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ABSTRACT 
 
This annual report describes the first year’s accomplishments under the NERI2000-109 project.  We 
present a model-independent approach to quantify changes in the nonlinear dynamics underlying time-
serial data.  From time-windowed data sets, we construct discrete distribution functions on the phase 
space.  Condition change between base case and test case distribution functions is assessed by 
dissimilarity measures via L1-distance and χ2 statistic.  The discriminating power of these measures is first 
tested on noiseless model data, and then applied for detecting dynamical change in power from a motor-
pump system.  We compare the phase-space dissimilarities with traditional linear and nonlinear measures 
used in the analysis of chaotic systems.  We also assess the potential usefulness of the new measures for 
robust, accurate, and timely forewarning of equipment failure.   
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1.  INTRODUCTION 
 
 
This NERI Project began in August 2000.  The project has three tasks.  The first (current) project year 
involves only Task 1, namely development of nonlinear prognostication for failures in critical equipment 
at nuclear power facilities.  Examples of such equipment include blowers, compressors, fans, vacuum 
pumps, cooling units, generators, invertors, motor generators, governors, couplings, gearboxes, motors 
(electric, hydraulic, pneumatic), pumps, valve operators, and turbines.  This annual report describes the 
work status for the first year of the project, spanning August 2000 through August 2001.  Tasks 2-3 span 
the second (FY 2002) and third (FY 2003) project years, and will not be discussed in this annual report.  
Section 2 describes the status of the tasks, issues/concerns for each task, cost performance, and status 
summary of tasks.  Section 3 discusses the detailed technical aspects of the work, including the technical 
background, traditional linear and nonlinear analysis, phase-space dissimilarity analysis, validation of the 
dissimilarity measures for model data, and analysis of equipment data.  Section 4 presents the conclusions 
of this year’s work and summarizes the expectations for the second year’s work. 

 
 

2.  PROJECT NARRATIVE 
 
 

This narrative begins by explaining the project subtasks from the NERI2000-109 proposal for the first 
project year.  These subtasks are listed in the same order as in the proposal, for easy reference. 

 
Task 1.1 of our proposal is as follows.  A database of diagnostic data sets will be assembled from 
historical or newly acquired data.  We will first locate occurrences of the most significant failures, and 
then assemble the associated diagnostic data.  This data will begin with the failure occurrence, and 
extend backward in time to the baseline period.  The data sets will then be analyzed via linear measures 
for obvious trends. 
 
Under Task 1.1, time and funding constraints for the first project year did not allow long-term failure 
monitoring of nuclear power plant equipment.  Instead, we acquired new data via accelerated failure tests 
by seeding specific faults in test equipment.  In consultation with the Oak Ridge National Laboratory 
(ORNL), DE&S constructed a test plan, which includes a summary of important-to-safety equipment in 
nuclear power plants; the choice of two test modes (unbalance and misalignment); the DE&S testing 
facility; detailed specifications of the equipment to be tested; the test protocol; and specifications of the 
data acquisition equipment.  Appendix A contains the full test plan, which was completed in the third 
project quarter.  DE&S provided sample test data to ORNL for preliminary analysis.  ORNL analyzed this 
data and found a rich set of nonlinear features.  The sampling rate was adequate (12.5 KHz), but the 
number of data points was too small (16,384 points).  ORNL needed voltages and currents from all three 
phases of the three-phase electric motor, for conversion to instantaneous power.  ORNL also needed 
longer datasets.  These requirements necessitated an upgrade to the data acquisition system (Emax by 
PdMA Corporation), causing some delay while PdMA modified their software.  DE&S subsequently 
received the upgrades and provided the test data for the two test sequences.  Total payments to DE&S 
were $49,906.40 under the subcontract (versus an allocated cost of $50K), as follows: $5,536.00 on 
December 7, 2000, for preliminary test data; $6,529.20 on January 4, 2001, for testing options; 
$11,139.28 on February 12, 2001, for the test plan; $14,436.32 on March 16, 2001, for equipment 
specifications; $12,265.60 on June 6, 2001, for test data. 

 
Task 1.2 of our proposal is as follow.  The diagnostic data from Task 1.1 will be analyzed for the 
adequacy of data quality for subsequent nonlinear analysis.  ORNL experience indicates that inadequate 
data quality produces inferior or unusable results.  This analysis will evaluate the data-sampling rate, 
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digitization precision, number of points per dataset, frequency response of the sensors, and related 
elements.  Adequate quality data typically has ≥20,000 data points, sampled at ≥10 times the fundamental 
rotational frequency over ≥1 second at ≥6 bits of digitization precision.  If the existing historical 
diagnostic data is determined to be of insufficient quality, changes in the data acquisition methods will be 
instituted to produce data that is capable of being analyzed by the nonlinear methods.  This task will be 
performed by ORNL.  

 
Under Task 1.2, ORNL performed quality checks of the test data.  The table below summarizes the data 
quality checks that we performed.  ORNL identified three misalignment datasets with ranges of 
instantaneous power that far exceeded the others.  DE&S confirmed these findings, and determined that 
the problem was due to a memory limitation in the Emax system for more than two sequential datasets.  
DE&S corrected the problem by rebooting the Emax system.  DE&S provided replacement datasets of 
adequate data quality to ORNL. 
 
Brief description of the data quality check for each dataset For good quality data, result should be  
§ proper number of data points          500,000 
§ any intervals(s) with unchanged signal amplitude      no 
§ adequate sampling rate            no 
§ excessive periodic content           no 
§ excessive noise              no 
§ saturation at high/low limits (indicator of improper amplification) no 
§ consistent signal amplitude across multiple datasets in the test   yes 

 
Task 1.3 of the proposal is as follows.  Each set of adequate-quality diagnostic data from Task 1.2 will be 
analyzed with the nonlinear paradigm to determine the presence of a statistically significant condition 
change indication.  This analysis will also determine the characteristics of the PS-DF associated with 
each specific failure type.  This task will be performed by ORNL.  
 
Task 1.4 of the proposal is as follows.  A library of PS-DF types and their correlated failure types will be 
developed for subsequent correlation to unknown failures by means of the nonlinear characteristics.  This 
task will be performed by ORNL. 
 
Task 1.5 of the proposal is as follows.  The extent of PS-DF changes, via the measures of dissimilarity, 
will be associated with the time remaining until observed failure for the observed failure events.  This 
correlation will be used subsequently to indicate the assessment of remaining condition of the equipment.  
This task will be performed by ORNL.   
 
ORNL used a research-class FORTRAN code that performs Tasks 1.3-1.5 as an integrated sequence of 
algorithmic operations on both the misalignment data and the imbalance data from DE&S.  The analysis 
converts time-serial, process-indicative data into a discretized phase-space (PS) representation.  The 
resulting distribution function (DF) captures the location and occurrence frequency for the nonlinear 
process dynamics.  Dissimilarity measures indicate departure of the test case DF from the baseline DF as 
an underlying system parameter changes.  Forewarning of failure corresponds to a statistically significant 
rise in dissimilarity, as to the desired outcome of Task 1.3.  The library under Task 1.4 is formed by the 
sequence of PS-DFs for the misalignment and unbalance tests.  Correlation of the dissimilarity measures 
with the failures was performed by reference to the ISO standards 2372 and 3945, as the desired outcome 
for Task 1.5.  Sections 3.2 and 3.4 of this report describe this analysis in detail. 
 
Task 1.6 of the proposal follows.  This task will involve the robust implementation of the nonlinear 
analysis algorithms for near-real-time analysis of equipment data.  Specifically, ORNL will implement the 
nonlinear paradigm on a desktop computer, which will be placed at an appropriate DE&S site for use by 
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the reactor operators there.  This mode of on-site data acquisition and diagnosis will be similar to the 
mode of operation for equipment prognostication at an advanced nuclear reactor.  This task will focus on 
algorithm changes that minimize the memory requirements and maximize computational speed. 

