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INTRODUCTION

This report describes the detailed results for task 2 of DOE-NERI project number 99-119
entitled Automatic Development of Highly Reliable Control Architecture for Future
Nuclear Power Plants. This project is a collaboration effort between the Oak Ridge
National Laboratory (ORNL,) The University of Tennessee, Knoxville (UTK) and the
North Carolina State University (NCSU). UTK isthe lead organization for Task 2 under
contract number DE-FG03-99SF21906.

Under task 2 we completed the devel opment of data-driven models for the
characterization of sub-system dynamics for predicting state variables, control functions,
and expected control actions. We have aso developed the Principal Component Analysis
(PCA) approach for mapping system measurements, and a nonlinear system modeling
approach called the Group Method of Data Handling (GMDH) with rational functions,
and includes temporal data information for transient characterization.

The majority of the results are presented in detailed reports for Phases 1 through 3 of our
research, which are attached to this report.

TASK 2.2 DETECTION OF SIMULTANEOUS FAULTS

Under this task, we completed the development of a fault detection and isolation module
that combines system operational knowledge (including system simulation) and arule-
based logic for FDI of both single and dual faultsin dissimilar sensor and field devices.
In addition, we have devel oped a complimentary approach that quantifies the prediction
errors using afault pattern classification technigque.

The above techniques have been applied to alaboratory process control 1oop using both
simulation and actual loop measurements. The techniques have been demonstrated for
detecting and isolating faults in sensors and devices in a U-tube steam generator (UTSG)
in a pressurized water reactor (PWR) using a full-scope PWR simulator developed by
North Carolina State University. The application to the laboratory system and
preliminary application to a PWR steam generator were described in the Phase 1 Report.

TASK 2.3 IMPLEMENTATION OF ON-LINE DIAGNOSTICS
SYSTEM

The key contributions of Task 2 during Phase-3 of the project include the following: 1.
Development of data-driven system models using Group Method of Data Handling
(GMDH), Principal Component Analysis (PCA) and Adaptive Network Fuzzy Inference
System (ANFIS), 2. Fault detection by tracking model residuals of selected process
variables and control functions, and 3. Fault isolation using a rule-based technique, a
residual pattern classification technique, and a multi-observer digraph approach. Fault
diagnosis, during both steady state and transient operations, is demonstrated with



applications to a nuclear plant steam generator. A full-scope physics model of the steam
generator in a pressurized water reactor (PWR) has been used to generate an extensive
database of normal plant operation and faulty operation data. Some of the faults being
monitored include: degradation of turbine control valve, steam generator water level
sensor drift, feed water flow meter sensor offset, dead band error in feed control valve,
steam pressure sensor drift and steam flow meter offset. The type of degradations used in
the study include several dual faults that are selected from the above single device faults.

Group method of data handling (GMDH)

The GMDH constructs amodel of adesired output as a function of a set of related inputs
from a subsystem, by a successive polynomia approximation (Farlow, 1984). The
genera relationship has the form shown in Equation (1) where {Xi, X, ... , X isa
vector of input variables and y is the variable to be predicted. This formulation can be
extended to the prediction of multiple outputs {yi, Vo, ... , Ya}. An efficient numerical
algorithm has been developed for applications to process control loops (Upadhyaya et
al.).
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Principal component analysis (PCA)

PCA makes use of the property of the data that for normal operation the measurements
can be characterized by alow dimension hyper-surface. Faulty conditionsin one or more
of the field devices lead to deviations from the surface. These deviations from the
surface, in terms of prediction residuals, can be used for fault detection. The pattern of
the residuals of the various measurements may be established for each type of fault under
consideration.

Consider an (m x n) data matrix X, with n samples along the rows and each sample
consisting of m measurements. PCA decomposes X into a product of scores (T) and
orthogonal loadings (P) as (Kaistha and Upadhyaya, 2001)

X=TPL+E (2

where E contains the residuals. The principal components (PCs) in the successive
columns of P are obtained such that maximum variance in X is explained. Thus, if the
data are highly collinear, the first few PCs explain most of the variability in the data and
are retained. The residuals in E constitute the unexplained variation in the data and
contain the higher PCs that are regjected. The PCs are obtained as the right singular
vectors of the data matrix X, using its singular value decomposition. The PCA mnethod
can be generalized to include nonlinear forms of the measurement vector (Kaistha &
Upadhyaya, 2001).



Adaptive network fuzzy inference system (ANFIS)

ANFIS is adata-driven modeling approach that combines the system knowledge with the
learning capability of an artificial neural network (Jang, 1993). The system knowledgeis
represented by rules. The membership functions of each of the input signals are
estimated using the training data and a neural network model. This step introduces
nonlinearity inthe estimated weights for all the postulated rules. For each fuzzy rule, the
output is computed using a linear model of the input signals. The strength of this
approach lies in the ability to use prior knowledge, and to update membership functions
that provide a better model for the desired output.

