORNL evaluate prognostication of nonlinear paradigm 08/02, 09/03 09/02 

Task 2.3: ORNL improve nonlinear paradigm as appropriate 08/02, 09/03 09/02 

Task 2.4: ORNL develop algorithm for change recognition 08/02, 09/03 09/02 

Task 3.1: Collaborators assess benefits of prognostication 09/03 09/03 
Task 3.2: Collaborators map potential commercialization 09/03 09/03 
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   Fig. 1.  Typical baseline EPRI data vs time from the Allis Chalmers motor. Top three plots show 
the three-phase voltages (Vi). Middle three plots show the three-phase currents (Ii). The sinusoidal 
variation in these plots corresponds to 60 Hz. The bottom plot shows instantaneous power, P, as the sum 
of the products of the three-phase currents times the corresponding voltages. 
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   Fig. 2.  Plots of the four nonlinear dissimilarity measures dataset vs analysis of the airgap-offset 
seeded-fault  electrical  power  data, with the following parameters: d = 3, S = 56, w = 573, λ = 88, N 
= 12000, B = 5. Dataset No. 1 is for the nominal (no fault) state. Datasets No(s). 2−3 are for two different 
airgap-offset faults. Stars (*) show the dissimilarity values with the straight linear added as an aid for 
interpretation of the graphs. 
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   Fig. 3.  Phase-space dissimilarity measures for the airgap-offset seeded-fault. Columns correspond 
to individual three-phase voltages, with the same parameters as Fig. 2. Dataset No. 1 is for the nominal 
(no fault) state. Datasets No.(s) 2−3 are for two different airgap-offset faults. 
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   Fig. 4.  Phase-space dissimilarity measures for the airgap-offset seeded-fault.  Colums correspond 
to individual three-phase currents, with the same parameters as Fig. 2. Dataset No. 1 is for the nominal 
(no fault) state. Datasets No.(s) 2−3 are for two different airgap-offset faults. 



 

 

30

 
   Fig. 5.  Phase-space dissimilarity measures for the airgap-offset seeded-fault.  Columns correspond 
to each component of three-phase power, IiVi, with the same parameters as Fig. 2. Dataset No. 1 is for the 
nominal (no fault) state. Datasets No.(s) 2−3 are for two different airgap-offset faults. 
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   Fig. 6.  Results for EPRI air-gap seeded fault from vibration power -- (a) Vibration power vs time 
(ms); (b) minimum (PN), absolute average deviation (a), standard deviation (σ), and maximum (PX) in 
vibration power vs test number; (c) skewness (s) and kurtosis (k) versus test number; (d) average number 
of time steps per cycle (m) vs test number; (e) first zero in the autocorrelation (Z1) and first minimum in 
the mutual information function (M1) vs test number; (f) correlation dimension (D) vs test number; and 
(g) Kolmogorov entropy (K) vs test number.  
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   Fig. 7.  Plots of the four nonlinear dissimilarity measures for the airgap-offset seeded-fault.   The 
data are vibration power, with the following parameters: d = 3, S = 3, λ = 11, N = 12000, B = 5. Dataset 
No. 1 is for the nominal (no fault) state. Datasets No.(s) 2−3 are for two different airgap-offset faults. 
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   Fig. 8.  Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-fault.  The 
data are electrical power. The exponential rise in the severity of the seeded faults is shown as an almost 
linear rise (solid line) in the logarithm of all four dissimilarity measures (*) for the chosen set of phase-
space parameters. 
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Fig. 9.  Results for EPRI broken-rotor seeded fault from vibration power -- (a) Vibration power vs 
time (ms); (b) minimum (PN), absolute average deviation (a), standard deviation (σ), and maximum (PX) 
in vibration power vs test number; (c) skewness (s) and kurtosis (k) vs test number; (d) average number of 
time steps per cycle (m) vs test number; (e) first zero in the autocorrelation (Z1) and first minimum in the 
mutual information function (M1) vs test number; (f) correlation dimension (D) vs test number; and (g) 
Kolmogorov entropy (K) vs test number.  
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Fig. 10.  Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-fault.  The 
data  are  vibration  power  for  the  following  phase-space   parameters:  d = 3, S = 130, λ = 21,  B = 5, N 
= 12000. 



 

 

36

 
   Fig. 11.  The four nonlinear dissimilarity measures for the turn-to-turn short seeded-fault.  The 
data are electrical power data. Dataset No. 1 is for the nominal (no fault) state. Dataset No. 2 is for the 
2.7-ohm short. Dataset No. 3 is for the 1.35-ohm short. The straight line is the least-squares fit to the 
points (*) for the best set of phase-space parameters: S = 129, d = 3, λ = 1, and w = 221. 
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   Fig. 12.  Results for EPRI turn-to-turn seeded fault from vibration power -- (a) Vibration power vs 
time (ms); (b) minimum (PN), absolute average deviation (a), standard deviation (σ), and maximum (PX) 
in vibration power vs test number; (c) skewness (s) and kurtosis (k) vs test number; (d) average number of 
time steps per cycle (m) vs test number; (e) first zero in the autocorrelation (Z1) and first minimum in the 
mutual information function (M1) vs test number; (f) correlation dimension (D) vs test number; and (g) 
Kolmogorov entropy (K) vs test number. 
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   Fig. 13.  The four nonlinear dissimilarity measures for the turn-to-turn short seeded-fault.  The 
data are vibration power. Dataset No. 1 is for the nominal (no fault) state. Dataset No. 2 is for the 2.7-ohm 
short. Dataset  No. 3  is  for  the 1.35-ohm short. This result is for the best set of phase-space parameters: 
S = 2, d = 6, λ = 57, B = 5, and N = 12000. 
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   Fig. 14.  End-of-life failure in PSU Run No. 36, (pinion damage, sheared shaft, and broken teeth.) 
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   Fig. 15.  Raw data for PSU MDTB Run No. 36.  Data are from each of the three acceleration 
directions (Ai), over successively shorter time scales to show the complex, nonlinear features. 
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   Fig. 16.  Vibration power for PSU MDTB Run No. 36.  Subplots show successively shorter time 
scales with complex, nonlinear features. 
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   Fig. 17.  Traditional nonlinear measures for the MDTB Run No. 36.   Vibration power data were 
analyzed for this accelerated failure test: (top) correlation dimension, (middle) Kolmogorov entropy, and 
(bottom) first minimum in the mutual information function, M1. 
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   Fig. 18.  Phase-space dissimilarity measures vs time for the MDTB (Run No. 36).  The data are 
from vibration power: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the four 
PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive 
maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)−(f), and that 
3log10(r) is plotted in (f) for clarity. The phase-space parameters are S = 274, d = 2, and λ = 1, that are 
identical to those used for analysis of PSU MDTB data in PY2 to show consistency. 
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Fig. 19.  End-of-life failure in PSU Run No. 37 (pinion damage and broken teeth). 
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   Fig. 20.  Traditional nonlinear measures for the MDTB Run No. 37.  The data are vibration power 
for this accelerated failure test.  
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   Fig. 21.  Phase-space dissimilarity measures vs time for the MDTB (Run No. 37).  He data are from 
vibration power: (a) – (d) the four renormalized PSDM; (e) composite measure, Ci, of the four PSDM; (f) 
end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive maxima (-.-) 
in G. Note that the vertical axis is the log10 of the parameters in subplots (a)−(f), and that r/2 is plotted  in 
(f) for clarity. The phase-space parameters are S = 274, d = 2, and λ = 1, which are identical to those used 
for analysis of PSU MDTB data in PY2 to show consistency. 
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   Fig. 22.  End-of-life failure in PSU Run No. 38 (broken/rounded-off teeth on both the gear and 
pinion). 
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   Fig. 23.  Traditional nonlinear measures for the MDTB Run No. 38.  This accelerated failure test 
used vibration power data: (top) correlation dimension, (middle) Kolmogorov entropy, and (bottom) first 
minimum in the mutual information function. 
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   Fig. 24.  Phase-space dissimilarity measures vs time for the MDTB (Run No. 38). The data are from 
vibration power: (a)–(d) the four renormalized PSDM; (e) composite measure, Ci, of the four PSDM; (f) 
end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive maxima (-.-) 
in G. Note that the vertical axis is the log10 of the parameter in subplots (a)−(f), and that 0.4r is plotted  in 
(f) for clarity. The phase-space parameters are S = 274,  d = 2, and λ = 1, which are identical to those used 
for analysis of PSU MDTB data in PY2 to show consistency. 
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   Fig. 25.  End-of-life failure in PSU Run No. 39 (broken/rounded-off teeth on both the gear and 
pinion). 
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   Fig. 26.  Phase-space dissimilarity measures vs time for the MDTB (Run No. 39 at 2X load).  The 
data are from vibration power: (a)–(d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)−(f). 
The phase-space parameters are S = 274, d = 2, and λ = 1, which are identical to those used for analysis of 
PSU MDTB data in PY2 to show consistency. 
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   Fig. 27. Phase-space dissimilarity measures vs time for the MDTB (Run No. 39 at 3X load).  The 
data are from vibration power: (a)–(d) the four renormalized PSDM; (e) composite measure, Ci, of the 
four PSDM; (f) end-of-life indicator, G (solid), running maximum of G (dashed), and ratio, r, of 
successive maxima (-.-) in G. Note that the vertical axis is the log10 of the parameter in subplots (a)−(f). 
The phase-space parameters are S = 274, d = 2, and λ = 1, that are identical to those used for analysis of 
PSU MDTB data in PY2 to show consistency. 
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   Fig. 28.  Results for PSU shaft-crack seeded fault: (a) vibration power (P) vs time (ms); (b) minimum 
(PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum (PX) of P for 
each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in 
the mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation dimension 
(D); and (g) Kolmogorov entropy (K). 
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   Fig. 29.  The four PSDM vs cut depth for the shaft-crack seeded-fault.  The data are from vibration 
power. This  result  is  for  the  best  set  of  phase-space  parameters:  S = 2,  d = 4,  λ = 23, B = 10, and N 
= 100,000. 
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   Fig. 30.  Results for PSU turn-to-turn seeded generator fault: (a) vibration power (P) vs time (ms); 
(b) minimum (PN), negative of the absolute average deviation (-a), standard deviation (σ), and maximum 
(PX) of P for each test; (c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e) first 
minimum in the mutual information function (M1) and first zero in the autocorrelation (Z1); (f) correlation 
dimension (D); and (g) Kolmogorov entropy (K). 
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Fig. 31.  Predicted daily average wholesale electricity price forecast for 2002. 
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Fig. 32.  Cost of lost electricity generation vs days delay in maintenance. 
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Fig. 33.  Typical centrifugal charging pump installation. 

