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ACRONYMS
LPE/LPI - low probability of exploitation/intercept
RBF - radial basis function
SSN - submarine
SWMCM - shallow water mine-counter-mine
USNS - United States Navy Ship

UUV - unmanned underwater vehicle



ABSTRACT

The objective of this research was to develop and demonstrate a technique for encrypting
information by using a masking signal that closely approximates local ambient noise. Signal
masking techniques developed to date have used nonlinear differential equations, spread
spectrum, and various modulation schemes to encode information. While these techniques can
effectively hide a signal, the resulting masks may not appear as ambient noise to an observer. The
advantage of the proposed technique over commonly used masking methods is that the
transmitted signal will appear as normal background noise, thus greatly reducing the probability of
detection and exploitation. A promising near-term application of this technology presents itself in
the area of clandestine minefield reconnaissance in shallow water areas. Shallow water mine-
counter-mine (SWMCM) activity is essential for minefield avoidance, efficient minefield
clearance, and effective selection of transit lanes within minefields. A key technology area for
SWMCM is the development of special sonar waveforms with low probability of
exploitation/intercept (LPE/LPI) attributes. In addition to LPE/LPI sonar, this technology has the
potential to enable significant improvements in underwater acoustic communications. For
SWMCM, the chaotic waveform research provides a mechanism for encrypted communications
between a submarine (SSN) and an unmanned underwater vehicle (UUV) via an acoustic channel.
Acoustic SSN/UUV communications would eliminate the need for a fiberoptic link between the
two vessels, thus increasing the robustness of SWMCM. Similar applications may exist in the
areas of radar masking and secure communications.

The original approach called for the use of polynomial maps to generate a masking signal.
Because polynomial maps were found to have highly restrictive stability criteria, our approach
was modified to use radial basis function (RBF) maps. We have shown that stable RBF maps that
closely approximate an ambient sea state can be derived using nonlinear systems theory. In doing
so, we have shown that our measured ambient state has a deterministic structure that implies
eight-order dynamics. The RBF maps were used to successfully encrypt a continuous wave signal
across a high-fidelity, low-noise transmission path. Attempts to duplicate this result across a low-
fidelity, high-noise path were not successful.



1. INTRODUCTION

The objective of this research was to develop and demonstrate a technique for masking
information, which may be in the form of a sonar pulse or a communications signal, by using a
signal that closely approximates local ambient noise. Signal masking techniques developed to
date have used nonlinear differential equations, spread spectrum, and various modulation schemes
to encode information. While these techniques can effectively hide a signal, the resulting masks
may not appear as ambient noise to an observer. The advantage of the investigated technique
over commonly used masking methods is that the transmitted signal appears as normal
background noise, thus greatly reducing the probability of detection and exploitation.

The investigated technique uses a map obtained by applying nonlinear systems theory to relate
the state vector describing the ambient noise at time #, to the state vector at time £, + 6¢. The
resulting map is used to generate a masking signal, which is then modulated with the information
signal before being transmitted. The received signal is demodulated by using a priori knowledge
of the masking signal.

1.2 TECHNICAL BACKGROUND

The effectiveness of the encryption depends heavily on the generation of an appropriate
masking signal. Ideally, the masking signal will closely simulate background noise while
remaining easy to demodulate. This section describes approaches employing nonlinear systems
theory to generate masking signals that accomplish one or the other of these goals.

1.2.1 Masking Signal Simulating Ambient Noise by Using a Chaotic Time Series

Recent work suggests that many commonly encountered forms of ambient noise may be closely
described by a deterministic model with chaotic behavior, and that expansions in polynomials or
other functions can be used to obtain a model of the dynamics for such noise.>*** This model can
be used to generate a deterministic masking signal closely approximating the ambient noise.

Assuming that the ambient noise can be described by a deterministic model, a relationship, G,
describing the dynamics of the noise must exist,

X() = GIX(%)], (D

where X is a d-dimensional vector of phase space variables describing the noise,  is time, and 7, is
some initial time. In the practical cases we will consider, a single observable variable Y of the
system is measured at equally spaced time intervals, Az, where Y is some unknown function of the
state variables, X [e.g., Y= H(X)]. For such a time series, the /th measurement is given by

Y, = HUX(GAD)] . @



The following conditions will be assumed to be satisfied by the scaler time series ¥ and by the
dynamics of the system:

» The time series consists of measurements obtained at equally spaced time increments.
» The time series sampling satisfies the Nyquist sampling criteria.

o The dynamics are such that for initial conditions within some region of phase space, all
trajectories converge toward a common asymptotic solution, 4. This asymptotic solution is
called an attractor because all initial conditions within the region are attracted to this solution.

o The time series is obtained after any transient portion of the solution has, for all practical
purposes, died away. Thus, the time series describes the dynamics of the attractor 4, and our
attention can be limited to the dynamics of 4.

» The attractor is ergodic and the time series captures a representative sample of the dynamics
of 4.

Because G, H, and d are unknown, the original attractor cannot be recovered. However, it is
possible to construct representative state vectors in an appropriate embedding phase space from
the scaler time series and use these state vectors to form a reconstructed attractor. The
trajectories in such an embedding are found to faithfully reproduce the invariant dynamical
features of the original system, G. '

The method of delays, being the simplest method for constructing state vectors in an
embedded phase space, was used in this work. The form of the kth state vector, Z*, is given by

AR [Yk’Yk+T’Yk+2T""'Yk+(d¢-l)T] > 3)

where T is the delay increment, ¥, , 1 . .. Y, (. ;r are the embedded variables, and d, is the
embedding dimension.> The state vectors constructed by using the method of delays obviously
depend on the embedding dimension and the delay increment.