Fault detection

The first step in the FDI implementation is the detection of possible faults in sensors and
other devices. The GMDH, PCA or the ANFIS model is used to compute the residuals
between the measured variable and its prediction from other measurements. This
calculation is performed for all the variables considered in the analysis. If the residual
RMS value exceeds a preset alarm level, then we declare that a possible error exists in
one or more d the devices. In this study, we have considered anomalies in one or two
devices at atime. Once afault is detected, the next step is to isolate a single or a dual
fault.

Fault isolation using parallel approaches

The first step in the fault isolation procedure is to compute the residual sequence between
the measurements and the model-estimated values of the set of variables used in the
anaysis. For a steam generator system the number of state variables and control
functions considered is less than m = 15. For the GMDH and ANFIS models, the
residuals are calculated as the difference between the measurement and the model
prediction. The residuals are calculated similarly for the PCA model, where al the state
variables considered in the multivariate model are used for residual computation. Thus,
if X is a sample measurement vector, the residual vector e is given by (P is the matrix of
principal components)

e=x(I —PPY (3

The first approach used for fault isolation is the development of arule base for each of
the fault types. The rule base describes the directional and magnitude variations in the
residuals of all the variables considered in the anaysis. The fault isolation is then
performed by comparing the residua pattern with each of the pre-established residual
patterns (similar to a template matching) for all the faults. The pattern with the best
match is then used for deciding about the fault type.

The second approach for fault isolation uses the PCA model of the residuals for each
known fault. Thefirst principal component of this model is used as a fault signature. For
a given test case, the residua vector is computed using the data-driven model. This



vector is then projected on to the selected PC direction and the corresponding cosine of
the angle is determined. If this measure is close to unity
(> 0.9), then thefault isisolated. This procedureis repeated for al the fault directions.

The third approach for fault isolation is the multi-model digraph technique. For a set of
m models of the measurements, identify the measurements that have propagated their
faults by tracking backwards until a model gives insignificant residual, or its output has
not been corrupted. Next, reconstruct al the corrupted outputs by tracking forward from
the identified fault origin to the input nodes of the detected model. Compute the residual
of the measurement in question using all the reconstructed inputs. If the reconstructed
residuals and the original residuals are consistent then a local fault is isolated. For the
case of adual fault, the reconstructed residuals of the local device would deviate from the
original residual, indicating an additional fault in the input signal.

The simultaneous implementation of the above techniques increases the confidence of
fault isolation.

Applications of the FDImethod to a steam generator system

Both normal operation and faulty operation data were generated using a full-scope PWR
simulation code. The following measurements are considered in the following
applications: narrow range (NR) SG water level sensor, feed water flow transmitter,
steam flow transmitter, steam pressure transmitter, turbine control valve (TCV) position,
feed control valve (FCV) position.

Figure 1shows the plot of the residual directions of the measurements for the case when
there is a bias fault in the narrow range SG level sensor. Note that the NR direction
signature has a maximum value (»0.9). The direction signatures for the steam flow and
feed flow are not insignificant, primarily because their settings change because of error in
the NR sensor and the resulting feedback. Note that each of the fault direction plots
illustrates nine steady-state operating conditions.
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Figure 1. Narrow range SG water level sensor biasfault for the case of steady-state plant
operation. Theresidual directional features are plotted for six different measurements at nine
operating levels. The confidence level for the NR fault hasthe largest value.




An example of tracking turbine control valve fault during transient power operation is
shownin Figure 2. A change in the actuator time constant has been ssimulated. Figure 2a
is a plot of the measured and model-predicted values of the TCV position. The residual
between the two variables is plotted in Figure 2b. The application illustrates that the
time-dependent GMDH model is able to track the valve error during the transient

operation.
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Figure 2. A comparison of the measured and predicted values of the TCV position ismadein
(8).Thisisthe case of fault detection during a plant transient. Theresidual plot isshown in (b).

The last example illustrates the application of ANFIS modeling and the multi-model
digraph for isolating both single and dual faults. The single fault considered is the feed
water flow transmitter error. The dual fault considers simultaneous errors in the SG
pressure transmitter and the feed water flow transmitter.