 
ORNL procured and set up a Win2000 1.3GHz Athlon PC with 1.5GB of memory and two 81 GB hard 
drives.  The PC also has Ethernet capability, keyboard, mouse, video board, read-only CD-ROM, and 
data archival capability (100MB Zip drive and re-writable CD-ROM).  An existing 15” monitor at ORNL 
was used to display the results.  A new Compaq FORTRAN compiler was procured for this computer.  
Procurement costs totaled $3,026.  Sample analyses for Sec. 3.6 from an existing 500 MHz Pentium II 
computer were reproduced exactly on the new machine, demonstrating the robustness of the FORTRAN 
algorithm in moving across processors (Pentium II to Athlon) and different operating systems (WinNT to 
Win2000).  The new PC is 2.42 times faster than the older machine, consistent with the proportionately 
faster processor speed (1.3GHz/500MHz = 2.6).  The new PC has not been transferred to DE&S because 
on-site data acquisition of operational data is not anticipated for the second project year.  This new 
computer will significantly enhance ORNL’s analysis capability for this project. 

 
 

2.1 ISSUES AND CONCERNS 
 

Analysis of preliminary test data identified a need for longer datasets and more data channels, as 
explained in the narrative for Task 1.1.  ORNL requested that DE&S obtain an upgrade the Emax 
software from PdMA Corporation to meet these requirements, causing a delay in the test plan and 
diagnostic data acquisition, as described above.  Project spending has not risen linearly, also due to this 
delay in data acquisition.  Consequently, we anticipate that $30–40K of FY 2001 funds will not be spent 
in the first project year.  We have requested that Phil Wong (Oakland Operations Office) authorize carry-
over of these funds into FY 2002.  We expect to use this carry-over funding for more detailed nonlinear 
analysis of the test data. 

 
 

2.2 COST PERFORMANCE 
 
We received $157,000 for the first project year on August 18, 2000.  Total costs through the fourth fiscal 
quarter of the first project year (August 2000 through August 2001) are $97,725.  We anticipate that 
spending through the end of FY 2001 will leave $30–40K of carry-over into FY 2002, as shown in the 
plot of project costs versus time below.  The dashed (- -) curve from months 12–15 shows subsequent 
expected costs, versus nominal linear spending versus time in the solid curve (). 
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2.3 STATUS SUMMARY FOR FIRST PROJECT YEAR 
 

Milestone/task description 
Planned 

completion 
date 

Actual 
completion 

date 
Task 1.1: ORNL set subcontract in place for DE&S 
                DE&S provide preliminary test data to ORNL 
                DE&S construct test plan for accelerated testing 
                DE&S provide datasets to ORNL 

     09/00 
     09/00 
     11/00 
     01/01 

10/00 
02/01 
04/01 
06/01 

Task 1.2: ORNL analyze quality of DE&S test data 
                DE&S provide replacement datasets for any found inadequate 

02/01 
02/01 

06/01 
06/01 

Task 1.3: ORNL perform condition change analysis on data 08/01 08/01 
Task 1.4: ORNL construct library of nonlinear condition change signatures 08/01 08/01 
Task 1.5: ORNL correlate condition change to approaching failure 08/01 08/01 
Task 1.6: ORNL procure new computer 
                ORNL implement nonlinear analysis software on new PC 

08/01 
08/01 

05/01 
06/01 
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3.  TECHNICAL APPROACH AND RESULTS 

 
3.1 BACKGROUND 

 
The Advanced Technology Program (ATP) of the National Institute of Standards and Technology (NIST) 
held a workshop on Condition-Based Maintenance (CBM) during its November 17-18, 1998 fall meeting 
in Atlanta, Georgia [NIST, 1998].  Workshop participants identified three technical barriers to 
widespread CBM: (i) the inability to predict the remaining useful life of a machine accurately and 
reliably; (ii) a lack of continuous machine monitoring; and (iii) the need for decision systems to learn 
impending failures, and to recommend what action to take.  These barriers could potentially be addressed 
through innovations in three technical areas: (i) prognostication capabilities, (ii) cost effective sensor and 
monitoring systems, and (ii) reasoning or expert systems.  Decision models should accommodate changes 
in mission compliance, operational environment, economic rules, priority assessments, and functional 
requirements.  The need for decision infrastructure is being addressed by a separate NERI project 
[Harmon, et al., 2001] that includes DE&S, which is also collaborating on this NERI project. 

 
This NERI2000-109 project addresses the first need for technical innovation (prognostication) via 
nonlinear analysis of equipment operational data.  The NIST/ATP workshop [NIST, 1998] identified high 
quality diagnostics and sensor information as essential for prognostication.  Indeed, data is needed not 
only for prognostication, but also for training and validating the decision methodology.  Workshop 
participants placed a very high priority on quality and completeness of data sets.  The barriers to 
achieving these goals include: (a) incomplete understanding of the evolution of faults and how they effect 
equipment; (b) non-robust state-based modeling techniques to develop understanding of physics of 
failures (reduced order modeling); (c) and lack of predictive methodologies for unsteady signatures that 
are indicative of physics-based failure modes; (d) ignorance about controlling parameters, which hampers 
development of accurate models; and (e) unavailability of test facilities, especially replication of the real 
operating environment.  Our NERI2000-109 project addresses items (a)-(c) by quantifying the (non-
stationary) condition change in test equipment as a sequence of robust nonlinear statistical signatures for 
progression of a (seeded) fault in specific test equipment.  This project addresses item (d) by associating 
the change in the controlling parameter (seeded fault) with the equipment response.  This project 
addresses (e) by tests of nuclear-grade equipment at the DE&S facilities, which are very similar to real 
plant conditions.  We use hypothesis testing to demonstrate these capabilities, as discussed in detail 
below. 

 
We expect that regulatory criteria from the U.S.  Nuclear Regulatory Commission (NRC) will continue to 
govern operation and safety in next generation Nuclear Power Plant (NPP).  The NRC identifies three 
strategic areas for the reactor oversight process [NRC, 2000]: reactor safety, radiation safety (including 
occupational and public safety) and safeguards (physical protection).  Reactor safety relies on mitigating 
systems, barrier integrity, and emergency preparedness to respond to initiating events (unplanned reactor 
shutdowns, loss of normal reactor cooling after an unplanned shutdown, and unplanned events that result 
in significant changes in reactor power).  Failure prognostication is intended primarily to forecast 
initiating events in operational equipment, and secondarily to forewarn of failures in mitigating (safety) 
systems. 

 
Plant processes evolve from normal to abnormal conditions with an accompanying display of rich 
dynamics, including multiple time scales, quasi-periodicity, nonlinearity, and chaos.  Usually, such 
systems: have many components with hierarchical structure, are driven by various competing forces, and 
interact strongly with noisy and/or nonstationary environments.  Quantitative analysis of the 
corresponding time serial data has been a difficult and frustrating problem for diagnosis of the 
degradation, fault, or failure.  Key issues include: (i) lack of a proper (physical) model, forcing the analyst 
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to view signals as generated by a black box whose internal mechanism is either poorly understood, or not 
understood at all; (ii) non-stationary signals, i.e., with statistical properties that change significantly over 
the observation period with changes not known a priori and not explicitly advertised; (iii) nonlinear 
structure of various component dynamics and their complex, intricate interconnection, rich in feedbacks 
and hysteresis; (iv) rarely functioning at steady state, and more typically occurring far from equilibrium 
via continuous feedback-control loop(s) to adjust to changing conditions. 
 
 
3.2 APPROACH 

 
One of the most important problems encountered in nonlinear time-series analysis is the appropriate 
characterization of features and events in nonlinear systems’ dynamics.  Often these features are either 
described by several different quantities or do not have a precise definition at all.  The former category 
includes: (content of) information, (relative) entropy, and synchrony.  Examples of the latter group are: 
coherence, patterns, or complexity.  These features may have various origins, such as nonstationarity, 
nonlinearity, nonequilibrium, and intertwining of length- and time-scales.  The presence of any one of 
these factors frequently introduces erratic fluctuations, patchiness, lack of obvious structure, or other 
irregularities.  Previously, these irregularities have been neglected as noise without much structure and 
meaning.  Recent advances in nonlinear science have facilitated the interpretation of intermediate and 
small-scale details as bona fide structure, with significant information about the underlying dynamics.  
Analysis of this structure enables a deeper understanding of basic dynamical features of system, and 
results in more efficient assessment, prediction, prevention, control, and repair of their malfunctions. 