Taken’s theorem states that for an infinite noise-free time series, an embedding exists such
that the invariant features of the reconstructed dynamics will be the same as those of the original
system.® Moreover, an embedding dimension of no greater than 2d + 1 will be sufficient to
preserve these invariant features. Under realistic conditions, where the time series contains a
finite number of data points contaminated by noise, it is found that the dynamics in the embedded
phase space depend on both the embedding dimension and the delay increment. Thus, the
dynamics of the reconstructed attractor will approach those of the original attractor only for a
proper choice of d, and T.



Returning to the problem of modeling ambient noise by using a polynomial map, we propose
to find a map F that relates the reconstructed observables at time increment » to those at time
increment n+1:

Y"!' = F(Y") . @)

The components of the F can be represented by a set of polynomials P(Y) expanded up to
order p:

F(Y) = kf C,,PAY) )

where the P(Y) are constructed to be orthonormal on the data set; that is,

Z P(Y)P(Y) =9, . (6)

The polynomial construction consists of forming polynomial maps F as a function of the
embedding dimension and the delay increment. The coefficients C,, , along with the optimum
values of d, and T, may be determined by minimizing the error E(C;, ), which is given by

14
EC) = XX -FOMP =T X - 3 CuP a1 ()

A synthetic time series closely resembling the ambient noise in both the time and frequency
domain can be generated from F. This synthetic time series will be used as our masking or carrier

signal.
1.3 RESEARCH OVERVIEW

The objective of this research was to develop and demonstrate a technique for encrypting
information by using masking signals that closely approximate local ambient noise. The masking
signals will be generated by using either polynomial or radial basis function (RBF) maps. The
main steps performed during the research were as follows:

* Develop a systematic method to calculate the map coefficients for polynomial maps and RBF
maps. The resulting maps must be stable in the sense that they do not converge to either a
fixed point or a limit cycle under iteration, and the iterated map must closely approximate the
background signal in both the time and frequency domains.
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* Develop a method to synchronize the decrypting map at the receiver with the encrypting map
at the transmitter.

» Develop a method to take the effects of the transmission path into account when performing
decryption.

» Demonstrate the method using both simulated signals and measured noise (i.e., background)
signals.

The remainder of the report describes the investigation and its results. Section 2 describes
map generation for both polynomial and RBF maps and presents some sample maps
approximating synthetic time series. Section 3 presents the results of applying the map generation
method described in Sect. 2 to measured noise data. Section 4 describes signal masking and
recovery and how the problem of synchronization was overcome. Section 5 presents signal
recovery results using maps created by using both synthetic and measured masking signals. The
final section presents conclusions based on the investigation and discusses the investigation results
The report concludes with a discussion of further research needed to extend the investigation
results toward the goal of creating a practical masking/recovery system based on the investigated
method.



2. MAP CREATION METHODOLOGY

A key aspect of this work was to develop a methodology to create maps that approximate the
dynamic behavior of measured time series. These maps would be used to generate a masking
signal used at both the transmitter and receiver. These maps need to closely approximate the
dynamics of the measured time series to reduce the probability of signal detection and
exploitation.

An acceptable map must perform two functions well. First, it must be a good one-step
predictor; that is, given some number of previous measurements, it must be able to predict the
value of the next measurement. Second, under iteration, the map must closely approximate the
dynamics of the measured time series. The first requirement, that the map must be a good one-
step predictor, is used during demodulation of the received signal. The second requirement, that
the map must approximate the system dynamics under iteration, is needed to create the masking
signal at the transmitter.

Nonlinear time series analysis techniques have been applied to characterize the measured time
series and determine some key parameters needed for map creation. These key parameters were
used to create both polynomial maps and maps composed of RBFs. The ability of these maps to
perform as one-step predictors and to simulate system dynamics under iteration were investigated.
This section describes the application of nonlinear time series analysis methods, the calculation of
the polynomial and RBF maps, and the performance of the resulting maps. Sample results using
time series obtained from the Lorenz system of nonlinear differential equations are used to
demonstrate the calculations.

2.1 APPLICATION OF NONLINEAR TIME SERIES ANALYSIS TECHNIQUES

Nonlinear time series analysis techniques are used to examine whether the measured time
series is deterministic, to ascertain the optimum time delay used to reconstruct the attractor, and
to determine the minimum embedding dimension of the reconstruction. If the measured time
series is entirely random, any attempt to create a map to approximate and predict the measured
time series will be futile. For deterministic systems, the underlying dynamics can be characterized
from a time series by applying the method of delays.” The dynamics will usually be
multidimensional, with the dimension being initially unknown. Once the multidimensional
attractor is reconstructed from the measured time series, a map that approximates this attractor
can be created.

The mutual information function is used to determine whether the measured time series is
deterministic and, if so, to determine the time delay to use in reconstructing the attractor. The
method of global false nearest neighbors is used to determine the embedding dimension of the
reconstructed attractor. The following sections describe these two methods.



2.1.1 Mutual Information

It is generally accepted that the optimum time delay, t, used to reconstruct an attractor from a
time series corresponds to the time at which the first minimum occurs in the mutual information
function.” The time delay corresponding to the first minimum in the mutual information function
is the minimum time interval necessary for two variables to become essentially uncorrelated. An
attractor reconstructed by using T as the delay time will have uncorrelated components while
avoiding the "folding" typical of using values of time delay that are too large.

The mutual information function is similar to the autocorrelation function, except that it
measures the general dependence of two variables rather than only the variable's linear
dependence. Note that random data will be uncorrelated; thus, the mutual information function
can be used to indicate whether a time series contains correlated information from a deterministic
source or whether the time series is simply random noise.