Figure 3 shows the plots of feed water flow measurement residual. Among other signals
the model uses the SG pressure. The residual magnitude exceeds the acceptable limit,
indicating a possible fault in the feed water flow transmitter. The model predictions
using the SG pressure and using the reconstructed SG pressure are the same, thus
indicating that the SG pressure is not in error. In the case when the SG pressure
transmitter has an error, the two prediction residuals do not match, as shown in Figure 3b.
Thisindicates that the SG pressure transmitter is also faulty, in addition to the faulty feed
water flow sensor. The model-based directional graph is able to detect both single and
dual faults.
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Figure 3. Figure 3. Prediction residual of feed water flow transmitter using measured and
reconstructed SG pressurefor the case of single fault (a) and simultaneous dual faults (b).
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Task 2. Phase 1
Advanced Monitoring and Diagnostics

SUMMARY

This report describes the tasks performed and the progress made by The University
of Tennessee (UTK) during 1999-2000 on the DOE-NERI project entitted Automatic
Development of Highly Reliable Control Architecture for Future Nuclear Power
Plants. UTK is collaborating with the Instrumentation & Controls Division of ORNL (lead
organization) and the North Carolina State University (NCSU). The objective of the UTK
research task is to develop an on-line monitoring system for fault detection and isolation
(FDI) of sensors and field devices in a nuclear power plant. In this research emphasisis
given to process instrumentation in a nuclear power plant such as temperature, pressure,
flow, level transmitters, and measurements of control functions. Field devices include
valve actuators, control modules, spray and heater systems, pumps, and other similar
equipment. The goa of this task is to provide diagnostics information to a system
executive for enhanced decision-making by the plant control system.

The following R& D tasks have been accomplished during this reporting period:

Development of data-driven models for the characterization of sub-system
dynamics for predicting state variables, control functions, and expected control
actions.

Development of anonlinear system modeling approach called the Group Method of
Data Handling (GMDH) with rational functions.

Development of the Principal Component Analysis (PCA) approach for mapping
System measurements.

Development of a fault detection and isolation module that combines system
operational knowledge (including system simulation) and a rule-based logic for
both single and dual faultsin dissimilar sensor and field devices.

Development of a complimentary approach that quantifies the prediction errors
using afault pattern classification technigque.

The above techniques have been applied to a laboratory process control loop using both
simulation and actual loop measurements. The techniques have been demonstrated for
detecting and isolating faults in sensors and devices in a U-tube steam generator (UTSG) in
a pressurized water reactor (PWR). Only simulation data were used in the latter case.

During the second phase of this project (FY 2000), the FDI system will be
implemented for a UTSG system as part of a full-scope PWR plant being developed by
NCSU. The current methods will be further developed and extended to fault detection
during plant transients. This phase will aso include the development of minimum
requirements for application to an existing PWR, and the limitations imposed by the
measurements. The information generated by the FDI module will be interfaced with the
system executive and the control design system. A paper was presented at the American



Nuclear Society Annual Meeting, June 2000, and another paper will be presented at the
ANS Topical Meeting on NPIC&HMIT, November 2000.



1. INTRODUCTION

1.1 Background and Motivation

Existing and new generation of nuclear power plants have economic and reliability
concerns as addressed by overall plant performance, unscheduled downtime and the long-
term management of critical assets. The key to achieving these needsisto develop an
integrated approach for monitoring, control, fault detection and diagnosis of plant
components such as sensors, actuators, control devices and other equipment. Several
methods devel oped by industry and academia, for monitoring isolated sensors and system
components were reported [1-8]. Model-based local sensor validation and fault diagnosis
methods were devel oped for specific applications [3,8]. These approaches assume that a
system fault being monitored occurs in a specific plant component and in an isolated
fashion. Fault detection and isolation (FDI) of sensors and field devicesis an important
step towards the implementation of an automated and intelligent process control strategy
[12].

A large-scale system, such as a nuclear power plant, has several feedback control loops.
This makes the identification and isolation of faultsin these interconnected systems highly
complex. Even when a sensor used for set point control isfaulty, the control system
through feedback, triesto vary the actuating signals until the error in the set point is
eliminated. The sensor-alone type validation will fail in this situation. It istherefore
necessary to consider fault detection and isolation at the system level rather than at the
devicelevel. The objective of this R&D task isto develop an on-line sensor and field
device monitoring and fault detection system, when simultaneous faults may occur in two
or more of these devices. Thisgoal will be achieved by atwo-step approach: (1)
Development of data-driven models for predicting multiple variables, using rational
function approximation and group method of data handling; (2) A decision-making module
that uses system functional knowledge base and pattern classification algorithms, that will
be deployed in a distributed configuration. High priority will be given to the
computational efficiency of these techniques, with the capability to change the module
structure with changing plant conditions. The intrinsic merit of the project liesin the
development of an autonomous global monitoring and fault detection approach that would
be executed with minimal human interaction.

1.2 Objectives of R&D and Definition of Tasks

The objective of this research task is to develop an on-line monitoring system for
fault detection and isolation of sensors and field devices in a nuclear power plant. The
sensor suite consists of major process variables in a plant, such as temperature, pressure,
flow, level, and control functions. Field devices in a power plant include, but are not
limited to, valve actuators, control modules, spray and heater systems, pumps, and similar
equipment. The objectives of this R&D are being accomplished through the completion of
the following technical tasks:

Review of literature and previous work.