 
We address the forewarning problem within a purely pragmatic approach geared at designing, testing, and 
implementing such measures.  We base this approach on a set of nested assumptions that we retain or 
discard by: (a) the Occam’s razor (i.e.  start with a simple explanation before resorting to a complicated 
one); (b) consideration of falsifiable hypotheses only; and (c) acceptance of operationally realizable tests 
only.  In a more or less decreasing order of generality, the assumptions underlying our approach are:  

 
(i) For a broad range of circumstances, the motor-pump system behaves as a finite-dimensional nonlinear, 

possibly chaotic dynamical system.  This assumption underlies all efforts of modeling such systems 
by a system of coupled nonlinear evolution equations, for which relevant dynamics occur on a 
bounded, finite dimensional region of the phase space (PS), called an attractor.  Moreover, under 
assumption (i), we do not attempt to answer questions about nonstationarity or nonequilibrium.  
Indeed, statistical tests for stationarity produce a binary result, namely, they indicate whether a 
change occurred, but provide no information about the extent of departure from one state to another.  
Stationarity tests also have limited value for inherently nonstationary processes that undergo changes 
in dynamics.  For such nonstationary processes, a measure of dissimilarity that quantifies the 
‘‘distance’’ between attractors turns out to be more useful [Schreiber, 1997; Moeckel and Murray, 
1997; Schreiber, 1999].  This approach is closely related to testing hypotheses of chaotic fluctuations 
by comparing the “spatial distance” in phase space between observed time series and theoretical 
attractors [Bjernstad and Grenfell, 2001; Cushing et al.  1998].  Such phase-space comparisons also 
provide a robust criterion for estimating model parameters [Bjernstad and Grenfell 2001; Ellner and 
Seifu, in press]. 

 
(ii) Time-seria l power data captures the main features of nonlinear equipment dynamics.  Recent studies 

show that different observables do not capture the same amount and/or quality of information 
[Letellier et al., 1998].  Obviously, this result has momentous implications for forewarning analysis.  
In the absence of a model, the “correct” choice among apparently equivalent channels can be assessed 
only a posteriori. 
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(iii) The first two assumptions are easy to understand and are well documented in the literature, allowing 
the use of nonlinear dynamical methods for time-series analysis.  Global aspects of the equipment 
dynamics can be adeptly captured, characterized, and discriminated by nonlinear descriptors such as 
Lyapunov exponents, Kolmogorov entropy, correlation dimension, etc.  [Qu et al., 1993].  
Straightforward methods exist [Eckmann and Ruelle, 1985; Abarbanel, 1996; Cover et al., 1997] for 
discriminating between regular and chaotic motion, or for detecting the transition between these 
regimes.  However, distinguishing different chaotic regimes can be very difficult, especially when 
data are limited and noisy.   

 
(iv) The PS parameters can be adequately chosen for equipment failure forewarning.  In addition to 

implicitly relying on the validity of (i)-(iii), this assumption constrains the length and quality of the 
data. 

 
(v) No significant correlation exists between the base case and the failure event, and thus no time 

relationship between the physical state of the base case and event.  This assumption simply implies 
that the characteristic time of the underlying equipment dynamics is much shorter than the time 
interval between the “normal” (base case) regime and the onset of the abnormal behavior.  We shall 
see in Sec. 3.6 the effect of violating this assumption on model data. 

 
(vi) A fixed threshold value for all the data sets is sufficient for robust and reliable forewarning.  On the 

one hand, the threshold is easy to understand and modify operationally, but is very difficult to justify 
by general principles since the very notion of threshold is “in the eye of the beholder”.  On the other 
hand, the results of the analysis depend heavily on the threshold value.  Continuing test input and 
adjustment is necessary for successful practical implementation. 

 
(vii) Forewarning of an event is indicated by several successive occurrences above threshold within the 

forewarning window.  The same caveats apply to this assumption as in (vi).  Here we choose the 
number of crossings by striking a balance between timeliness and accuracy of forewarning.  Within 
the scope of this study, this judiciousness of this balance is evaluated a posteriori. 

 
We systematically tested the validity of the assumptions (iv) and (vii), including various checks in the 
algorithm development.  In particular, we tested these hypotheses one by one, starting with the simplest 
ones via appropriate analysis of the data, while keeping the others unchanged.  If an assumption was 
found to be false, it was rejected and replaced by a more valid assumption.  A conclusive test of 
assumption (iv) requires statistically significant amounts of standard length data of verified quality for all 
types of equipment failures.  Such a test is beyond the scope of the present project.  The results of such an 
analysis would allow a test of more “universal” values for the parameters under assumptions (v) through 
(vii). 

 
This section is organized as follows.  Sections 3.3-3.4 discuss typical traditional linear and nonlinear 
measures for time series analysis.  Section 3.5 explains the phase-space analysis, and Sec. 3.6 presents 
results of our analysis on model data.  Section 3.7 describes the analysis of machine data. 

 
 

3.3 LINEAR MEASURES 
 
Analysis of time serial data begins with the collection of a process-indicative scalar signal, x, from a 
dynamical system whose dimensionality, structure, parameters, and regime are usually unknown.  This 
signal is sampled at equal time intervals, τ, starting at the initial time, t

0
, and yields a sequence of N 

points, x
i
 = x(t

0
 + iτ).  Several linear measures are useful for characterizing the gross features of this data.  

The first is the mean, x , or average over the N data points: 
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1

N

i
i

x x
=

= ∑  

The second is the sample standard deviation (σ), which follows from Eq. (3.1): 
 

( ) ( )22

1

/ 1 .
N

i
i

x x N
=

σ = − −∑  

 
Equation (3.2) is the second moment about the mean, implying that higher moments are available.  Thus, 
a third linear measure is the third moment about the mean, called skewness, s: 

( )3 3

1

/ .
N

i
i

s x x N
=

= − σ∑  

 
A fourth linear measure is the fourth moment about the mean, called kurtosis, k : 
 

( )4 4

1

/ 3.
N

i
i

k x x N
=

= − σ −∑  

 
Typical process data have significant values for skewness and kurtosis, but Gaussian random processes 
have values that are not significantly different from zero [Abramowitz and Stegun, 1965].  A large 
positive (negative) value of skewness corresponds to a longer, fatter tail of the data distribution about the 
mean to the right (left).  Kurtosis measures the amount of flattening (negative k) or excess peakedness 
(positive k) about the mean.  Another measure applies to both linear and nonlinear systems, and involves 
counting the number of times (nc) that the signal crosses the mean value.  More specifically, one-half of a 
wave period is delimited by two successive mean crossings.  For nc >>1, the average number of time steps 
per wave cycle (m) as: 
 

( )c c cm N/[n 1/2] 2N/ n 1 2 N / n .= − = − ≈  
 
This last measure indicates the average periodicity in the signal, or the inverse of the average frequency.  
Analysis of typical data (below) shows that these measures provide little, if any, discrimination for 
detection of condition change.  We include these measures for the sake of completeness and to show that 
linear measures are inadequate for prognostication. 
 
 
3.4 TRADITIONAL NONLINEAR MEASURES 
 
Nonlinear analysis uses the same sequence of time serial data (xi) to reconstruct the process dynamics.  In 
particular, phase-space (PS) reconstruction [Eckmann and Ruelle, 1985]  uses d-dimensional time-delay 
vectors, y(i) = [xi, xi+λ , .  .  .  , xi+(d–1)λ], for a system with d active variables and time lag, λ.  The choice of 
lag and embedding dimension, d, determines how well the PS reconstruction unfolds the underlying 
dynamics from a finite amount of noisy data.  Takens found that, for a d-dimensional system, 2d + 1 
dimensions generally results in a smooth, nonintersecting reconstruction [Takens, 1981].   Sauer et al.  
(1991) showed that, using ideal data (i.e.  no noise and infinite precision), the first integer greater than the 
correlation dimension is often sufficient to reconstruct the system dynamics; this result has been 
confirmed by computing the embedding dimension via the false nearest-neighbors method [Abarbanel 
and Kennel, 1993; Abarbanel et al., 1993; Cao 1997].  However, too high an embedding dimension could 
result in overfitting for real data  with finite length and noise.  We further note that different observables 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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of a system contain unequal amounts of dynamical information [Letellier et al.  1998], implying that PS 
reconstruction could be easier from one variable, but more difficult or even next to impossible from 
another.  As indicated in the discussion of assumptions (i)-(vii), our analysis seeks to balance these 
caveats within the constraints imposed by the finite length noisy data. 