 
 
 
 
 
 

 
Fig. 34.  Basic design of centrifugal charging pump (actual pump: 11 stages). 

 



 

 

58

         Fig. 35.  Cross-section of cracked shaft.    Fig. 36.  Reactor coolant pump  
                       model with crack location. 
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Fig. 37.  Cost performance over project life. 
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APPENDIX A. DESCRIPTION OF TIME-SERIAL ANALYSIS METHODS 
 
A.1 ARTIFACT REMOVAL 

Data frequently include artifacts, such as sinusoidal variations in three-phase voltage and 
current. We remove essentially all of these artifacts with a novel zero-phase quadratic filter.A.1 
This filter uses a moving window of 2w + 1 points of raw data, ei, with the same number of data 
points, w, on either side of a central point.  We fit the data to a quadratic equation, F(ti) = 
a1Ti

2 + a2Ti + a3, with Ti = ti – tc, and tc as the time at the central point of the moving window.  
We obtain the best fit to the data by minimizing the function, Ψ = Σi [F(t) – ei]2. The sum is over 
the 2w + 1 points in the moving window.  The minimum in Ψ is found from the condition ∂Ψ/∂ak 
= 0, which yields three linear equations in three unknowns.  The window-averaged signal is the 
fitted value at the central point, F(tc = ti) = a3. The sums over odd powers of Ti are zero; 
symmetric sums over even powers of Ti (over i from –w to w) can be converted to sums from 1 to 
w, giving a window-averaged solution for the artifact signal, 
                                 w              w 

  F(t = tc) = [3(3w2 + 3w – 1)Σ ei+c – 15Σ i2 ei+c] / (4w2 + 4w – 3)(2w + 1).         (A.1) 
                              i=-w            i=-w 

Sums over even powers of i can be explicitly evaluated with standard formulas for Σi i2 and Σi i4  
(ref. A.2).  The effort to evaluate Eq. (A.1) can be reduced further by computing the sums 
initially with c = w + 1, and then using recursions thereafter for c > w + 1 (ref. A.1).  
Application of this filter to the N-point set of ei-data yields N – 2w points of artifact data, fi = F(tc 
= ti). The residue, xi = ei – fi, has essentially no artifact. We subsequently use only the artifact-
filtered data, xi. 
 
A.2 CONVENTIONAL STATISTICAL MEASURES 

The analysis begins a process-indicative scalar signal, x, typically with unknown dynamical 
details. The signal is sampled at equal time intervals, τ = 1/fs, starting at an initial time, t0, 
yielding a sequence of N points, xi = x(t0 + iτ).  One useful linear measures is the mean, x , or 
average over the N data points: 

       N 

                                                                              x  = Σ xi / N  .                                                      (A.2)                            
                                                                                      i=1 

The second is the sample standard deviation (σ), which follows from Eq. (A.2): 

           
( ) ( )22

1
/ 1 .

N

i
i

x x N
=

σ = − −∑
                  (A.3) 

Equation (A.3) is the second moment about the mean. The third moment about the mean is 
skewness, s: 

        
( )3 3

1
/ .

N

i
i

s x x N
=

= − σ∑
            (A.4)  

A fourth moment about the mean is kurtosis, k: 
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Real data have significant values for skewness and kurtosis, while Gaussian random data have 
values that are not significantly different from zero.A.3 A large positive (negative) skewness 
corresponds to a longer, fatter tail of the data distribution about the mean to the right (left). 
Kurtosis measures the flattening (negative k) or excess peakedness (positive k) about the mean. 

Another measure involves counting the number of times, nc, that the signal crosses the mean. 
Two sequential mean crossings delimit one-half of a wave period, implying for nc >>1 that the 
average number of time steps per wave cycle (m), or equivalently the inverse of the average 
frequency, is: 

                                            m = N/[(nc - 1)/2] = 2N/(nc –1) ≈ 2N/nc .            (A.6) 
 
These measures provide little (if any) discrimination of change; we include them only for 
comparison. 
 
A.3 TRADITIONAL NONLINEAR MEASURES 
 
Various nonlinear measures characterize process dynamics.A.4,A.5 We discuss three, against 
which we compare the dissimilarity indicators. Specifically, we use: the first minimum in the 
mutual information function to measure de-correlation time, the correlation dimension to 
measure dynamic complexity, and the Kolmogorov entropy to measure of predictability. 
 
The mutual information function (MIF) is a nonlinear version of the (linear) autocorrelation and 
cross-correlation functions and was originally developed by Shannon and WeaverA.6 with 
subsequent application to time series analysis by Fraser and Swinney.A.7 The MIF measures the 
average information (in bits) that can be inferred from one measurement about a second 
measurement and is a function of the time delay between the measurements.  Univariate MIF 
measures predictability within the same data stream at different times.  Bivariate MIF measures 
predictability of one data channel, based on measurements in a second signal at different times.  
Here, we use the first minimum in the univariate MIF, M1, giving the average time for xi to be 
independent of x 

j . System entropy, H, defines MIF, I(q, r): 
  

     ,),()()(),(),( qrHrHqHqrIrqI −+==          (A.7)  

              
∑−=

i
ii qPqPqH ,)](log[)()(

                                         (A.8) 

        
∑−=

ji
jiji rqPrqPrqH

,
.)],(log[),(),(
                                 (A.9) 

 
One signal has data, Q = {q1, q2, .  .  , qN} with occurrence probabilities P(q1), P(q2), .  .  .  , 
P(qN). A second signal has data, R = {r1, r2, .  .  .  , rN}, having a time delay relative to the qi 
values, with occurrence probabilities P(r1), P(r2), .  .  .  , P(rN). The function P(qi, rj) is the joint 
probability of both states occurring simultaneously. H and I are in units of bits if the logarithm is 
taken in base two. 
 