Characterization of sub-system dynamics using data-driven models for predicting
state variables, control functions, and expected control actions.

Development of a Group Method of Data Handling (GMDH) modeling algorithm
with rational function approximation.

Development of a Principal Component Analysis (PCA) algorithm with linear and
nonlinear mapping.

Development of an FDI module that combines system operationa knowledge and a
rule-based logic for both single and dua faults in dissimilar sensors and field
devices.

Development of a complimentary module that quantifies the prediction error using a
fault pattern classification technique.

Demonstration of the FDI system with application to an experimental process
control loop.

Demonstration of the FDI system with application to a Utube steam generator
(UTSG) in afull-scope simulation model of a 1,300 MWe PWR.

Development of minimum requirements for FDI system implementation.
Extension of the techniques for the case of fault detection during plant transients.

Identification of redistic faults in a PWR and establish the characteristics of
transient faults as compared with steady-state faults.

Interfacing the FDI module with control system module via the system executive
and development of a graphica user interface (GUI) for the FDI system
demongtration.

Identification of issuesin technology transfer to nuclear power industry.

Deliverables: Annua Reports and aFina Report.
FDI software system and User’s Manual.
Conference and journal manuscripts.

1.3 Summary of Significant Accomplishments During 1999-2000
The following major milestones were accomplished during this reporting period:

Development and testing of the GMDH modeling module for state and control function
prediction.

Development and testing of the PCA mapping method for system modeling.
Development and testing of the FDI module for both single and dual/simultaneous
faults.

Rule-based decision making.

Fault pattern clustering approach.

Demongtration of the GMDH method using single and dua faults in alaboratory
process control loop.

Demongtration of the PCA approach with application to a PWR steam generator
(UTSG) system.

Preparation of the following manuscripts for publication.



Detection and Isolation of Multiple Faultsin Nuclear Plant Systems, ANS
Annual Meeting, San Diego, June 2000.

Fault Detection and Isolation of Nuclear Power Plant Sensors and Field
Devices, ANS Topical Meeting on NPIC & HMIT, November 2000.

1.4 FDI Architecture and Issues in Developing a Robust FDI Algorithm

Figure 1.1 shows the functional modules of the FDI system being developed in this project.
Both GMDH and PCA modeling of process measurements are considered. This providesa
crosschecking of prediction techniques applied to the measurements. Fault isolation is
based on either a rule-based algorithm or a pattern classification algorithm. The following
issues must be considered in developing arobust FDI algorithm.

Sensor faults may not be detected in a closed-1oop control system.

Redundancies in sensors and controllers are used in nuclear power plants (NPPs).
Separation of process variations from sensor/field-device faults must be considered.
Noise levels in measurements can increase false alarms. It may be necessary to pre-
process signals to eliminate this effect at different sub-bands.

The use of physics models and data-driven models to understand and characterize the
process dynamics.

1.4 Organization of the Report

The group method of data handling (GMDH) agorithm is described in Section 2 and the
principal component analysis (PCA) is discussed in Section 3. The application of GMDH
to the fault detection and isolation of multiple faults in an experimental process control
loop is presented in Sections 4. Section 5 describes the application of PCA and pattern
classification approach to a U-tube steam generator in aPWR. Concluding remarks and
plans for Phase 2 are given in Section 6.
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2. GROUP METHOD OF DATA HANDLING (GMDH) APPROACH
FOR MEASUREMENT CHARACTERIZATION

2.1 The GMDH Method with Rational Function Approximation

The objective of this sub-task is to characterize the mapping among process
variables and control functions using self-organizing and data-driven modeling. The so-
called Group Method of Data Handling (GMDH) is an dgebraic method for predicting
system states, controller and actuator functions. A new agorithm, that will create
appropriate prediction models for different nuclear plant sub-systems, will be developed
by arationa function approximation of the original GMDH algorithm [11,12]. The GMDH
approach has the advantage over artificial neural networksin not requiring tedious network
training procedures. It isaso easy to update the prediction models during plant operation.

The GMDH constructs a model, of a desired output as a function of a set of related
inputs from a subsystem, by a successive polynomia approximation. The general
relationship has the form shown in Equation (2.1) where {Xi, X, ... , X} iS avector of
input variables and y is the variable to be predicted. This formulation can be extended to
the prediction of multiple outputs {yi, Y2, ... , Yn} aswell.
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A typical node of a GMDH modeling layer is a basic quadratic predictor using variables
[x, x]. The model parameters such as {A, B, C, D, E, F}, are estimated from a least-
sgquaresfit using N observations of the input and output variables.

y = A+Bx +Cx; + Dx? + Ex} + Fx X, (2.2

Figure 2.1 illustrates that the predicted values of y are propagated to successively
higher layers of the agorithm, with the approximation of y,q improving at successive
stages. At each stage of the approximation, Yy eq is formed from pairs of input signals (to
that layer), and new values of the predicted variable are propagated pair-wise to the next
layer. The iteration is continued until the mean-squared error between the predicted and
the measured values of the output variable attains a desired value.