 
Various nonlinear measures have been defined to characterize process dynamics using the PS 
reconstruction.  [Kantz and Schreiber, 1997; Rezek and Roberts, 1998].  We choose three of these 
nonlinear measures, against which we compare the dissimilarity indicators.  In particular, we use: the first 
minimum in the mutual information function as a measure of decorrelation time, the correlation 
dimension as a measure of dynamic complexity, and the Kolmogorov entropy as a measure of 
predictability.  For the reader’s convenience, we briefly describe these three measures next. 

 
The mutual information function (MIF) is a nonlinear version of the (linear) autocorrelation and cross-
correlation functions and was originally developed by Shannon and Weaver (1949)  with subsequent 
application to time series analysis by Fraser and Swinney (1986).  The MIF measures the average 
information (in bits) that can be inferred from one measurement about a second measurement and is a 
function of the time delay between the measurements.  Univariate MIF measures predictability within the 
same data stream at different times.  Bivariate MIF measures predictability of one data channel, based on 
measurements in a second signal at different times.  For the present analysis, we use the first minimum in 
the univariate MIF, M1, to indicate the average time lag that makes xi independent of x 

j .  The MIF, I(q,r), 
and system entropy, H, are defined by 
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For a window of N points, we denote the Q set of data measurements by q1, q2, .  .  , qN, with associated 
occurrence probabilities P(q1), P(q2), .  .  .  , P(qN).  R denotes a second set of data measurements, r1,

 r2, .  .  
.  , rN, with a time delay relative to the qi values, having associated occurrence probabilities P(r1), P(r2), .  .  
.   , P(rN).  The function P(qi, rj) denotes the joint probability of both states occurring simultaneously.  H 
and I are expressed in units of bits if the logarithm is taken in base two. 
 
The maximum-likelihood correlation dimension, D, is [Takens 1984; Schouten et al.  1994a]: 
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where M is the number of randomly sampled point pairs; δij is the maximum-norm distance between the 
(randomly chosen) i – j point pairs, as defined in Eq. (3.11) below.  The distance (scale length) δn is 
associated with noise as measured from the time serial data.  Note that the distances are normalized with 
respect to a nominal scale length δ0, which is chosen as a balance between sensitivity to local dynamics 
(typically at δ0

 ≤�5a) and avoidance of excessive noise (typically at δ0
 � a).  Here, the symbol a denotes the 

absolute average deviation as a robust indicator of variability [Schouten et al.  1994a] in the data, 

(3.6)
 

(3.7)
 

(3.8) 

(3.9) 



 

 10

∑
=

−=
w

i
i xxwa

1

)/1( , 

 
where x  is the mean of xi over the window of N points.  The distances δij are defined by 
 

,max
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where m is the average number of points per cycle, as determined by Eq. (3.5). 
 
The Kolmogorov entropy, K, measures the rate of information loss per unit time, or (equivalently) the 
degree of predictability.  A positive, finite entropy is generally considered a clear demonstration that the 
time series and its underlying dynamics are chaotic.  A very large entropy indicates a stochastic 
(nondeterministic) and therefore totally unpredictable phenomenon.  The K-entropy is estimated from the 
average divergence time for pairs of initially close orbits.  More precisely, the entropy is obtained from 
the average time for two points on an attractor to go from an initial separation δ ≤ δ0 to a separation of 
more than a specific distance (δ  > δ 

0).  The maximum-likelihood K-entropy is calculated from the 
method by Schouten et al.  (1994), 
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with bi as the number of timesteps for two points, initially within δ ≤ δ0, 
 to diverge to δ  > δ 

0.  The 
symbol fs denotes the data-sampling rate. 
 
There are several problems associated with the use of these measures for detection of dynamical change.  
The most serious is that these nonlinear measures are expressed as a sum or integral over (a region of) the 
PS, which averages out all dynamical details into a single number.  Two (very) different dynamical 
regimes may lead to very close, or even equal measures.  The situation is even murkier for noisy 
dynamics, in which case reliable determination of the nonlinear measures is next to impossible.  The 
second difficulty arises from the definitions of K-entropy and correlation dimension in the limit of zero 
scale length.  However, all real data have noise and even noiseless model data is limited by the finite 
precision of computer arithmetic.  Thus, we choose a finite scale length that is somewhat larger than the 
noise (δ0 = 2a), at which to report the values of K and D, corresponding to finite-scale dynamic structure.  
Consequently, the calculated values of K and D have smaller values than expected for the zero-scale-
length limit (δ0 �  0) and cannot capture dynamical complexity at length scales smaller than δ0.  A third 
difficulty arises from the definition of these nonlinear measures as functionals of the distribution 
functions.  Some of these functionals do not satisfy all the mathematical properties of a distance.  In 
particular, for some of them, symmetry and the triangle inequality may be violated [Quin Quiroga et al., 
2000].  Therefore, these measures cannot define a metric in the mathematical sense.  They may indicate 
change, although only in a sense that has to be made precise for each situation. 

 
In an attempt to improve the discrimination power, Thomasson et al.  (2001) has recently proposed the 
“recurrence quantification” approach that does not require assumptions about stationarity, length, or 
noise.  Their new measure quantifies the recurrence of sets of points of various lengths that “almost repeat 
themselves” during the dynamics.  It can be viewed somewhat as a generalization of the Poincaré section 
concept and is designed to detect and characterize “real phenomena” present in the time serial data.  Since 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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we do not attempt to infer what “real phenomena” are, our approach has a much more modest goal, 
namely to detect condition change from the time-serial data, independent of specific  assumptions about 
the underlying dynamics.  As we have seen in Sec. 3.2, general assumptions are necessary, but – at this 
stage of the development of the field – we feel that they should be retained or eliminated on a minimalist 
and pragmatic basis alone. 

 
 

3.5 PHASE-SPACE DISSIMILARITY MEASURES 
 
The traditional nonlinear measures described in the previous section characterize global features of the 
dynamics, and can clearly distinguish between regular and chaotic dynamics.  However, they do not 
reveal slight dissimilarities between dynamical states.  The same is true for other global indicators, such 
as fractal dimension, Lyapunov exponents, etc.  This lack of discrimination occurs because such 
traditional measures are based on averaged or integrated features of the dynamics over the attractor, 
which provide a global picture of long-term dynamical behavior.   

 
Greater discrimination is possible by more detailed analysis of the reconstructed dynamics.  The natural 
(or invariant) measure on the attractor provides a more refined representation of the reconstruction, 
describing the visitation frequency of the system dynamics over the PS.  We obtain a useful discrete 
representation of the invariant measure from time serial data as follows.  We first represent each signal 
value, xi, as a symbolized form, si, that is, one of S different integers, 0,1, .  .  .  , S–1, 

 
.1)]/()([0 minmaxmin −≤−−=≤ SxxxxSINTs ii  

 
Here, the function (INT) converts a decimal number to the closest lower integer, and xmin and xmax denote 
the minimum and maximum values of xi, respectively, over the base case (reference data).  We previously 
used [Hively et al., 1999; Gailey et al., 1999; Hively et al., 2000] the minimum and maximum values over 
both the base case and test case (data to be tested for departure from the base case).  However, in real- or 
near-real-time analyses, only base case extrema are actually known.  We require that si(xi = xmax) = S – 1 
in order to maintain exactly S distinct symbols.  Consequently, Eq. (3.14) creates symbols that are 
uniformly distributed between the minimum and maximum in signal amplitude (uniform symbols). 
 