 
The maximum-likelihood correlation dimension, D, is:A.8,A.9 
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where M is the number of randomly sampled point pairs; δij is the maximum-norm distance 
between the (randomly chosen) i – j point pairs, as defined in Eq. (A.12) below.  The distance 
(scale length) δn is associated with noise as measured from the time serial data.  Note that the 
distances are normalized with respect to a nominal scale length δ0, which is chosen as a balance 
between sensitivity to local dynamics (typically at δ0

 ≤ 5a) and avoidance of excessive noise 
(typically at δ0

 ≥ a).  Here, the symbol a denotes the absolute average deviation as a robust 
indicator of variabilityA.9 in the data, 

             

          ∑
=

−=
N

i
i xxNa

1

)/1(  ,                  (A.11) 

where x is the mean of xi over the window of N points.  The distances δij are defined by 
 

              
,max

10 kjkimkij xx ++−≤≤
−=δ

         (A.12) 
where m is the average number of points per cycle, as determined by Eq. (A.6). 
 
Kolmogorov entropy, K, measures the rate of information loss per unit time, or (equivalently) the 
degree of predictability. Positive, finite entropy is generally considered a clear demonstration 
that the time series and its underlying dynamics are chaotic. A very large entropy indicates a 
stochastic (nondeterministic) and therefore totally unpredictable phenomenon. K-entropy is the 
average time for two points on an attractor to go from an initial separation δ ≤ δ0 to a separation 
of more than that distance (δ  > δ 

0). We use the maximum-likelihood K-entropy of Schouten et 
al.A.10 

 

          ,)/11log( bfK s −−=            (A.13) 
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          (A.14) 
 
with bi as the number of time steps for two points, initially within δ ≤ δ0,  to diverge to δ > δ 

0. 
 
Several problems arise in the use of these measures for condition change.  The most serious is 
that these nonlinear measures are expressed as a sum or integral over (a region of) the PS, thus 
averaging out all dynamical details into a single number. Two (very) different dynamical 
regimes may lead to very close, or even equal measures. The situation is even murkier for noisy 
dynamics, in which case reliable determination of the nonlinear measures is very difficult.  The 
second problem originates from the usual definitions of K-entropy and correlation dimension in 
the limit of zero scale length. However, all real data have noise, and even noiseless model data is 
limited by the finite precision of computer arithmetic.  Thus, we choose a finite scale length that 
is larger than the noise (δ0 = 2a), at which to report the values of K and D. These finite-scale 
values of K and D are smaller than expected for the zero-scale-length limit (δ0 → 0) and cannot 
capture dynamical complexity at length scales smaller than δ0.  A third difficulty is presented by 
the definition of some nonlinear measures as functionals of the distribution functions, because 
they do not satisfy the mathematical definition of distance. Specifically, symmetry and the 
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triangle inequality may be violated.A.11 Such measures cannot define a metric in the 
mathematical sense, although they may indicate change that must be made precise for each 
situation. These traditional nonlinear measures characterize global features of the dynamics, and 
can clearly distinguish between regular and chaotic dynamics. However, they do not reveal slight 
dissimilarities between dynamical states. The same is true for other global indicators, such as 
fractal dimension, and Lyapunov exponents. This lack of discrimination occurs because such 
traditional measures average (or integrate) the dynamical features over the attractor, thus 
providing only a global picture of long-term dynamical behavior. The phase-space dissimilarity 
measures (discussed below) avoid these problems, and thus provide sensitive discrimination of 
condition change for forewarning of machine failure. 
 
A.4 PHASE-SPACE DISSIMILARITY MEASURES 
 
We begin this analysis by conversion of the continuously variable artifact-filtered signal, xi, into 
discrete signal values (symbolization), si, which is one of S different integers: 
 

    .1)]/()([0 minmaxmin −≤−−=≤ SxxxxSINTs ii        (A.15) 
 
The function (INT) converts a decimal number to the closest lower integer, and xmin and xmax 
denote the minimum and maximum values of xi, respectively, over the base case (reference data).  
We require that si(xi = xmax) = S – 1 in order to maintain exactly S distinct symbols.  Thus, Eq. 
(A.15) creates symbols that are uniformly distributed between the minimum and maximum in 
signal amplitude (uniform symbols). 
 
An alternative is equiprobable symbols.  These symbols are formed by ordering the base case 
time-serial data from the smallest to largest value.  The first N/S of these ordered data values 
correspond to the first symbol (0).  Ordered data values (N/S) + 1 through 2N/S correspond to the 
second symbol (1), and so on up to the last symbol, S-1.  Consequently, equiprobable symbols 
have non-uniform partitions in the signal amplitude so that each symbol has the same occurrence 
frequency (N/S) of xi values.  Much structure is inherent in uniform symbols before beginning 
the PS reconstruction, but no PS structure arises from equiprobable symbols.  Thus, a key 
advantage of equiprobable symbols is that dynamical structure arises only from the phase-space 
reconstruction, as described below. Large negative and large positive values of xi have little 
effect on equiprobable symbolization, but dramatically change the partitions for uniform 
symbols. Moreover, information theoretic measures (e.g., mutual information function) are a 
smooth function of the reconstruction parameters for equiprobable symbols, but are noisy 
functions for uniform symbols. We find that equiprobable symbols discriminate condition 
change better than uniform symbols. 
 
PS reconstructionA.12 converts time-serial si-data into a geometric form via the use of time-delay 
vectors to unfold the underlying dynamics. The single-channel reconstruction form is: 
 

                                             y(i) = [si, si+λ , . . . , si+(d–1)λ].                     (A.16) 
 

Local (single-channel) processes exchange dynamical information with one another. For 
example, the components of three-phase voltages and currents are dynamically related by 
electrical interactions. Likewise, the components of three-dimensional acceleration depend 



 

 

63

nonlinearly on one another through mechanical interactions. This nonlinear inter-relation implies 
that multi-channel PS reconstruction can extract additional information.A.13 The multi-channel 
PS vector has the form: 
 
                  y(i) = [s(1)i, s(1)i+λ , … , s(1)i+(d–1)λ, …, s(C)i, s(C)i+λ , … , s(C)i+(d–1)λ].               (A.17) 
 
Here, s(1) denotes symbols from the first data channel, and s(C) denotes symbols from the Cth 
channel. The PS reconstruction unfolds the underlying dynamics to extract event forewarning on 
the basis of the time delay, λ, dimensionality, d, and signal precision, S. If the dimension, d, is 
too large, then over-fitting can result. Moreover, different process observables contain unequal 
amounts of dynamical information. A.14 Thus, PS reconstruction may be easier from one variable, 
but more difficult or even impossible from another. Our analysis seeks to balance these caveats 
for finite-length noisy data.    
 
Symbolization discretizes the PS into Sd bins. We then count the number of PS points occurring 
in each bin to obtain the distribution function (DF) as a discretized density on the attractor.  We 
denote the population of the ith bin of the distribution function, Qi, for the base case (nominal 
operational state), and Ri for a test case (subsequent operational state), respectively. The 
parameters (w, S, N, d, λ) depend on the specific data. Preliminary analysis systematically varies 
each parameter with the others fixed, to obtain optimum sensitivity of the measures to process 
changes for each test sequence. We subsequently search in the vicinity of this optimally-sensitive 
location for improved discrimination of change.  
  
Quantification of condition change requires comparison of the test case to the base case. In 
particular, we measure the dissimilarity between Qi with Ri by the χ2 statistic and L1 distance: 
 

        
( ) ( )∑ +−=
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iiii RQRQ ,/22χ

          (A.18) 

          
∑ −=

i
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          (A.19) 
where the summations in both equations run over all of the populated PS cells. The choice of 
these measures is based on the following considerations. The χ2 statistic is one of the most 
powerful, robust, and widely used tests to measure discrepancies between two distribution 
functions. The χ2 statistic is obviously symmetric, but does not always satisfy the triangle 
inequality. Thus, it does not define a distance in the mathematical sense. The L1 distance is the 
natural metric for distribution functions by its direct relation to the total invariant measure on the 
attractor and does define a mathematical distance. These complementary measures account for 
changes in the geometry and visitation frequency of the attractor. Consistent calculation of χ2 
and L requires that the base case and test case contain the same number of points, identically 
sampled; otherwise the distribution functions have to be properly rescaled.   
 