Parsmony in model fitting is achieved by comparing the fractiona prediction
errors from one generation to the next, and by terminating the algorithm when the error isa
minimum or when the difference between errors from successive approximation stages is
less than a preset limit [12].

The GMDH approach described above uses polynomia approximation. This
polynomial set may be satisfactory in establishing some of the relationships of interest. In
characterizing the subsystems in a nuclear power plant it may be necessary to use terms
containing rational functions (for example, ratios of polynomials in x; and X,). The



expression (2.3) represents a set of such terms that forms a complete set of termsin agiven
domain.
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The new set should facilitate the development of prediction models with a
minimum number of terms. The computational efficiency of establishing these models will
be enhanced by a systematic choice of the termsin the set shown in Expression (2.3).
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Figure 2.1. GMDH network showing m inputs and K layers.



2.2 The GMDH Algorithm

The following steps explain the procedure used in developing data-driven models
using the group method of data handling.

Consider N observations of mvariables X © {xy, X, ... , X} and the measurements
of the variable to be estimated, Y © {y1, Yo, ... , Yn} -

Divide the datainto atraining set (nt) and atest set (N-nt).

For each pair {x;, x} and 'Y, compute the regression polynomial
y = A+ Bx, +Cx; + Dx? + Ex} + Fx;X;

A total of m(m-1)/2 polynomials are computed.

Create new observations, Z, for each of the new m(m-1)/2 variables.
Screening out the |least effective variables. Compute the SSE

éin (yi - Ly )2
r 2 = _i=1 (2.4)

Pick those new inputs for which rj < R (choice of the user).

Repesat the stage-wise computation until the method starts over-fitting the data. Plot
the smallest of {r;} at each stage and look for a minimum. This is called the
minimum Ivakhnenko polynomial.

Using the best-fit model, compute the prediction errors using the test data of length
(N-nt). Check if the error rpeq iS Satisfactory.

2.3 Enhancement of the GMDH Algorithm

To improve modd building with a minimum number of layers, the set of terms
in theregresson model is generalized to includerational functions of {x;, Xa, ... , Xm}-

The choice of terms in the regression is made according to a binary selector:

For example, for k=8, the binary number is between 0 and 255 (a total 256
input vectors).

10



Example: model number 179 hastheterms[1011001 1]

Choose ~ ten best-fit models. From this set, choose the model with the least
number of termg!

To avoid unlimited increase in the number of nodes in a higher GMDH layer,
use the best m nodes for the succeeding layer. All layers have the same
number of nodes, m.

Make sure that the number of input variables in the first layer ism > 2, in
order to avoid thetermination of GMDH after thefirst (input) layer.

To avoid long training times, limit the maximum number of layersfor asingle
model (30 was suggested in this study, since no impr ovement was obser ved
beyond thislevel).

2.4 Application of the GMDH Algorithm in an FDI System

The choice of the measurement set {xi, X», ... , X}, for each predictor vy, is
determined from the knowledge of the system, simulation studies, and parametric
analysis such as pair-wise correlations.

Generatethe prediction models using the fault-free data.

Computestheresidual errorsfor all the state and control functions of interest.

When theerror exceeds a pre-set threshold, a fault is detected.

| solate single/multiple faults.

11



3. PRINCIPAL COMPONENT ANALYSIS (PCA) FOR
MEASUREMENT CHARACTERIZATION

3.1 Introduction to Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a data characterization method that
extracts the directions of maximum variability in a data matrix X (also the matrix of
measurements of process signals). PCA is similar to fitting a hyper-plane in the
measurement space for the normal operation data, and uses a matrix decomposition method.
In case of redundancy in X, the first few principal components (PCs) may be sufficient to
explain most of the variability in the data. The data may then be represented as the
projection on to the sub-space of the retained PCs with minimal loss of information. The
squared sum of errors (SSE) the perpendicular distance of the test data from the PC hyper-
plane, and should be small for norma operation (see Figure 3.1). Fault detection is
performed by evaluating the SSE (or residuals) after projecting the test data on to the PC
hyper-plane. A large value of SSE indicates a possible fault in the system.

PCA uses a fundamenta result of linear algebra, called the Sngular Value
Decomposition (SVD). The following references are suggested [13, 16-23, 25-33, 39].

Singular Value Decomposition (SVD)

SVD: Every (N x m) matrix A can be decomposed into A= U S V', whereU and V are
orthogona matrices, and S is diagonal.