An alternative is equiprobable symbols.  These symbols are formed by ordering the base case time-serial 
data from the smallest to largest value.  The first N/S of these ordered data values corresponds to the first 
symbol (0).  Ordered data values (N/S)+1 through 2N/S correspond to the second symbol (1), and so on 
up to the last symbol (S-1).  Consequently, equiprobable symbols have non-uniform partitions in the 
signal amplitude so that each symbol has the same occurrence frequency (N/S) of xi values.  Much 
structure is inherent in uniform symbols before beginning the PS reconstruction, but no PS structure 
arises from equiprobable symbols.  Thus, a key advantage of equiprobable symbols is that dynamical 
structure arises only from the phase-space reconstruction, as described below.  Large negative and large 
positive values of xi have little affect on equiprobable symbolization, but dramatically change the 
partitions for uniform symbols.  Moreover, information theoretic measures of the PS-DF (e.g., mutual 
information function) are a smooth function of the reconstruction parameters for equiprobable symbols, 
but are noisy functions of these same parameters for uniform symbols.  We find that equiprobable 
symbols provide better discrimination of condition change than uniform symbols. 

 
The phase-space (PS) is partitioned into Sd hypercubes or bins by the symbolization process.  We then 
count the number of PS points occurring in each bin to obtain the distribution function (DF) as a 
discretized density on the attractor.  We denote the population of the ith bin of the distribution function, 
Qi, for the base case, and Ri for a test case, respectively.  For infinitely precise data, this representation 

(3.14) 
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has been used in Grebogi et al.  (1988).  The choice of parameters (S, N, and d) depends not only on the 
system, but also on the specific data under consideration.  In the preliminary phase of the analysis, we 
systematically varied each parameter with the others fixed, to obtain optimum sensitivity of the measures 
to changes in system dynamics for each class of data.  After achieving optimal sensitivity, the values of 
the parameters were kept fixed.   

 
We use an embedding window, M1 = (d – 1)λ, based on the first minimum in the mutual information 
function, M1 [Fraser and Swinney, 1986].  This choice of time delay provides maximal information for 
the reconstruction of the phase space dynamics.  Then, we set λ = INT[0.5 + M1/(d – 1)] to obtain an 
integer value for the reconstruction lag when M1 is not evenly divisible by d – 1.  The reconstruction 
requires that λ d � 2M1 + 1 from the above 
formula. 
 
After reconstruction  (unfolding) of the dynamics, the test case is compared to the base case.  Diks et al.  
(1996) measured differences between delay vector distributions by the square of the distance between two 
DFs.  Schreiber (1997 and 1999)  measured dissimilarity via the Euclidean distance between points of the 
attractor.  This measure of dissimilarity only accounts for the geometrical shape and location of the 
attractor.  Manuca and Savit (1996 and 1998)  described dissimilarity via ratios of the correlation integral 
over the DF.  This is essentially the correlation dimension discussed in Sec. 3.4.  Moreover, these papers 
discuss dissimilarity measures from the perspective of nonstationarity, while our focus is on condition 
change, as explained in the Introduction.  We measure the difference between Qi with Ri by the ÷2 
statistics and L1 distance,  

 

( ) ( )∑ +−=
i
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where the summations in both equations run over all of the populated PS cells.  The choice of these 
measures is based on the following considerations.  The ÷2 statistic is one of the most powerful, robust, 
and widely used statistical tests to measure discrepancies between observed and expected frequencies.  
The ÷2 statistic is obviously symmetric, but does not always satisfy the triangle inequality, so it does not 
define a distance in the mathematical sense.  The L1 distance is the natural metric for distribution 
functions since it is directly related to the total invariant measure on the attractor and does define a bona 
fide distance.  Therefore, these measures account for changes in the geometry, shape, and visitation 
frequency of the attractor and can be viewed as somewhat complementary.  Obviously, calculation of 
these measures in a consistent fashion, requires that the base case and test case contain the same number 
of points, identically sampled; otherwise the distribution functions have to be properly rescaled.   
 
We extended the previous analysis in a manner that is naturally compatible with the underlying dynamics.  
By connecting successive PS points as prescribed by the dynamics, y(i) → y(i + 1), i=1,2,… we obtained 
a discrete representation of the process flow [Abarbanel, 1996].   The 2d-dimensional vector, Y(i) = [y(i), 
y(i + 1)], formed by adjoining two successive vectors from the d-dimensional reconstructed PS, lives in a 
2d-dimensional space, that we call the connected phase space (CPS).  As before, Q and R denote the CPS 
DFs for the base case and test case, respectively.  We define the measures of dissimilarity between these 
two CPS DFs, as before, via the L1-distance and ÷2 statistic, [Hively et al., 1999, 2000, 2000a; 
Protopopescu, et al., 2001 and references therein]  

 

(3.15) 
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The subscript c indicates the connected distribution function measure.  We note that the value λ = 1 
results in d – 1 components of y(i + 1) being redundant with those of y(i), but we allow this redundancy to 
accommodate other data such as discrete points from two-dimensional maps.  The CPS measures have a 
higher discriminating power than their non-connected counterparts.  Indeed, we can prove that the 
measures defined in Eqs.  (3.15)–(3.18) satisfy the following inequalities [Hively et al., 

2000]: ,2 L≤χ ,2
cc L≤χ ,cLL ≤  and .22

cχχ ≤ Alternative forms are: χ2 ≤ L ≤ Lc and χ2 ≤ χc
2 ≤ Lc. 

 
The χ2 statistic requires statistical independence between various samples.  However, the PS points 
depend on one another due to reconstruction from time delay vectors with dynamical structure [Diks et 
al., 1996].  The resulting statistical bias is avoidable by averaging contributions to Eqs.  (3.15)-(3.18) 
over values of y(j) or Y(j) which satisfy |i – j| < Λ [Diks et al., 1996], where Λ is some largest typical 
correlation time lag.  We tested the bias in typical data by sampling every Λ-th connected phase space 
point for 4 � Λ � 23, resulting in Λ different samples for the base case (Qi) and for each cutset (Ri).  We 
then averaged the sampled χ2 values over the Λ2 different combinations of distribution functions for the 
base case and test case cutsets.  As expected, a decrease proportional to 1/Λ occurs in the sampled χ2 

values, because the number of data points contributing to χ2 decreases in the same proportion.  The trend 
over time in sampled χ2 values is the same as in χ2 values without sampling, showing that no bias is 
present.  Thus, we use unsampled χ2 values for the remainder of this work as a relative measure, rather 
than as an unbiased χ2  statistic for accepting or rejecting a null statistical hypothesis [Hively et al., 1999]. 

 
Use of the dissimilarity measures on finite length, noisy data requires a consistent statistical 
implementation and interpretation.  Moreover, construction of the base case(s) also requires careful 
statistics to eliminate possible outliers and to ensure robust results.  We use the first B non-overlapping 
cutsets as base cases.  However, a few of these base case cutsets may be very different from the typical 
regime, causing a severe bias in the detection of condition change.  This is especially true for noisy data.  
We statistically test the base case cutsets for outliers as follows.  Dissimilarity comparisons among the B 
base case cutsets yields B(B – 1)/2 unique pairs, from which we obtain an average, V, and sample 
standard deviation, σ for each of the dissimilarity measures, V = L, L c , χ2, and χc

2.  We calculate a χ2 

statistic, Σ(Vij - V)2/σ, for each of these four dissimilarity measures.  The index j is fixed, to test the jth 
cutset against the other B – 1 cutsets, thereby giving B - 1 degrees of freedom in the χ2 statistic.  The null 
statistical hypothesis allows a random outlier with a probability less than 2/B(B – 1), corresponding to less 
than one out of the B(B – 1)/2 unique pairs.  In the latter case, we identify an outlier cutset as having the 
largest χ2 statistic greater than 19.38 over the four dissimilarity measures, which corresponds to a 
probability larger than 1/45 for B=10.  If this analysis does not identify any outlier, then the previous 
values of V are used for subsequent renormalization, as described below.  If this analysis identifies an 
outlier, we remove it.  We then repeat this analysis for the remaining base case cutsets to identify any 
additional outliers when the largest chi-squared statistic exceeds the below threshold, corresponding to a 
random probability of greater than 2/B(B – 1), as interpolated from standard statistical tables for B – 1 
degrees of freedom [Abramowitz and Stegun, 1965].  Here, B is the number of non-outlier base case 
cutsets.  Thus, rejection of the null hypothesis corresponds to a χ2 statistic greater than 19.38, 17.24, 
15.03, 12.74, and 10.33, for B=10, 9, 8, 7, and 6, respectively. 