The derivation of the mutual information function for two series of measurements S and Q,
1(S,0), is given in Ref. 7. The resulting expression for 1(S,Q) is

1(5,0)=H(S) +H(Q) - H(S,Q) , ®)

where H is the entropy of the series of measurements. If the series of N measurements of S is
given by (s,, S,, S;, ..., Sy), then the entropy, H(S), is given by

N
H(S)=- El P (s)log,[P(s)] ©)

where P(s;) is the probability of a measurement being equal to s;.

In a similar manner, if S=(s,, s, 55, ..., Sy) and O =(q,, 92, G5, .-, qy) are two sets of
measurements, then the entropy of the combined set of measurements, H(S,0), is given by

N

N
H(S,0)=-3 Y P,(s.9)l0g, [P, (s.9)] (10)

i=1j=1
where P, (s,q)) is the probability of g; occurring if 5, is known to occur. In this application, §
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corresponds to the time series, and Q is obtained from S by delaying S by AT.

The mutual information is calculated by using Egs. (1), (2), and (3) for a range of delay times.
For a deterministic time series, plotting the values of I(S,0(A 7)) (where the dependence of O on
the delay time is explicitly shown) against delay time results in initially decreasing values of
I(S,0(AT)) as delay time increases. I(S,0(AT)) eventually will pass through a minimum and then
vary, always remaining at a relatively low value. The value of delay time at which the first
minimum of /(S,0(A 7)) occurs is the reconstruction delay time, t, selected to perform the
attractor reconstruction.

2.1.2 Method of Global False Nearest Neighbors

The method of global false nearest neighbors is based on a simple geometric idea: if the
number of dimensions d used to reconstruct an attractor is too small, many points that appear
“near” will become widely separated when d + 1 dimensions are used in the attractor
reconstruction.® Nearest neighbor points that experience this wide separation when comparing
their distances in dimension d and d + 1 are false nearest neighbors in dimensiond. Conversely,
true nearest neighbors will remain near each other in attractor reconstructions of bothd and d + 1
dimensions. The adequacy of dimension d for reconstructing an attractor can be evaluated by
selecting a number of random points and their nearest neighbors in dimension 4 and then
calculating the percentage of false nearest neighbors.

Typical results of this calculation for noise-free data show the percentage of false nearest
neighbors to be relatively high for low-dimensional attractor reconstructions, with the percentage
of false nearest neighbors decreasing with increasing dimension, eventually reaching and
remaining at a value near zero. The lowest dimension at which the percentage of false nearest
neighbors is the minimum embedding dimension needed to reconstruct the data, d,. Noisy data
show similar results, except the percentage of false nearest neighbors reaches a minimum at d, and
then increases with increasing dimension. The minimum percentage of false nearest neighbors will
not approach zero for noisy data; the amount of random noise contamination will determine the
value of the minimum in the global false nearest neighbors calculation results.

A pair of points are considered false nearest neighbors in dimension 4 if

R2d+1(n)

>R, , 11

where R (n) is the Euclidean distance between the nth point and its nearest neighbor in d
dimensions, R,, ,(n) is the Euclidean distance between the nth point and its nearest neighbor in



d + 1 dimensions, and R, is the first criteria for declaring nearest neighbor pairs to be false.® A
second criteria, needed because near neighbors may not be especially “close,” is given by

R 2d+ 1
02 > Atol ’ (12)

where o is the standard deviation of the time series and 4, is the second criteria for declaring
nearest neighbor pairs to be false.® A nearest neighbor pair is declared false if either test [Eqs. (4)
and (5)] fails. In this work, the values used for the criteria in Eqs. (4) and (5) are R, = 17.1and
A,=18.

2.1.3 The Lorenz System

The Lorenz system consists of the following nonlinear set of equations:

dx

£ —o(Y-

& o(Y-Xx), (13)
day
—=rX-Y-XZ,

dt (14)

and

dz .

— =-bZ+XY,

& (15)

where 0, r, and b are constants and X, ¥, and Z are the time-dependent coordinates.” A thorough
description of the Lorenz system and its derivation is given in Ref. 9.

Equations (13), (14), and (15) were integrated by using a fourth-order Runge Kutta numerical
integration algorithm. Values of ¢ = 10, r = 28, and b = 8/3; initial conditions of X = 0.01, Y =
0.02, and Z = 0.15; and an integration step size of 0.0005 seconds were used in the calculation.
Values of X, Y, and Z were tabulated for 0.005 second intervals. The Lorenz attractor is shown in
Fig. 1.



Fig. 1. The Lorenz attractor calculated for o = 10, r = 28, and
b = 8/3 using the initial conditions X =0.01, Y= 0.02, and Z =
0.15.