A=USV ' =[u;..u ..u]. Diag[S1..S/]. [V .. Vi .. Vi " (3.1)

U(NxN) and V(mxm) are orthogona matrices: U'U = V'V =I.
Thematrix S hasthesingular valuess 4, ..., s, onitsdiagona and zero elsewhere.
Thedimensonr<Nandr<m

Remark:

Thesingular values{s;} arenot eigenvaluesof A But {s;?} are eigenvaluesof A'/A

Definitions:
A (Nxm) isarectangular matrix. Itsrow space (each row has melements) is r-dimensiona

@ nsi de R™) and its column space (each column has N elements) is r-dimensional (inside
R™).
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Required to choose orthonormal bases. Row space basis: [vy, ..., v{] and
column space basis: [uy, ... , W].
We want orthonormal bases that also diagonalize A

For a (2x2) matrix A

A[V1 V3] =[S 1t S 2] = [y ] El ]
S»2

AV =US and U'U=V"V =

The singular value decomposition (SVD) of Aisgiven by

A =USV*'=USV' Sis diagonal (*)
From (*)
ATA = (USV") T(USVT) = vSTUTUSV'
= ATA= VS'SV'

For the symmetric matrix A'A, the columns of V are its eigenvectors corresponding to
itseigenvalues{s ..., s,}. Thisindicates how to calculate the matrix V.

Once{v;} are known, the{u} are calculated from the equations

Avi=siu,i=1,2,...,r

Remark:
The vectors {u} can be calculated directly from AA'.

AAT = (USV") (VSTUT) = USSTU".

The columns of U are the eigenvectors of AA™ (and correspond to the same eigenvalues
asthose of A'A).

Example:
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Eigenvaluesof A'lAares =2, s,°=8

vi=[-1/2 U@l'and v,= [V UR]
By computing the normalized values of Av; and Av,, we get

w=1[01 andw,=[1 Q]

Now verify the results

A=USV'=1|0 1|2 O -1¢e e
1 0J) |0 2¢ 1Ce 1Cp
Remarks:

The matrices U and V contain orthonormal basis for all four fundamental subspaces:

First r columnsof V: row space of A
Last mr columnsof V: null space of A
First r columns of U: column space of A
Last N-r columns of U: null space of AT

3.3 Principal Component Analysis of Process Data

Consider adatamatrix X (N x m) with mvariables and N independent measurements.

X = X1 e X1m
Xo1 ... Xom (32)
N
XN1 XNm
> m___»

Decompose X into a product of scores (T) and loadings (P) as
X=TP +E (3.3
Where E represents the residuals (error) after projection on to the principal axes or
the hyper-plane. The PCs are ordered such that the successive PCs explain the contribution
to X in descending order of the lengths of principal axes of the hyperellipsoid of the data
space.

Now consider the SVD of thedata matrix X:
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X =USV' (3.4
Where
U isan orthogonal matrix (NxN) spanning the column space of X.
V isan orthogonal matrix spanning the row space of X.
S isadiagonal matrix of singular values of X in decreasing magnitude.
Interpretation of the PCA of Process Data
Consider a column vector b (mx1) in therow space of X so that

Xb =US(V'b)

Theterm in the parentheses represents arotation of thereference from unit circleto
V.

Multiplication by S correspondsto a scaling of vector b in theV frame by the
corresponding singular values and transformsb to the column space of X.

Thefinal vector isin the U-frame and multiplication by U transformsto the
unit hyper spherein R,

Thecolumnsof V arethe principal components or directions and the singular
values arethelengths of the principal axes of the hyper-dlipsoid.

ThescoresT arethe projectionson to the PCsand are obtained as
T=XV=USV'V=US

The scores are decorrelated
T'T=(S)'US=s'U'US=S's

PCA thusrepresentsarotation of the I, reference frameto the PC
reference frame, so that the dataisuncorrelated in the PC frame.

Retaining p of a maximum rank (X) PCs, the data matrix may bewritten as

X=USV, +E
(3.5)

For atest samplevector x (mx1), the scores (t) and the errors (e) are given by

t=xVp (3.6)
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e=x—tV, =x—xVV," =x(I-VpV,")
(3.7)

The fault vector for each case may then be generated from theerror vector e.

The principal component analyss described above performs a linear
transformation of the signals. The PCA may be generalized so that the data matrix X
would consist of nonlinear terms in the measurements. This generalization is

somewhat smilar to the use of rational functionsin GMDH and isdescribed in Section
2.
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Figure 3.1. Illustration of the principal component analysis (PCA) for atwo-dimensional
measurement system.
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4. APPLICATION OF GMDH AND RULE-BASED APPROACH FOR
FAULT DETECTION AND ISOLATION IN A PROCESS CONTROL
LOOP

4.1 Introduction

This section describes the results of the application of the GMDH model prediction
method and a rule-based approach for fault detection and isolation in a laboratory process
control loop. Both single and dual faults were imposed on various devices in thisloop. A
description of the experimental facility (along with the sensors and devices used) and
results of loop response simulation are also presented.