We can capture process flowA.15 by adjoining two successive d-dimensional PS vectors, as 
prescribed by the dynamics, y(i) → y(i + 1). The result is a connected-phase-space (CPS) vector: 
 

                                                   Y(i) = [y(i), y(i + 1)]                  (A.20) 
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Symbolization of the xi-data discretizes this 2D CPS into S2d bins. As before, we count the 
number of CPS points occurring in each bin to obtain Q and R, which are the CPS DFs for the 
base case and test case, respectively. The dissimilarity measures are the L1-distance and χ2 

statistic:  

                
( ) ( )22 /c ij ij ij ij

ij
x Q R Q R= − +∑

               (A.21) 

          
| | .c ij ij

ij
L Q R= −∑

          (A.22) 
The subscript c indicates the connected distribution function measure. The CPS measures have 
higher discriminating power than their non-connected counterparts, because they satisfy the 
following four inequalities: χ2 ≤ L, χc

2 ≤ Lc,  L ≤ Lc , and χ2 ≤ χc
2. Alternative forms are: χ2 ≤ L ≤ 

Lc and χ2 ≤ χc
2 ≤ Lc. 

 
Unbiased determination of the χ2 statistic requires statistical independence between various 
samples.  However, the (C)PS points depend on one another due to reconstruction from time 
delay vectors with dynamical structure.A.16 The resulting statistical bias is avoidable by 
averaging contributions to Eqs. (A.18)−(A.22) over values of y(j) or Y(j) which satisfy |i – j| < Λ 
(ref. A.16), where Λ is some largest typical correlation time lag.  We tested the bias in typical 
data by sampling every Λ-th connected phase space point for 4 ≤ Λ ≤ 23, resulting in Λ different 
samples for the base case (Qi) and for each cutset (Ri).  We then averaged the sampled χ2 values 
over the Λ2 different combinations of distribution functions for the base case and test case 
cutsets. As expected, a decrease proportional to 1/Λ occurs in the sampled χ2 values, because the 
number of data points contributing to χ2 decreases in the same proportion. The trend over time in 
sampled χ2 values is the same as in χ2 values without sampling, showing that no bias is present. 
Thus, we use unsampled χ2 values for the remainder of this work as a relative measure, rather 
than as an unbiased statistic for accepting or rejecting a null statistical hypothesis.A.17 

 
Use of the dissimilarity measures on finite length, noisy data requires a consistent statistical 
implementation and interpretation.  We use the first B non-overlapping cutsets as base cases.  
The choice of this number of basecase datasets should strike a judicious balance between a 
reasonably short base case period to capture quasi-stationary, “normal” dynamics and a 
sufficiently long period for statistical significance. We typically use B = 5 for the noiseless, 
model generated data for fixed dynamical conditions, where the variability arises only from the 
location in and the discrete sampling of the PS.  On the other hand, we use B = 10 for noisy 
machine data to provide a larger statistical sample.    
 
The disparate range and variability of various nonlinear measures are difficult to interpret 
(especially for noisy data), so we need a consistent means of comparison.  Thus, we renormalize 
the nonlinear measures.A.17,A18  For each nonlinear measure, V = {D, K, M1, L, Lc, χ2, and χc

2}, 
we define Vi as the value of the nonlinear measure for the ith cutset. V is the mean value of the 
nonlinear measure over the base cases, with a corresponding sample standard deviation σ.  The 
renormalized form is then U(V) = |Vi – V|/σ, which measures the number of standard deviations 
that the test case deviates from the base case mean.  Several successive occurrences, NOCC, above 
a threshold, Uth, provide a clear indication of condition change. Alternatively, a systematic rise 
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in the phase-space dissimilarity measures will indicate a clear departure from the base case 
dynamics, and provides forewarning of failure. 
 
The methodology and corresponding results have been published in recent peer-reviewed journal 
papers.A.17,A18,A19,A20,A21,A.22 The strength of the approach is accurate and robust event 
forewarning from complex, nonlinear time-serial data. A weakness of the method is the need for 
much, high-quality, process-indicative data for the analysis. 
 
The nonlinear analysis in this Appendix is implemented as research-class FORTRAN-77. This 
software was developed and used on a variety of different computers and operating systems 
since 1994: IBM RISC/6000 under IBM’s version of UNIX, DEC-alpha under DEC’s version of 
UNIX, Intel-PII under Windows NT and Windows 2000, and AMD-AthlonTM and Intel Pentium-
4TM under Windows2000TM and Windows-XPTM. The software required little or no change to 
move from one computer and/or operating system to the next. The program executable size is 
typically 5–55 MB. The dataset sizes have a typical range of 100 MB to 1.5 GB, necessitating a 
correspondingly large, fast harddrive for data storage. No user guide or manual exists for this 
software, due to its ongoing evolution for research-class analysis. 
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APPENDIX B.  STATEMENT OF WORK FOR SUBCONTRACT WITH PSU/ARL 
 
The U.S Department of Energy has funded an ORNL project, “Forewarning of Failure in Critical 
Equipment at Next-Generation Nuclear Power Plants.” The goal is forewarning of failure via 
ORNL’s nonlinear technology, using experimental data from typical equipment. We seek 
forewarning for different kinds of equipment, as well as consistency for the same fault(s) in the 
same equipment. The Applied Research Laboratory (ARL) is a center of excellence at the 
Pennsylvania State University. ARL provided ORNL with machinery failure data in support of 
this NERI2000-109 project during FY02. This statement of work describes three follow-on tasks 
under this same NERI project for FY03. The total cost of these three tasks will be no more than 
$100K. 
 
Task No. 1 involves documentation of the test plans that will become appendices in the FY03 
annual NERI report. The test plan(s) will specify the equipment to be tested (as in Sect. A.5 of 
App. A of the PY1 annual report), the test protocol for each failure mode (as in Sect. A.6.5 of 
App. A), and the data acquisition (as in Sect. A.7 of App. A). The deliverables are the test plans 
for each test sequence, which will be sent to ORNL before the start of testing. Table B1 
summarizes the test apparatus, test parameters, and a general description of the test procedure for 
each experiment. 
 
Task No. 2 will proceed immediately after completion of the applicable test plan from Task 1. 
This task involves ARL setting up and conducting a series of tests on mechanical and electrical 
equipment, as shown in Table B2, according to the test plan(s) from Task 1. The time-serial data 
for each test will be appropriate for the equipment and failure type (e.g., three-phase motor 
currents and voltages; tri-axial acceleration; torque and angular location; pressure and flow rate, 
etc.). The data for each snapshot in the test sequence should be sampled at no less than 50 kHz 
for 10 s (for a total of 500,000 data points). The goal of this task is acquisition of test sequences 
(TS), which refer to a unique combination of equipment and failure mode. Each TS will show 
the equipment initially in nominal operation, then with a small fault, and subsequently with 
successively larger faults until the equipment fails per test plan. The deliverables are the multi-
channel digital datasets from each test sequence, provided on CD-ROM or DVD diskette, as 
appropriate. Table B2 shows an approximate schedule for completion of Task 2 testing. 
 
Task No. 3 will proceed during and after completion of Task 2. This task involves assessment of 
the ORNL forewarning technology, in terms of safety and cost impact for next generation 
nuclear power plants. The assessment metrics include forewarning time, decrease in unexpected 
failures, increased safety margins, and lower costs for operations and maintenance. ARL will 
draw on internal resources, knowledge of the nuclear power industry, results from past cost-
benefit analyses for other condition monitoring applications, and existing reports by other 
organizations such as EPRI. The deliverable for this task will be documentation of the 
assessment methodology and results, in a form that is suitable for inclusion as an appendix in the 
FY03 NERI annual report. The delivery date is close-of-business Thursday July 31, 2003. 
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Table B. 1.  Summary of Test Sequences 
 

Fault Experiment Parameters Procedure 
 
Gear 

 
Gear ratio, torque, speed 

 
Run gearbox at constant speed with nominal load for 
break-in period, then increase load to 2X or 3X 
gearbox rating until gear failure 
 

Cracked shaft Crack depth Collect baseline data (speed, 3-axis vibration, motor 
V&A) with undamaged shaft.  Initiate shaft crack 
using EDM cut.  Collect data.  Grow crack using 
lateral bending fatigue apparatus. Repeat data 
collection.  Goal is to collect 10−20 iterations of 
crack growth per experiment. 
 