The attractor used in the map calculation was obtained from the X coordinate by using the
method of delays. The optimum time delay for the reconstruction was set equal to the first
minimum in the mutual information function. Figure 2 shows the mutual information calculated
from the X coordinate of the Lorenz system for a range of time delays. The optimum time delay
for attractor reconstruction is 0.16 seconds. Figure 3 shows the results of the global false nearest
neighbor calculation. Results show that the proper choice for d, is three. Three dimensions were
used in the attractor reconstruction; a two-dimensional representation of the reconstructed
attractor is shown in Fig. 4. Thus, when attempting to create a map of the Lorenz system, an
attractor reconstruction of dimension of three or greater and a time of delay of 0.16 seconds
should be used.
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2.2 CREATION OF MAPS COMPOSED OF POLYNOMIALS

The first attempt to create maps that simulate system dynamics under iteration involved using
polynomials. Polynomials are easy to work with and are familiar, and there is considerable
experience in using them to obtain one-step prediction maps, often for the purpose of calculating
the Liapunov spectrum.”® Furthermore, the successful iteration of polynomial maps to simulate
system dynamics has been documented.>*!! The general form of the polynomials maps used in
this work is given by

xi*l = E A'nAdnJ ’ (16)

where x is the time series variable, i is the ith iterate, » is the number of terms in the map, A, is the
coefficient of the nth term, and M, ; is the nth monomial created from the state vector components
of iterate i. As an example, for a three-dimensional system, the polynomial map would be given
by

X = At A X, + Ay, t Az ¢ AxZ+hoy?+dgzr+h,xy, +hex 2+ Ao y,z, . (1T)

11
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Fig. 5. The Lorenz attractor and it’s image. The solid line
corresponds to the original data and the circles correspond to the
image.

The values of the A, are determined by performing a least squares fit to M data points using
singular value decomposition. A good map will have an image of the data set that closely matches
the data set and will reproduce the system dynamics under iteration. The following sections
present results.

2.2.1 Calculation Results for Polynomial Maps

Polynomial maps were calculated for the Lorenz system. The performance of the polynomial
map was evaluated by comparing the image of the data to the data, and by comparing the time
series and attractors of the data and the iterated map.

Figure 5 shows a comparison of the reconstructed attractor and the image of an attractor
generated by a second-order polynomial map. Five thousand data points were used to fit the map
coefficients. The image of the map closely approximates the attractor. This result indicates that
the polynomial map would be an accurate one-step predictor.

Figure 6 shows the attractor of the iterated map. The map rapidly approaches a fixed point
under iteration. This result is typical of our findings using polynomial maps. Another common
result is that polynomial maps are often unstable under iteration; that is, their iterates eventually
become unbounded. It appears that it is rare (and this assertion is borne out by the discussion in

12



Ref. 3 to find a polynomial map that will closely approximate system dynamics under iteration.
Thus, the instability of polynomial maps under iteration resulted in our abandoning them for this
application in favor of RBF maps.

Zz — component

-19 Il 1 L L L L 1 L 1 L. 1 L
-1 -10 -9 -8 -7 -6 -5 -4 =3 -2 -1 0
x — component

Fig. 6. The result of iterating the unconstrained polynomial
map for the Lorenz attractor. This result is typical.

2.3 MAPS COMPOSED OF RADIAL BASIS FUNCTIONS

The inability to obtain polynomial maps that closely simulate system dynamics when iterated
led to the investigation of maps composed of RBFs. These functions have good localization
properties and normally remain bounded when iterated.

2.3.1 Description of Radial Basis Function Maps

The general form of a map composed of such functions is given by

N

X, =2 Ao, (-l , (18)

n=1

where x is the time series variable, 7 is the ith iterate, » is the number of terms in the map, A, is the

13



coefficient (or weight) of the nth term, ¢() is the RBF, and o, is the nth basis vector.”> Note that
the Euclidean norm between the point x; and the basis vector o, is the argument supplied to the
function ¢(). Following the example described in Ref. 12, the form of the RBF ¢() used in this
work is given by

d(r)=(r2«C**, (19)

here > -1, # 0, and C is a constant. Substituting the Euclidean norm into Eq. (19) for r
yields the form for the RBF used in this work:

-p
de
b, = [ Y (et Cz] . (20)

The values of the A, are determined by fitting the first » data points. This fitting results in the
following equation that must be satisfied by the A, :

{x},.=[®]{a}, (21)
where ®@,,=¢,,. The A, are given by

{A}=[®@] Hx},., . (22)

A computer code was written to implement the calculation of the A, and to iterate the
resulting RBF map. The following section shows the results.

2.3.2 Calculation Results for Radial Basis Function Maps
RBF maps were calculated for the Lorenz system. The performance of the RBF maps is

evaluated by comparing time series, attractors, and Fourier transforms of the original time series
and the time series generated by iterating the maps.
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2.3.2.1 Results for the Lorenz System

A 400-term RBF map was created using values of B = 1 and C*> = 0.5 and an embedding
dimension of six. The time series was scaled to be between -1 and 1. The original and simulated
time series, attractors, and Fourier transforms are compared in Figs. 7 to12. Note that the
original and simulated time series match virtually exactly for the first 400 data points: these
points; are used as the basis vectors, so this agreement is not surprising. The original and
simulated time series show good agreement for approximately the next 100 map iterations, after
which the simulated time series diverges from the original time series. However, the qualitative
behavior of the two time series remains similar, as shown by the close agreement between the
original and simulated time series, attractors, and Fourier transforms.

1.0
0.8
0.6

value

00
ol | .
-04r
0.8}
-08¢
-1.0F

1 L 1

0 100 200 300 400 500 600 700 800 900 1000
sample number

Fig. 7. The time series of the Lorenz attractor. Samples are
taken every .05 seconds.
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Fig. 8. The time series generated from iterating the map. The
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=1and C*=0.5. Six dimensions are used in the reconstruction
with a time delay of 0.15 seconds.
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Fig. 9. The attractor reconstructed by using delay coordinates
for the Lorenz system. Three thousand points are shown.
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Fig. 11. The Fourier transform of the Lorenz time series.
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2.4 CONCLUSIONS

Overall, polynomial maps have proven unsatisfactory for use in signal masking. The
unconstrained polynomial maps perform well as one-step predictors, but their tendency to
approach a fixed point or to become unbounded under iteration makes them unsuitable for
generating a masking signal. Constrained polynomial maps are poor one-step predictors, and,
while they remain bounded and do not approach a fixed point under iteration, they do not closely
approximate the dynamics of the original system. These maps could be used to generate a
masking signal, but that signal would be unlike the measured data used to calculate the map
coefficients.

