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ABSTRACT

HUNSAKER, C. T., S. W. CHRISTENSEN, J. 3. BEAUCHAMP,
R. 3. OLSON, R. S. TURNER, and J. L. MALANCHUK. 1986.
Empirical relationships between watershed attributes
and headwater lake chemistry in the Adirondack region.
ORNL/TM-9838. Oak Ridge National Laboratory, Oak Ridge,
Tennessee. 135 pp.

Surface water acidification may be caused or influenced by both

natural watershed processes and anthropogenic actions. Empirical

models and observational data can be useful for identifying watershed

attributes or processes that require further research or that should be

considered in the development of process models. This study focuses on

the Adirondack region of New York and has two purposes: to (1) develop

empirical models that can be used to assess the chemical status of

lakes for which no chemistry data exist and (2) determine on a

regional scale watershed attributes that account for variability

in lake pH and acid-neutralizing capacity (ANC). Headwater lakes,

rather than lakes linked to upstream lakes, were selected for initial

analysis. The Adirondacks Watershed Data Base (AWDB), part of the Acid

Deposition Data Network maintained at Oak Ridge National Laboratory

(ORNL), integrates data on physiography, bedrock, soils, land cover,

wetlands, disturbances, beaver activity, land use, and atmospheric

deposition with the water chemistry and morphology for the watersheds

of 463 headwater lakes. The AWD8 facilitates both geographic display

i
and statistical analysis of the data. The report, An Adirondack

Watershed Data Base: Attribute and Mapping Information for Regional
I * Acidic Deposition Studies (ORNL/TM--10144), describes the AWDB.

xi



Both bivariate (correlations and Wilcoxon and Kruskal-Wallis

tests) and multivariate analyses were performed. Fifty-seven watershed

attributes were selected as input variables to multiple linear

“4 regression and discriminant analysis. For model development

-200 lakes for which pH and ANC data exist were randomly subdivided

into a specification and a verification data set. Several indices

were used to select models for predicting lake pH (31 variables) and

ANC (27 variables). Twenty-five variables are common to the pH and

ANC models: four lake morphology, nine soil/geology, eight land cover,

three disturbance, and one watershed aspect. An atmospheric input

variable (H+ or NO;) explains the greatest amount of variation

in the dependent variable (pH and ANC) for both models. The percentage

of watershed in conifers is the next strongest predictor variable.

For all headwater lakes in the Adirondacks, -60% of the lakes are

estimated to have an ANC ~50 peq/L, and 40% of the lakes have a

h

pH ~5.5, levels believed to be detrimental to some fish species.

i

xii



1. INTRODUCTION
2

For this study, a set of headwater lakes within the Adirondack

Park of New York was selected for developing an empirical model to

evaluate alternative hypotheses concerning factors contributing to

acidification of surface waters and to predict the pH and acid

neutralizing capacity (ANC) of lake water. The Adirondacks are a

logical area for a regional study of lake water quality because a large

number of lakes have been monitored over the past several decades and

lakes in the region appear to be undergoing acidification. Water

chemistry within the Adirondacks has been studied extensively

(Schofield 1976a, 1976b; Colquhoun et al. 1984), and relationships

between water chemistry and fish status also have been studied

I (Baker and Harvey 1984, Reckhow et al. 1985). However, only limited

0
studies relating watershed characteristics to lake chemistry have been

performed in the Adirondacks. The Integrated Watershed Acidification

Study/Regionally Integrated Watershed Acidification Study (ILWAS/RILWAS)

projects (Goldstein 1983) monitored and studied three Adirondack

watersheds extensively over several years to develop and test a

watershed model. Regional assessments (Schnoor et al. 1985, Nair 1984)

have used a limited number of variables obtained from small-scale

regional maps for model input.

The primary objective of the present study is to examine on a

c
regional scale watershed attributes that may account for variability

and change in water chemistry in the Adirondacks. A secondary

0
objective is to use the empirical relationships developed through the



2

statistical analyses to assess the status of additional headwater lakes I_

in the Adirondacks for which no water chemistry data exist. This study
1

differs from other studies of lakes in the Adirondacks by including a

large number of lakes, more watershed attributes, increased spatial

resolution of the data used in the analysis, and more-extensive

I

statistical analysis.

The organization of this report is presented to help the reader

identify areas of interest. The introduction (Chap. 1) presents the
b

background and rationale for the analysis, followed by chapters

discussing the data base (Chap. 2), the analyses (Chap. 3), and the

conclusions (Chap. 4). The data base chapter describes the population

of lakes that were used and the watershed variabjes, including the

sources of data. More details on the development of the Adirondack
t

-

Watershed Data Base (AWDB) are given in Rosen et al. (1986). The

statistical-analyses chapter discusses the types of analyses and

presents results. The chapter is detailed because of the desire to

apply multiple tests to help verify the overall conclusions. That is,

?

k

the analysis is based on observational data obtained from a variety of

sources, and comparable results in the relationships between watershed

attributes and lake chemistry were obtained from the independent

statistical approaches. A detailed statistical discussion to confirm

the interpretation of results presented in the final chapter is

included. The casual reader may wish to concentrate on the discussion

of the Uselected1'  best models (highlighted by bold type in tables).

To determine the causes of lake acidification, one must determine

whether observed lake acidity can be attributed to atmospherically
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deposited acids or naturally derived acids based on the type of acids

found in the lake waters and on the relative importance of the

potential sources and sinks of different types of acids in the

watersheds. This study identifies potential causes of lake

acidification. Simple correlations and multivariate relationships

between pH and ANC and those lake or watershed factors that could

contribute to natural or anthropogenic acidification of Adirondack

headwater lakes are evaluated. The watershed factors examined are lake

morphology, water chemistry, wetlands, land cover, land use, soil

associations, precipitation, and beaver activity. Anthropogenic

factors that could cause changes in lake chemistry include increased

atmospheric deposition of pollutants, development around lakes, and

land disturbances. Natural f,actors  that could also contribute to

changes in lake chemistry include area1 extent of wetlands, coniferous

forests, bedrock, depth to bedrock, and acidic soils. Many hypotheses

to determine which of these factors were significantly associated with

pH and ANC for headwater lakes were evaluated in this study.

Turner et al. (1986a); Schnoor and Stumm (1985); Johnson et al.

(1985); and Mason and Seip (1985) have recently summarized the state of

knowledge on factors controlling surface water chemistry, including

(1) atmospheric inputs; (2) canopy interactions; (3) anion mobility,

cation exchange, and weathering in soils and bedrock as mediated by

hydrologic contact; (4) uptake and redistribution of chemicals within

the ecosystem by vegetation; and (5) in-stream/in-lake processes.

Various processes in the terrestrial and aquatic environment can

neutralize or enhance acidic precipitation after it enters the
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watershed. Denitrification, sulfate reduction, and chemical weathering t

decrease acidity; photosynthetic assimilation and nitrification  increase

the acidity of waters. Two pools of bases are in soils--a small pool
.

of exchangeable bases with relatively rapid kinetics and a large pool

of mineral bases with the slow kinetics of chemical weathering (Schnoor

and Stumm 1985). Thus, we were interested in quantifying rock outcrops,

soil cation exchange capacity, soil base saturation, and soil pH.

Acidic lakes occur where the residence time of acidic precipitation in

soils and the watershed is relatively short (i.e., soils are thin) and

where lakes and their watersheds are small (Schnoor and Stumm.1985).

Sensitive watershed attributes were characterized by using (1) measures

of soil infiltration rates; (2) depths to bedrock, to a root restrictive

zone, and to a low permeability horizon; (3) soil steepness; and

(4) lake morphology and hydrology.

The release of H+ by aggrading vegetation may exceed the rate of

H+ consumption by weathering and cause progressive acidification in

noncalcareous soils. Also, in some wetlands, aggrading humus and net

production of base-neutralizing capacity can cause acidic conditions

and release humic or fulvic acids to the water (Gorham et al. 1985).

Therefore, data on land cover and percentage of wetlands in each

watershed were developed. Correspondingly, disturbance processes

(e.s., fire, logging, and human development) reduce vegetative growth,

thus producing an alkalinity generating process (i.e., the ashes of

.

trees are alkaline). Denitrification (NO; reduction) and

so;- reduction induced by decomposition of organic matter

(oxidation) cause an increase in ANC (Schindler et al. 1986).
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Sedi'ments in a water-sediment system are usually highly reducing

environments. Beaver dams trap sediments and add organic matter to

waters, thus providing more sites for microbial colonization which

create reducing environments for NO; and SO42- (Driscoll et

al., in press; Francis et al. 1985). Beaver activity also floods soils

and may result in humic acid inputs (Salyer 1935, Adams 1953, Call

1966, Naiman et al. 1986). Watershed variables, such as the beaver

activity index, the percentage of watershed disturbed, and the

percentage of watershed in a wetland type, were developed to capture

these watershed attributes.

X.! The results of this study need to be interpreted in light of the

sources of data and statistical methods. The AWDB data are

observational (not collected under statistically designed conditions to

test specific hypotheses of interest for this study). Associations

between factors can be determined, but cause and effect relationships

cannot be proven.
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2. ADIRONDACK WATERSHED DATA BASE

i

-i 2.1 WATERSHED SELECTION

The subset of watersheds selected for this study includes 463

headwater lake systems within the Adirondack Ecological Zone (AEZ)

(Fig. 1). The development of the (AWDB) including lake selection, data

sources, and computational algorithms, is described in detail in Rosen

et al. (1986). Headwater lake systems consist of a single headwater

lake and its watershed, in contrast with lakes that are fed by wetlands

or by streams draining other lakes (the latter are considered to be

complex lake systems). The identification of watershed characteristics

that influence lake chemistry should be easier for headwater lakes than

for nonheadwater lakes because a headwater lake is only affected by

processes in its immediate watershed. The AEZ, as defined by the

-300-m elevation contour surrounding the Adirondack Park, contains

2759 lakes (Colquhoun et al. 1984). The selection of lakes was

restricted to an area having wetland maps (-63X of the AEZ).

Watershed boundaries were outlined using 1:62,500 or 1:24,000 scale

United States Geological Survey (USGS) topographic maps with the aid of

1:20,000 aerial photographs (Gruendling et al. 1985). This process

resulted in the majority of headwater lakes in the AEZ being included

in the AWOB. However, some headwater lakes were excluded from this

study for one of the following potentially confounding reasons:

lack of a pond number assigned by the New York State Department of

Environmental Conservation (NYDEC), man-made lakes (reservoirs,

quarries, tailings lakes, etc.), lakes adjacent to roads or railroad

I embankments (potential changes in hydrologic flow), lakes with



i

c

Fig. 1. Watershed boundaries for 463 selected headwater watersheds in
Adirondack region.
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significant size changes caused by beavers (as seen in aerial photos),

and lakes in flat areas with watershed boundaries that were difficult

to define.

Researchers have suggested that small, high-elevation lakes are

most susceptible to acidification from acidic deposition. Schofield

(1976b) defined lakes above 610 m as high-e1 evation lakes in the

Adirondack region. Colquhoun et al. (1984) also refer to high-elevation

lakes as those above 610 m and define small lakes as those with an area

~40 ha. The 463 AWDB headwater lakes are generally smaller and occur

at higher elevations than the average lake within AEZ. The average

size of the 2759 lakes in AEZ is 41 ha; the AWDB lakes average 18 ha

with a median lake size of 10 ha. The average elevation of lakes in

the Adirondacks is 499 m; the AWDB lakes average 587 m. Thus, the AWDB

headwater lakes, selected so that watershed influences would not be

confounded by upstream lake processes, are a subset of lakes atypical

of all lakes in the AEZ.

2.2 VARIABLES

Lake and watershed attributes thought to influence lake

acidification were compiled from a variety of sources (Table 1) into

AWDB for analysis. Attributes include lake morphology, water chemistry,

health of fish populations, bedrock type, soils, hydrology, vegetation,

wetlands, beaver activity, fire and logging disturbances, land use,

climate, and atmospheric deposition (Table 2). AWDB includes data

sources, data manipulations, and data base characteristics and is

documented by Rosen et al. (1986). Watershed data were compiled

primarily from extant sources, such as maps and aerial photographs.
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.
Table 1. Data sources used to compile

the Adirondack Watershed Data Base

Data type Source Compiled bya

Morphology

Physiography DMA TOPOCOM digital representation of

Bedrock

Soils

Land cover

Wetlands

Cabins

Fire, logging

i
Beavers

Deposition

Land use

USGS topographic maps (1:62,500 to
1:24,000), NYDEC records, aerial photos
(1:20,000, 1968, B/W)

USGS 1:250,000  topographic maps

1982 geologic mapb

1974 SCS Mesoscale maps, SCS SOILS-5,
geoecology chemistry

1978 Landsat imagery

1982 wetland map

1978-1983 aerial photos

1916 NY state map (1:125,720)
of wildfires and timber harvesting

1978-1981 aerial photos (1:24,000)

1951-1980 Precipitation norms
1980-1982 Deposition monitoring

APA Park plan

Water chemistry FIN-assembled from several sources

Fish status FIN-assembled from several sources

SUNY/P

ORNL

ORNL

APA/ORNL

APA/ORNL

SUNY/P

SUNY/P

SUNY/P

SUNY/P

ORNL

APA

NCSU

NCSU

aSUNY/P - State University of New York at Plattsburgh (Gruendling
et al. 1985); ORNL - Oak Ridge National Laboratory; APA - Adirondack
Park Agency (R. Curran, personal communication); NCSU - North Carolina
State University (Baker et al. 1984).

bS. A. Norton et al. 1982; National Atmospheric Deposition
Program and Association of State Agricultural Experiment Stations of
the North Central Region n.d.
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Table 2. Variable  names for watershed  attributes
and their units of measure

Variable  name
for watershed
attributes

Watershed
attributes

Units of
measure

Morphologic  and Physiographic

LAKE-A Lake area
WTRSHD-R Watershed  to lake area ratio
DRAIN-A Watershed  area
LAKE-DEV Lake development  ratioa
LAKE-E Lake elevation

ASPECT-S
ASPECT-N
LAKE-V

Southern  aspect
Northern  aspect
Lake volume

Hydrologic

RUNOFF
HYDTYPl
HYDTYP2
HYDTYP3

Annual runoff
Seepage lake (no inlets or outlets)
Spring lake (outlets, no inlets)
Drainage  lake (both  inlets and outlets)

Atmospheric

PPT
H-WET
N03-WET
S04-WET
SO4-NO3

Average  annual precipitation
Average  annual hydrogen  wet deposition
Average  annual nitrate  wet deposition
Average  annual sulfate wet deposition
Average  annual mined sulfate and

H-CONC
N03-CONC
SOS-CONC

nitrate wet deposition
Average  annual hydrogen  wet concentration
Average  annual nitrate  wet concentration
Average  annual sulfate wet concentration

Physical Soil Type

RELIEF-R

STONEY-P
ROCK-P
HYDRO-A
HYDRO-B
HYDRO-C
HYDRO-D
STEEPM-P
STEEPV-P

Relief lmaximum elevation-lake  elevation)
to square root (watershed area)  ratio

Stoney soils
Rock outcrops
High infiltration  rate
Moderate  infiltration  rate
Slow infiltration  rate
Very slow infiltration  rate
Moderately  steep soils
Very steep soils

ha

ha

m above mean
sea level

% watershed  area
% watershed  area
106*m3

cm

W/L
W/L
W/L

91 watershed  area
% watershed  area
X watershed  area
% watershed  area
% watershed  area
% watershed  area
% watershed  area
% watershed  area

c

-*  L
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P
Table 2. (continued)

Variable  name
for watershed
attributes

Watershed
attributes

Units of
measure

Physical Soil Type (continued)

SHL2 B P
SHL2-P-P
SHL2R-P
SHLl-B-P
SHLl-P-P
SHLl-R-P
SHLl-Z-P
SHLP-Z-P
OPTH-B-U
OPTH-P-U
OPTH-R-U--

Geology

ROCK12-P
ROCKl-P
ROCK2-P
ROCK3-P
ROCK4-P

Depth to bedrock  2100 cm
Depth to low-permeability  horizon 5100 cm
Depth to root restrictive  zone 1100 cm
Depth to bedrock 550 cm
Depth to low-permeability  horizon 550 an
Depth to root 550 cm
Shallow  soils <SO cm
Shallow  soils 5100 cm
Mean depth to bedrock  - upper
Mean depth to low permeability  - upper
Mean depth to root restrictive  zone - upper

Chemical Soil Type

Medium  to no acid-neutralizing  capacity
Low to no acid-neutralizing  capacity
Medium  to low acid-neutralizing  capacity
High to medium  acid-neutralizing  capacity
Infinite  acid-neutralizing  capacity

ACID-P Extractable  acidity  >20 meq/lOO  g
BSA L P
SSA-M-P

Base saturation  520%
Base saturation  (NH4OAC)  20-60%

BSC-L-P
BSC-M-P

Base saturation  (sum)  520%
Base saturation  (sum) 20-60%

CECij-P Cation exchange  capacity  520 meq/lOO  g

CEC L P
OMiP
-icvc,P
PHC L P
fwc~vi-P
ACID-EX
CEC

" ORG-MAT

(Sum of cations1
Cation exchange  capacity  510 meq/lOO  g
Organic  matter  content ?2%
Soil pH (H20)  54.5
Soil pH (CaC12)  55.0
Soil pH (CaC12)  54.5
Mean extractable  acidity
Mean cation exchange  capacity
Mean organic  matter  content

% watershed  area
% watershed  area
91 watershed  area
41 watershed  area
% watershed  area
% watershed  area
% watershed  area
% watershed  area
cm
cm
cm

% watershed  area
% watershed  area
% watershed  area
% watershed  area
% watershed  area

% watershed  area
% watershed  area
% watershed  area
% watershed  area
% watershed  area
% watershed  area

% watershed  area
% watershed  area
96 watershed  area
% watershed  area
% watershed  area
meq/lOG  g
meq/lOO  g
%
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Table 2. (continued)

Variable  name
for watershed
attributes

Watershed Units of
attributes measure

.