 

(3.17) 
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This approach dramatically improves the robustness of the condition change detection.  If the analysis 
identifies five (or more) outliers, we would have to reject all ten base cases as unrepresentative, and 
acquire a new set of ten cutsets as base cases.  However, the present analysis never finds more than four 
outliers.  Subsequently, we compare the non-outlier base case cutsets to each non-overlapping test case 
cutset, and obtain average values for the dissimilarity measures for each test case. 

 
The choice of B should strike a judicious balance between a reasonably short base case period to capture 
quasi-stationary, “normal” dynamics and a sufficiently long period for statistical significance.  We have 
chosen B = 5 for the noiseless, model generated data for fixed dynamical conditions, where the variability 
arises only from the location in and the discrete sampling of the PS.  On the other hand, we have chosen B 
= 10 for noisy machine data to provide a larger statistical sample.    

 
The disparate range and variability of various nonlinear measures are difficult to interpret (especially for 
noisy data), so we need a consistent means of comparison.  Thus, we renormalize the nonlinear measures 
[Hively et al., 1999 and 2000].  For each nonlinear measure, V = {D, K, M1, L, Lc, χ2, and χc

2}, we define 
Vi as the value of the nonlinear measure for the ith cutset.  As before, V is the mean value of that 
nonlinear measure over the non-outlier base cases, with a corresponding sample standard deviation σ, as 
described above.  No averaging is needed for D, K, and M1 since the calculation of these measures 
involves only one cutset at the time.  The renormalized form is then U(V) = |Vi – V|/σ, which measures the 
number of standard deviations that the test case deviates from the base case mean.  Several successive 
occurrences above threshold provide a clear indication of condition change. 
 
 
3.6 VALIDATION OF PHASE-SPACE DISSIMILARITY ON MODEL DATA 
 
We show the discriminating power of the nonlinear measures by first testing them as well as some of the 
assumptions (i)-(vii) on noiseless model-generated time serial data.  We use the well-known Lorenz 
model [Lorenz, 1963], a system of three coupled nonlinear differential equations:  

 

( ) , ,
dx dy dz

a y x rx y xz xy bz
dt dt dt

= − = − − = −  

 
with properties that have been well documented in the literature.  We integrated the Lorenz system with 
timesteps δ t = 0.03 and used the variable y to reconstruct the dynamics.  We fixed parameters a and b at 
the values 10 and 8/3, respectively.  Figure 1 shows the phase-space reconstruction for this model system, 
representing where the dynamics does (and does not) spend its time.  Figure 1 (left) displays the phase-
space by plotting the sequence of points in (x, y, z) coordinates from the integration of Eq. (3.19).  Figure 
1 (right) illustrates the power of the time-delay reconstruction from the y coordinate only, as very similar 
to the phase space from all three coordinates.  We used time-delay reconstruction for the dissimilarity 
analysis. 

 
As the variable parameter r increases from zero, the Lorenz system displays increased complexity and 
different stability properties.  Transitions from one type of solution to another occur through bifurcations 
or transitions to chaos for which traditional nonlinear measures are good indicators, in general.  However 
transitions between two chaotic regimes are not readily detected by these traditional measures, especially 
for small changes in the parameter r.  Therefore, we concentrate on detecting dynamical change within a 
region where the Lorenz system behaves chaotically [Jackson, 1989 and 1990], namely for 45 � r 
We started with r = 45 which was considered the base case and kept r unchanged for 2,250,000 points (45 
cutsets of 50,000 points).  Then, we increased r from 45 to 90 in one unit steps for each 50,000-point 
window.  Finally, we maintained r = 90 for another 2,250,000 points (45 cutsets of 50,000 points). 

(3.19) 
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Figure 2 shows linear measures of the y-coordinate of the Lorenz model.  The minimum (ymin) and 
maximum (ymax) values in each cutset are roughly constant for r = 45, changing monotonically as r 
increases from 45 to 90 because the attractor size increases, then remaining constant for r = 90 (Fig. 2a).  
The absolute average deviation (a) and standard deviation (σ) of y are likewise constant for r = 45, rising 
linearly as r increases from 45 to 90, then remaining constant for r = 90 (Fig. 2b).  Skewness (s) varies 
erratically over the entire range of 45 ≤ r ≤ 90, while kurtosis (k) remains roughly constant for r < 59, 
varies erratically for 59 ≤ r < 90, then rises abruptly to a new (roughly) constant for r = 90 (Fig. 2c).  The 
number of time steps per cycle (m) is roughly constant at m = 50 for r=45, decreasing erratically over the 
range of 45 < r < 90, then remaining roughly constant at m = 27 for r = 90 (Fig. 2d).  These correlations 
arise from the larger attractor size as r increases in the Lorenz model. 

 
Figure 3 shows the consistency and robustness of the resulting dissimilarity measures.  Indeed, as long as 
the parameter r is unchanged, the dynamical system remains in the same regime, and the dissimilarity 
measures remain consistently close to zero.  When the parameter varies monotonically, the dissimilarity 
measures rise monotonically, in roughly linear fashion, and over a much broader range than the traditional 
nonlinear measures.  The dissimilarity measures reach a clear plateau at r = 90, illustrating their 
consistency.  The base case consisted of the first ten adjacent windows for r = 45.  We obtained the 
traditional and (C)PS renormalized measures by comparing the distribution function for each 50,000-
point test case to each of the ten base cases, using Eq. (3.15)-(3.18).  We note that the CPS measures 
(dashed curves in Fig. 3) lie below the non-connected measures (solid curves in Fig. 3).  This does not 
contradict the rigorous inequalities for these measures [Hively et al., 2000], since the curves in Fig. 3 
were obtained by averaging, to obtain renormalized measures.  Only the MIF values are given in the 
unrenormalized form because the first minimum in the MIF is completely constant over the base case, 
resulting in σ = 0.  Of course, if the window length decreases, more variability appears and σ would be 
different from zero.  Figure 3 shows various nonlinear measures versus r.  The correlation dimension 
(Fig. 3a) varies erratically between 0 and 0.2, over the whole range.  The renormalized Kolmogorov 
entropy (Fig. 3b) also varies erratically while gradually rising from 0 to 4.  Figure 3c shows the location 
of the first minimum in the mutual information function, M1, with a single abrupt step at r = 60.  A 
smaller integration step (δ t = 0.1) yields a series of finer steps (not shown here), thereby illustrating the 
limitation of a coarser sampling rate.  In sharp contrast, the (connected) phase space measures (Figs.  3d 
and 3e) increase almost monotonically from zero to more than 500 as r rises from 45 to 90.  The values of 
L and χ2 essentially coincide over the whole range, because the measures are dominated by phase space 
bins that are populated only for the base case (Qi > 0 for Ri = 0) and only the test case (Ri > 0 for Qi = 0), 
for which the two measures become analytically equivalent.  Figure 4 shows the dissimilarity measures 
for a different choice of the base case, namely over the first ten cutsets of r = 90.  These curves are 
roughly mirror images of those in Fig. 3: large and constant dissimilarity for r = 45, a monotonic and 
roughly linear decrease during the transition (45 < r < 90), and small dissimilarity in the base case region 
(r = 90).  Figure 5 shows the dissimilarity measures for several cutset lengths (N), varying from 5,000 to 
25 points.  As expected, the quality of the results degrades dramatically as the length of the window 
shortens.  For a very short window, the long-range regularity of the dynamics is overcome by short-range 
variability, which depends strongly on the specific location in the PS.  This result underscores the need 
for “sufficiently long data sets” in comparison to the characteristic times of the underlying dynamics, in 
order to provide “sufficiently good” statistics.     

 
In addition to the Lorenz system, we previously assessed [Hively, et al., 2000] the discriminating power 
of the dissimilarity measures for the Bondarenko model [Bondarenko, 1997].  This infinite-dimensional 
model is described by a system of time-delayed ordinary differential equations, and is very different from 
the Lorenz system.  As before, we found that correlation dimension, Kolmogorov entropy, and mutual 
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information function varied erratically with the changing parameter.  Our analysis also showed that the 
(C)PS measures rise almost monotonically as the parameter in the Bondarenko model increases. 