The RBF maps have shown a remarkable ability to simulate the dynamics of the three systems
examined in this work. In each of the three cases, the time series, attractors, and Fourier
transforms of the original and simulated time series compare well. The RBF maps do not
approach either infinity or a fixed point for any number of iterations. Although the number of
terms in the maps (i.e., hundreds) may seem excessive, the coefficient calculation is performed on
the Silicon Graphics Indy workstation in a matter of several minutes, and the map iteration is
performed in approximately 10 seconds. Thus, the RBF maps appear to be computationally
practical.

Experience has shown that the ability of the RBF maps to approximate the time series depends
heavily on N (N also corresponds to the amount of data used to fit the values of the A, ), on the
value of B, on the value of C, and on the selection of the basis vectors. Although the effects of
these parameters on map performance has not been fully explored, our preliminary work indicates
the following:

* The map will approximate richer, more complicated behavior as more terms are added. It is
speculated that this behavior is caused by the relatively limited dynamics used in the fit for a
small number of terms. For a successful approximation of the system dynamics, it appears
that the number of terms in the fit must correspond to the number of points required to
adequately display the system dynamics.

* The map will be more robust for small (in an absolute sense) values of B. For larger values of
B, the maps have a greater tendency to approach a fixed point under iteration. A value of p =
1 has given good results in our work.

* The value of C affects the amplitude of the iterated map. As C approaches the maximum
value of the data, the amplitude of the iterated map approaches that of the data. Values of C
much larger or smaller than the maximum data value result in the amplitude of the iterated
map being less than that of the data. In this work, good results were obtained for values of C
between 50% and 100% of the maximum data value. :

* The basis vector selection is critical to the map performance. In this work, the coordinates of
the first NV points were used as the basis vectors. Other methods of selection, such as
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choosing every 10th point or selecting some arbitrary set of basis vectors, produced poorer
results.

Although the effects of B, C, d,, N, and the selection of the basis vectors on map performance
are not fully understood, some “rules of thumb” have been developed that have resulted in maps
that qualitatively reproduce the dynamics of the original systems. Further work should
concentrate on developing a better understanding of the effects of these parameters on map
performance, ultimately leading to more rigorous methods for selecting these parameters.
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3. MAP PERFORMANCE USING MEASURED TIME SERIES

Hydrophone data were acquired from Exuma Sound, Bahamas, through the generosity of the
Naval Surface Warfare Center, Carderock Division (CDNSWC). An RBF map was created to
model the dynamics that generated these data. This section describes the map creation and
compares performance of the map with the measured time series.

3.1 MAPPING OF EXUMA SOUND TIME SERIES

Hydrophone data were collected in Exuma Sound by personnel aboard the USNS Hayes in
May 1996. The data were collected from a single hydrophone at a depth of 400 ft in calm
conditions. The data sampling rate was 4096 samples/second, and the data was low pass filtered,
with a cutoff frequency of approximately 1600 Hz. Approximately 3 minutes of data were
obtained. Because the Exuma Sound time series was measured and not generated from a set of
nonlinear differential equations, the embedding dimension was not known in advance. Thus, the
additional step of determining the embedding dimension is required when creating a map to
simulate the data measured at Exuma Sound.

The first step in the time series analysis is to determine the optimum time delay to use in
reconstructing the attractor. The mutual information for the Exuma Sound time series is shown in
Fig. 13. The first minimum in the mutual information occurs for a time delay of approximately
0.003 seconds, so this time delay is used to reconstruct the attractor.
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Fig. 13. The mutual information for a range of time delays for
the Exuma Sound data.

21



Figure 14 shows the global false nearest neighbor calculation results for the Exuma Sound
time series. The calculation was performed for 400,000 data points with a set of 100 selected
points, and for 600,000 data points with sets of 300 or 1000 selected points. Figure 14 shows a
minimum of approximately 20% in the percentage of false nearest neighbors for an embedding
dimension of eight; the percentage of false nearest neighbors increases rapidly for embedding
dimensions greater than eight. Using larger data sets and larger sets of selected points reduces the
rate of increase in the percentage of false nearest neighbors for embedding dimensions greater
than d,. This results occurs because more “true” nearest neighbors are found for larger data sets
and because the effects of a few poor nearest neighbor selections are reduced for larger
sets of selected points. These results indicate that d, equals eight and that the data are heavily
contaminated with random noise.
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Fig. 14. Percentage of false nearest neighbors calculated by
using the Exuma Sound data.

A 600-term RBF map was created using values of =1 and C = 1 and an embedding
dimension of eight. The original and simulated time series and Fourier transforms are compared
in Figs. 15 to 18. The qualitative behavior of the two time series is similar, as shown by the close
agreement between the original and simulated time series and Fourier transforms.

The RBF map has performed well in simulating the dynamics of the Exuma Sound data. This
example shows that the mapping technique using radial basis functions is robust in the sense that it
is able to produce good results for both the “clean” data of the Lorenz system of Section 3 and
the noisy data measured at Exuma Sound. This robustness is encouraging and indicates that the
method may successfully applied to other data sets.
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Fig. 15. The measured time series from the Exuma Sound
data. The sample rate is 4096 samples/second.