Forest Cover

CONFR2-P
HROWO2-P
NONFR2-P
flIXEO2-P

Wetland  Type

WTLNO-PP
VACIO-PP
NACIO-PP
NACIO-PP
OTHER-PP
WTLNOJ'W
VACIO-PW
NACIO-PW
HACIO~PW
OTHER-PW
WTLNO-PL
VACID-PL
NACIO-PL
MACIO-PL
OTHER-PL

Disturbance

OISTRB-P
BVRINOEX
CABN78-R
BURNED-P
OENUM-P
LOGSH-P

Area in coniferous  forest
Area in deciduous  forest
Area not in forest
Area in mixed forest

All wetland  types
Very acid wetland  type
Nonacid  wetland  type
Moderately  acid wetland  type
Other wetland  type
All wetland  types
Very acid wetland  type
Nonacid  wetland  type
Moderately  acid wetland  type
Other wetland  type
All wetland  types
Very acid wetland  type
Nonacid  wetland  type
Moderately  acid wetland  type
Other wetland  type

Sum of logged,  burned, denuded area
Beaver activity  index
Number of 1978 cabins to lake area ratio
Burned area
Denuded  area
Logged softwood  and hardwood  area

% watershed  area
% watershed  area
% watershed  area
% watershed  area

X lake perimeter
% lake perimeter
% lake perimeter
% lake perimeter
% lake perimeter
% watershed  area
% watershed  area
% watershed  area
% watershed  area c
$ watershed  area
% lake area
!6 lake area .-
% lake  area
% lake area
% lake area

% watershed  area

% watershed  area
X watershed  area
2, watershed  area

aThe perimeter  of the lake divided  by the perimeter  of a circle with the
same area as that of the lake (Wetzel,  R. G. 1975. Limnology. W. 6. Sanders

Co., Philadelphia,  PA.).



13

Water chemistry and fish data were obtained from the Fish Information

Network (FIN) data base (Baker et al. 1984) and from the Eastern Lake

Survey-Phase I (Linthurst et al. 1986). Chemistry data are available

for about one-half of the AWDB lakes. Every attempt was made to use

watershed data from the same time period as the FIN water chemistry

data (1974-1983).

Atmospheric deposition has been suggested as a principal candidate

in the acidification of Adirondack lakes (Altshuller and Linthurst

f

1984). Annual average wet deposition rates for sulfate, nitrate, and

total hydrogen ion were calculated for watersheds based on the years

1980-1982 (Rosen et al. 1986). The concentration of ions in

precipitation (interpolated between monitoring sites) was multiplied by

precipitation amounts (also interpolated between the more numerous

weather stations) to calculate total wet deposition rates. The patterns

for hydrogen ions (Figs. 2 and 3), nitrate (Fig. 4), and sulfate are

all similar, showing higher levels in the western Adirondacks.

Deciduous vegetation dominated the landscape (Fig. 5a). The

majority of watersheds contained wetlands, and based on either

percentage of wetland area in the watershed or percentage of wetlands

in contact with the shoreline, the majority of wetlands were classified

as very acid, a condition thought to produce organic acids (Figs. 5b

and 5~). The majority of watersheds have slow infiltration and very

steep slopes (Fig. 6). Most watersheds are underlain by bedrock with

low to moderate buffering capacity (Fig. 6). Eighty-five percent of the

lakes do not have cabins near them, and only one-half of the lakes have

beaver activity (Fig. 7). Based on the Adirondack land management plan,
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Fig. 2. Contours of annual H-t concentration in pr&ipitation
(overlays inside back cover).
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Fig. 3. Contours of annual H+ wet deposition rates
(overlays inside back cover).
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1980- 1982 Average Concentration
Nitrate

Fig. 4. Contours of annual N03- concentration in precipi
(overlays inside back cover).
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Fig. 5. Frequency dist??butions of vegetation for 463 watersheds in
Adirondack region: (a) dominant forest cover type, (b) wetland
type as percentage of watershed, and (c) wetland type as
percentage of lake perimeter.
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(b)

Fig. 6.
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Frequency distributions of soil and geologic attributes for
463 watersheds in Adirondack region: (a) percentage of
watershed with steep slopes, (b) dominant hydrologic type,
and (c) bedrock buffering capacity.
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Frequency distributions of watershed disturbance for
463 watersheds in Adirondack region: (a) beaver activity
index, (b) vegetation disturbance, and (c) cabins.
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most watersheds are located in areas designated as primitive unmanaged

forest or in areas with some type of resource management. As a final

example of the distribution of watershed characteristics, almost

one-half of the watersheds had some sort of historic logging, wildfire,

or other disturbance, based on a 1916 map of the region (Fig. 7).

2.3 DATA UNCERTAINTY

Watershed attributes were compiled from a variety of different

source materials, including remote imagery, aerial photographs, maps of

various scale, and sparse regional monitoring networks (Table 1).

Uncertainty of the data relates to the coarse and different spatial

scale of some source materials, interpretation errors (e.g., boundary

delineation and remote-sensed data, and association of mapping units

with parameters used in the analysis. Because of the small size of

watersheds and the small scale of some source maps, individual

watersheds may be assigned incorrect attributes. For example,

land-cover data involved the unsupervised classification of Landsat

scenes. Four Landsat scenes with four different dates were required to

cover the Adirondack region and to obtain cloud-free scenes, resulting

in pattern changes at boundaries between adjacent scenes. Based on a

working knowledge of the park, the Adirondack Park Agency has verified

the overall correctness of the data (Curran, personal communication).

The regional coverage and large number of watersheds should minimize

the effects of individual watershed misclassification.

Soil mapping units were assigned chemical properties by merging

soil chemistry data with each soil series identified in a mapping

unit. Occasionally, data were not available for a soil series, or

,

c
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mapping units (A and E soil horizons) included a "miscellaneous"

category. In all cases, the soil chemistry values for mapping units

were derived by prorating the available data for soil series according

to their relative abundance within a mapping unit (Turner et al.

1986aj. The uncertainty or variability of the soil chemistry data is

unknown because often only single measurements on typical soil series

profiles are available. These problems are being addressed by

Oak Ridge National Laboratory (ORNL) staff in collaboration with the

National Soils Laboratory of the Soil Conservation Service (SCS) and

also by the Environmental Protection Agency soils survey projects.

The wet deposition data contain uncertainty related to

interpolating from monitoring stations to the individual watersheds.

Deposition contours were derived from the nonuniformly distributed

monitoring sites by generating a Thiessen polygon network between the

sites, interpolating a regularly spaced grid, and calculating contours

(Rosen et al. 1986). This rigorous mathematical approach defines a

smooth deposition between the irregularly spaced monitoring sites;

however, it does not explicitly account for possible orographic factors.

Water chemistry data within FIN were collected by many

investigators for different purposes, using a variety of analytical

techniques. As a result, the data are often not ideally suited for

use in statistical analyses. Two pervasive problems are the

representativeness of the sample and variations in data quality. The

issues discussed above are common to environmental data for regional

studies. Despite these imperfections, the results of this study show

that analysis of the existing data base can contribute significantly to
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understanding the acidity status of lakes in the Adirondacks and the I ,
relationships between watershed attributes and lake chemistry.

The National Surface Water Survey (NSWS) measured pH, ANC, color,

dissolved organic carbon, and other parameters in the fall of 1984 for

46 of the Adirondack headwater lakes considered in this study (Linthurst

et al. 1986). Although measurements on each lake were made only once

during the autumn overturn, extensive precautions were taken to

minimize any variability associated with sample collection and

handling, laboratory bias in analysis, and data entry (-30% of data

were collected for quality assurance checking). Lakes were selected

to be regionally representative by using a stratified systematic L

sampling scheme based on alkalinity and geographic region. The overall b

uncertainty of NSWS chemistry values should be less than that for FIN

chemistry data. For the 46 headwater lakes in both FIN and NSWS, the

pH and ANC values are very similar.

2.4 DATA SUBSETS

The FIN lakes were divided into separate data sets for model

calibration (parameter estimation) and several types of verification.

A variable designated "SUBSET" was assigned a value from 1 to 9 for

each lake, identifying the use to be made of that lake in the model

development process (Table 3). One lake lacked a predictor variable

and was excluded from the analysis (SUBSET=l). The headwater lakes

that were also included in Phase I of NSWS were set aside for use in a

secondary verification (SUBSET=2). Two hundred lakes lacking both pH

and ANC measurements were assigned values of SUBSET=3; these represented

lakes for which both pH and ANC needed to be predicted. The remaining

c

i.

b”
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Table 3. Subsetting codes for 463 headwater lakes in Adirondacks

Number Subset
Condition of lakes codea

Lacks one or more predictor variables 1 1

Exclusive of (1) (i.e., has all predictor
variables) and also included in NSWS Phase I
(secondary verification)

Exclusive of (1) and (2) and lacks both pH and ANC

46 2

200 3

Exclusive of (1) and (2), and has pH but not ANC
one-third reserved for verification 10 4
two-thirds available for calibration 21 7

Exclusive of (1) and (2), and has both pH and ANC
one-third for verification 57 5
two-thirds for calibration 114 8

r

Exclusive of (1) and (2), and has ANC but not pH
one-third for verification 4 6
two-thirds for calibration 10 9

Total 463

aDefinition  of calibration subsets and FIN and NSWS verification
subsets:

FIN calibration subsets

pH: Codes 7 & 8
ANC : Codes 8 & 9

FIN verification subsets

0 = 135)
(n = 124)

pH: Codes 4 & 5
ANC: Codes 5 & 6

NSWS secondary verification subset
(i.e., chemistry data from NSWS)

pH: Code 2
ANC : Code 2

(n = 67)
0 = 61)

0 = 46)
0 = 46)

Lakes without chemistry data

pH: Codes 1, 3, 6, & 9 0 = 215)
ANC : Codes 1, 3, 4, & 7 (n = 232)
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216 lakes formed the pool of lakes available either for model

calibration (specification) or for primary verification (testing) of

the fitted model. Two-thirds of these available lakes were randomly

selected for model calibration; the remaining one-third was reserved

for primary verification. The selection (Table 3) was done separate lY

for lakes having measurements of pH only (SUBSET=4 and 7), of both pH

and ANC (SUBSET=5 or 8), or of ANC only (SUBSET=6 or 9). To maintain

as much overlap as possible between the sets of lakes used for pH and

for ANC, each lake in subsets 5 or 8 (having measurements of both pH

and ANC) was assigned to either the calibration or the primary

verification subset for statistical analyses. An algorithm for drawing

an exact-size random sample without replacement was used (SAS 1983).

After a random number was assigned to each lake and lakes were sorted

e

by this random number, subsetting was done using the algorithm.

2.5 DATA BASE MANAGEMENT

AWDB consists of digital data (watershed boundaries, topography,

s, landcover, etc.) within a geographic information system (Durfeesoi 1

and the Geographic Data Systems Section 1986) and watershed/lake

attribute data (mean water chemistry, lake size, average slope, total wet

deposition, etc.) within a statistical data management system (Rosen

et al. 1986). The combined systems provide the capability to extract data

from maps, perform statistical analyses or run models, map attributes, and

display results of analyses. Watershed attributes were entered into an

SAS (1985) data base, and SAS was used for data management, statistical

analysis (SAS 1985), and display. The attribute data are available as

SAS-formatted data sets by request from R. 3. Olson (ORNL).
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3. STATISTICAL ANALYSES

This study used numerous statistical procedures [bivariate

analyses, multiple linear regression (MLR), and discriminant analysis]

to identify watershed attributes that might influence lake chemistry in

the Adirondacks. Before application of these procedures, several

steps, involving selection of variables from the complete AWDB,

transforming some variables, and creating subsets of the data for

specific analyses, were performed. Variables and their units used in

this study are listed in Table 2.

AWDB contains observational data (not collected under statistically

designed conditions to test specific hypotheses); therefore, very

little control over the representativeness of the data for variables of

interest existed. To verify the MLR and discriminant analyses,

duplicate analyses were performed using both a subset of the FIN

chemistry data and the set of lakes having independent chemistry data

from NSWS. Results from these analyses were quantitatively compared

with results from the principal analyses by using the calibration

subset.

3.1 ANALYSES INVOLVING SINGLE PREDICTOR VARIABLES

3.1.1 Methods

Analyses using single predictor variables included the

.
nonparametric Spearman rank correlations (nonparametric procedures are

E

based on ranks rather than actual observed values of the random

variables), the Kruskal-Wallis  test for more than two samples, and the

Wilcoxon two-sample test (Conover 1980). Spearman correlations were
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performed for pH and ANC with each of 84 watershed attributes for all

of the FIN data, the calibration subset of FIN, and the NSWS subset

(subsets defined in Sect. 3.2.1.1 and Table 3). Wilcoxon two-sample

tests were performed for data on forest cover and wetlands, and

Kruskal-Wallis tests were performed on beaver data. These tests were

used to evaluate hypotheses about individual watershed attributes that

might influence lake acidification.

The nonparametric tests compare the mean ranks of the dependent

variable in each class to determine if significant differences exist

among the classes. When the results of the Kruskal-Wallis test

indicated significant differences among the classes, a multiple

comparison was performed to determine which pairwise combinations of

the four classes differ significantly [i.e., which class showed a

higher or lower mean value when compared with the others (Conover

1980)]. Some parametric procedures were also used to substantiate

results of nonparametric procedures.

L

”
b

3.1.2 Results

In this section, hypotheses about the influence of individual

watershed characteristics on the chemistry of headwater lakes are

examined. To simplify discussion of the results, watershed attributes

are grouped into the following categories: morphology, physiography,

and hydrology; atmospheric input; soil; geology; vegetation; and

disturbances.

Spearman correlation results from the calibration and full FIN

subsets are presented in Table 4 for the relationship between pH and

ANC and the various watershed attributes. The a priori expected
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Table 4. Spearman correlations between mean (1974-1983)  surface water pH and ANC (ueq/L)
and watershed attributes for 463 headwater lakes in Adirondacks (FIN data)

pHb Ad Expected direction
of relationship

Variable Candfdatea All data Calibration data All data Calibration data (for candidate
name variable r P r P r P r P variables only)c

Horpholoaic and Phvsloeraphic

LAKE-Ad
WTRSHO Rd
DRAINd
LAKE-DEV
LAKE-E
ASPECT-S
ASPECT-N
LAKE-Ve

Hvdrolosic

RUNOFF

Atmospheric

PPT
H-WET
N03-WET
SO4-WET
SO4-NO3
H-CONC
N03JONC
S04-CONC

Physical Soil Type

RELIEF-R
STONEY-P
ROCK-P
HYORO-A
HYORO-B
HYORO-C
HYDRO-0
STEEPH-P
STEEPV-P
SHCP-B-P

Y 0.35
Y -0.02
Y 0.32
Y 0.06
Y -0.49
Y -0.01
N 0.06
N 0.31

Y -0.40

Y
Y
Y
Y
Y
Y
N
Y
Y
Y

-0.51 0.01 -0.45 <O.Ol
-0.56 SO.01 -0.53 <O.Ol
-0.55 50.01 -0.52 50.01
-0.52 50.01 -0.46 <O.Ol
-0.53 50.01 -0.49 50.01
-0.53 50.01 -0.53 <O.Ol
-0.56 SO.01 -0.57 SO.01
-0.55 50.01 -0.53 50.01

0.11 0.09 0.13 0.14
0.12 0.08 0.10 0.25
0.06 0.38 0.07 0.45
0.26 SO.01 0.23 50.01
0.24 50.01 0.29 LO.01

-0.14 0.03 -0.12 0.16
0.06 0.38 0.11 0.19

-0.26 SO.01 -0.21 0.02
0.07 0.28 0.05 0.55
-0.07 0.28 -0.05 0.60

50.01 0.27 50.01
0.78 0.04 0.64

<O.Ol 0.30 20.01
0.40 -0.05 0.57

50.01 -0.40 so.01
0.86 -0.01 0.87
0.37 0.05 0.58

SO.01 0.36 <O.Ol

SO.01 -0.42 so.01

0.20 LO.01 0.12 0.18 +
0.04 0.59 0.04 0.69 #
0.20 50.01 0.16 0.07 +
-0.06 0.41 -0.15 0.09 ?
-0:42 50.01 -0.31 50.01
-0:07 0.34 -0.03 0.72 ?
0.12 0.09 0.07 0.42
0.11 0.22 0.17 0.15

-0.44 <O.Ol -0.41 <O.Ol

-0.49 ~0.01 -0.45
-0.52 SO.01 -0.52
-0.51 50.01 -0.51
-0.50 <O.Ol -0.47
-0.50 50.01 -0.46
-0.54 50.01 -0.58
-0.57 LO.01 -0.61
-0.57 SO.01 -0.57

LO.01
SO.01
LO.01
LO.01
SO.01
50.01
SO.01
SO.01

0.19 SO.01 0.19 0.03
0.12 0.08 0.11 0.24
0.08 0.27 0.08 0.37
0.25 SO.01 0.25 50.01
0.23 SO.01 0.28 20.01
-0.15 0.03 -0.17 0.06
0.07 0.34 0.09 0.30
-0.28 SO.01 -0.21 0.02
0.06 0.39 0.04 0.67
-0.05 0.50 -0.03 0.71

either

+
+

?