 
Although the analysis of model data was not an explicit part of the NERI2000-109 proposal, an essential 
aspect of this work is validation of the methodology on well-characterized and carefully controlled data, 
as provided by model data.  The results of this subsection do indeed show that the hypotheses underlying 
this nonlinear analysis are valid.  Moreover, the methodology gives consistent and robust indication of 
change in the process dynamics as measured by the phase-space dissimilarity with a changing parameter.  
In sharp contrast, the traditional nonlinear measures (correlation dimension, Kolmogorov entropy, and 
mutual information) provide no such consistency or robustness. 

 
 

3.7 ANALYSIS OF EQUIPMENT DATA 

Having validated the nonlinear measures of condition change on model data (Sec. 3.6), we turn next to 
analysis of equipment data.  Machine dynamics has a long history [King, 1985].  Qu et al.  (1993) 
demonstrated the usefulness of several nonlinear measures for vibration data from rotating machinery 
(turbo-generator and compressor).  Moreover, failure prognostication is one of the hardest problems to 
solve for nonlinear and chaotic systems [Casdagli, 1989; Sugihara and May, 1990; Essawy, 2001], due to 
process sensitivity to initial conditions [Farmer and Sidorowich, 1987].   

 
We begin this phase of the work by summarizing important-to-safety equipment in nuclear power plants 
(NPP).  Table A.1 of Appendix A provides examples of typical NPP equipment.  Furthermore, the INPO-
EPIX database shows that motor failures directly impact NPP operations, including reactor trips (25% of 
failures), unit off-line (40% of failures), and reduced power operation (35% of failures); see Table A.2 of 
Appendix A.  Such failures typically develop over many months, and sometimes years.  Consequently, 
the time and funding for PY01 of this NERI project do not permit acquisition of real process data from 
such NPP equipment to obtain such failure sequences.  Instead, we acquired new data by seeding specific 
faults in test equipment.  Appendix A shows the complete test plan, including the choice of two 
representative failure modes (unbalance and misalignment).  Figure 6 shows the important features of the 
test equipment (5HP motor-driven pump) at the DE&S testing facility in Mount Holly, North Carolina.  
The test protocol involves acquisition of test data for a no-fault baseline, followed by datasets for 
successively larger faults. 

 
DE&S provided initial test data to ORNL for preliminary analysis, which revealed a rich set of nonlinear 
features.  The sampling rate was adequate (12 KHz), but the number of data points was too small (16,384 
points).  ORNL requested voltages, V

i
 , and currents, I

i
 , from all three phases of the three-phase electric 

motor.  ORNL also requested longer datasets for robust conversion of the time-serial data to statistical 
distribution functions, as described in Sec. 2.  These requirements necessitated an upgrade to the data 
acquisition system (Emax by PdMA Corporation), causing some delay while PdMA modified their 
software.  DE&S subsequently received the Emax upgrades and provided the power data for the two test 
sequences.  The final data acquisition parameters for these six channels included a sampling rate of 
12,288 Hz over 42.67s (524,288 points) with a digitization accuracy better than 1%.  These data were 
converted to instantaneous power, P=Σ

i
 I

i
V

i
, which we used for all subsequent analysis.  The time-serial 

motor power data was saved to a separate ACSII file for each value of unbalance mass, and for each value 
of misalignment.  These datasets were transferred from DE&S to ORNL as an attachment (4.6MB for 
each dataset) to an e-mail message.  Quality of the data was assured by Task 1.2 (data quality analysis), as 
described in Sec. 2.  ORNL subsequently concatenated the sequence of datasets into a single long dataset 
for the unbalance test, and another long dataset for the misalignment test.  The dissimilarity analysis used 
these long (concatenated) datasets, as discussed below. 
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The machine power data include high frequency artifacts, typically treated as “noise.” We remove 
essentially all of these artifacts with a novel zero-phase quadratic filter [Hively et al., 1995].  This filter 
uses a moving window of 2n + 1 points of raw data, ei, with the same number of data points, n, on either 
side of a central point.  We fit the data to a quadratic equation, F(ti) = a1Ti

2 + a2Ti + a3, with Ti = ti – tc, 
and tc the time at the central point of the moving window.  We obtain the best fit to the data by 
minimizing the function, �Ψ=Σ i [F(t) – ei]

2, where the sum is over the 2n + 1 points in the moving window.  
The minimum in Ψ is found from the condition ∂Ψ/∂ak = 0, which yields three linear equations in three 
unknowns.  The window-averaged signal at the central point is the fitted value at the central point, F(tc = 
ti) = a3.  We note that the sums over odd powers of Ti are zero and that symmetric sums over even powers 
of Ti (over i from –n to n) can be converted to sums from 1 to n, giving a window-averaged solution for 
the artifact signal, 
 

   F(t = tc) = [3(3n2 + 3n – 1)(Σei+c) – 15(Σi2 ei+c)]/(4n2 + 4n – 3)(2n + 1).     (3.20) 
 
The sums in this last equation are over i from –n to n, with sums over even powers of i explicitly 
evaluated with standard formulas for Σ i i

2 and Σ i i
4 (Gradshteyn and Ryzhik, 1965).  The effort to evaluate 

Eq. (3.20) can be reduced further by computing the sums initially with c = n + 1, and then using 
recursions thereafter for c > n + 1 [Hively et al., 1995].  Application of this filter to the N-point set of raw 
data, ei, yields N – 2n points of low-frequency signal data, f i.  The residue, gi = ei – f i, has essentially no 
low-frequency activity, and captures essentially all of the high-frequency “noise.” The filter window 
width (n=7) corresponds to optimal removal of this high-frequency “noise.” Figure 7 illustrates this 
filtering process for typical power data from the baseline of unbalance test sequence.  Subsequent analysis 
uses only the low-frequency-filtered machine power data. 

 
DE&S performed the unbalance test by attaching successively larger masses (0 - 101.7 grams) to the 
motor-pump coupling, as illustrated in Fig. 6.  Table 1 summarizes the test results, with the most relevant 
data shown in bold: unbalance mass (second column), peak vertical vibration (third column), and peak 
horizontal vibration (fourth column).  Figure 8 shows various linear measures of the motor-pump power 
as a function of the dataset number in this unbalance test sequence.  The top subplot of Fig. 8 shows the 
addition of successively larger amounts of unbalance mass to the motor-pump coupling.  The second plot 
down in Fig. 8 depicts the overall variation in motor power level (2000-3500W), which is nearly constant 
for the first five datasets, rising abruptly to the largest values for intermediate unbalance masses, then 
decreasing gradually for datasets 9-13.  The third plot down in Fig. 8 presents values of skewness (solid), 
which varies erratically between 0.2-0.5 over the test sequence.  This subplot also displays kurtosis (- -), 
which decreases erratically from 0.3 in the first dataset to –1.2 in the fourth dataset, rising to –1 in the 
fifth dataset, varying erratically around zero over datasets 6-12, and finally decreasing to –0.5 for the last 
dataset.  The bottom subplot of Fig. 8 illustrates the number of timesteps per power cycle, which rises 
from ~15 in the first dataset to ~60 in dataset 4, then decreases to ~ 35 in dataset 5, remains nearly 
constant over datasets 6-12, and finally rises somewhat to ~20 in the last dataset.  Figure 9 shows a 
similar set of plots for traditional nonlinear measures of the unbalance power versus the dataset number.  
The top subplot of Fig. 9 shows the monotonic rise in unbalance mass, as in Fig. 8.  The second plot down 
in Fig. 9 depicts the very erratic variation between 1.4-2.3 in correlation dimension, D, versus dataset 
number.  The third plot down in Fig. 9 presents the erratic variation in Kolmogorov entropy, K, between 
0.001-0.018 versus dataset number.  The bottom plot of Fig. 9 illustrates the variation in the first 
minimum in the mutual information function, M1 , which is between 15-16 for dataset 1, 10-14 for dataset 
2, 14-20 for dataset 3, 10-20 for dataset 4, 10-11 over dataset 5, 14-16 for datasets 6-12, then down to 9-
11 for the last dataset.  Thus, the linear and traditional measures of motor power are uncorrelated to 
unbalance mass. 
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In sharp contrast to Figs. 8-9, Fig. 10 shows a clear correlation between the phase-space dissimilarity 
measures (top) and the vibration levels (bottom) as functions of the unbalance mass.  All four 
dissimilarity measures (Fig. 10 top) rise monotonically and in unison for 0 ≤ (unbalance mass) ≤ 50g.  
The operational vibration levels (Fig. 10 bottom) rise monotonically (and almost linearly) with increasing 
unbalance mass.  Table A.12 of Appendix A provides a correlation between the phase-space dissimilarity 
measures and the vibration levels, based on ISO 2372 and ISO 3945 standards.  In particular, Table A.12 
shows that the 5HP motor is in Class I (small machines to 20HP), for which the onsets of unsatisfactory 
and unacceptable vibration occur at 2.8 mm/s and 7.1 mm/s, respectively.  Figure 10 (bottom) shows 
these vibration limits as two horizontal lines with corresponding labels in the two bands (unsatisfactory 
for range of 2.8 mm/s < v < 7.1, and unacceptable for v > 7.1 mm/s).  Thus, the phase-space dissimilarity 
measures provide clear and consistent indications of condition change that correlate with unbalance mass. 