1.0
0.8
0.6

0.2+
0.0 F
-0.2

value

-04}
-06}

-0.8 F
1.0}

1 L A i 1 L I A I L

0 200 400 600 800 1000 1200 1400 1600 1800 2000
iterate number

Fig. 16. The time series generated from iterating the map. The
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4. SIGNAL MASKING METHODOLOGY

Demodulation of the received signal requires that the masking signal be available at the
receiver. An approach for reconstructing the masking signal at the receiver is to use a masking
signal possessing the property of self-synchronization.”'* Such systems can be divided into a
drive system and one or more stable response subsystems (i.e., subsystems with only negative
Liapunov exponents).”> When driven, the output from the stable response subsystems will
converge to the values of the drive system.”® Moreover, this synchronization can, for some
systems, be robust in the sense that the output from the stable response systems is not particularly
sensitive to small deviations in the drive signal. Thus, for such systems, the transmitted signal can
be used as the drive signal, and the response of the stable response subsystems can be used to
closely approximate the masking signal.

This concept has been applied to signal masking by using both the Lorenz system and Chua’s
circuit.""® These systems are described by nonlinear systems of differential equations that exhibit
the property of self-synchronization and are robust with respect to noise. In each case, the ability
to send and receive a masked signal, recover the masking signal at the receiver, and then
demodulate the received signal to recover the encrypted information with acceptable accuracy
was demonstrated.

This approach, while elegant, has the major drawback that the noise profile used to generate
the masking signal (such as the Exuma Sound data) may not be generated by a system that will
synchronize. Furthermore, it was not clear what constraints needed to be placed on the maps to
guarantee synchronization. Therefore, another technique was sought that either forced
synchronization of the maps at the transmitter and receiver or made synchronization unnecessary.
This section describes a simple signal masking and recovery scheme that performs satisfactorily.

4.1 SIGNAL MASKING AND RECOVERY SCHEME

A simple definition of synchronization between two dynamical systems is that given a subset
of the state variables of the first system as input, the state variables of the second system will
converge to those of the first system. Thus, the transmission of some state variables generated by
a driving system allows the remaining state variables to be reproduced by a driven system at the
receiver. The resulting state variables are then used to reproduce the masking signal, which can
be used to extract the information from the received signal.

Using the method of delays to reconstruct the state variables inherently removes the issue of
synchronization. One variable is measured, and the remaining state variables are obtained from
delayed versions of this measured variable. Thus, the only remaining question is how best to
mask the information. A very simple scheme was used in this investigation to include the
information signal with the masking signal. The information signal was added to every other
sample of the masking signal, and the time delay used in the method of delays was adjusted to
correspond to an even number of samples. The resulting transmitted signal, which was created by
simply adding the information signal to the masking signal, could then be demodulated by
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subtracting the predicted signal from the received signal. Because the information was added only
to every other sample, and because the sample increment corresponding to the state vector
reconstruction was even, the masking signal corresponding to a sample with added information
was predicted using measured signal values that did not contain added information. Thus, the
predicted masking signal at the receiver (assuming no noise or signal corruption) exactly equals
the masking signal at the transmitter. The masked information can be recovered nearly exactly.

4.2 SIGNAL MASKING AND RECOVERY USING THE LORENZ SYSTEM

Signal masking and recovery is demonstrated in this section using the Lorenz attractor as the
dynamical system. The 400-term RBF map described in Sect. 2.3.2.1 was used to mask and
demask a sine wave. The sine wave amplitude was 1% of the peak-to-peak amplitude of the
masking signal, had a frequency was 0.1 Hz, and was added to the masking signal beginning with
the 600th sample. Figures 19 and 20 show the Fourier transform of the masking signal and the
masking signal with the added sine wave. It is unlikely that any difference between these two
signals would be noticed. Figure 21 shows the recovered signal; the recovered signal which is
virtually identical to the information added to the masking signal.
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Fig. 19. The Fourier transform of the masking signal
combined with the sine wave. The masked sine wave is also
shown.
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4.3 SIGNAL MASKING AND RECOVERY USING THE EXUMA SOUND DATA

The Exuma Sound data were also used to demonstrate signal masking and recovery. The
600-term RBF map described in Sect. 3.1 was used to create the masking signal. The sine wave
amplitude was 1% of the peak-to-peak amplitude of the masking signal, had a frequency was 0.1
Hz, and was added to the masking signal beginning with the 600th sample. Figures 22 and 23
show the Fourier transform of the masking signal and the masking signal with the added sine
wave. Again, it is unlikely that any difference caused by the inclusion of the sine wave would be
noticed. Figure 24 shows the recovered signal; again, the recovered signal is virtually identical to
the information added to the masking signal.
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Fig. 22. The Fourier transform of the masking signal (the time
series formed by iterating the map of the Exuma Sound time
series).
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Fig. 23. The Fourier transform of the masking signal
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S. PERFORMANCE OF SIGNAL MASKING AND RECOVERY
IN A PHYSICAL MEDIUM

All previous results reported here regarding this method have come from computer
simulations. Performance of the signal masking/recovery method in a physical medium is -
presented in this section. The effect of the transmission channel on the received signal must be
taken into account when performing a masked transmission. A simple way to account for the
effects of the transmission channel is to use different maps at the transmitter and the receiver. The
transmitter map is created first and is used to form a time series. This time series is then
transmitted and received, forming a new time series at the receiver that includes the effects of the
transmission channel. A receiver map is then created using the received time series. This receiver
map is then used during signal recovery to predict the values of the masking signal at the receiver.
The masking signal is then removed from the received signal, leaving a distorted version of the
masked information.

5.1 MASKING AND RECOVERY USING THE LORENZ SYSTEM

The Lorenz system was again used to demonstrate the masking method. The line-in/line-out
ports of a Silicon Graphics Indy workstation provided a low-noise, high-fidelity transmission path.