Table 4. (continued)

,Hb Ad' Expected direction

Variable Candldatea All data Callbratlon data All data
of relationship

Calibration data (for candldate
name variable r P r P r P r P variables only)c

Physical Soil Tvpe (continued)

SHLZ-P-P
SHLZ-R-P
SHLl-B-P
SHLl-P-P
SHLlJi-P
SHLlJ-P
SHLZ-2-P
DPTH-B-U
DPTHPJJ
DPTH-R-U

Geolorry

ROCKlZ-P
ROCKl-P
ROCK2-P
ROCKJ-P
ROCK4-P

Chemical Soil TYDe

ACID-P
BSA-L-P
BSAJ-P
BSC-L-P
BSCJ-P
CECSJ-P
CEC-L-P
On-H-P
PH-VL-P
PHC-L-P
PHC-VL-P
ACID-EX
CEC
ORG-MAT

Y
Y
N

fl
N
N
Y
Y
Y

Y
N

f:
N

Y
Y
N
Y
N
Y
N
Y
Y
N
Y
Y
Y
Y

-0.27 SO.01 -0.26 50.01
-0.20 SO.01 -0.17 0.05
-0.07 0.28 -0.05 0.60
-0.08 0.21 -0.06 0.48
-0.09 0.15 -0.07 0.40
-0.08 0.21 -0.06 0.48
-0.21 <a.01 -0.26 50.01
0.06 0.36 0.04 0.67
0.15 0.02 0.12 0.16
0.15 0.02 0.13 0.13

-0.18 50.01 -0.14 0.10
0.16 SO.01 0.16 0.07

-0.23 50.01 -0.20 0.02
0.18 50.01 0.19 0.03
0.08 0.21 0.02 0.78

-0.20 so.01 -0.14 0.10
0.17 50.01 0.11 0.22
-0.09 0.18 0.01 0.93
-0.04 0.56 -0.06 0.52
0.12 0.07 0,18 0.04
0.34 SO.01 0.28 SO.01
0.17 50.01 0.23 SO.01

-0.22 SO.01 -0.18 0.03
-0.16 0.02 -0.12 0.16
0.00 1.00 -0.01 0.88
0.19 CO.01 0.14 0.10
-0.21 SO.01 -0.18 0.04
-0.18 0.01 -0.14 0.10
-0.23 50.01 -0.18 0.04

-0.28 SO.01 -0.28
-0.17 <O.Ol -0.17
-0.05 0.50 -0.03
-0.05 0.51 -0.02
-0.06 0.37 -0.05
-0.05 0.51 -0.02
-0.28 SO.01 -0.28
0.03 0.63 0.02
0.11 0.11 0.10
0.13 0.07 0.12

SO.01 ?
0.06 ?
0.71
0.79
0.57
0.79

SO.01
0.80
0.28
0.19

-0.22 LO.01
0.15 0.04

-0.25 SO.01
0.20 SO.01
0.14 0.04

-0.15 0.10
0.18 0.04

-0.23 <O.Ol
0.20 0.03
0.04 0.63

-0.16 0.02 -0.13 0.16
0.14 0.05 0.09 0.32
-0.07 0.31 0.01 0.89
-0.05 0.48 -0.05 0.54
0.10 0.14 0.14 0.12
0.30 CO.01 0.25 LO.01
0.15 0.03 0.18 0.05

-0.22 CO.01 -0.22 SO.01
-0.13 0.07 -0.11 0.23
-0.02 0.80 -0.02 0.79
0.15 0.04 0.12 0.11
-0.19 <O.Ol -0.18 0.05
-0.14 0.04 -0.12 0.18
-0.16 0.02 -0.14 0.13

:
?

?
?

?
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Table 4. (continued)

cd’ ANCb Expected directlon
of relationship

Variable Candidatea All data Calibration data All data Calibration data (for candidate
name variable r P r P r P r P variables only)c

Forest Cover

CONFRZ-P
HRDWDZ-P
NONFR2-Pd
HIXEDL-P

Wetland TYDe

WTLND-PP
VACID-PP
NACID-PP
MACID-PP
;;;:;-P&

y;3$

BACID-PW
OTHERIPW
WTLND-PLd
VACID-PLd
NACID-PLd
MACID-PL
OTHER-PL

Disturbance

DISTRB-P
8VRINDEXd
CABNlB-R
BURNED-P
DENUDE-P
LOG-SH-P

Y

y’
N

Y
Y
Y
N

i
Y
Y
N
N

::
Y

N”

-0.42 50.01
0.25 SO.01
0.29 SO.01
0.15 0.02

-0.20 SO.01 -0.12 0.11 -0.11 0.02 -0.11 0.21
-0.15 0.03 -0.19 0.03 -0.15 0.03 -0.21 0.02
-0.03 0.69 0.11 0.05 -0.03 0.62 0.12 0.18
0.21 50.01 0.22 SO.01 0.19 50.01 0.18 0.04
0.12 0.07 0.10 0.25 0.01 0.32 0.06 0.51
-0.13 0.04 -0.04 0.65 -0.10 0.15 -0.01 0.91
-0.12 0.08 -0.11 0.21 -0.01 0.28 -0.06 0.48
0.03 0.67 0.11 0.05 0.03 0.69 0.16 0.08
0.20 <O.Ol 0.21 ~0.01 0.15 0.04 0.21 0.02
0.14 0.03 0.16 0.06 0.01 0.29 0.01 0.44
-0.14 0.04 -0.02 0.81 -0.08 0.23 0.00 1.00
-0.11 0.11 -0.10 0.26 -0.05 0.51 -0.06 0.54
0.02 0.11 0.17 0.05 0.05 0.47 0.11 0.01
0.18 <O.Ol 0.28 0.01 0.13 0.05 0.21 0.02
0.13 0.05 0.16 0.01 0.06 0.35 0.01 0.42

0.13 0.04 0.06 0.41 0.10 0.14
-0.29 50.01 -0.21 0.02 -0.21 50.01
0.23 SO.01 0.11 0.05 0.16 0.02
0.16 SO.01 0.08 0.35 0.14 0.05
0.04 0.59 -0.01 0.94 0.00 0.98
0.13 0.05 0.16 0.06 0.12 0.08

-0.41 SO.01
0.26 0.01
0.26 so.01
0.13 0.14

-0.39 SO.01 -0.34 50.01
0.11 50.01 0.11 0.06
0.24 SO.01 0.20 0.03
0.20 50.01 0.11 0.06

e0.01 0.91
-0.24 SO.01
0.12 0.11
0.01 0.89
-0.06 0.53
0.10 0.27

+
+
either

$ither

either

?
either

either

?
either

either

?

+
either
+
+
+
+

"Candidate variables were 51 variables selected as input variables to the HLR analysis.
Y means yes this variable was included,  and N means no it was not.

bUnless otherwise indicated: for pH, n = 234 for all data and n = 135 for the calibration data; for ANC, n = 208 for
all data and n = 124 for the calibration data.

cA priori expectations are provided to aid the reader unfamiliar with hypotheses about lake acidification in the
literature. *Either*  means arguments could be made to support both positive or negative correlations; *?" means we did not
have an expectation.

dThe variable is log,, transformed for all statistical analyses.
en = 136 for pH. and n = 124 for ANC.
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direction (positive or negative) of the relationship between many of

the watershed attributes and lake pH and ANC are also listed in this

table. For comparison, the correlations for the same watershed

attributes using the NSWS subset of 46 lakes are given in Table 4.

3.1.2.1 Watershed and Lake Morphology, Physiography, and Hydrology

Generally, physiography affects the amount of water and

accompanying acids that move along various hydrologic pathways to

the streams and lakes. Lakes at higher elevations receive more

precipitation and acidic deposition as a result of orographic effects,

and as expected, lake elevation (LAKE-E) was strongly correlated

(inversely) with lake ANC (r = -0.42, p 5 0.01) and with lake

pH (r = -0.49, p 5 0.01) for all headwater lakes with chemistry data.

These values were very close to the correlation coefficients for

runoff, precipitation, and wet deposition. Watershed drainage area

(DRAIN-A) was positively correlated with lake ANC (r = 0.20, p ( 0.01)

and lake pH (r = 0.32, p < 0.01). An explanation for this association

may be that large watersheds with longer hydrologic pathways for water

flowing into the lakes have a greater contact time between water and

soil and, thus, a greater capacity to neutralize atmospherically

deposited acids. However, the ratio of watershed to lake area

(WTRSHD-R) was not significantly correlated to lake pH or ANC.

In-lake processes, such as sulfate reduction and primary

productivity, can increase lake ANC and PH. Processes occurring in the

littoral zone may generate alkalinity or net acidity, depending on the

vegetation type. The relationships between lake chemistry and several

characteristics that may be surrogates for in-lake processes of

c

,
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Adirondack headwater lakes were examined: lake volume type (LAKE-V),

lake area (LAKE-A), and lake development ratio (LAKE-DEV) (Tables 4

and 5).

The influence of in-lake processes on lake pH and ANC does not

appear to be strong for the Adirondack headwater lakes analyzed below.

A significant positive correlation existed between lake area and lake

chemistry (Tables 4 and 5). The positive correlation between pH and

lake volume was expected because a larger lake volume may reflect a

slower flushing rate and, thus, a greater residence time of water,

fostering internal production of alkalinity. The absence of a

significant correlation between ANC and lake volume, however, indicates

the need for caution in interpreting the pH results. The lake

development ratio, defined as the perimeter of the lake divided by the
I i

perimeter of a circle with the same area as that of the lake (Hutchinson

1957), did not have significant correlations with lake chemistry.

The dominant slope aspect of each watershed might be related to

surface water chemistry because of potentially greater wet and dry

deposition on slopes facing the prevailing wind direction or perhaps

because of differences in hydrology, snowmelt, soils, and vegetation

types on slopes with different aspects. Significant correlations

between dominant watershed aspect (ASPECT-N and ASPECTS) and lake

chemistry were not found.

3.1.2.2 Atmospheric Inputs

The patterns of atmospheric inputs expressed as wet deposition
e

rate and concentration of hydrogen ion (Hf) (Figs. 2 and 3), nitrate

anion (NO;) (Fig. 4), and sulfate (S042-) anion are similar
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Table 5. Spearman correlations between National Surface Water Survey
measurements of pH and ANC (veq/L) and watershed attributes

for 46 headwater lakes in Adirondacks (NSWS data)

Variable - - pHa
name r P-

ANCa
r P

Morphologic and Physiographic

LAKE-A
WTRSHD-R
DRAIN-A
LAKE-DEV
LAKE-E
ASPECT-S
ASPECT N
LAKE-@

0.38 LO.01
-0.02 0.88
0.32 0.03
0.00 0.99

-0.67 SO.01
-0.07 0.62
0.09 0.56
0.20 0.30

0.39
-0.03
0.33
0.01

-0.66
-0.06
0.08
0.19

<O.Ol
0.85
0.02
0.97

50.01
0.71
0.61
0.31

Hydrologic

RUNOFF -0.65 LO.01 -0.62 <O.Ol

Atmospheric

PPT
H-WET
N03-WET
S04-WET
S04-NO3
H-CONC
N03-CONC
SO4-CONC

Physical Soil Type

RELIEF-R
STONEY-P
ROCK-P
HYDRO-A
HYDRO-B
HYDRO-C
HYDRO-D
STEEPM-P
STEEPV-P
SHL2-B-P
SHL2-P-P
SHL2 R P
SHLl:B:P
SHLl-P-P

-0.66
-0.67
-0.67
-0.67
-0.69
-0.63
-0.60
-0.62

0.23 0.12
0.15 0.32
0.00 1.00
0.34 0.02
0.33 0.02

-0.12 0.44
-0.03 0.83
-0.17 0.27
0.21 0.17

-0.11 0.45
-0.27 0.07
-0.21 0.16
-0.11 0.45
-0.13 0.38

<O.Ol
_<O.Ol
LO.01
to.01
SO.01
SO.01
SO.01
LO.01

-0.64
-0.65
-0.65
-0.66
-0.67
-0.62
-0.59
-0.62

0.24
0.15
0.01
0.36
0.33
-0.13
-0.03
-0.17
0.22

-0.12
-0.28
-0.20
-0.12
-0.13

Y

SO.01
SO.01
SO.01
yo.01
SO.01
50.01
LO.01
CO.01

0.11
0.32
0.92

LO.01
0.03
0.39
0.84
0.27
0.13
0.43 e

0.06
0.18 I
0..43
0.39
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Table 5. (continued)

Variable pHa ANCa
Name r P r P

Phvsical Soil Tape (continued)

SHLl-R-P -0.14 0.35 -0.14 0.36
SHLl-Z-P -0.13 0.38 -0.13 0.39
SHL2-Z-P -0.27 0.07 -0.28 0.06
DPTH-B-U 0.12 0.44 0.12 0.43
DPTH-P-U 0.20 0.17 0.20 0.18
DPTH-R-U 0.16 0.28 0.16 0.30

Geology

ROCKlZ-P -0.26 0.09 -0.21 0.15
ROCKl-P 0.24 0.11 0.26 0.08
ROCK2-P -0.34 0.02 -0.33 0.02
ROCK3-P 0.13 0.39 0.06 0.68
ROCK4-P 0.23 0.12 0.24 0.11

Chemical Soil Type

ACID-P
BSA-L-P
BSA-M-P
BSC-L-P
BSC-M-P
CECS-L-P
CEC-L-P
OM-H-P
PH-VL-P
PHC-L-P
PHC-VL-P
ACID-EX
CEC
ORG-MAT

Forest Cover

CONFR2-P -0.39 <O.Ol
HRDWD2-P 0.24 0.11
NONFR2-P 0.17 0.25
MIXED2-P 0.18 0.23

Wetland Type

WTLND-PP
VACID-PP
NACID-PP

-0.24 0.11 -0.26 0.09
0.11 0.47 0.09 0.57

-0.00 0.99 -0.01 0.97
-0.01 0.93 -0.04 0.81
-0.02 0.89 -0.03 0.84
0.26 0.08 0.29 0.05
0.12 0.41 0.14 0.35
-0.16 0.28 -0.17 0.26
-0.19 0.21 -0.21 0.16
0.02 0.91 -0.01 0.97
0.13 0.39 0.10 0.49

-0.23 0.12 -0.25 0.09
-0.16 0.29 -0.16 0.28
-0.24 0.10 -0.24 0.10

-0.40 KO.01 -0.40
-0.23 -0.12

<,O.Ol
-0.24 0.10

-0.36 LO.01 -0.37 SO.01

-0.40 SO.01
0.27 0.07
0.18 0.24
0.15 0.32
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Table 5. (continued)
c

j Variable
I name

pHa ANCa t
r P r P

Wetland Type (continued)

MACID-PP 0.01 0.95 0.04 0.79
OTHER-PP 0.13 0.37 0.13 0.39
WTLND-PW -0.33 0.03 -0.32 0.03
VACID-PW -0.27 0.07 -0.27 0.07
NACID-PW -0.15 0.32 -0.14 0.36
MACID-PW 0.04 0.81 0.06 0.70
OTHER-PW -0.02 0.90 -0.00 0.98
WTLND-PL -0.29 0.05 -0.27 0.07
VACID-PL -0.26 0.08 -0.26 0.08
NACID-PL -0.15 0.31 -0.14 0.34
MACID-PL 0.01 0.97 0.03 0.85
OTHER-PL 0.01 0.97 0.02 0.90

Disturbance

DISTRB-P 0.24 0.10 0.28 0.06
BVRINDEX -0.36 ~.O.Ol -0.35 0.02
CABN78-R 0.11 0.48 0.11 0.46
BURNED-P 0.32 0.03 0.32 0.03
DENUDE-P 0.06 0.68 0.09 0.56
LOGSH-P 0.22 0.14 0.22 0.14

an
bn

= 46 unless otherwise indicated.
= 29 for LAKE-V.

I

i
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i i for the Adirondack region. Spearman correlation coefficients between

! the mean annual concentration or wet deposition of, on the one hand,

1
I

i
H+, N03-, S042-, and S042- + N03- and, on the other hand, lake

chemistry are also very similar, ranging from -0.50 to -0.57 (p ( 0.01)
!