Generator – Field 
(rotor) 
deterioration 

Load, location of winding 
deterioration, leakage 
current 

Collect baseline data at each load condition (load 
conditions are dependent on available load resistors – 
TBD). Collect data for a series of increasing leakage 
currents.  Data collection will include 3-axis 
vibration, line voltages and currents, exciter field 
current, and generator field current. 
 

Generator – Stator 
deterioration 

Load, location of winding 
deterioration, leakage 
current 

Collect baseline data at each load condition (load 
conditions are dependent on available load resistors – 
TBD). Collect data for a series of increasing leakage 
currents.  Data collection will include 3-axis 
vibration, line voltages and currents, exciter field 
current, and generator field current. 
 

Generator – Diode 
deterioration 
 
 
 
 

Load, polarity of diode, 
leakage current 
 
 
 
 
 

Collect baseline data at each load condition (load 
conditions are dependent on available load resistors – 
TBD). Collect data for a series of increasing leakage 
currents.  Data collection will include 3-axis 
vibration, line voltages and currents, exciter field 
current, and generator field current. 
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Table B.2.  Anticipated Test Schedule 
 

Test Duration Target Test Dates 
MDTB  3 weeks ea.  

gearbox 1  January 2003 
gearbox 2  March 2003 

Shaft Crack 1 month ea.  
Shaft 1  November 2002 
Shaft 2  December 2002 

Electrical Gen. 2 weeks ea.  
Rotor fault  February 2003 

 Stator fault   April 2003 
 Diode fault   May 2003 
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APPENDIX C.  TEST PLAN FOR MECHANICAL DIAGNOSTICS TEST BED IN 
SUPPORT OF NERI2000-109 
 
This document is the test plan for the Mechanical Diagnostics Test Bed (MDTB) at the Applied 
Research Laboratory (ARL) of the Pennsylvania State University (PSU). This plan describes the 
MDTB, the equipment to be tested, instrumentation and data acquisition equipment, and the test 
sequence protocol. This work is funded by Oak Ridge National Laboratory (ORNL) under the 
U.S. Department of Energy’s NERI2000-109 (Nuclear Energy Research Initiative) project.  
  
C.1  TEST BED 
 
Figure C.1 shows the MDTB, which is an ARL facility for the study of fault evolution in 
gearboxes. The alternating-current (AC) driver motor is rated at 30 HP and runs at a constant 
speed. The AC (absorption) motor is rated at 75 HP and applies a mechanical load (torque) to the 
gearbox. The maximum speed and torque are 3500 RPM and 225 ft/lbs, respectively. Speed is 
controlled by variation of the frequency to the driver motor with a digital vector unit. Torque is 
controlled by a similar vector unit to the absorption motor. The vector drives also provide output 
signals,  which  are  sampled  and  stored.  The  set points for speed and torque are determined by  

 

 
Fig. C.1.  Mechanical diagnostics test bed. 

 
analog signals (0-10 VDC) from the data acquisition computer.  The MDTB is capable of 
parallel or right angle gear motor mounts. 
   
The MDTB has the capability of testing single- and double-reduction industrial gearboxes with 
gear ratios between 1.2:1 to 6:1, and with power in the range of 5 to 20 HP. Duty cycle profiles 
can be prescribed for variable speed and load. Test speeds to date have been fixed at 1750 RPM 
with variable load profiles that increase to maximum values of 2 to 5 times the rated torque of 
the test gearbox. The motors and gearbox are hard-mounted to minimize vibration, and are 
precision aligned via laser technology. The shafts can be connected with either flexible or rigid 
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couplers. Torque limiting clutches are used on both sides of the gearbox to avoid excessive 
torque from gear jamming or bearing seizure. Torque cells on both sides of the gearbox monitor 
the overall and variable loads. Output data include: input power to the motors, root-mean-square 
(RMS) currents, winding temperatures, motor speed, and generator torque. These signals allow 
automation and shutdown of motors directly through the controller PC. 
 
C.2  EQUIPMENT TO BE TESTED 
 
These tests also will use the MDTB to collect run-to-failure data on single-reduction gearboxes 
during the fault evolution cycle.  Table C.1 shows the characteristics of the gearbox that will be 
used for the two tests. Tables C.2 and C.3 show the gear mesh and bearing frequencies. 

 
Table C.1.  Gearbox Specifications 

 
Brand Dodge (R86001)  
 
Model Number 

 
APG Size 3 

Description Single Reduction Helical 
Ratio 1.5 
Rated Input Speed 1750 RPM 
Rated Output Torque 530 in./lbs 
Potential Failure Gear tooth breakage 

 
 

Table C.2.  Dodge Gearbox Bearing Input and Output Frequencies (1.5 Gearbox Ratio) 

 
Description 

Ball Bearing 
(Input - outer) 

Ball Bearing 
(Input - inner) 

Tapered Roller Bearing 
(Output - inner) 

Taper Roller Bearing 
(Output - outer) 

 
Part Number 

 
6307 

 
6309 

 
15520/15578 

 
2520/2581 

Inner Race Freq 29 Hz 29 Hz 19 Hz 19 Hz 
BPFO  86 Hz 89 Hz 178 Hz 176 Hz 
BPFI  147 Hz 145 Hz 133 Hz 135 Hz 
FTF  11 Hz 11 Hz 11 Hz 11 Hz 
BSF 52 Hz 57 Hz 54 Hz 61 Hz 

 

Table C.3.  Dodge Gearbox Gear Mesh 
Frequency (at 1750 RPM) 

 
Gearbox Size 3 – Ratio 1.5 875.5 Hz 
Gearbox Size 3 – Ratio 3.3 613.0 Hz 

 
 
C.3  INSTRUMENTATION AND DATA ACQUISITION EQUIPMENT 
 
Data is collected via a National Instruments (NI) PXI measurement system. Figure C.2 shows a 
typical system, including backplane, processor, control module, and data acquisition modules. 
These tests will use NI4472 dynamic signal acquisition and analysis modules (Fig. C.3). Each 
module has eight analog inputs with simultaneously-sampled, 24-bit, sigma-delta analog-to-
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digital (A/D) converters. Table C.4 gives module operating characteristics, including the digital 
anti-aliasing filters. The maximum sampling rate is 102.4 kHz per channel. We will sample at 
51.2 kHz for an alias-free bandwidth up to 23.2 kHz. The accelerometer resonance is >70 kHz, 
which will not interfere with the measurement bandwidth. 
 
The following data will be collected: (a) 3-axis acceleration, via 3 single-axis accelerometers on 
a gearbox mounting block; (b) input and output torque; and (c) input and output tachometer 
signal. Data will be sampled across all channels, and saved to a computer hard drive. Table C.5 
gives the specifications for the single-axial accelerometer. Additional sensor measurements may 
be added on open data acquisition channels for consistency with earlier gearbox tests. The full 
sensor list will be provided in the post-run test description along with a drawing showing sensor 
placement. 
 

Fig. C.2.  NI PXI measurement system.           Fig. C.3. NI dynamic DAC  
                                                                                                        module. 
 

 
Table C.4.  DAQ Module Specifications 

 
Channels per module 8 
A/D resolution 24 bits 
Dynamic range 120 dB 
Measurement bandwidth DC-45 kHz 
Coupling AC/DC 
Alias-free bandwidth: pass-band DC to 0.4535 fs 
Stop Band   0.5465 fs 
Alias rejection 110 dB 
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Table C.5.  Accelerometer Specifications 

 
Sensor Name ICP Accelerometer 
Sensor Make PCB Piezotronics, Inc 
Sensor Model # 353B16 
Sensor Serial # TBD 
Sensor Type Quartz Shear Piezoelectric 
Sensor Volt Sensitivity 10 mV/g 
Measurement Range  ±500 g pk (± m/s2 pk) 
Frequency Range (±5%)  1 to 10 000 Hz 
Mounted Resonant Frequency  > or = 70 kHz 
Broadband Resolution 0.005 g rms (0,05 m/s2 pk) 
Conditioner Make PCB Piezotronics, Inc. 
Conditioner Model # 481A02 
Conditioner Gain 1 

 
 
C.4  DATA FORMAT 
 
Data will be in MatLabTM binary format. MatlabTM m-files also will be provided to read the 
information from the files. Data will be delivered to ORNL on either CDR or DVDR media. We 
expect that the total size  (T) for a one, 10-s snapshot containing 11 sensor channels is estimated 
as follows:  T = (10 s) × (51.2 k samples/s) × (4 bytes/sample/channel) × (11 channels) = 22.5 
MB.  Alternatively, storage of each channel as a separate file will yield a 2 MB file per channel 
per snapshot. 
 