The following are the steps in implementing the FDI agorithm:

1. Generation of a fault-free database. Various system operational conditions must be
considered here.

2. Determination of a qualitative relationship among different loop components through
linear correlation analysis.

3. Determination of quantitative relationships among different loop components through
the GMDH technique.

4. Development of a rule-based decision module for fault detection and isolation. This
is accomplished by smulating and characterizing a defined fault in each loop
component.

4.2 GMDH Models and Rational Function Approximation for State and
Control Function Prediction

The Group Method of Data Handling (GMDH) is an algebraic method for
predicting system states, controller and actuator functions. This is described in Section 2.
The GMDH constructs a model, of a desired output as a function of a set of related inputs
from a subsystem, by a successive polynomial approximation. The general relationship has
the form shown in Equation (4.1) where {X3, X,,...,.Xn} iSavector of input variablesand y
is the variable to be predicted. This formulation can be extended to the prediction d
multiple outputs {yi, ¥z, ... , Yn}-

é. dljk oo (41)

k=1

3
y= a+abx +aacu i j+

i=1 i=1 j=1

i Qo3
" Qog

1l
-

Figure 4.1 shows a typica node of a GMDH modeling layer with the basic
guadratic predictor. The model parameters such as{A, B, C, D, E, F}, are estimated from
aleast-squares fit using N observations of the input and output variables.
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Ypred Ypred

Transfer Function

Figure4.1. A node of the GMDH model predictor. This node uses a second
order polynomial transfer function.

In application to nuclear plant subsystems, a systematic study has to be performed
in establishing models that are valid for a range of operating conditions. The level of
complexity of the fault detection and identification algorithm depends on the importance of
the equipment or the asset being considered, the ease of real-time monitoring and
communication, and the multiplicity of devices.

4.3 Development of a Mathematical Model of the Laboratory Process
Control System

Theoretical and experimenta studies were performed for feasibility studies of the Fault
Detection and Isolation (FDI) method proposed in thiswork. For the theoretical study, a
simulation model of a process control loop, including sensors, controllers, and actuators,
was developed. This model was implemented in the Matlab-Simulink™ programming
environment. For experimental studies alow-pressure water loop (LPWL) system was
designed and built in the Nuclear Engineering Department [12]. A LabView program was
developed to acquire loop measurements and to control the experiment. Known faults were
imposed on different devices, such as pressure transmitters, motor-operated valves, and
control elements. The purpose of the model and the test system was to provide useful data
and an environment for developing and testing the proposed FDI algorithm. Datafrom all
available sensors for normal 1oop operation were used to build a database.
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The fault detection and isolation system isfirst tested using a Simulinkd model of a
process control loop. The control loop is shown in Figure 4.2 and consists of the
following major components: orifice flow meter (RMT flow meter), water level sensor
(pressure transmitter), turbine flow meters (two), three motor-operated valves (MOV's)
with valve position signals, main circulating pump, and a software-driven proportional -
integral controller for the tank water level. Figure 4.3 shows the main screen of the

Simulink& model. A list of all system variables availableisgivenin Table 4.1.

Inlet Motor-
Operated Valve
: Tank
N | i
Mot et Tuati
CE ET Lurbirie i
PIE?E I\ﬁ?s: Flow Meter Pressure Transmitter

{for Water Lewel
Ieasurements)

Bypass Motor-
Crperated Valve Chutlet Motor-

Cperated Valve
Cegtriﬁlgal Ctlet Turbine
ump Flow Meter

Water Heater

Figure 4.2. A schematic of the low-pressure water |oop system, showing
the various sensors and field devices.

Simulation models used for the control loop include (1) mass balance of water in
the tank, PI controller model, and first order sensor models. An example of steady state
process representation is shown for the pump model with the following parameters.

IFR = Inlet Flow Rate through tank inlet piping.
BFR = Bypass Flow Rate through bypass vave
IMOVP = Inlet MOV Position.

BMOVP = Bypass MOV Position

PD = Pump Discharge.
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Figure 4.3. Physical model of the low-pressure process control |oop represented by
Matlab-Simulink [12].

Steady-State Pump Modd:

IFR = IMOVP

* PD
IMOVP  + BMOVP

BFR = BMOVP

(4.2)
* PD
IMOVP  + BMOVP

Table4.1. System variablesfor the process control loop

21



Variable (measurement)

Bypass MOV position Setpoint

Inlet MOV position Setpoint

Outlet MOV position Setpoint

Measured Bypass MOV position

Measured Inlet MOV position

Measured Outlet MOV position

Water Level Setpoint

Measured Water Level

O] O Nl O O &~ W N

PID output

=
o

Tank Water Temperature set point

11

Tank Water Temperature

12

Heater Element PID Controller Action

13

Measured RMT Inlet Flow rate

14

Measured Turbine Inlet Flow rate

15

Measured Turbine Outlet Flow rate

GMDH prediction models were developed directly from the measurements for tank
inlet flow rate, tank outlet flow rate, tank water level, and level controller signal using the

following functiona relationships.