(Tables 4 and 5). Correlation coefficients for precipitation with
1

lake chemistry are slightly lower, -0.49 to -0.51 (p 5 0.01). All of

the atmospheric input variables are very highly intercorrelated

(Sect. 3.2.1.2). Atmospheric input variables had the highest

correlations with water chemistry that were found in this study, a

finding consistent with the hypothesis that the chemistry of the

atmospheric input to individual watersheds is important in regulating

lake pH and ANC. Unfortunately, data for dry deposition are not

available. The variation in wet plus dry acidic inputs might account

for a larger proportion of variation in lake chemistry than wet

deposition alone and might help clarify the importance of atmospheric

deposition in lake acidification.

3.1.2.3 Watershed Soils

Several physical and chemical soil characteristics were

investigated to test for relationships between watershed soil properties

and lake chemistry. The soil hydrologic group, a Soil Conservation

Service interpretation assigned to each soil series to designate the

potential of that series to generate surface runoff, is derived from

soil properties such as permeability, slope, and depth to bedrock or to

impermeable soil horizon. Lakes in watersheds with large areas having

low runoff potential [high infiltration potential (hydrologic groups A

and B)] would be expected to have relatively high ANC and pH as a



36

result of acid neutralization as drainage waters follow relatively deep

subsurface pathways to streams and lakes. Conversely, lakes in

watersheds with large areas of soils with high runoff potential

(hydrologic groups C and 0) would be expected to have low ANC and pH as

a result of direct, rapid runoff of precipitation into the surface

waters. This was the pattern observed (Tables 4 and 5). Correlation

coefficients for HYDRO-A and HYDRO-B were significant and ranged from

0.23 to 0.36; coefficients for HYDRO-C and HYDRO-D were around -0.14

and often were not significant. Thus, the soil hydrologic group

appears, from this limited data set, to be a reasonable indicator of

watershed hydrologic behavior and neutralizing capacity.

Slope categories (as assigned to soil series by the Soil

Conservation Service) from the soils data set showed the expected

correlations: steep slopes were negatively correlated with pH and ANC.

x

1
The percentage of a watershed with slopes >15% was inversely correlated

with lake .ANC (r = -0.28, p ( 0.01) and lake pH (r = -0.26, p 5 0.01).

Soil stoniness and percent of the watershed in rock outcrop were

not significantly correlated with lake ANC or pH. Significant negative

correlations (r = -0.17 to -0.28, p 5 0.01) were obtained for lake

chemistry and depth to a low-permeability horizon (SHL2-P-P) and depth

to a root-restrictive zone (SHL2-R-P). Correlations with depth to

bedrock were not significant (Tables 4 and 5). These last three

variables should have indicated the extent of shallow soils.

Soil chemical characteristics investigated included pH, base

saturation, cation exchange capacity, exchangeable bases, and percent

of organic matter. Significant inverse correlations were found between
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headwater lake pH and ANC and the percentage of watersheds having

soils with high extractable acidity (ACID-P and ACID-EX), high organic

matter content (OM-H-P and ORG-MAT), and a cation exchange capacity

~20 meq/lOO g (CECS-L-P). In other words, watersheds with large areas

having high extractable acidity, high organic matter, a high cation

exchange capacity, or a combination of these factors also had lakes

with low pH and ANC. Significant correlations of base saturation, soil

pH, or exchangeable bases with lake chemistry were not found.

3.1.2.4 Watershed Geology

.

The frequency distribution of selected Adirondack watersheds based

on dominant bedrock sensitivity categories (Norton et al. 1982) is

shown in Fig. 6. The New York state geologic map was classified into

four acid-neutralizing-capacity groups, ranging from the low to none

category (granite and quartz sandstone types) to the infinite category

(highly fossiliferous sediments and limestone or dolostone types). The

percentage of watershed area having low to medium buffering capacity

bedrock (ROCK2-P,  category 2) was inversely correlated with lake ANC

(r = -0.25, p 5 0.01) and lake pH (r = -0.23, p 5 O-01), i.e., the more

area a watershed has of a bedrock with low to medium buffering capacity,

the lower the lake ANC and pH. Similarly, the percentage of watershed

area having medium to high buffering capacity bedrock (ROCK3-P,

category 3) was positively correlated with lake ANC (r = 0.20,

p 5 0.01) and lake pH (r = 0.18, p 5 0.01). i.e., the more area a

watershed has with medium to high buffering capacity bedrock, the

higher the lake ANC and pH. Thus, bedrock type seemed to be related to
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surface water chemistry. Higher correlations might be obtained if data *

were available on thickness and buffering capacity of the surficial

deposits overlying the bedrock.

3.1.2.5 Matershed Vegetation

In this section, the influence of both forest cover and wetland

type on lake chemistry is discussed. The canopy of a deciduous forest

surrounding a lake may help neutralize acidic deposition; rain

percolating through a coniferous forest, however, often increases in

acidity. Humic matter can acidify water percolating through it and

contribute hydrogen ions to the surface waters (Viro 1974, Marcus et

al. 1983). Therefore, land-cover types were grouped into deciduous,

conifer, mixed, and nonforested classes for this analysis. Deciduous

and conifer are the dominant land-cover types. The percentage of a

land-cover class in a watershed was determined based on the land area

(lake area not included). For Adirondack headwater lakes, the null

hypothesis examined was that there is no significant association

between pH or ANC and percentage of watershed in a land-cover class.

Almost all land-cover types had significant and large correlations

with ANC (Tables 4 and 5). The magnitude of the correlations

conifers (CONFR2-P) as among the largest values (r = -0.39, p

For

( 0.01

ationfor ANC; r = -0.42, p 5 0.01 for pH). The signs of the carrel

coefficients support the hypothesis that coniferous vegetation in a

lake's watershed is associated with lower pH and ANC values in the lake

and that nonconiferous vegetation is associated with higher pH and ANC

values. Therefore, the null hypothesis was rejected, and the

conclusion was that the percentage of the watershed in certain

+



land-cover types was significantly associated with the water chemistry

of the Adirondack headwater lakes.

Another hypothesis tested was that no significant difference exists

between the pH and ANC in the headwater lakes of watersheds defined as

coniferous vs those classified as nonconiferous. Because it is believed

that conifers located near the lakes and a relatively small proportion

of the watershed in conifers could affect lake chemistry, a coniferous

watershed was defined as one having at least 33% of the watershed in

coniferous vegetation (Table 6). The nonparametric Wilcoxon test

showed a significant difference between the pH and ANC in lakes of

coniferous watersheds and nonconiferous watersheds (i.e., ~33% of

watershed in conifers). The lakes in coniferous watersheds were acidic

with a median pH of 5.0 (n = 55) and a median ANC of -3.2 veq/L

L
0 = 54). Headwater lakes in nonconiferous watersheds had a median pH

of 6.2 (n = 179) and a median ANC of 33.5 peq/L (n = 154). thus

indicating lakes less sensitive to acidification.

High concentrations of organic acids in lakes are indicative of

one type of natural acidification process that is typically associated

with naturally acidic wetlands or acidic and humic-rich soils within a

watershed. Dark-water lakes are often associated with bogs and bog

forests and may be naturally acidified by these adjacent wetlands

(Bogucki and Gruendling 1982, Gorham et al. 1985). Therefore, we

evaluated if a significant association existed between, on the one

x

l

hand, .pH and ANC or concentration of dissolved organic matter in

Adirondack headwater lakes (as indicated by mean visual color) and, on

the other hand, percentage of watershed in wetland or type of wetland

in a watershed.
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Table 6. Sumary  of Wilcoxon  test results for lake chemistry
with wetland  vegetation  classes (significant  at p 5 0.05)

Redian values for wetland  classes"
<2o"x 233% <33% 250% <50X

WTLND-PP

MAC1 D-PP

WTLND-PW

MACID-PW

5.4b
(n = 132)

6.4
(n = 32)

(n 1'iO)
C

(n L-:6)

6.1
(n = 102)

5.7
(n = 202)

6.0
(n = 184)

5.7
(n = 198)

(n _4'Y5) (n
6.0 4.8
= 219) (n = 5)

(n Z*i4) (n
5.7 6.5
= 200) (n = 29)

(n Z-:29)
5.9

(n = 205)

5.3 6.1 5.1 6.1
(n = 100) (n = 134) (n = 78) (n = 156)

WTLND-PP

VACID-PP

MACID-PP

-0.5 33.5
(n = 74) (n = 134)

6.3 34.0 6.0 36.0
(n = 107) (n

73.5
= 101) (n = 97) (n = 111)

10.1
(n = 24) (n = 184)

I
,! WTLND-PW -4.5 19.5 -9.5
4

14.0
(n = 44) (n = 164) (n = 12)

1
(n = 196)

j HACID_pW 69.0 9.0 73.5 9.8 69.0 10.6
(n = 27) (n = 181)  (n = 26) (n = 182) (n = 23) (n = 185)

I
Color

;
-9 WTLND-PW 35.0 15.0
d (n = 11)
d

(n = 35)

i
k

aPercentage  of watershed  (WTLND PP and WTLND  PW) or percentage  of total
wetlands  (MACID-PP, HACID PW, VACID-FP, and VACID-PW).

bMedian  and sample size for the class where the perimeter  of the lake
in all wetland  types is 220% of the lake's perimeter.

%edian  and sample size for the class where the moderately  acid wetland
type represents  ~20% of the lake's watershed.
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Three groups of variables were created to test hypotheses about

wetlands. One variable expresses the area of wetlands as a percentage

of the total watershed area (identified by the suffix -PW for "percent

of watershed"), another variable expresses the length of wetland in

direct contact with the shoreline of a lake as a percentage of the

total shoreline (identified by -PP for "percent of perimeter"), and a

third variable expresses the wetland area in the watershed as a

percentage of lake area (identified by -PL for "percent of lake").

The National Wetlands Inventory cover types were grouped into four

categories--very acid, moderately acid, nonacid, and "other." The

very acid cover type was predominantly needle-leaved evergreen forest

and scrub/shrub vegetation, including bog mats; the nonacid cover

type was predominantly broad-leaved deciduous forest and scrub/shrub

vegetation. The moderately acid cover type included a vegetation

mixture of needle-leaved evergreen, broad-leaved dec iduous forest, and

scrub/shrub vegetation. Persistent emergent vegetat ion, dead forest,

open water, etc., were included in the "other" category. Percentages

for these wetland types and total wetland within a watershed were

calculated and used in analyses.

For wetlands the null hypothesis tested was that there is no

significant correlation between pH or total ANC in Adirondack headwater

lakes and the percentage of wetland vegetation. The results of the

analyses are variable. Total wetland percentages generally had

.

f

significant correlations (p ( 0.05) with lake pH and ANC measurements

(Tables 4 and 5). A negative correlation coefficient indicated that as

the amount of wetland increased, the lake pH and ANC decreased.
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The very acid wetland type expressed as a percentage of lake

perimeter (VACID-PP) was significantly and inversely correlated with

lake ANC and pH (r = -0.15, p = 0.03). However, when this wetland

type was expressed as a percentage of watershed or lake area,

correlations were not significant. Unexpectedly, the moderately acid

wetland type consistently had a significant positive correlation with

lake pH and ANC.

The nonparametric Wilcoxon test was used to make additional tests

of the association between wetlands and lake chemistry for the

headwater lakes. Tests were made to see if there is a significant

difference between the pH or ANC for a lake that has a high percentage

of total wetland (-PP, -PW), very acid wetland type (VACID), moderately

acid wetland type (MACID), and those that do not. Because there was no d

a priori knowledge about how to define 'a high percentage of wetland,"
L

several different definitions were tested. Significant results

(p < 0.05) are reported for tests in which the lakes with a high

those with total wetland or wetland typepercentage of wetland are

220X, >33%, and 250% (Tab

significantly lower ANC f

le 6). Twice these tests indicated a

or the very acid wetland class when compared

with the "other" wetland class; however, the median ANC for both of

these classes was always ~50 veq/L. Although significant

correlations exist between lake chemistry and the amount of wetland or

the amount of a wetland type, a strong association cannot be made

between the very acid wetland type and low pH and ANC measurements in

associated lakes. Stronger relationships existed for total wetlands

and moderately acid wetlands. Again, moderately acid wetlands indicated
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less-acidic lakes (pH difference 20.6), and a high percentage of total

wetlands indicated more-acidic lakes (pH difference ~0.7).

The average percentage of total wetlands in the watersheds of

Adirondack  headwater lakes is somewhat higher for colored lakes (15%)

when compared with clear lakes (11%). However, the percentages for

total wetland and wetland cover types were seldom significantly

correlated with the visual color measurement available for 101 of the

Adirondack headwater lakes. The Wilcoxon test showed that Adirondack

headwater lakes with a visual color value >2.5 have significantly

, (p ( 0.05) more of the very acid wetland type in their watersheds than

"

clear lakes. However, the difference in the average percentage of the

watershed in wetlands is only 4% for the two color classes. Color

(PCU) measured in the NSWS is significantly correlated with dissolved

organic carbon (r = 0.74, p 5 0.01, n = 46), which would be expected to

be abundant in lakes with a high percentage of wetlands. Lakes with

>20% of their watershed in wetlands are darker in color by 20 PCU.

Although the mean visual color measurements (n = 10) from FIN were not

significantly correlated with color or dissolved organic carbon

measurements from NSWS, a relationship between these data does seem to

exist based on observation of plotted data.

3.1.2.6 Watershed Disturbance

Several hypotheses that would link lake acidification, or acid

neutralization, to both natural and man-induced disturbances, such as

fire, logging, tree blowdown, beaver activity, and number of buildings,

have been proposed (Krug and Fink 1983, Schnoor and Stumm 1985, Retzsch
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et al. 1982, Rush et al. 1985). Human settlements might be associated
z

with sewage discharges, sites of land clearing, and road building.

Several hypotheses about watershed disturbance were examined for

relationships to lake chemistry, with extensive analyses performed on

beaver activity.

Duhaime et al. (1983) suggested evaluating the effects of

suppression of fires and restriction of timber harvesting on

acidification of aquatic ecosystems. Historical (ca. 1905 to 1915)

data on fires.and logging for Adirondack headwater watersheds were1 !

compiled. Since protection of the park was ensured in 1894, no logging

and very few fires have occurred. Correlations between lake pH and ANC

with the percentage of watershed burned (BURNED-P), denuded (DENUDE-P),

logged (LOG-SH-P), and disturbed (DISTRB-P) are relatively low (0.13 to

0.16) (Tables 4 and 5). The single variable (DISTRB-P) represented

total watershed disturbance (the sum of logged, burned, and denuded

area). Most of the headwater watersheds had no indication of fire or

logging influence; therefore, the correlations are based on only -50%

of the watersheds (Fig. 7). The percentage of a watershed that had

been burned had the most association with lake chemistry, especially

pH, of the land-cover disturbance variables.

The presence of roads, human settlements, and domestic animals,

such as horses and cows, in a lake's watershed may contribute to

increased alkalinity (Schnoor et al. 1985). Although very few

headwater lakes in the Adirondacks have human settlements, the number I_

of cabins in the watershed in 1978 (CABN78 R)_- was significantly

correlated with lake pH and ANC (Table 4). This relationship was not
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c significant for the smaller NSWS data (Table 5). These data support

6
the belief that human settlements and associated watershed disturbance

may be associated with an increase in a lake's ANC.

Relationships between lake chemistry (pH, ANC, temperature, color,

dissolved oxygen, sulfate, and nitrate) and beaver activity were

examined. Beaver activity was defined by the number of beaver dams

present in 1968 and 1978 (data for 1978 weighted by a factor of two)

normalized by lake area because beaver were expected to affect a small

lake more than a large lake. Data from 1978 were given more weight

.

because the chemistry data were from 1974 to 1984.

The total number of beaver dams on an outlet (TOTOUT-A) and of

downstream dams (OUT-A) and the sum of all dams (TOTAL-A) were

correlated with lake pH (r ranging from -0.27 to -0.29, p 5 0.01).

.

The Kruskal-Wallis test with a multiple comparison showed that lakes

with dams present anywhere on the outlet (ANYOUT) and those with dams

present on the lake at the outlet (OUTLAKE) had significantly lower

pH values than lakes with dams on inlets. For this test, lakes were

divided into four independent classes: those with beaver activity

(1) on the inlet only, (2) on the outlet only, and (3) on the inlet

and outlet and those (4) with no activity. Spearman correlations and

Kruskal-Wallis test results for ANC were consistent with those for pH.

A MLR using only four beaver variables (lakes with dams only

upstream, lakes with dams only on the lake at the inlet, lakes with

-* dams only on the lake at the outlet, and lakes with dams only

c downstream) was performed to substantiate results of correlations and

Kruskal-Wallis tests and evaluate several variables for beaver activity



46

at one time. These variables explained 8.7% of a lake's pH; dams on

the outlet had a significant and negative correlation with pH. Beaver

dam variables also explained 8% of the variation in a lake's ANC;

downstream dams were the most explanatory.

Spearman correlations, Kruskal-Wallis  tests, and MLR results for

beaver activity and lake temperature showed no consistent pattern.

Analyses of dissolved oxygen and sulfate data were not significant.