C.5  TEST PROTOCOL 
 
The test procedure is summarized below: 

1. Disassemble gearbox and drain out the lubrication oil; 
2. Index the gear if possible; 
3. Place identification labels on each gear tooth; 
4. Assemble the gearbox and refill with manufacturer-specified gear oil; 
5. Mount the gearbox to the test stand and perform a laser alignment; 
6. Attach all sensors to the gearbox and set up data acquisition system; 
7. Calibrate all sensors and save results with time stamps;  
8. Run the test matrix until failure; 
9. Perform a post-test laser alignment before gearbox removal; 
10. Disassemble and inspect the gearbox for characterization of the failure. 

 
Table C.6 shows the test matrix, including the intended test conditions. Data will be collected 
until failure of the gearbox or until the damage to the gearbox threatens to induce damage in 
other system components.  
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Table C.6:  Test Matrix 

Test Condition Speed 
(RPM) 

Torque Duration Snapshot Rate 

1 1750 100% of rated 
(530 in./lbs) 

1 h 1 snapshot/min  

2a 
(Run No.36) 1750 200% of rated 

(1060 in./lbs) Until failure 1 snapshot/15 min  

2b 
(Runs No.37−38) 1750 300% of rated 

(1590 in./lbs) Until failure 1 snapshot/min 
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Appendix D. TEST PLAN FOR SHAFT-CRACK EXPERIMENT 
 
 
 
 
 

 
Title: Seeded Crack Fault Test of Laboratory Bladed Disk Assembly 

 
Personnel: Brian Resor, Martin Trethewey, Ken Maynard 

 
 

Test Description 
 
One failure mode in a turbo-machine begins with a crack at the base of a rotating blade, eventually 
causing blade loss. This Appendix describes an experiment to simulate such a failure. PSU conducted the 
experiment on the Torsional Vibration Test Rig during 2003.  Figure D.1 shows the test rig. The objective 
was detection of dynamical changes with increasing crack size, thus simulating the change in dynamical 
frequencies due to crack initiation and growth. 

 
 

 
Figure D.1.  Motor testing equipment setup 

Motor current and voltage 
transducers 

Angstrom resolver and 
fiber optic probes 

Dynamic Signal Analyzer

Accelerometers 

Vice 

Torsional test rotor 
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Figure D.2 shows the rotor assembly, which 
has eight equally spaced threaded rods that 
simulate the blades. The rotor is driven at a 
fixed rotational speed by a fractional 
horsepower DC motor that was made by 
Bodine Electric Company; this particular 
motor is no longer manufactured. Typical 
values for the motor power supply are 4 
Volts and 2 Amps, depending on the rotor 
load. The DC power supply is by Sorenson 
Power Supplies, a Raytheon Company (part 
number DCR150-12B). 
 
Earlier PSU work simulated the crack 
growth by changing the lock-nut locations 
along the threaded rods. The present 
experiment is an extension of earlier PSU 
work, involving a sequence of tests with a 
progressively deeper machined “crack” to 
change the rod frequencies, instead of 
moving the lock nuts. Figure D.3 shows a typical “crack” at the base of one of the eight blades of the 
rotor. Wire electric discharge machining (EDM) cutting is used to produce the smallest possible cut to 
simulate a crack.  The wire diameter for these cuts is 0.010 inches and the over burn is approximately 
0.001 inches.  This adds up to a total cut width of 0.012 inches.  The cut depth can be controlled to within 
about 0.0005 inches. We anticipate ten datasets, beginning with the nominal (no cut) state and ending 
with a crack depth of 70% of the blade diameter. The cut location is as close to the blade root as was 
practical.  A fixture was created for Wire EDM machine, in which the whole bladed assembly (excluding 
shaft) is mounted. Computerized tooling controls the cut location and depth for each cut.  The depth of 
the first cut was measured from the point that the 0.010 inch wire came in contact with thread surfaces at 
the deepest point of the thread. 
 
 

 
Figure D.3. Picture of blade cut 

 
 
 
Test Protocol 
 

Figure D.2. Simulated bladed disk assembly 

Wire EDM cut 
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The test protocol is as follows: 
      1. Acquire test data (items 3-5, below) for the no-cut (nominal) state of the rotor assembly. 

2. Place an initial 0.010-inch cut in one rod and measure its depth. 
3. Measure the bending natural frequency of the seeded fault rod.  
4. Place the rotor assembly in the torsional vibration test stand. 
5. Run the test stand at fixed RPM and acquire the time-serial data from the system sensors. 
6. Remove the rotor assembly and increment the slot depth another 0.010 inch by EDM. 
7. Repeat steps 2 and 6 until a “failed” state is achieved (after nine successive EDM cuts). 

The vice in Fig. D.1 is used to hold the rotor assembly, while the “blade” static frequency is measured by 
placing the tip of the fiber optic probes very close to the end of the blade and plucking the blade. The 
probes measure the blade position versus time, which is analyzed in the DSA to determine the blade 
frequencies. Nominal disassembly-reassembly repeatability is about ± 0.3 Hz. Due the presence of 
occasional outliers, multiple disassembly-reassembly test runs will be performed. The data will be 
analyzed and the reassembly tests ceased only when it is concluded that a representative set of data has 
been acquired. 
 
Deliverables for this experiment include:  

1. Data for each of the seven tests of the rotor (one nominal state, plus six cuts). 
2. Experimental characterization of each test state. 

 
Data Acquisition 
 
Test data at each depth of cut include tri-axial acceleration in three orthogonal directions on one bearing 
pillow block. Torsional vibration data also will be acquired at 1.675 MHz via a fiber optic sensor and a 
180-tooth encoder wheel. Figure D.1 shows the data sensors. The data acquisition system uses a Hewlett 
Packard VXI Mainframe with an E1433A 8-channel data acquisition board with tachometer inputs.  Data 
is sent from the VXI Mainframe to a desktop PC using the HP E8491A firewire card. The desktop PC 
uses a software package called HP DAQ Express to manage the data acquisition.  Using this software 
along with the E1433 card, data are acquired at 196 kHz sample rate for a duration of 5.10204 seconds, 
yielding one million data points per snapshot. 
 
Test Data 
 
PSU will provide test data in MatLabTM-formatted MAT-files for each wire EDM cut of the blade. Each 
data record will include: (channel 1) time stamp from the start of the snapshot (seconds), (channels 2-4) 
tri-axial acceleration (g), and (channel 5) rotational position (degrees). If other measurement units are 
used, conversion factors will be supplied, along with the appropriate offset and scaling factors. Data will 
be sent to ORNL on CD-ROM or DVD media, via Federal ExpressTM or equivalent one-day-delivery 
service. 
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APPENDIX E.  TEST PLAN FOR GENERATOR SEEDED FAULTS 
 
This appendix describes three types of seeded electrical faults in a 3-phase electrical generator, 
which is driven by an electric motor.  The generator is a Kato Engineering, Model A267890000, 
(5 kW, 3-phase, 60 Hz, synchronous alternating current).  The drive motor is a Kato 
Engineering, Model D267880000 (7.5 HP, synchronous, brushless, direct current). The three 
faults conditions are: (1) rotor turn-to-turn short circuit, (2) rectifier diode fault, and (3) stator 
turn-to-turn short circuit. The test procedure for each fault type is described in the subsequent 
paragraphs.  
 
Data are collected for each type of fault at different severity levels and under different load 
conditions. All loads are purely resistive, corresponding to different output powers between zero 
to 3,600 watts in increments of 1,200 watts. Data are collected using the National Instruments 
PXI  data acquisition system, which also is used to collect data from the MDTB experiment 
(App. B).  Table E.1 lists the data for each test condition. Table E.2 shows the sensor details for 
current, voltage, and acceleration. 
 
 

Table E.1.  Data Channels For Generator Fault Tests 

File 
ext. 