Inlet Flow Rate = f (Bypass MOV position, Inlet MOV position)
Outlet Flow Rate = f (Tank water level, Outlet MOV position)

Tank Water Level = f (Inlet flow rate, Outlet MOV position)

Controller Output = f (Bypass MOV position, Tank water level, Outlet flow rate)

4.4 Types of (Device) Faults Studied in this Research

Many types of faults can occur in a process control loop such as sensor faults,
actuator faults, controller faults, pump failure, leaks in piping, etc. This study limits itself
to those faults that can lead to significant error in the GMDH prediction models. Faults are
introduced in one or more devices during the experiments through the computer interface.
The following is alist of single faults (7) and dual faults (21) that are smulated using the

model.
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Single Faults:

Water level sensor drift (sensor fault).

Outlet turbine flow meter drift (sensor fault).

Outlet MOV positioning device drift (actuator fault).
Bypass MOV position (actuator fault).

Inlet MOV positioning device drift (actuator fault).
RMT flow meter drift (sensor fault).

Water Level Controller (controller fault).

Multiple Faults (Dual Faults):

Inlet MOV Fault and Water Level Sensor Fault

Inlet MOV Fault and RMT Flow meter Fault

Inlet MOV Fault and Outlet MOV position

Inlet MOV Fault and Bypass MOV Position

Inlet MOV Fault and PID controller Fault

Water Level Sensor Fault and RMT Flow meter Fault
Water Level Sensor Fault and Outlet MOV position
Water Level Sensor Fault and Bypass MOV Position
Water Level Sensor Fault and Outlet Turbine Flow meter
RMT Flow meter Fault and Outlet MOV position

RMT Flow meter Fault and Bypass MOV Position

RMT Fow meter Fault and Outlet Turbine Flow meter
Outlet MOV position Fault and Bypass MOV Position
Outlet MOV position Fault and Outlet Turbine Flow meter
Bypass MOV Position Fault and Outlet Turbine Flow meter
PI controller Fault and Inlet MOV Fault

PI controller Fault and Water Level Sensor Fault

PI controller Fault and RMT Flow meter Fault

PI controller Fault and Outlet MOV position

PI controller Fault and Bypass MOV Position

PI controller Fault and Outlet Turbine Flow meter.

4.5 Implementation of the FDI Algorithm

The basic steps for developing an FDI algorithm are:

Generation of the Fault-Free Database

Generating Qualitative Relationships among Loop Components

Generating Quantitative Relationships among Loop Components

Development of a Rule-based Decision Module for Fault Detection and Isolation.
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45.1. Generation of the Fault-Free Database

A fault-free database was generated using the theoretical model for different device
configurations. Bypass and Outlet MOV positions were systematically changed one at a
time. Water level set point was also changed. The Inlet MOV being a part of the water
level control system, its position cannot be set manually; its position is set directly by the
water level controller. No faulty devices were allowed in this phase. About 1,235 cases
were simulated and the data generated were stored in a database. This database is used to
obtain both qualitative and quantitative relationships among the loop devices.

4.5.2. Generating Qualitative Relationships Among Loop Components

To obtain a qualitative relationship among the loop components, the correlation coefficient
method was applied. From this analysis, sets of related variables were defined, athough
the characterization of these relationships through mathematical expressionsis not obtained
in this step.

Even though sometimes a large set of variables with high correlation existed, groups of
small number of variables were selected for modeling using GMDH. The variables
selected in each group were those from the components that are physically close to each
other. For example the bypass and inlet MOV positions determine the flow that goes
through the inlet piping. One could aso use the flow rate that goes through the outlet piping
in the above correlation set, however this variable would not bring new information to this
relationship. Creating a small number of models with local variables makes the fault
detection very efficient, that is, it is easy to isolate a faulty component. This efficiency is
reflected in the rule-based expert system. The simpler the expert system, the easier it isto
develop and maintain it.

Four relationships were defined for this particular loop system. With this relationships the
FDI agorithm is be able to isolate basically al possible faults that may happen in that
loop. Therelationships are

Inlet flow rate as a function of bypass and inlet MOV positions.
Outlet flow rate as a function of tank water level and outlet MOV position.
Tank water level as afunction of inlet flow rate and outlet MOV position.

Level controller output value as a function of bypass MOV position, tank water level
and outlet flow rate.

4.5.3. Generating Quantitative Relationships Among Loop Components

For characterization of these four