Analyses on nitrate data gave conflicting results for FIN and NSWS

data. Spearman correlations for FIN data were often significant with

consistently negative values for the number of beaver dams and lake

nitrate (r ranging from -0.22 to -0.34). Significant results for NSWS

were positive with r values ranging from 0.32 to 0.45. The MLR model

developed for the FIN nitrate data explained 10% of the variation in

nitrate with dams at the outlet of a lake being most explanatory and

having a negative relationship. Spearman correlations indicated that

the number of beaver dams on the inlet of a lake are positively

correlated with lakes having higher color values (r = 0.28, p 5 0.01);

however, MLR results were not significant. /

3.1.2.7 Lake PH. Color, and Dissolved Organic Carbon
i

The null hypothesis that current pH levels in lakes with low

organic content (clear water lakes, visual color ~1.5) are not

significantly different from current pH levels in lakes with high

concentrations of dissolved organic content (lakes colored light brown

or brown, visual color >2.5) was tested by Baker and Harvey (1984) for

Adirondack lakes. They found that the data do not support the
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. contention that the presence of organic acids is the major factor

controlling lake acidity. This hypothesis was examined for the

Adirondack headwater lakes with information on color, which are a

subset of the Adirondack lakes examined by Baker and Harvey (1984).

The nonparametric Wilcoxon two-sample test indicated that pH levels in

clear and colored lakes are not significantly different; therefore, the

null hypothesis was not rejected. For the subset of the NSWS lakes in

AWDB, there was a significant correlation between mean visual color and

dissolved organic carbon (r = 0.58, p = 0.01, n = 18) and between color

(PCU) and dissolved organic carbon (r = 0.87, p < 0.0001, n - 46).

Correlations between pH and visual water color in FIN and for the

subset of NSWS lakes in AWDB (n = 46) are not significant at the

p < 0.05 level. There is agreement with Baker and Harvey that the data

do not support the idea that the presence of organic acids is the major

factor controlling lake acidity.

3.2 MULTIPLE LINEAR REGRESSION

A MLR model makes it possible to determine how much of the

between-lake variance for a selected lake chemistry variable

(the dependent variable) can be explained by a selected set of

watershed attributes ("explanatory" or "predictor" variables). We used

regression models and discriminant functions to evaluate the relative

importance of the anthropogenic and natural watershed variables to lake

chemistry (Fig. 8).

MLR and multivariate techniques, such as discriminant analysis

(see Sect. 3.3) are applied for two reasons in this study:
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Fig. 8. Model development procedure.
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1. A MLR model or a discriminant function can consider the combined

effects of a number of potentially causal variables and can,

therefore, provide stronger support for hypotheses about

relationships involving these variables than can analyses involving

only two variables at a time.

2. These models can be used to predict values of the response

variables (pH or ANC) for lakes where measurements of the response

variables are unavailable. For example, pH or ANC measurements are

available for only slightly more than one-half of the 463 headwater

lakes (248 and 231 lakes, respectively, considering both FIN and

NSWS data). Predictions of pH and ANC values for the other lakes

by using MLR should be considerably more reliable than simple

extrapolation (i.e., assuming that the percentage of lakes with pH

(5 for the group of lakes without pH measurements is the same as

that observed

3.2.1 Methods

MLR is a stat stical technique in which a collection of predictor

variables are used to estimate the value of a response variable. In

n the group of lakes having pH measurements).

the context of this analysis, the response variable was either pH or

ANC. The predictor variables were a subset of the available watershed

attributes. Only lakes having data for the complete subset of predictor

variables were included in the analyses. The lakes were randomly

divided into subsets to establish separate data sets for model

calibration (parameter estimation) and several types of verification

(Sect. 2.4).
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MLR was applied to the headwater lake data after collinearity

diagnosis and variable transformation. Separate models were developed

using pH and ANC as dependent (response) variables (Fig. 8). The 57

candidate predictor variables for model development were selected based

on knowledge of watershed and lake processes, quality of data, and

results from the Spearman rank correlations discussed in Sect. 3.1

(Table 7). Some variables were not included as candidate variables

because missing values would have substantially reduced the number of

lakes available for analysis (e.g., lake volume). A complete

discussion of methods used here is provided; however, for simplicity

the reader may wish to focus on the "selected" models (minimum Cp)

and reduced stepwise MAXR2 models.

3.2.1.1 Data Transformations

The decision to transform variables was based on the Kolomogorov D

statistic (SAS 1985) for normality of the residuals with regressions

fitted by using the full model (all 57 variables). Residuals,

studentized residuals, and studentized residuals with the current

observation deleted (RSTUDENT) were all examined; emphasis was placed

on the studentized residuals (Draper and Smith 1981). Transformation

decisions for predictor variables were based on fits using the

model-calibration subset. Without transformations, there were

suggestions of nonnormality of the residuals for pH. Based on an

examination of the horizontal pattern of dispersion in residual plots

for each predictor variable, the variables shown in Table 8 were

selected for transformation. When it was necessary to add constants to

f
Ir

I.

a variable to prevent taking the logarithm of a negative number, the



Table 7. Variables used in WLR and discrimlnant  models for lake ANC and pHa

“,.,.“a “” ..-
variable

Discriminant
MLR model model

Minimum  nr selected reduced. . . . . . . ..-... _-.-___- Steowi se Reduc ed
NoncollInear and Cp near p minimum Cp cp nearest pb HAXR2 stepwise MAXR2 stepwise

r;rmii.-latfa

Worpholoqic and Physiooraohic

LAKE-A
WTRSHD-R
DRAIN-A
LAKE-DEV
LAKE-E
ASPECT-S

Hydrologic

RUNOFF
HYDTYPl
HYDTYPZ
HYDTYP3

ANC. pH

PH

ANC. pH

PH

Atmospheric

PPT
H-WET
N03-WET
SW-WET
H-CONC
NOJ-CONC
SO4-NO3

PH
ANC

Physical  Soil Tvpe

RELIEF-R
STONEY-P
ROCK-P
HYDRO-A
HYDRO-B
HYDRO-C
STEEPM-P
STEEPV-P
SHLZ-B-P
SHLZ-P-P
SHLZ-R-P
DPTH-B-U
DPTH-P-U
DPTH-R-U

ANC. pH
ANC. pH

ANC, pH
ANC, pH

ANC. pH ANC. pH

ANC. pH
ANC. pH
PH
ANC, pH

ANC
ANC
ANC
ANC

PU
ANC, pH
ANC. pH
PB

ANC
ANC
ANC
ANC

ANC
PH
ANC. pH
ANC. pH
PH

ANC
PH

ANC. pH

ANC, pH

PU

PH
ANC

ANC

ANC

ANC, pH
PH
ANC
ANC. pH
ANC, pH
ANC
ANC. pH

PB
ANC

ANC. pH
ANC. pH

ANC
ANC

ANC, pH
ANC. pH

ANC. pH
ANC. pH

ANC
ANC
ANC
ANC
ANC

ANC ANC

ANC

ANC
PH
ANC
ANC. pH
ANC. pH

PH
PH

PB
ANC

ANC. pH
ANC. pH
PH

ANC. pH
PH

ANC

PH

”

ANC

PH
ANC

PH
ANC

PH

PH



Table 7. (continued)

Discrlminant
WLR model model

Candidate Winimum  p Selected Stepwise Reduced reduced
variable Noncollinear and Cp near p minimum Cp cp nearest pb RAXR2 stepwise MAXR2 stepwise

Geology

ROCKlZ-P ANC. pH ANC ANC. pH

Chemical  Soil Type

ACID P

Forest Cover

CONFRZ-P
HROWDZ-P
NONFRZ-P

Wetland Tvpe

WTLND-PP
VACID-PP
NACID-PP
WTLND-PW
VACID-PW
NACID-PW
WTLND-PL
VACID-PL
NACID-PL

Disturbance

DISTRB-P
BVRINDEX
CABN78-R

ANC. pH

ANC. pH ANC
PR ANC

PH

ANC, pH

ANC
ANC
ANC

ANC

ANC, pH

ANC. pH
ANC. pH
ANC. pH

ANC

ANC
ANC
ANC

ANC

PR

ANC. pH

ANC. pH
ANC. pH
ANC. pH
ANC, pH

ANC. pH

ANC
ANC
ANC
ANC
ANC
ANC
ANC

ANC

ANC. pH
ANC, pH
ANC. pH

ANC, pH
ANC, pH
ANC, pH

ANC, pH
ANC, pH
ANC. pH

ANC
ANC
ANC

PH

PR
PR
PR

PR

PH
ANC. pH
ANC

ANC. pH

ANC. pH
ANC, pH

ANC, pH
ANC. pH

ANC. pH
ANC

PR

PH

ANC. pH
ANC
ANC

ANC
PH

ANC, PH

ANC, pH

ANC. pH
ANC, pH
ANC

ANC, pH

ANC
ANC. pH

ANC

ANC
ANC
ANC

aAn entry of pH or ANC in the table indicates that the variable was included in that particular model.
bThe Cp nearest p model was the same as the minimum Cp model for pH.
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Table 8. Variable transformations for MLR
and discriminant analysis procedures

.

I

Untransformed
variable name Transformation

LAKE-A log10 (LAKE-A)
WTRSHD-R log10 (WTRSHD-R)
DRAIN-A log10 (DRAIN-A)
NONFR2-P log10 (NONFR2-P + 1)
WTLND-PW log10 (WTLND-PW + 5)
VACID-PW log10 (VACID-PW + 5)
NACID-PW log10 (NACID-PW + 1)
WTLND-PL log10 (WTLND-PL + 100)
VACID-PL log10 (VACID-PL + 100)
N A C I D - P L log10 (NACID-PL + 50)
BVRINDEX log10 (BVRINDEX + 1)



“. . ,._“, ,“““~._,.,_.”  .Ix.lI._...-..
_ -.

!

I

54

constants were chosen to provide a ratio of maximum to minimum of

about ten for the untransformed variable. The results of these

transformations were to decrease the significance of all D stati

to p > 0.15, indicating the residuals are more nearly normal.

For all analyses, ANC was log transformed after adding 100

sties

to the

observed ANC value. The log transform of ANC, a dependent variable,

was clearly justified because the significance of all D values decreased

from p < 0.01 to p > 0.15 with this transform. This decrease was

true whether or not any predictor variables were transformed. The pH

measure is a log transformation of H+ concentration. For the

dependent variable pH, the transformations of predictor variables

resulted in a decrease in significance of D from p < 0.02 to p > 0.15

for all types of residuals. The transformed variables (Table 8) were

chosen for the regressions involving both pH and ANC to simplify model

interpretation, simplify the col,linearity analysis, and foster

comparability between the MLR analysis and the subsequent discriminant

analysis.

3.2.1.2 Collinearity Diagnostics and Model Development

For each of the two regressions (pH and ANC), the REG procedure in

SAS (1985) was used to identify and eliminate excessively collinear

candidate predictor variables. When a predictor variable is nearly a

linear combination of other predictor variables in a model (i.e., is

collinear), the affected parameter estimates are unstable and may have

large standard errors (Draper and Smith 1981). Although significant

correlation between two variables implies significant collinearity,

nonsignificant correlation between two variables does not necessarily

t
i

9 I

i

i
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indicate the absence of collinearity, because there may be some linear

combination of two or more variables that, taken as a whole, would

create a condition of collinearity. In selecting the candidate

variables, we excluded combinations of variables that would obviously

be collinear (e.g., percentages that sum to 100%). However, it was

considered desirable to keep some candidate variables (i.e., the

various wet deposition rates, concentration, and precipitation

variables) that were believed to be collinear and allow an established

protocol to select variables for removal.

A protocol was designed to identify and remove co1

from the set of candidate variables. This procedure is described in

detail in Appendix A. Briefly, the collinearity option in the REG

(SAS 1985) procedure was applied successively. At each

linear variables

step (until the

maximum condition index was ~30) with each model, one of the identified

collinear variables was eliminated; this was not necessarily the same

variable for both the pH and ANC regressions (Table 9). A sequence of

priorities was developed to determine which variable to eliminate.

The intercept was always retained. The Cp statistic (Mallows 1973,

Draper and Smith 1981) was calculated for each of the reduced models

in which one of the potentially collinear variables was omitted. In

the Cp statistic, p represents the total number of parameters,

including the intercept, in the model. If the Cp statistic differed

substantially, then the model with the lower C
P

statistic determined

the variable to be omitted. Otherwise, within a step successive

preference was given to keeping a collinear variable that (see

Appendix A for more detail).
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Table 9. Candidate  variables  listed in order
of their elimination  because  of collinearity  with other variablesa

Model
Dependent
variable

Predictor  variables  eliminated
and order eliminated

Cp nearest p PH

ANC

.’

Selected  models,
minimum  Cp PH

ANC

Minimum  p and Cp near p PH

ANC

SHL2-B-P, LAKE-A, N03_CONC, SHL2 R P,
DPTH-P-V, PPT, SW-WET, ROCK-P,  HYDRO-C,
WTLND-PL, BSC L P, ORG-MAT, NO3 WET,
DPTH-B-V, PHjL;P, SHL2 P P, BSA L P,
SO4_CONC, DPTH-R-V, NACiDIPL, VA%i-Pw,
ACID-P, WTRSHD-R, VACID-PL, H-WET

SHL2-B-P, LAKE-A, H-WET, PPT, ROCK-P,
SO4_CONC, DPTH P V, SHL2 R P, ORG MAT,
VACID-PL, DPTH-R-V, BSC i P, SO4 kT,
ACID-P, PHJL-&-H-NC,  kRSHD_i

No additional  variables  removed

Variables  listed above, plus NACID-PL,
ACID-EX, BSA L P, SHL2-P-P, VACID Pw,
OH-H-P, WTLN;C;_PL, N03_WET, PHC-VL;P,
HYDTYP3, HYDRO-C

Variables  listed above, plus ACID-EX,
RUNOFF, OM H P, HYDTYP2, ELEV,  WTLND PW,
CECS-L-P, R0cK12-P, LAKE-DEV, DRAIN,;,
PH-C-VL-P, VACID-PP, HRDWD2-P, RELIEF-R,
CEC, STEEPM-P, STONEY-P, NACID-PP,
ASPECT-S,  CONFR2-P

Variables  listed above, plus ELEV,
1 WTLND-FM,  DRAINJ, CECS L P, ROCK12-P,

LAKE-DEV, DPTH B V, VACfD-PP, HRDWD2-P,
CEC, RELIEF-R.--STEEPMeP,  STONEY-P,
HYDTYP2, NACID-PP, WTLND-PP,  ASPECT-S

Noncollinear PH Variables  listed above, plus WTLND-PP,
NACI D-PW

ANC Variables  listed above, plus CONFR2-P

aSee Table 7 for a list  of the variables  in each model.
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, = 1. was originally the only variable in its Mgroupll  or was the last

remaining variable in its group, all others having been eliminated

in previous steps;

2. was more mechanistic, i.e., potentially causal, than other

collinear variables;

3. was considered a more reliable measure than other collinear

variables;

4. was easier to obtain in other data sets to which the model might be

applied;

5. was the only collinear variable in its group, with at least two

other collinear variables belonging to a single different group;

6. was significantly correlated with the dependent variable;

7. avoided misinterpretation of the importance of sulfate atmospheric

inputs over nitrate inputs or vice-versa;

8. maintained diversity of wetland variables within its respective

group; or

9. had higher variance-decomposition proportions than other collinear

variables.

Application of this procedure should have helped ensure that the

/ remaining variables are not substantially collinear. After elimination

of potentially collinear variables, the following models were available

for subsequent comparisons: the minimum Cp model, the model with

Cp nearest p, the model with minimum p and Cp near p, and the

noncollinear model.
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In addition to reduction of collinearity, there are a number of

other criteria for selecting a potentially useful model. For

comparison of model performance, a stepwise procedure based on the

maximum R2 improvement technique (MAXR2) (SAS 1985) was applied to

the 57 candidate variables without concern for collinearity among these

variables and to the variables remaining in the selected minimum C* P
models resulting from the collinearity procedure. The resulting models

are called the stepwise MAXR' and the reduced stepwise MAXR'

models, respectively. The maximum R2 improvement technique finds the

one-variable model producing the highest R2. Then another variable,

which yields the greatest increase in R2, is added. Once the

two-variable model is obtained, each of the variables in the model is

compared with each variable not in the model. After comparing all

possible combinations, the one that produces the largest increase in

R2 is used, and comparisons begin again. The comparing and switching

process is repeated in a stepwise manner to find the "best" model for

the maximum number of predictor variables that significantly improve

the R2 value. The stepwise MAXR' models developed for pH and ANC

from all 57 candidate variables contained the same number of predictor

variables as the minimum Cp models for pH and ANC, but the predictor

variables were selected using the maximum R2 improvement technique.

The reduced stepwise MAXR2 models were developed by applying this

technique to the more limited set of predictor variables present in the

minimum Cp models for pH and ANC and then applying an F-test to

determine the significance of each variable, based on the reduction in

unexplained variance as a result of the addition of each variable. A

b i

F



level of significance, p 5 0.25, was chosen for evaluating the

minimum number of variables to include in the model. This value is

conservative because it ensures that potentially important variables

will be included.

3.2.1.3 Model Verification

Each model was applied to an independent verification data set to

see how it would perform for predictive purposes. The%,o[iginal  data

set was randomly divided into two sets in which the ratio of lakes in

the two sets would be 2:l. The larger set, designated as set A or the

calibration data set, was used for developing the model, and the second

set, designated as set 8, was used for the verification study.