Sample 
Rate 

Data Type Description 

IA 52 kHz Current Phase A line current 
IB 52 kHz Current Phase B line current 
IC 52 kHz Current Phase C line current 
VAB 52 kHz Voltage Phase AB line voltage 
VBC 52 kHz Voltage Phase BC line voltage 
VCA 52 kHz Voltage Phase CA line voltage 
A01 52 kHz Acceleration x-axis acceleration 
A02 52 kHz Acceleration y-axis acceleration 
A03 52 kHz Acceleration z-axis acceleration 
VAN 52 kHz Voltage Phase A line-to-neutral voltage 
VBN 52 kHz Voltage Phase B line-to-neutral voltage 
VCN 52 kHz Voltage Phase C line-to-neutral voltage 
IEXC 52 kHz Current Exciter current 
VNG 52 kHz Voltage Neutral-to-ground voltage 

 
 

Table E.2.  Generator Seeded-Fault Sensors 

Data Type Transducer 
Current AYA model CT8-50-1 Current Transformer with 1/2 ohm, 1 watt, 1% sense resistor 
Voltage LEM CV3-500 voltage transducer, 50:1 voltage reduction with +/- 15 V supply 
Acceleration PCB Piezotronics, Inc Model 353B16 ICP 3-axis Accelerometer 

 
 
Data file names correspond to the snapshot number, followed by the file extension for the 
corresponding fault. For example, 0.A01 corresponds to the zeroeth (0) snapshot (baseline data) 
for acceleration data (A) in the first (01) direction; 1.A01 is for the first fault snapshot for 
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acceleration (A) in the first (01) direction, etc. Testing begins with the acquisition of baseline (no 
fault) conditions for each load level, as shown in Table E.3. 
 
The rotor fault test uses one large connector wire (8 or 10 gauge) from Terminal 1 to Terminals 
2−6 on the generator, corresponding to shorting out a specified number of turns on pole number 
three of the generator, as shown in Table E.4. Use of Terminals 7–9 is unnecessary, because the 
readings are too low, too high, or non-existent in these cases. Rotor test conditions are listed in 
Table E.4. 
 

Table E.3.  Snapshot Numbers For  
No Fault Baseline Tests 

 
Load (W) Snapshot 

0 0,1 
1200 2,3 
2400 4,5 
3600 6,7 

0 8,9 
 

 
Table E.4.  Snapshot Numbers For Rotor Fault Tests 

Rotor Fault Condition Load 
(W) T1-2 

5 Turns 
T1-3 
10 Turns 

T1-4 
25 Turns 

T1-5 
50 Turns 

T1-6 
100 Turns 

0 10,11 20,21 30,31 40,41 50,51 
1200 12,13 22,23 32,33 42,43 52,53 
2400 14,15 24,25 34,35 44,45 54,55 
3600 16,17 26,27 36,37 46,47 56,57 
0 18,19 28,29 38,39 48,49 58,59 

 
Three types of diode faults were simulated.  The first fault uses one 3-ohm 100-watt resistor to 
create a short circuit across the positive diode.  The load is attached to generator set. The leakage 
current is about 1 ampere. The second diode fault disconnects the diode creating an open circuit.  
The third fault uses a variable resistor in series with the diode to create different levels of 
leakage current.  Table E.5 shows the corresponding test matrix. 
 

Table E.5.  Snapshot Numbers For Diode Fault Tests 

Load Diode Fault 
 S.C. O.C R=1 Ω R=2 Ω R=3 Ω R=4 Ω R=5 Ω R=6 Ω 
No load 60,61 70,71 80,81 90,91 100,101 110,111 120,121 130,131 
1200 W 62,63 72,73 82,83 92,93 102,103 112,113 122,123 132,133 
2400 W 64,65 74,75 84,85 94,95 104,105 114,115 124,125 134,135 
3600 W 66,67 76,77 86,87 96,97 106,107 116,117 126,127 136,137 
No load 68,69 78,79 88,89 98,99 108,109 118,119 128,129 138,139 
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The stator fault uses two 16-ohm, 6-A, 576-W slide resistors to short several windings in one 
stator leg. This shunt resistance is gradually lowered to simulate a short circuit in the stator leg. 
The test protocol is as follows: (a) reconnect the 50-ohm shunt resistor; (b) connect the load to 
the generator set; (c) connect resistors in series to terminals T-31 to T-35 on terminal block for 
line 3. The leakage current should not exceed 12 A. Table E.6 shows the corresponding test 
matrix.  
 
The stator fault test data files also are listed in Table E.6.  During the stator fault test, we 
monitored the resistor value during the test and noticed thermal drift in the resistance value.  
Table E.7 shows the measured resistor values.  The resistor values appear to drift monotonically 
with time (increasing snapshot number).  For a give load condition, the actual resistance 
corresponding to each snapshot should be consistently decreasing although there is clearly some 
uncertainty in the actual resistance used in the fault simulation. 
 

Table E.6.  Stator Fault Test Snapshot Numbers 

Stator Fault Condition (Resistance, Ohms)  Load 
(W) 33Ω 27 Ω 21 Ω 15 Ω 9 Ω 6 Ω  5 Ω  4 Ω  3 Ω  2 Ω  1 Ω  .8 Ω  

0 140, 
141 

150, 
151 

160, 
161 

170, 
171 

180, 
181 

190, 
191 

200, 
201 

210, 
211 

220, 
221 

230, 
231 

240, 
241 

250, 
251 

1200 142, 
143 

152, 
153 

162, 
163 

172, 
173 

182, 
183 

192, 
193 

202, 
203 

212, 
213 

222, 
223 

232, 
233 

242, 
243 

252, 
253 

2400 144, 
145 

154, 
155 

164, 
165 

174, 
175 

184, 
185 

194, 
195 

204, 
205 

214, 
215 

224, 
225 

234, 
235 

244, 
245 

254, 
255 

3600 146, 
147 

156, 
157 

166, 
167 

176, 
177 

186, 
187 

196, 
197 

206, 
207 

216, 
217 

226, 
227 

236, 
237 

246, 
247 

256, 
257 

0 148, 
149 

158, 
159 

168, 
169 

178, 
179 

188, 
189 

198, 
199 

208, 
209 

218, 
219 

228, 
229 

238, 
239 

248, 
249 

258, 
259 

 
Table E.7.  Stator Fault Resistor Values 

Stator Fault Condition (Resistance, Ohms)  Load 
(W) 33Ω 27 Ω 21 Ω 15 Ω 9 Ω 6 Ω  5 Ω  4 Ω  3 Ω  2 Ω  1 Ω  .8 Ω  

0 33 27 21 15 9 6.01 4.98 4.01 3.02 2.003 1.0 .79 
1200 33 27 21 15 9 6.14 5.28 4.19 3.27 2.37 1.41 1.43 
2400 33 27 21 15 9 6.32 5.57 4.55 3.63 2.77 1.80 1.96 
3600 33 27 21 15 9 3.40 5.68 4.73 3.81 3.00 2.21 2.30 
0 33 27 21 15 9 6.48 5.72 4.91 4.01 3.19 2.47 2.51 

 
 
 



 

 81

APPENDIX F.  INTELLECTUAL PROPERTY FOR THE ORNL NONLINEAR 
TECHNOLOGY 
 
1. L. M. Hively, “Methods for Improved Forewarning of Critical Events Across Multiple Data 

Cannels,” patent pending (ORNL ERID# 1300) submitted to U.S. Patent Office (September  
22, 2003). 

 
2. L. M. Hively, P. C. Gailey, V. A. Protopopescu, “Condition Assessment of Nonlinear 

Processes,” U.S. Patent #6,484,132 (November 19, 2002). 
 
3. D. E. Welch, L. M. Hively, and R. F. Holdaway, “Nonlinear Prediction of Fatigue Failure,” 

U.S. Patent #6,460,012  (October 1, 2002). 
 
4. L. M. Hively, “Methods for Consistent Forewarning of Critical Events Across Multiple Data 

Channels,” patent pending (ORNL ERID#0885) submitted to U.S. Patent Office (July 12, 
2002). 

 
5. L. M. Hively, N. E. Clapp, C. S. Daw, W. F. Lawkins, “Epileptic Seizure Prediction by 

Nonlinear Methods,” U.S. Patent #5,857,978 (January 12, 1999). 
 
6. L. M. Hively  and  E. G. Ng,  “Integrated  Method  for  Chaotic  Time  Series  Analysis,”  

U.S. Patent  #5,815,413 (September 29, 1998). 
 