A 6-dimensional, 400-term RBF map was used as the transmitting map. The time series
produced by iterating this map was transmitted and received through the line-in/line-out ports for
a Silicon Graphics Indy workstation. The received time series was used to create a receiving map,
which also was 6 dimensional and contained 400 terms. A transmission that included a masked
2-Hz sine wave with an amplitude of 20% of the masking signal maximum value was transmitted
and received. The received signal was demasked by using the receiving map. A comparison of
the original sine wave and the recovered sine wave is shown in Fig. 25 (the sine wave is coarsely
represented because the sampling rate is only 6.7 Hz). Close examination shows that the main
features of the sine wave are recovered at the receiver.
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Fig. 25. Time domain comparison of the
original and recovered 2-Hz sine wave.
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Figure 26 shows a frequency domain comparison of the original sine wave and the recovered
sine wave. The recovered signal is attenuated by a factor of 0.7 during transmission, reception,
and recovery. Noise created during transmission and reception is clearly evident in both the time
and the frequency domain comparisons. This noise is at a relatively low level and has not severely
impacted the ability of the method to recover the masked sine wave.
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Fig. 26. Frequency domain comparison of the original
and recovered 2-Hz sine wave.

5.2 MASKING AND RECOVERY USING THE EXUMA SOUND DATA

The Exuma Sound data were also used to demonstrate the masking method. The line-in/line-
out ports of the Silicon Graphics Indy workstation again provided a low-noise, high-fidelity
transmission path. A 9-dimensional, 400-term RBF map was used as the transmitting map for the
Exuma Sound data. The time series resulting from iterating this map was transmitted and
received by using the line-in/line-out ports of the Silicon Graphics Indy workstation. The received
time series was used to create a receiving map, which also was 14 dimensional and contained 800
terms. The additional dimensions and terms were used in an attempt to increase the accuracy of
the map to function as a one-step predictor. A transmission that included a masked 10 Hz sine
wave with an amplitude of 20% of the masking signal maximum value was transmitted and
received. The received signal was demasked by using the receiving map. Figure 27 compares the
original sine wave and the recovered sine wave. The sine wave is clearly shown as a low-
frequency modulation of the noisy signal.
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A frequency domain comparison of the original sine wave and the recovered sine wave is
shown in Fig. 28. The recovered signal is attenuated by a factor of approximately 0.4 during
transmission, reception, and recovery. Again, noise created during transmission and reception is
clearly evident in both the time and the frequency domain comparisons. This noise is at a
somewhat higher level than that experienced with the Lorenz system during a similar transmission
and accounts for the additional attenuation of the recovered signal. This level of noise does not
prevent the masked sine wave from being recovered.
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Fig. 28. Frequency domain comparison of the original
and recovered 10-Hz sine wave.
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6. SUMMARY AND CONCLUSIONS

This investigation of masking methodology has resulted in significant progress toward the
creation of a practical method for masking information signals by using a masking signal that
closely approximates ambient noise. This section reviews the most significant accomplishments of
the investigation and discusses the areas in which additional research efforts are needed.

6.1 RESEARCH ACCOMPLISHMENTS

A method for creating maps that closely approximate a measured noise signal in both time
and frequency domains has been developed and demonstrated. The method of delays was used to
reconstruct the multidimensional trajectory of the measured time series. The time corresponding
to the first minimum in the mutual information function of the time series was used as the
optimum time delay. The method of global false nearest neighbors was used to determine the
optimum embedding dimension of the trajectory. This information was then used to reconstruct
the trajectory of ambient ocean noise.

After reconstructing the trajectory, expansions in polynomials and RBF were used to create
maps for predicting the next point in the time series given sufficient previously measured points.
The map coefficients were calculated by using the method of least squares to fit the map
predictions to the measured data. We found that both polynomial maps and RBF maps could
accurately predict the next time series value, given previously measured values for non-noisy data,
but that polynomial maps would typically converge to a limit cycle or a fixed point under iteration.
RBF maps performed better than polynomial maps under iteration, usually producing a time series
that closely approximated the original time series used to create the map.

We concluded that RBF maps would be useful for creating maps for masking data, because
these maps produced time series that closely approximate the original time series and usually do
not converge to limit cycles or fixed points. Both polynomial and RBF maps could be used to
recover a masked signal.

We devised a method for adding information to the masking signal that allowed the masking
signal to be accurately reproduced at the receiver (assuming no transmission path noise or
distortion). Because the method of delays allows a representation of a trajectory to be created
from the measurement of a single variable, the trajectory of the received signal can be
reconstructed in the same way it was reconstructed at the transmitter. Thus, if the map used to
create the masking signal is available at the receiver, the masking signal can be accurately
reproduced. Forcing the delay time used to reconstruct the trajectory to correspond to an even
number of samples and adding the information to every other sample of the masking signal forces
the prediction of every other masking signal sample (which corresponds to samples that contain
information) to be made with samples that do not contain any masked information. Thus,
predictions of the masking signal samples corresponding to transmitted signals containing
information are very accurate (again, assuming no noise or signal distortion), and the information
can be recovered. The effectiveness of this simple method has been demonstrated in both
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computer simulations and limited laboratory experiments, and it has been shown that this
approach avoids the need to synchronize the maps at the transmitter and receiver.