Before the different verification measures are described, some

.
notation should be set up. Let NA(Ne) be the number of observations

in data set A(8). For data set 8, let Ygi,i=1,2,...,NB,  be

the observed values of the dependent variable (pH or ANC). Let

‘8-i 9 i=l,2,...,N8, be the corresponding predicted values for these

observations that were obtained from the model derived from data set

A. One measure of the predictive capability of the model is the mean

square error (MSE):

MSE = + N8

8 iil(y8i - ysi )2 '

which is a general measure of how large the differences are between the

predictions and observations (i.e., smaller values of this quantity

would indicate better predictions than larger values). Because MSE is



a general measure of model predictive ability, note the "systematic
2: e

error" or bias and "random error" or precision component of this

measure. Let

d8i = y8i -.?8i ,

for i=1,2,...,N8. Then the model bias may be estimated by

BIAS = * N8 N8

8 ill ('8i -^ysi) =$

and the "random error" component may be estimated by

VAR 1=. -
N8

It can be shown mathematically that

c (d8i - T)28 .

MSE = (8IAS)2 + VAR .

Therefore, what portion of the differences between the model predictions

and observations that may be attributed to bias or random error may be
i.

determined.

Also, the value of MSE may be compared with the error mean square

for the model when the NA observations in data set A are used to

estimate the necessary parameters. Another interesting comparison

would be the square root of MSE with the anticipated measurement error

of the dependent variable if such a quantity is available.
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Another measure of the predictive capability of the derived model

is related to the R2, the square of the multiple correlation

.
coefficient. Let

I - N8. c (‘8-j- '8.i I2 ' 'f ('8j -7) 2‘I ,
i=l i=l

where v could be the mean of the N8 observations in data set 8--in

which case F2 could be thought of as the amount of variation

explained by using the model relative to the sample mean (EC)--or v

could be the mean of 'the NA observations in data set A--in which case

i2 could be thought of as the reduction in error achieved by using

the derived model vs a model based only on the mean from data set A

m. Both measures of I? relate to predictions for the verification

data set and can be used to assist in evaluating how well the model

does in predicting for an independent data set. Note that in either

case the maximum value ii2 can achieve is 1 but I? can be less than

zero. Negative values of K2 would indicate very poor predictions.

3.2.2 Results

j l .
!

The purpose of the MLR analysis was to develop models that have

relatively few parameters so that they are informative about which

watershed attributes might influence lake acidification. The

verification procedure was developed to evaluate the predictive ability

of the resulting models for an independent data set. The results from

the MLR analysis are discussed in two parts. The variables used in the

different models and the indices of performance used to evaluate the

models are discussed in Sect. 3.2.2.1. For the selected pH and ANC

models, the results from predictions are discussed in Sect. 3.2.2.2.



_. .,-
1

1

i

I
i

*j 6

i

.i 62
i.4
1
1 3.2.2.1 Model Development and Verification I :4

Seven models each were developed for pH and ANC (Fig. 8). Four of

these resulted from the collinearity diagnostics, and two were developed

using the maximum R2 improvement technique. The seventh model, the

"full" model contained the same 57 predictor variables for pH and ANC.

[For simplicity the reader may wish to focus on the l@selectedU (minimum

Cp models) and the reduced stepwise MAXR' models. Selected models

are highlighted in bold type in tables.] The 57 candidate predictor

variables were selected because they were thought to be potentially

important in the lake acidification process and/or they had significant

and reasonably large correlation coefficients compared with other

possible candidate variables. The "minimum C
P'

II llCp nearest p,"

"minimum p and Cp near p, ' and "noncollinear"  models resulted from

the collinearity diagnostic procedure in which collinear variables were

removed in a stepwise manner. The order in which candidate variables cek
were eliminated can be seen in Table 9. The noncollinear model

contained ten variables for both pH and ANC. The minimum p and C
P

near p model contained 12 variables for pH and 11 variables for ANC.

The minimum Cp and Cp nearest p models for pH were the same with

31 variables; the ANC Cp nearest p model contained 40 variables. The

general progression of variables eliminated for the pH and ANC models

was similar.

The maximum R2 improvement technique provided stepwise models

(MAXR') that did not take collinearity into consideration yet

performed reasonably well with any number of variables up to the

full 57. The "reduced" stepwise MAXR' models did take collinearity
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into consideration because only the variables in the selected minimum

Cp models (27 for ANC and 31 for pH) were used as input to the

reduced MAXR' models. The reduced MAXR' models were developed to

determine if a smaller model, developed to maximize R2 rather than

further reduce collinearity, was reasonably robust compared with other

models. The predictor variables used in each of the MLR models for pH

and ANC are indicated in Table 7.

The MSE and i2 measures defined in Sect. 3 .2.1.3 were the

indices used to evaluate performance of the various models (Tables 10

and 11). Based on the verification measures, the minimum Cp models

for pH and ANC (developed using the collinearity diagnostics) were

chosen as the "selected" best models, which have the lowest MSE and

low-bias components (6 to 9%). Although the MAXR' model for pH and

the Cp nearest p and reduced MAXR' models for ANC have smaller bias

components than the selected minimum Cp models, they also have higher

MSEs. A plot of model residuals (observed value - predicted value)

against predicted values also helps evaluate model bias (Fig. 9). For

an ideal model, residuals would be randomly distributed about the zero

residual line. The residual plots for the selected pH and ANC models

have no distinct patterns, thus indicating a lack of bias in these

models (Fig. 9).

Another way to evaluate a model's predictive capability is to

compare the R2 of the calibration subset with i2, which can be

thought of as the reduction in error achieved by using the derived

c model vs a model based only on the mean from the calibration

(@) or verification (RJ) subsets. The minimum Cp models have the

largest a2 values, indicating that the models are a substantial



Table 10. Indices for pH model verification

Verification data Calibration data

Model mFa
Random Error mean

Bias error ii; R"; R2 square

Noncollinear
10 variables

0.75
(0.57)b

-0.31 0.47 0.38 0.39 0.37 0.55
(83X)C

Minimum p/Cp near p
12 variables

Selected model minimum Cp
and Cp nearest p
31 variables

Full
57 variables

Stepwise MAXR2
31 variables

Reduced stepwise MAXR2
14 variables

0.77
(0.60)

0.69
(0.48)

0.92
(0.86)

0.81 -0.16 0.63 0.28 0.30 0.69 0.33
(0.65) (96%)

0.74
(0.54)

-0.32 0.50 0.35 0.36 0.38 0.54
(83%)

-0.17 0.45 0.48 0.49 0.62 0.40 m
*a

(94%)

-0.25 0.79 0.06 0.09 0.72 0.39
(93%)

-0.26 0.48 0.41 0.42 0.57 0.38
(88%)

aMSE is the mean square error; the JprsE is in the same units as the measured values.
bMSE in parentheses.
CPercentage of MSE that is random error.



Table 11. Indices for ANC model verification

Model

Verification data Calibration data

Bias
Random 2
error "RC

2
RV R2

Error mean
square

Noncolllnear
10 variables

Minimum p/Cp near p
11 variables

Selected model minimum Cp
27 variables

Cp nearest p
40 variables

Full
57 variables

Stepwise MAXR2
27 variables

Reduced Stepwise MAXR2
11 variables

0.18
(0.034)b

0.18
(0.031)

0.17
(0.030)

0.19
(0.034)

0.24
(0.055)

0.20
(0.040)

0.18
(0.033)

-0.065 0.030 0.12 0.15 0.39 0.026
(BB%)c

-0.069 0.026 0.19 0.22 0.45 0.023
(85%)

-0.053 0.027 0.21 0.25 0.58 0.021
(91%)

-0.048 0.032 0.10 0.14 0.66 0.019 z

(93%

-0.090 0.047 -0.44 -0.38 0.74 0.018
(85%)

-0.063 0.037 -0.06 -0.01 0.66 0.017
(90%)

-0.052 0.030 0.14 0.18 0.52 0.021
(92%)

aMSE is the mean square error; the JFISE is in the same units as the measured values.
bMSE in parentheses.
CPercentage of MSE that is random error.
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improvement over s-imply using a mean. The full and MAXR2 models for

ANC have negative ii2 values, which indicate very poor model

performance. Overall, the minimum Cp models are the most robust of

our models based on the MSE and i2 indices, and they-also explain a

reasonably large amount of variation in the dependent variables

(R2 = 0.62 for pH and R2 = 0.58 for ANC). The reduced MAXR'

models, which use about one-half the number of variables as the minimum

Cp models, account for 5 to 6% less variation in the dependent

variables but still perform quite well, based on the indices (Tables 10

and 11). Therefore, the estimated coefficients and standard error of

estimates for only the selected best models (minimum Cp) and the

reduced MAXR' models are listed in Tables 12 and 13).

3.2.2.2 Model Predictions

1
1 x
4
i
/
,

A regression model predicts estimates of the mean value of the

response variable, given a particular vector of predictor variables.

Projections near the extremes of the distribution, therefore, would be

expected to be underrepresented, and they were. This is graphically

shown in Fig. 10 for the pH and ANC calibration data sets. For the

most acidic classes, the models correctly predicted only 7 of 37 lakes

into the <5.0 pH class and 16 of 43 lakes into the ~0 veq/L class. A

similar underprediction of the frequency of lakes with relatively high

ANC values also occurred. The distributions for the observed and

predicted values for the combined data in the calibration and

verification subsets are shown in Figs. 11 and 12.

To minimize this underrepresentation of extreme values, a

technique to include information on the variance of predicted means
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Table 12. Estimated coefficients and their standard errors for selected
MLR model and reduced stepwise model for pHa

Selected minimum Cpb
(R2

Reduced stepwisec
= 0.62) (R2 = 0.57)

Variable Estimated Standard error Estimated Standard error
name coefficient of estimate coefficient of estimate

Morpholonic  and Physiographic

DRAIN-A -0.025 0.18
LAKE-DEV -0.20 0.20
LAKE-E -0.0016 0.00078 -0.0014
ASPECTS -0.0023 0.0023

f

Hydrologic

0.0094 0.019
0.68
0.52
0.50

RUNOFF
HYDTYPl
HYDTYPZ
HYDTYP3

Atmospheric

0.020
-0.55
-0.30
-0.17

. 4

:r
11.15 1 "_/

"E"
H-CONC -71.09 14.29 -70.86

Physical Soil Type

RELIEF-R 0.016
STONEY-P 0.0062
HYDRO-A -0.030
HYDRO-8 -0.0092
STEEPM-P -0.0071
STEEP!'-P -0.011

0.018
0.0069
-0.028

0.015
0.0037
0.010
0.013
0.0034
0.0055

0.012 (I _
0.0029
0.0064 iii

-0.0046
-0.011

m
0.0025 ii*
0.0048 'g

:;
Geology

ROCKlZ-P -0.0060

Chemical Soil Tvpe

0.0039

CECS-L-P -0.0029 0.010
OM-H-P -0.027 0.0079
PHC-VL-P 0.0049 0.0046
CEC 0.036 0.017

r b

i

F

0.0062

0.012

-01023

0.033
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Table 12. (continued)

Selected minimum Cpb
(R2

Reduced stepwiseC
= 0.62) (R2 = 0.57)

Variable Estimated Standard error Estimated Standard error
name coefficient of estimate coefficient of estimate

Forest Cover

CONFRZ-P
HRDWDZ-P
NONFRZ-P

Wetland Type

WTLND-PP -0.0051 0.0050
VACID-PP -0.0035 0.0050
NACID-PP 0.0058 0.0067
WTLND-PW 0.96 0.39
NACID-PW -0.42 0.31

Disturbance

DISTRB-P
BVRINDEX
CABN78-R

-0.013
0.0037
0.39

0.0055
0.0044
0.77

-0.017 0.0038

-0.0060 0.0024

0.61 0.30

-0.0011 0.0017
-0.55 0.36 -0.54 0.30
-0.018 0.018

aValues reported to two significant digits.
bSelected or best overall model.
CReduced version of selected model.



Table 13. Estimated coefficients and their standard errors for the
selected MLR model and reduced stepwise model for ANCa

Selected minimum Cpb
CR2

Reduced stepwisec
= 0.58) (R2 - 0.52)

Variable Estimated Standard error Estimated Standard error
name coefficient of estimate coefficient of estimate

Morpholonic  and Physiographic

DRAIN-A -0.026 0.042
LAKE-DEV -0.082 0.046
ASPECT-S 0.00024 0.00050

-0.093 0.040

Hydrologic

HYDTYPl
HYDTYPZ

Atmospheric

-0.14
-0.048

0.094
0.043

N03-CONC -0.40 0.092 -0.42 0.071

Physical Soil Type

RELIEF-R 0.0029 0.0032
STONEY-P 0.00097 0.00083
HYDRO-A -0.0012 0.0023
HYDRO-8 0.0022 0.0028
STEEPM-P -0.0015 0.00074
STEEPV-P -0.0020 0.0011
DPTH-B-U -0.0019 0.0018

0.0026 0.0012
-0.0015 0.00060

-0.00097 0.00040

Geology

0.00091ROCKlZ-P -0.00090

Chemical Soil Type

CECS-L-P -0.0015 0.0024
CEC 0.0018 0.0034

Forest Cover

CONFRZ-P -0.0017 0.0012 -0.0022 0.0011
HRDWDZ-P 0.0015 0.00099 0.0016 0.00087
NONFRZ-P -0.25 0.15 -0.23 0.14



5
Table 13. (continued)

1

Selected minimum Cpb
(R2

Reduced stepwiseC
= 0.58) (R2 = 0.52)

Variable Estimated Standard error Estimated Standard error
name coefficient of estimate coefficient of estimate

Wetland Type

WTLND-PP -0.00059 0.0011 -0.0014 0.00057
VACID-PP -0.0016 0.0011
NACID-PP 0.0010 0.0017
WTLND-PW 0.28 0.093 0.24 0.07
NACID-PW -0.12 0.069

Disturbance

DISTRB-P -0.00033 0.00041
BVRINDEX -0.25 0.085 -0.17 0.073
CABN78-R -0.0056 0.0040

aValues reported to two significant digits.
bSelected or best overall model.
CReduced version of selected model.
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from the MLR was developed. Thus, in our final estimates we calculated

the probability of pH or ANC being less than the specified value for

individual predicted observations, according to the following procedure.

Assume there exists a data set of ns observations (or lakes)

that have been used to relate lake pH or ANC to a collection of p

predictor variables x1 ,*-*,
xP*

This data set is called the

calibration or estimation data set. The assumed model is

yi
= Bo + BlX1 + ... + Bpxpi + "i (

where i = 1,2,..., ns with the usual linear regression model

assumptions. The ns observations have been used to estimate the

unknown B's to produce the estimation or prediction equation

fi = b0 + bixi + . . . + b x .
P Pl

for the ns observations in the calibration data or any other choice

of values for the x's,

The above equation should help predict the number of lakes with pH

or ANC values (y) less than some specification limit L. Because our

model assumes a distribution of pH or ANC values for any given

combination of the predictor variables, it is proposed to incorporate

this distribution into the estimation process. Let

I(Y) = 1 ify<L ,

= 0 ify>L ,
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and np equal the number of observations for which predictions are

desired. The quantity

np
*= c P y 1. L/L

np
= c (0

(

L-130-131xlj-...-R x . ,

j=l 0
pp9

can be considered as the expected value of the number of lakes with

values 5 L. However, only estimates of these quantities, not the

actual B's or ct, are available. Therefore, the estimate of 9 is

given by

np
$= c @

5-bo-blxl.-...-b x . ,

j=l S

where S2 is the error mean square from the fit of this model to the

calibration data set and a(*) is standard normal cumulative

distribution function. The quantity 6 is referred to as the

"adjusted predictions." Because the adjusted predictions were almost

always closer to the observed values, all final estimates for the

number of lakes in a pH or ANC category used this adjustment (Tables 14

and 15).

Estimates of the current number of headwater lakes in specified pH

and ANC categories are a combination of actual (observed) values and

predicted values, using the selected MLR models (Tables 16 and 17).