7. L. M. Hively, N. E. Clapp, C. S. Daw, W. F. Lawkins, “Apparatus and Method for Epileptic 

Seizure Detection using Nonlinear Techniques,” U.S. Patent #5,743,860  (April 28, 1998). 
  
8. N. E. Clapp, L. M. Hively, “Method and Apparatus for Extraction of Low-Frequency 

Artifacts from Brain Waves for Alertness Detection,” U.S. Patent #5,626,145 (May 6, 1997). 
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APPENDIX G. PUBLICATIONS ON MACHINE FAILURE FOREWARNING UNDER 
THIS PROJECT 
 
L. M. Hively, V. A. Protopopescu, and M. Maghraoui “NERI2000-109 Project Review,” invited 
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APPENDIX I.  DEVELOPMENT OF GRAPHICAL USER INTERFACE 
 

I.1  INTRODUCTION 
 
ORNL has developed and patented a model-independent methodology to assess condition 
change in complex systems from noisy, process-indicative data of limited precision and modest 
length. Condition change is typically indicative of impending machine failure or biomedical 
event (e.g., epileptic seizure or breathing difficulty). Practical use of this technology for machine 
and biomedical applications will require a user-friendly GUI. This report describes the 
development of the first essential GUI function, namely graphical presentation of the analysis 
results. Subsequent sections explain the functional requirements, software design, 
implementation, testing, and demonstration of the GUI for visualization of representative results. 
 
I.2  FUNCTIONAL REQUIREMENTS 
 
The user-friendly GUI features include clear presentation of the results and an intuitively 
obvious use that requires little or no user training. The GUI should be implementable on many 
different computer platforms that run various operating systems. Remote access should also be 
possible via Internet.  
 
I.3  SOFTWARE DESIGN 
 
The use of the commercial MATLABTM software for construction of the GUI satisfies all of the 
functionality requirements for creating plots, images, surfaces, and volumetric representations. 
MATLAB implements GUIs as windows containing various control objects, such as 
pushbuttons, pull down menus, and toggle buttons, that can be used for implementation of 
functions such as saving a plot. Each object must be programmed separately to perform the 
intended action. These tasks are simplified by GUIDE, MATLAB's Graphical User Interface 
Development Environment. The specific design involves buttons to select the type of plot, a 
menu to choose the appropriate data file for plotting, and buttons for saving the plot, and 
termination of the GUI. 
 
I.4  IMPLEMENTATION 
 
GUI implementation involves two basic tasks: laying out the options on the GUI control panel 
and programming the function(s) of each GUI component. GUIDE includes a set of layout tools. 
GUIDE also generates a procedure file (called an “M-file” or MATLAB file) that contains code 
to handle the initialization and launching of the GUI. This M-file provides a framework for the 
implementation of the callbacks, which are the active GUI functions. GUIDE allows interactive 
layout of the components, and generates two files that save and launch the GUI. The first is a 
FIG-file that contains a complete description of the GUI figure and all of its attributes, as well as 
the values of all object properties. The second is an M-file that contains the (sub)functions that 
launch and control the GUI and the callbacks.  
 
After launching the GUI, five push buttons appear on the right-hand side of the top-level menu 
(Fig. I.1), corresponding to plots for the five different kinds of data. The user clicks on one of the 
push buttons for the corresponding data plot. A file selection box then appears. The user next 
clicks on the appropriate file for plotting from this file selection box. The GUI extracts the 
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numerical data from that file and displays the resulting plot on the GUI screen. Two additional 
choices appear on the GUI menu under the “Options” button. One is for printing or saving the 
plot to a file in a chosen format. The user then can import the file into MS-WordTM or 
PowerPointTM. The other button closes the GUI. 
 
I.5  RESULTS AND TESTING 
 
This section shows examples of the data plots for five different types of data. Figure I.1 shows 
the completed top level GUI screen. Figure I.1 also shows the dialog box that appears for 
selection of a file for plotting.   The top button on the far right of the GUI screen with the label, 
“3_Chan_Raw” plots the data as shown in Fig. I.2. The second button, “1_Chan_Raw,” plots the 
data as shown in Fig. I.3. The third button, “Trad_NLM”, plots the data as shown in Fig. I.4. The 
fourth button, “PSDM,” plots the data as shown in Fig. I.5. The fifth button, “Data Quality,” 
plots the data as shown in Fig. I.6. 
 
 
 

 
 
 

Fig. I.1.  Display of the GUI when a plot push-button is clicked. 



 

 

87

Figure I.2 shows raw tri-axial accelerometer data in three orthogonal directions, corresponding 
to each of the three columns. The top row shows roughly one second of data for each of the three 
channels at a sample rate of 52 kHz. The second row shows more detail in the same data over 
200 ms for each channel. The third row shows still more detail for each of the three channels 
over roughly 40 ms. The bottom plot in Fig. I.2 shows the most detail in complex, nonlinear 
waveforms for each of the three channels over roughly 8 ms. 
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Fig. I.2.  Plot of tri-axial accelerometer data (columns) over successively shorter time 
intervals (row from top to bottom). 
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Figure I.3 shows the complex, nonlinear features in vibration power over the same successively 
shorter time intervals as in Fig. I.2. This single-channel of power data was obtained from the tri-
axial accelerometer data via the following combination of calculus and elementary mechanics. 
Acceleration, a, is a three dimensional vector that can be integrated once in time to give velocity, 
v. Mass, m,  multiplied by acceleration equals force vector, F = ma. The vector dot product of 
force and velocity is scalar vibration power, P = F • v. Vibration power captures the dynamical 
features of all three acceleration directions in a single scalar signal vs time. 
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Fig. I.3.  Plot of single-channel raw data over successive shorter timescales. 
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Figure I.4 shows a plot of three traditional nonlinear measures versus time. The top subplot is the 
correlation dimension, D, which is a measure of the data complexity. D is a decimal number, 
which, when rounded up to the next higher integer, indicates the number of simultaneous 
ordinary differential equations required to model the process dynamics adequately. The middle 
plot is the Kolmogorov entropy, K, which measures the rate of information lost per unit time (in 
BITS/s), or the degree of predictability. The bottom plot shows the value of the first minimum in 
the mutual information function (MIF), which is a nonlinear version of the (linear) 
autocorrelation function. MIF measures the average information (in bits) that can be inferred 
from one measurement about a second measurement as a function of the time delay between the 
observations. The first minimum in MIF, M1, is a measure of the nonlinear decorrelation time 
between the two signals. 
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Fig. I.4. Plot of three traditional nonlinear measures: correlation dimension (top), Kolmogorov 
entropy (middle), and first minimum in the mutual information function (bottom). 
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Figure I.5 shows measures of condition change. The time-serial vibration power data in Fig. I.3 
were converted to a discrete distribution function (DF) that captures the essential features of the 
underlying dynamics. Condition change assessment compares test case DFs to a base case 
(nominal state) DF via novel measures of dissimilarity. Forewarning is indicated by several 
sequential occurrences of the dissimilarity measures above a threshold. While traditional 
nonlinear measures compare averaged (global) quantities, the enhanced discrimination power of 
these measures is achieved by focusing on the absolute difference between the two DFs. 
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Fig. I.5.  Measures of condition change vs time: (subplots a-d) four phase-space measures of 
dissimilarity between the DFs for baseline dynamics and subsequent test states; (e) composite 
measure, namely the sum of the measures from subplots (a)-(d); and (f) statistical criteria for 
forewarning of failure, based on a straight-fit to the data in subplot (e). 
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Figure I.6 illustrates results that assure adequate data quality for the above analyses. This 
analysis first sorts the time-serial data into ascending order, from the smallest to largest value. 
This sorted  sequence is then converted into a histogram of occurrence frequency vs each unique 
signal value in the raw data. The left subplot shows the result, indicating a problem with singlet 
occurrences of signal values for both the largest and smallest values. The first difference of these 
sorted values is next obtained, sorted, and plotted as a histogram, as before. The result is the 
right subplot, which shows the expected result of many small increments between successively 
larger signal values and few large differences. 
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Fig. I.6. Plot of data quality measures. 
 
 
I. 6  TESTING/RESULTS 
 
Each data file was tested individually to assure that the GUI was functioning properly. When the 
user selects a particular type of visualization and the corresponding data file, the GUI generates 
the appropriate plot. The user has the choice of printing the plot or saving it to desired file.  
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