Another simple but effective method was devised to take the effects of the transmission path
into account when recovering the information at the receiver. If transmission were perfect, the
same map used at the transmitter could be used to reproduce the masking signal at the receiver.
Because of signal distortion during transmission, this approach will not result in an accurate
version of the masking signal being produced at the receiver. If the masking signal without noise
is transmitted and received, the received signal, which is simply a distorted version of the masking
signal, can be used to create a polynomial or RBF map that can predict the next measured value
given previous values. This map can then be used at the receiver to produce the received masking
signal, assuming the same time delay is used to reconstruct the trajectory at the receiver. The
resulting recovered signal is a distorted version of the original information, with the distortion
resulting from the transmission path.

Signal masking/demasking was demonstrated by using both simulated signals and measured
noise (i.e., background) signals. We used RBFs to create maps that produced time series that
closely approximated the trajectories of the Lorenz system and measured hydrophone data from
Exuma Sound. These maps were used to mask information by simply adding a sine wave to the
map’s time series. Computer simulations of the transmission and reception of the masked signals

showed that the masking signal could be reproduced at the receiver and that the masked
information could be accurately recovered. Transmission through a low-noise, high-fidelity
transmission path introduced distortion into the recovered signal, but the information was still
recovered. Transmission through a high-noise, low-fidelity transmission path resulted in no useful
information being recovered. Thus, it was shown that the method in its present form requires a
low-noise, high-fidelity transmission path or some digital form of transmission that will very
accurately reproduce the original masked signal. Nevertheless, it was demonstrated that
information can be masked in a synthetic time series that appears like some form of measured
noise and that this information can be transmitted, received, and recovered using this technique.

6.2 AREAS FOR FUTURE RESEARCH

The limited investigation described in this report was able to only touch on some important
issues regarding the use of maps to simulate measured time series and to mask information. This
section discusses some of the issues that need to be more adequately understood to fully develop
the signal masking method.

Map stability is still not well understood (here stability is defined as maps that will not
approach a fixed point or a limit cycle under iteration). Although some work has been performed
to determine constraints that will guarantee stability, this work is far from complete. RBF maps
appear to never approach a fixed point and rarely fall into a limit cycle. However, these

possibilities cannot be completely dismissed, so the issue of stability needs to be more thoroughly
addressed before the method can be claimed to be completely practical.
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Concerted efforts should be made to reduce the sensitivity of the maps to noise. The maps
used in this work generally consist of hundreds of terms and attempt to mimic the dynamics of
nonlinear systems. It is not surprising that a small amount of noise added to each of the map
terms causes a large change in a map’s output. Some work performed as part of this investigation
indicates that RBF maps will become less sensitive to noise as the number of centers is reduced.
However, our experience has shown that the ability of a map to act as an accurate one-step
predictor is generally enhanced by increasing the number of centers. A method to select the
optimum number of centers and their coordinates is needed to create maps that optimize some
combination of noise sensitivity and prediction accuracy.

The optimum data processing that needs to be performed on the measured signals is still
unclear. The data is normalized and shifted to have mean zero, but the optimum scaling has not
been determined. Our work has shown that map performance is highly dependent on the proper
scaling of the data and that the scaling of the measured data, both at the transmitter and at the
receiver, is critical to the method’s performance.

The form of the information signal and how it can best be included with the masking signal has
not been investigated in this work. The simple addition of the two signals performed in this work
is clearly not the most secure way to hide the information in the masking signal, but it was a good
choice for the purpose of investigating the masking method feasibility. Some form of encryption
of the information by using spread spectrum techniques should be considered, or possibly
modulation of map coefficients would result in a well-hidden signal. Undoubtably, a large number
of ways exist to include the information with the masking signal, and a more thorough
investigation of these should be performed.

6.3 CONCLUSIONS

This investigation has shown it is possible to create maps by applying tools originally
developed to analyze nonlinear systems, that closely approximate the behavior of complex
dynamic systems such as chaotic systems or measured noise. These maps are stable in the sense
that they approach neither a limit cycle nor a fixed point under iteration and will function as an
accurate one-step predictor.

A simple method based on the inherent properties of trajectory reconstruction by using the
method of delays and involving proper selection of reconstruction time delay and proper inclusion
of information with the masking signal ensures that in the absence of noise and distortion, the
masking signal can be accurately reconstructed at the receiver. This simple method avoids the
complicated issue of synchronization that must be addressed when using other masking methods
in which the masking signal is generated from sets of differential equations.

This investigation provided another simple method to address the issue of signal distortion
caused by the transmission path. Two maps are used. The first map is created from a time series
of the background noise and is used as the masking signal at the transmitter. The second map is
created by using a received version of the masking signal. This second map will account for the
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effects of the transmission path. This simple method allows for the effects of the transmission
path to be accounted for during signal recovery without having to perform a complicated and
time-consuming dynamic analysis of the transmission path.

The signal masking method was demonstrated by using a computer simulation of a
transmission (i.e., a perfect transmission/reception); a transmission through a low-noise, high-
fidelity transmission path; and a transmission through a high-noise, low-fidelity transmission path.
The computer simulation of the transmission showed the method to perform extremely well, with
the information signal being recovered almost perfectly. The transmission through the low-noise,
high-fidelity transmission path showed that the information could still be recovered, but the
information was distorted and noisy. The information could not be recovered when the
transmission occurred through the high-noise, low-fidelity transmission path.

It can be concluded that the sensitivity to noise of the method in its present form limits its use
in applications involving low-noise, high-fidelity, transmissions. It may be possible to apply the
method to radio frequency transmissions, but it is unlikely it could be successfully applied to the
field that originally motivated this work—sonar and undersea communications. The method
could be used with little modification to hide information on recorded media, especially in digital
form, or on printed media, such as in the form of hidden watermarks. Other specific applications
may come to light with time.
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