For actual measurements NSWS data were used when available (46 lakes);

otherwise, FIN data were used. If no measurement was available, a

value was predicted using the selected MLR models. Even with the

adjusted predictions, estimates for the acidic lake categories are
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Table 14. Comparison of percentages of lakes in pH categories
for observed, MLR-prediction, and adjusted MLR-prediction values

(using selected minimum Cp model)

Number of lakes
(%)

pH category
and data subset Observed

Adjusted
estimate MLR prediction

(5.0
FIN calibration 27.4 18.1 7.4
FIN verification 31.3 17.6* 10.4
NSWS verification 26.1 17.2 4.3

15.5
FIN calibration 39.2 35.5 35.6
FIN verification 49.2 33.6 29.8
NSWS verification 43.5 36.3 34.8

56.0
FIN calibration 49.6 55.6 56.3
FIN verification 55.2 53.7 53.7
NSWS verification 54.3 58.0 65.2
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Table 15. Comparison of percentages of lakes in ANC categories for
observed, MLR-prediction, and adjusted MLR-prediction values

(using selected minimum Cp model)

Number of lakes
(%I

ANC category
and data subset

50 peq L-l
FIN calibration
FIN verification
NSWS verification

Observed

34.7
39.3
28.3

Adjusted
estimate

26.4
23.9
24.8

MLR prediction

16.9
14.8
10.9

4

550 ueq L-1
FIN calibration
FIN verification
NSWS verification

1200 peg L-l
FIN calibration
FIN verification
NSWS verification

58.9 53.1 57.3
67.2 50.2 50.8
69.6 53.9 60.9

93.5 94.3 99.2
96.7 93.6 95.1
93.5 95.4 97.8
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Table 16. Estimated number of Adirondack headwater lakes in pH categoriesa

Analysis technique
and basis <5-

Lakes in pH categoryb
(%I Total number

55.5 ~6 of lakes-

Measured 28.2
(n = 70)

Predicted

MLR model 16.1 31.7
(f = 34.5) (f = 67.8)

Discriminant model net 34.6
(n = 74)

Combined (measured and predicted)

MLR model 22.6
(f = 104.5)

Discriminant model net

42.7
(n = 106)

37.6
(f = 173.8)

39.0
(n = 180)

52.0
(n = 129) 248

50.8
(f = 108.7) 214

net 214

51.4
(f = 237.7) 462

net 462

a8ased  on available measurements (NSWS data if available, otherwise
FIN data) or, if no measurement is available, on prediction using MLR or
discriminant analysis. Selected models used.

bf = expected cumulative frequency.
cNot estimated.
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'Table 17. Estimated number of Adirondack headwater lakes in ANC categoriesa

.  .

Data source

Measured

Lakes in ANC categoryb
(%) Total number

<O 60 of lakes- 1200

r

34.6 63.2 94.4
(n = 80) (n = 146) (n = 218) 231

Predicted

MLR model 2 2 . 3 48.1 92.6
(f = 51.5) (f = 111.2) (f = 213.9) 231

Discriminant model net 52.0 net 231
(n = 120)

Combined (measured and predicted)

MLR model 28.5 55.7 93.5
(f = 131.5) (f = 257.2) (f = 438.9) 462

Di-scriminant  model net 57.6 net 462
(n = 266)

a8ased on available measurements (NSWS data if available, otherwise
FIN data) or, if no measurement is available, on prediction using MLR
discriminant analysis. Selected models used.

bf = expected cumulative frequency.
CNot estimated.
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probably low (pH 15; ANC $0 peq L-l), as shown in Fig. 10 and

Tables 14 and 15. The spatial patterns of observed (1974-1983 summer

means) pH and ANC values for headwater lakes in the Adirondack Region .

are shown in Figs. 13 and 14 and can be compared with predicted mean

values shown on overlays inside the back cover.

The estimates for the unk.nown  lakes ("predicted" in Tables 16

and 17) indicate that 16 to 22% of these lakes are in the low pH and

ANC categories. These estimates may have greater uncertainty than

might be suggested by this relatively narrow range because both the

models and the measurements used in the predictions are subject to

uncertainty that has not been explicitly treated. However, a smaller

proportion of the "unknown" lakes are in the low pH and ANC categories

than is the case for lakes for which measurements exist. This may

reflect, in part, a tendency for chemistry data to be available more

frequently for lakes where acidification was a concern.

A number of factors act to create uncertainty both in the fits of

MLR models to data and particularly in predictions based on such

models. Measurement uncertainty exists in both the predictor and the

response variables. For some predictor variables, this uncertainty

is substantial. The inability of the model to reproduce the bimodal

distribution for pH might indicate a missing predictor variable.

Improvement of the R* values might be possible through inclusion

of additional important variables or selected interaction terms in

the model. The use of selected regression diagnostics to examine

influential data points might also improve the R2 values. Quite

possibly, a relatively small number of lakes with aberrant
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Fig. 13. Spatial pattern of observed summer mean pH for headwater
lakes in Adirondack region (overlays inside back cover).
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Fig. 14. Spatial pattern of observed summer mean ANC for headwater
lakes in Adirondack region (overlays inside back cover).
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characteristics or measurements are significantly influencing the -
i

estimated regression coefficients.
i.

.
MLR can lead to inappropriate conclusions under some circumstances

L

k
(McFadden 1963, Barnthouse  1982, Goodyear and Christensen 1984). In

i<

k‘
our applications, however, the control of collinearity (Table 10)

i"
and the consistency of selection of particular explanatory variables

(Table 9) lend support to the general validity of our models. Still,
P

the inability of the models to reproduce the pattern observed for the
*

F.
response variables indicates an inaccuracy with respect to estimating

P‘
cumulative frequencies, thus, of course, increasing uncertainty. E

MLR, a useful tool that provides better means of projecting pH or
t

ANC values than many other nonmechanistic techniques (e.g., proportional
i

estimates), should be viewed as complementing, but not necessarily .

replacing or substituting for, more-mechanistic models (Schnoor 1986,
:

Q c
b

Wright 1983). In addition, considerable uncertainty may be associated

with predictions from MLR, although such uncertainty also applies to 1.c
other available methods.

i

3.3 DISCRIMINANT ANALJSIS
r
P"

S(' b

Discriminant analysis was used on the same data as the MLR to see k

if a multivariate analysis technique would select similar predictor
1

variables and make similar estimates of the number of lakes in
I

prespecified pH or ANC categories. In essence, discriminant analysis

was used as a check on the MLR analysis.
e I

il

1
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. 3.3.1 Methods

Discriminant analysis procedures analyze data with one

classification variable, in this case pH or ANC, and several explanatory

variables (watershed attributes). A stepwise discriminant procedure,

STEPDISC (SAS 1985), was used to find a subset of variables that best

reveals differences between two defined classes for ANC and for pH in

the calibration subset. Because the frequency distributions for pH

appeared to be bimodal, a discriminant function was determined to be

best developed on only two classes for pH and ANC (which will be

referred to as "acidic" and "basic") (Figs. 11 and 12). The values for

determining these classes are 55.5 (acidic) and >5.5 (basic) for pH and

550.0 treq L-' (acidic) and >50.0 peg L-l (basic) for ANC. Reasons

for choosing these values for class limits include frequency

distributions of the class variables, consistency with NSWS classes,

and relevance to observed effects on fish (Baker 1984). Two sets of

discriminant models were developed. A 27-variable model and a

31-variable model (for ANC and pH, respectively) were developed to be

compared with the selected MLR models, which are referred to as the

"selected" discriminant models and use the same variables as the MLR

models. Then the 27 and 31 variables from the selected ANC and pH MLR

models were used as candidate variables for the STEPDISC procedure,

just as they were for the reduced MAXR' models. STEPDISC uses a

stepwise selection procedure to identify the most important explanatory

variables.

c After STEPDISC was used to identify 9 and 13 significant

explanatory watershed variables for pH and ANC, respectively (p ( O-25),
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a discriminant procedure (DISCRIM, SAS 1985) was used to determine

linear discriminant functions that classify lakes into either the

acidic or basic class. DISCRIM develops a discriminant function by

I

j
using a generalized squared distance measure, assuming that the

/

I

I
I
/
!

distribution of the observed predictor variables within each class

follows a multivariate normal distribution. The classification

criterion was based on the individual within-class covariance matrices

and prior probabilities for the classes. The "priors" represent the

probability that a lake comes from one of the classes, and priors were

proportional to the frequency distributions of the acidic and basic

classes,for the calibration subset. Each observation is placed in the

class from which it has the smallest generalized squared distance.

3.3.2 Results

The results of the discriminant analysis procedure (DISCRIM,

SAS 1985) for the FIN calibration subset and the FIN and NSWS

verification subsets are given in Tables 18 and 19. The 31-variable

model for pH and 27-variable model for ANC correctly classify 93 and

90%, respectively, of headwater lakes into the acidic (pH 55.5 or ANC

(50 peq L-l) and basic classes. These models use the same variables

as the selected minimum Cp models from the MLR procedure. In the

verification exercise, these models correctly classify between 72 and

76% of the lakes. The equations for the discriminant models are not

presented because discriminant analysis was only used as a check on MLR.

The reduced discriminant models perform almost as well as the

larger models (Tables 18 and 19). The g-variable pH model correctly

classifies 81% of the calibration data, and the 13-variable ANC model



Table 18. Results of discriminant analysis for pH

Lakes misclassified
(%I

Model and subset Acid to basic Basic to acid

Selected model
31 variables

FIN calibration (n = 135) 6 8 7
FIN verification (n = 67) 39 9 24
NSWS verification (n = 46) 33 15 28

Stepwise reduced model
9 variables

FIN calibration 21 17 19
FIN verification 24 9 16
NSWS verification 36 15 30

.

Table 19. Results of discriminant analysis for ANC

Lakes misclassified
(%I

Model and subset Acid to basic Basic to Acid Total

Selected model
27 variables

FIN Calibration (n = 124)
FIN Verification (n = 61)
NSWS Verification (n = 46)

/
! '\

4 /, 20 10
27 25 '$1 26
2 8 3 3 28

Y

Stepwise Reduced Model
13 variables

FIN Calibration
FIN Verification
NSWS Verification

h

7 20 >',,, 12
36 25

\
33

26 33 26

c
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correctly classifies 88%. As expected, verification subsets had

somewhat higher percentages of misclassifications compared with the

larger models, with 67 to 84% of the lakes correctly classified.
,'

The reduced discriminant and MLR models have the following eight

variables in common for pH: lake elevation, H+ concentration,

watershed relief, soils with high infiltration rates, moderately steep

soils, percentage of watershed in conifers, percentage of watershed in,

hardwoods, and percentage of watershed in wetlands (Table 7). For

ANC the reduced discriminant and MLR models have seven variables in

common: NO; concentration; percentage of watershed in conifers,

in hardwoods, not in forest, and in wetlands; percentage of lake

perimeter in wetlands; and beaver activity (Table 7). The first five

variables selected in the stepwise reduced-discriminant-model exercise

for pH are the same as those selected for the stepwise reduced MLR

model. For ANC the first two variables are the same (N03-CONC and

CONFR2-P) for the stepwise discriminant and MLR models, but bedrock

acid-neutralizing capacity and stony soils have more discriminating

power for the discriminant model than the MLR model.

As with the MLR models, the discriminant model tends to

underestimate the number of lakes in the low pH class; however, the ANC

discriminant model misclassifies about the same proportion of lakes in

the acidic and basic classes. The selected discriminant models predict

39% of Adirondack headwater lakes to have a pH ~5.5 and 58% to have an

ANC <SO veq L-l. These results are similar to the adjusted

predictions from the MLR models (Tables 16 and 17).

P

. .

P
L
L’.

E-

I

i

I-
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” 4. DISCUSSION AND CONCLUSIONS

The MLR model and discriminant analysis are techniques that allow

evaluation of interactions among predictor variables and between

predictor and dependent variables. The MLR model and the discriminant

analysis were used to develop robust models for predicting lake pH and

ANC . The regression model was the primary predictive tool, and the

discriminant analysis served as corroborative evidence. In other

words, did a different statistical technique give similar predictions

about the number of lakes in a pH or ANC category? The two models do

give similar predictions (Tables 16 and 17).

The candidate variables used in the multivariate analyses (Table 7)

were selected to include as many potential controlling factors as

possible for each watershed, either as direct measurements of the above

factors or as surrogates for those factors. For example, H+, S04*-,

and NOS- concentrations in precipitation represent atmospheric

inputs. Cation exchange capacity of the soils is a direct measurement

taken from soil chemistry data. Slope, SCS soil hydrologic group, and

watershed drainage area are potential surrogates for hydrologic contact

with soil and bedrock or hydrologic behavior of the watersheds. Lake area

may be a surrogate for in-lake processes. The expected signs for each

variable's relationship with pH and ANC (Table 4) are based on the

conceptual framework of how watershed attributes control surface water

chemistry (Turner et al. 1986b) and are provided for the reader unfamiliar

. with the literature.

Correlation coefficients and the amount of variance explained in the

multivariate analyses were not high, possibly because of the nature
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of observational data and the complexity of watershed systems. Our L

highest correlation coefficient was 0.61, and the MLR models accounted
. .

for -60% of the variation in lake chemistry. These values are

similar to, or better than, those obtained by researchers performing

similar analyses (Rapp et al. 1985, Nair 1984). For the bivariate

analyses, a few variables consistently had significant (p ( 0.01) and

high correlation coefficients for our data (r values >0.3); many other

var

var

the

Coef ficients for precipitation and runoff were slightly lower in the

ables had correlation coefficients in the range of 0.2 to 0.3. The

ables for wet deposition rates and precipitation concentrations had

highest correlation coefficients, ranging from -0.46 to -0.61.

-0.4 to -0.5 range. Lake elevation and the percentage of watershed in

conifers had correlation coefficients in the -0.3 to -0.5 range. These .

-results support the hypothesis that throughfall and soils in coniferous

forests contribute to water acidity.

Many watershed attribute variables had correlation coefficients in

the range of 0.2 to 0.3 with pH and ANC. Such variables include those

representing the percentage of a lake's watershed having

(1) soils with high or moderate infiltration rates,

(2) moderately steep soils,

(3) soils with a depth to low-permeability horizon or
shallow soils 5100 cm,

1 (4) bedrock with low to medium ANC,

/ (5) soils with a cation exchange capacity 520 meq/lOO g,

(6) soils with high organic matter content,

(7) hardwood or no forest, and

(8) moderately acid wetlands.
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Moderately acid wetlands expressed as a percentage of lakem

perimeter or area also had relatively high correlation coefficients;
.

although this wetland type was expected to indicate acidic lakes,

it seems to consistently indicate nonacidic lakes. Correlation

coefficients for lake area, drainage area, and lake volume were also

relatively high for pH but not for ANC. For the other variables

previously mentioned, correlation coefficients were similar for pH and

ANC. Several other variables had highly significant coefficients, but

the magnitude was so low (r < 0.2) that these values were not

considered to indicate important relationships.

A large correlation coefficient for a watershed variable with lake

pH or ANC does not necessarily mean that variable will be important in

a MLR model or discriminant analysis (e.g., lake area or organic matter.

content of soil). In a multivariate analysis more than one predictor
.I

variable can account for the same variation in the dependent variable

(i.e., collinearity), thus making some predictor variables less

explanatory or completely unnecessary for an acceptable model. Because

of this, details concerning how and why variables were eliminated have

been given. Also, a variable with a small correlation coefficient may

be useful for developing a good predictive model and understanding

factors contributing to variation in the dependent variable (e.g.,

percentage of watershed in wetland, percentage of watershed disturbed,

and percentage of stony soils).
Y

Our estimates indicate that 23 to 29% of Adirondack headwater

s lakes are acidic (pH 55.0 or ANC 50 peq L-l). Also, 38 to 56% of

headwater lakes may be in danger of becoming more acidic and are
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already at levels detrimental to some fish species- (pH ~5.5 or ANC

$0 peq L-l). We believe these estimates are reasonable because

they include observed data for about one-half of the lakes; predictive

models were verified with independent subsets of data; and, if anything,

the predictions underestimate the number of acidic headwater lakes.

These estimates should be representative of all headwater lakes in the

Adirondacks because the models are based on data for -63% of the AEZ

(an area defined by the availability of wetland maps) and the lakes are

scattered throughout the AEZ (Fig. 1).

Baker and Harvey (1984) estimated that 20 to 25% of Adirondack

lakes have a pH ~5.0. They used the distribution of lakes with known i

measurements, stratified by lake area and elevation, and performed a
k

r
logistic multiple regression using lake area and elevation. Schofield

(1976) found that 51% of Adirondack high-elevation lakes (>610 m) had a.

S

L
pH c5.0. Colquhoun et al. (1984) found that 19% of the most recent pH

k+

measurements were~c5.0 for lakes monitored-by the NYDEC (1047

with 1 or more measurements of summer surface pH from 1974 to

present). Schnoor et al. (1985) estimated that 19% of the Ad

lakes have an ANC 540 peq L-l; this estimate is based on the

waters

the

irondack

"Trickle-Down" model, coupled with MLR model results. Our estimates

are in general agreement with other researchers' estimates, considering

that each estimate was made with different data and different methods.

Because headwater lakes tend to be at higher elevations, the percentage

of headwater lakes having low pH and ANC is greater than that of all_, ".. .i , .

Adirondack lakes. However, our empirical models tend to underpredict * I
i

the number of,lakes in low pH and ANC categories, so these factors tend

to balance each other out.
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Perhaps even more important than the ability of a model to predict

lake chemistry for lakes without chemistry data is the insight gained

from a model about the possible importance of watershed attributes or

the environmental processes they represent. For simplification,

variables present in the following three models for pH, ANC, or both

are considered to have strong relationships with lake chemistry: the

selected minimum Cp models, the reduced MAXR' models, and the

reduced discriminant models. Such variables include lake elevation;

atmospheric inputs of H+ and strong acid anions; watershed relief;

soil stoniness, steepness, and infiltration rate; forest cover; wetland

type; and beaver activity. Additional watershed attributes that appear

to be related to a lake's acidity are the shape and hydrologic type,

runoff, depth of bedrock, soil cation exchange capacity, land-cover

disturbance, and human development within the watershed. Many of these

variables also have significant and large correlation coefficients.

Significant statistical relationships among observational data do

not prove cause and effect relationships; however, such analyses are

useful for evaluating existing hypotheses about ecological process&s

(e.g., lake acidification). Watershed variables having strong

relationships with lake pH or ANC will now be discussed concerning the

conceptual framework of how watershed factors control surface water

chemistry (Schnoor and Stumm 1985. Turner et al. 1986b). A few

variables account for most of the variation explained (Fig. 15).

The strongest predictor of lake pH and ANC, of all the variables

examined, is wet acidic input from the atmosphere. The H+ and

N03- concentrations in precipitation were used in the models, but

.

Y
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wet deposition rates or S042- concentration in precipitation would

give similar results because they are all collinear. Like the
.

deposition variables, precipitation amou,nt  alone is significantly

correlated (inversely) with lake pH and ANC. Dry deposition rate data

are not available for the Adirondack watersheds. Given the strength of

wet deposition rates as a predictor, a significantly higher R2 could

possibly be obtained if dry deposition or a suitable surrogate for it

were available.

The next best predictor of lake pH and ANC to appear in all of the

models is percentage of watershed in coniferous vegetation. Conifers

.

intercept more cloud and fog moisture than deciduous trees and may

indicate higher relative levels of dry deposition as well. They

generally have a much larger total leaf area than deciduous trees,

retain their foliage year round, and may scavenge more dry, deposited

acids from the atmosphere. Conifers may also contribute to natural

acidification of soils and soil water more than hardwoods (Brady 1974,

Russell 1954). However, available data do not allow assessment of the

relative importance of each of these individual processes.

Lake elevation is the third best predictor variable in the pH

model, but it does not appear to be important for ANC. Lake elevation

per se would not be expected to exert a mechanistic control on lake

chemistry. Lake elevation, however, is strongly correlated with wet

deposition and with many other variables, such as soil characteristics,

hydrologic characteristics, and vegetation type, that are expected to

be mechanistically associated with lake chemistry. For the Adirondacks,

at least, elevation seems to be a readily available integrator of many

other controlling variables.
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Percentage of watershed with very steep slopes (>25% slope) and

moderately steep slopes (>15% slope) appears to be important.

Watersheds with steep slopes would be likely to have rapid,

near-surface runoff through acidic, low base saturation and low

so42--retaining soil horizons, causing the water to have little

chance for neutralization by cation exchange or weathering. The water

might become more acidic in soils with very low base saturation

(because of the sa

are strong acid an

Johnson 1985). In contrast, if drainage water encounters easily

t effect) if the anions present in the soil solution

ons (S042-, N03-, Cl-) (Reuss and

weathered minerals or soils with relatively high base saturation before

reaching surface waters, the hydrogen ions will be consumed or

exchanged for base cations. Watersheds with a large percentage of

soils with low to moderate runoff potential (soil hydrologic groups A

and B) allow more infiltration of water than group C soils and,

therefore, more contact with weatherable materials or higher

base-saturation soil horizons. The percentage of watersheds having

soil hydrologic groups A and B also appears to be important, showing a

positi,ve relationship with pH and ANC.

Two additional variables account for some variation in lake ANC:

beaver activity and percentage of watershed that is not in forests

(barren, developed, etc.). As expected, the percentage of watershed

not in forests and the percentage of hardwoods are positively

correlated with ANC. Beaver activity is negatively correlated with

lake pH and ANC and is also present in the selected MLR models for pH
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* and ANC, although it does not appear to be as explanatory for pH as for

ANC. Lower pH values in beaver ponds have been documented by several

investigators (Rupp 1955, Salyer 1935, Adams 1953, Gard 1961, Leighton

1950, and Needham 1938). One factor that may account for the lower

pH values is increased humic acid content of waters because of

submerged vegetation and soils. Beaver activities may not be causing

acidification of surface waters but may reflect the results of another

watershed attribute not in the data set. Driscoll et al. (in press)

reported increased ANC below a beaver dam.

Watershed attributes selected as good predictor variables are

similar for the pH and ANC selected models. In the reduced models, the

variables differ somewhat -- physical and chemical soil characteristics

are important for pH and forest and wetland types are important for

ANC . Wet acidic inputs are the single characteristic explaining the

most variability in lake chemistry. Lake elevation and the percentage

of watershed in coniferous forest are also important factors. The

extent to which lake elevation and percentage of watershed in

coniferous vegetation are surrogates for dry deposition inputs is

uncertain (e.g., high elevation and high proportion of conifers may

indicate higher levels of dry deposition). To the extent that the

distribution of conifers is correlated with the distribution of higher

deposition, acidic deposition amounts (wet plus dry) may explain most

of the variability observed in the pH and ANC of Adirondack headwater

lakes. To the extent that lake elevation is an integrator (a surrogate)

of other watershed processes and that coniferous vegetation modifies

natural soil and water acidification by means other than dry deposition
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or fog interception, watershed characteristics other than atmospheric

deposition inputs may be important in controlling lake chemistry.

In the Upper Midwest, statistical analyses using cluster and

discriminant techniques show that lake hydrologic type (e.g., drainage

and seepage) and lake surface area are characteristically associated

ity in lake alkalinity (Eilers et al. 1983, Schnoor etwith the variabil

al. 1985, Schnoor

find surficial ge

et al. 1986). Although Eilers et al. (1983) did not

ology or soil type to be related to lake alkalinity in

Wisconsin, Schnoor and Nikolaidis (1983) found that bedrock geology,

soil pH, and runoff helped discriminate between seepage/inflow lakes

and drainage/spring lakes in Michigan. The shoreline development

factor, percentage of watershed not in forest, and bedrock geology

helped discriminate between seepage and inflow lakes. In Minnesota

Rapp et al. (1985) found that bedrock type, forest type, lake

morphology, lake hydrologic type, and deposition were associated with

the variability in lake alkalinity.

In the Northeast Schnoor et al. (1985) used MLR with alkalinity as

the dependent variable to identify watershed characteristics related to

the variability in lake chemistry. They found, as we did, that

precipitation or deposition is strongly associated with lake water

quality. Schnoor et al. (1985) found that bedrock type is also a good

predictor variable for the Northeast and that soil pH is important in

the Adirondacks. In contrast, we found physical soil characteristics

(i.e., percentage of watershed having steep soils and moderate to high

infiltration rates) and the percentage of watershed in conifers to be

consistent predictors for both pH and alkalinity in the Adirondacks.
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These results, though not markedly different from earlier resultsx

(Hunsaker et al. 1986), are the outcome of statistical tests performed
P

on a refined data set. Measurements of the size of small lakes were

refined, and additional variables were added (beaver index, runoff, and

depth to bedrock). Complex lakes are being added to the data base and

will be examined later. Data for several additional variables, such as

dry deposition, lake retention time, forest age, dissolved organic

carbon concentrations, and complete anion data in lake water, will

still be lacking. These attributes are needed to better resolve the

importance of watershed disturbance, forest regrowth, and in-lake

processes in controlling surface water pH and to quantify the relative

importance of organic anions and strong acid anions in the lake water.

The ongoing Adirondack Lake Survey by NYDEC will supply some of these1

data and provide an additional data set for validation of the models.
.

Empirical models have several appealing features for regional

assessments: they are relatively easy, inexpensive, and rapid to use;

there are diagnostic techniques for identifying questionable data or

bias; and the models can be verified. Empirical models are useful for

exploratory research such as this study because a large number of

variables can be screened uniformly and important associations

identified. Such associations, however, do not imply cause and effect

relationships. These models can be developed from either experimental

or observational data, but reliable multivariate data for large regions

. are rarely available. As shown by this study, empirical models are

useful for evaluating resources at risk for large geographic areas;a

however, the uncertainty associated with individual lake predictions

\



can be large, and process models using experimental data may be more

appropriate for individual lake predictions or for future predictions

of lake acidification. However, the results from empirical models can

provide important information about variables or watershed orocesses

that should be considered during process model development.
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Appendix A

PROCEDURES USED IN DETERMINING WHICH
F COLLINEAR VARIABLE TO ELIMINATE

This appendix describes in more detail the procedures used to

determine which variable to eliminate at each step of the collinearity

analysis. A summary description of these procedures is provided in

Sect. 3.2.1 of the main text.

The SAS procedure REG (SAS 1985) was applied repeatedly, using the

COLLIN option. For each run, the collinearity diagnostics were

examined. If the largest condition index (CI) was >30, 2 or more

parameters corresponding to particular variables usually also had a

variance-decomposition proportion (VP) > 0.5. In such a case (i.e.,

CI > 30), the corresponding variables with a VP > 0.5 were "marked" for

possible elimination. If ~2 variables (i.e., not including the

intercept) had a VP > 0.5 and the next largest CI was also >30, the

sums of the VPs for the 2 (or 3, if necessary to obtain at least

2 variables) largest CIs were examined, and all variables with combined

VPs >0.5 were marked. Once the marked variables were identified, they

were examined in relation to the following priority list, and some of

them were unmarked until only one marked variable remained. This sole

remaining marked variable was eliminated from all remaining analyses.

This procedure was followed iteratively until the largest CI no longer

exceeded 30.
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PRIORITY LIST

1. The intercept always was judged appropriate for inclusion in the

model; i't was not marked, and, therefore, it was never eliminated.

2. The Cp statistic was calculated for all models, omitting marked

variables one at a time until only one marked variable remained.

This variable was eliminated from further consideration. The Cp

values were examined for amount of difference and for clusters of

like values. If the values differed by more than -1 to 2X, one

or more remaining marked variables were identified as having lower

Cp values, and all other remaining marked variables were unmarked.

3. For this step only, all remaining variables (i.e., not eliminated

by prior passes through this priority list) were considered,

whether marked or unmarked. If one or more remaining marked

variables were the only variables remaining in their group (with

groups being defined by letter codes in Table A-l), these were

unmarked, provided that this did not result in unmarking all of

the marked variables. The intent of this was to retain in the

final model, where possible, at least one variable in each group.

4. All variables had been classified according to the degree to which

they represented direct measures of potentially mechanistic

processes (Table A-l). If the remaining marked variables differed

with respect to this class, all remaining marked variables except

those in the least mechanistic (largest number) class were

unmarked (e.g., a soils variable would be unmarked, and elevation

or lake area would remain marked for possible elimination if all

were collinear).

i/



171

Table A-l. Groupings and other information used in process of selecting
variables for elimination in multicollinearity analysis

(See key at end of table for explanation of column headings)a

Variable name Mechanistic
by group potential Reliability

$;;l;abA;:;; Coprrlati;;:

Group A
LAKE-A
WTRSHD-R
DRAIN-A

Group B
LAKE-DEV

Group C
HYDTYPl
HYDTYP2
HYDTYP3

Group 0
ELEV

Group E
RELIEF-R
STONEY-P
ROCK-P
HYDRO-A
HYDRO-B
HYDRO-C
STEEPM-P
STEEPV-P
SHL2-B-P
SHL2-P-P
SHL2-R-P
DPTH-B-U
DPTH-P-U
DPTH-R-U

Group F
ASPECTS

Group G
ROCKl2-P

Group H
ACID-P

.

BSA-L-P
BSC-L-P
CECS-L-P
OM-H-P

L PH-VL-P
PHC-VL-P
ACID-EX
CEC
ORG-MAT

3
2
2

2

2
2
2

3

2
1
1
1
1
1
1
1
1
1
1
1
1
1

2

1

1
1
1

:
1
1
1
1
1

:
1

1

2
2
2

1

2
1
1
1
1
1
1

i
1
1
1
1
1

2

1

1
1
1
1
1
1
1
1
1
1

1
1
1

4

1
1
1

1

1
2
2
2
2
2
2
2
2
2
2
2
2
2

2

3

2
2
2
2
2
2
2
2
2
2

1
1
1

1

1
1
1

1

1
2
2
2
2
2
2
2
2
2
2
1
2
2

2

3

2
2
2
2
2
2

;
1
2

** +

** +

** - ** -

*+

** - ** -

*+

*Jr + ** +

** + ** +

k- *-

** - ** -

*-

** + ** +
k- *-

*, *-

* -



Table A-l. (continued)
+

Variable name Mechanistic Correlationd 3
by group

Availability
potential Reliability NSWSb WDNRc PH A N C

Group I
CONFR2-P
HRDWD2-P
NONFR2-P

Group J
WTLND-PP
VACID-PP
NACID-PP
WTLND-PW
VACID-PW
NACID-PW
WTLND-PL
VACID-PL
NACID-PL

Group K
DISTRB-P

Group L
BVRINDEX

Group M
CABN78-R

Group N
H-WET
N03-WET
S04-WET
H-CONC
N03-CONC
S04-CONC

Group 0
RUNOFF

Group P
PPT

2
2
2

2

2

1

1

1

1

1

1

4

4

1

1

1
1
1

4
4
4
1
4
4
1
4
4

1

4

1

2
2
2
2
2
2

2

2

** - ** _

** +

** + *+
;.

i

k- *-

*+
b

*+

*,  **-

t s

*+

d

** - ** _

** - ** -

** - ** _
k

** - ** -
i

** - ** -

** _’ ** -

** - ** -

** - ** -

aRefer also to Table A-2.

bNational Surface Water Survey data (Linthurst et al.,
Kanciruk et al. 1986).

CWisconsin  Department of Natural Resources data (Webster
et al. 1983).

d* indicates p ~0.05, ** indicates p ~0.01, and the direction
of the correlation is indicated by a + or -.

.
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i Key to Table A-l

r Mechanistic Potential:

1: Direct measure of potentially mechanistic process. These are
the most mechanistic variables and are best from the point of
view of mechanisms.

2: Indirect measure, conflicting direction of mechanistic effect
possible, or both.

3: Surrogate variable. These are the least mechanistic
variables and are worst from this point of view.

Reliability:

1: Higher reliability.
2: Lower reliability.

Availability (NSWS or Eilers):

1: Available as needed or able to be calculated with minimal
effort.

2: Available in digital form but not extracted for lakes in the
data set. Could be developed with moderate effort.

3: Could be developed with considerable effort.
4: Not available, not likely to become available. This is not

good.

Relatedness:

Letter codes are used to define groups of variables considered to
be related strongly to each other in terms of type of mechanistic
potential. Inherently nonmechanistic variables are, of course,
not related to any other variables in terms of this criterion.

Correlations (with pH or ANC):

Results are indicated for the calibration data set; levels of
significance would be expected to become greater with the full
data set in many cases. The direction of the correlation is
included for the convenience of the reader, but this information
was not used in the collinearity procedure.

** _*. Spearman correlation significant at P < 0.01, negative
correlation.

** +: Spearman correlation significant at P c 0.01, positive
correlation.

* -: Spearman correlation significant at P < 0.05, negative
correlation.

* +: Spearman correlation significant at P < 0.05, positive
correlation.
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5. If the remaining marked variables differed with respect to

reliability (Table A-l), all of them except those in the least

reliable class were unmarked. (Those in the least reliable class

thus remained as candidates for elimination.)

6. The remaining marked variables were evaluated with respect to

availability in the larger National Surface Water Survey (NSWS)

data set outside of the Adirondacks (see Table A-l). If these

marked variables differed substantially with respect to

availability in this data set (i.e., did not all have the same

code value), all remaining marked variables except those in the

least available (largest code number) category were unmarked.

7. Step 6 was repeated with respect to the Eilers' data set.

8. If two or more of the remaining marked variables were closely

related (i.e., were in the same group as defined in Table A-l) and

one or more of the other remaining marked variables were unrelated,

the unrelated remaining marked variable(s) were unmarked.

i

( /

.1

9. The remaining marked variables were evaluated with respect to their

correlation with pH or alkalinity (whichever was appropriate) in

the specification data set (CORRELATION columns in Table A-l).

If some but not all remaining marked variables were significantly

correlated (p < 0.05), these were unmarked, regardless of whether

the direction of the correlation was in accordance with

expectations.
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5
10. With respect to the wet deposition variables (Group N), if one or

more hydrogen ion variables remained marked, all of them for which

a corresponding (i.e., concentration or wet deposition, as the

case may be) sulfate or nitrate variable also remained marked were

unmarked. Because all atmospheric input variables were highly

correlated, inclusion of the hydrogen ion over inclusion of the

sulfate or nitrate was favored. The purpose was to hinder the

inference that inclusion of one of these anions in the model means

it is more important than the other in controlling lake

acidification.

11. If more than one wetland variable (Group J) remained marked, a

separate wetland priority list (Table A-2) was examined. If the

remaining marked wetland variables fell in more than one wetland

group according to this list, all marked variables except those

marked wetland variables falling in the lowest priority group were

unmarked.

12. At this point, one or more marked variables remained. If only one

marked variable remained, that variable was eliminated. If two or

more marked variables remained, the one with the highest VP was

eliminated. All other variables were unmarked in preparation for

the next run.
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Table A-2. Priority groups for wetland variables
used in process of selecting variables for
elimination in multicollinearity analysis

Variable
Priority
groupa

WTLND-PW 1

WTLND-PP

WTLND-PL

VACID-PW
NACID-PW

VACID-PP
NACID-PP

VACID-PL
NACID-PP

2

3

4
4

5
5

6
6

a1 = highest priority to remain in model.
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