 
DE&S performed the second test by introducing successively larger amounts of misalignment, as 
illustrated in Fig. 11.  Table 2 summarizes the test results, with the most relevant data shown in bold: 
vertical angular misalignment (fifth column), peak vertical vibration (seventh column), and peak 
horizontal vibration (eighth column).  Figure 12 shows various linear measures of the motor-pump power 
as a function of the dataset number in this misalignment test sequence.  The top subplot of Fig. 12 shows 
the vertical angular misalignment of the motor-pump system via insertion of shims in the motor-to-pump 
coupling and/or under the motor mount; note the non-monotonic change in the first two datasets.  The 
second subplot down in Fig. 12 depicts the variation in motor power, which remains almost constant 
(2000-3000 W) for datasets 1-8, then rises slightly (2500-3500 W) for dataset 9, and is largest (and most 
variable) for the last dataset (4500-7000 W).  The third subplot down in Fig. 12 displays skewness and 
kurtosis of the motor power, both of which vary erratically over the whole range of misalignment.  The 
bottom subplot in Fig. 12 illustrates the number of timesteps per cycle, with mostly low values (15-25) for 
datasets 1-3, 5, and 7-9 interspaced with high plateau values (50-70) for datasets 4, 6, and 10.  Figure 13 
shows a similar set of plots for traditional nonlinear measures of the misalignment motor power versus 
the dataset number.  The top subplot of Fig. 13 shows the monotonic rise in vertical offset, as in Fig. 12.  
The second plot down in Fig. 13 depicts the very erratic variation between 1.6-2.4 in correlation 
dimension, D, versus dataset number.  The third plot down in Fig. 13 presents the erratic variation in 
Kolmogorov entropy, K, between 0.001-0.036 versus dataset number.  Interestingly, the smallest values 
of correlation dimension, D, and Kolmogorov entropy, K, in Fig. 13 both occur in datasets 4, 6, and 10; 
these same datasets have the smallest values of kurtosis (dashed curve in the third subplot down in Fig. 
12) and the largest values of timesteps per cycle (bottom subplot of Fig. 12).  We conclude from the 
results in Figs. 12-13 that no correlation exists between the linear and traditional measures of motor 
power and the values of motor-pump misalignment, not unlike the results for the linear and nonlinear 
measures of pump-motor power for the unbalance test sequence. 

 
In sharp contrast to Figs. 12-13, Fig. 14 shows correlation between the phase-space dissimilarity measures 
(top) and the vibration levels (bottom) as functions of the misalignment.  All four dissimilarity measures 
(Fig. 14 top) rise in unison for 0.19 ≤ misalignment (mm) ≤ 1.1. The operational vibration levels (Fig. 14 
bottom) rise somewhat erratically with increasing misalignment.  Referring again to Appendix A, Table 
A.12 provides a correlation between the phase-space dissimilarity measures and the vibration levels, 
based on ISO 2372 and ISO 3945 standards.  In particular, Table A.12 shows that the 5HP motor is in 
Class I (small machines to 20HP), for which the onsets of unsatisfactory and unacceptable vibration occur 
at 2.8 mm/s and 7.1 mm/s, respectively.  As in Fig. 10 (bottom), Fig. 14 (bottom) shows these vibration 
limits as two horizontal lines with corresponding labels in the two bands (unsatisfactory for range of 2.8 
mm/s < v < 7.1, and unacceptable for v > 7.1 mm/s).  The rise and subsequent fall in dissimilarity 
measures (Fig. 14 top) is accompanied by the same rise and fall in vibration levels (Fig. 14 bottom) for 
datasets 1-4, and is probably due to the inconsistent introduction of misalignment by shims under the 
motor mount and in the motor-to-pump coupling.  See Table 2.  Thus, the phase-space dissimilarity 
measures also provide indication of condition change that correlates with misalignment. 
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4.  DISCUSSION 

 
One of the most important problems encountered in nonlinear time-series analysis is the appropriate 
characterization of changes in the system’s dynamics.  More often than not, physical systems are 
complex, nonstationary, affected by noise, and difficult to fully quantify in ordinary physical or 
mathematical terms.  Such systems usually have low-dimensional dynamics that varies between (quasi) 
periodic and completely irregular (chaotic).  Thus, to a certain extent, global aspects of the dynamics may 
be legitimately quantified by traditional nonlinear descriptors such as Lyapunov exponents, Kolmogorov 
entropy, and correlation dimension.  While these descriptors are adequate for discriminating between 
clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to distinguish quasi-periodicity, 
intermittency, or slightly different chaotic regimes, especially when data are limited and/or noisy.  
Therefore, robust and timely forewarning of equipment failures has remained an outstanding challenge.  
We address this problem, by introducing four new measures of dissimilarity that capture more details 
about the dynamics and differences between various regimes and therefore are more sensitive than the 
traditional nonlinear measures.  A change in these measures signifies that the system has departed from 
the base case and can be interpreted as a forewarning of an impending failure.   
 
The PS indicators of condition change measure the difference between PS distribution functions for a 
base case and a test case, as χ2 statistics and L1 distance.  Thus, these indicators retain the differences 
between the process dynamics and avoid the inner cancellation effects due to averaging over many orbits 
(as one does, for instance, when calculating the correlation dimension and Kolmogorov entropy).  
Changes in the Lorenz and Bondarenko model dynamics are clearly detected by the dissimilarity 
measures and somewhat by Kolmogorov entropy.  On the other hand, these changes are either undetected 
or poorly detected by the correlation dimension and mutual information measures.  The new measures 
also provide forewarning of failure due to two seeded fault conditions, as described in Sec 3.7.  These 
results show that the PS measures are superior to traditional nonlinear measures for detection of condition 
change.   
 
We note that the PS indicators contain more information than we have systematically exploited so far.  
For instance, some datasets show a remarkably close similarity between the pairs {χ2 , L } and { Lc , χc

2}, 
while other datasets show close similarities between {L , Lc } and {χ2 , χc

2}.  Other data sets show no 
similarities at all.  The first situation may arise because the base case and test case distribution functions 
are not significantly different from zero on a common domain.   The second situation can be interpreted 
as a sign of very slow dynamics (little change between the PS and CPS measures).  The third case 
displays more variability in the dynamics. 
 
We view these results as an encouraging validation of our method and its potential for event forewarning.  
There are a few caveats though: (i) the present data were obtained in a controlled laboratory setting, 
which is substantially different from the uncontrolled plant environment where a monitoring device might 
attempt forewarning; (ii) the PS-reconstruction parameters were adjusted to give the best indication of 
forewarning for these datasets.  The algorithm may not be equally well tuned for other datasets.  Thus, we 
are acutely aware that as long as the dynamics is unknown, it may reserve surprises. 

 
On the other hand, the performance and robustness of our approach on model data and real machine data 
suggests that this methodology could allow convenient, non-intrusive sensor placement by a technician in 
a non-laboratory, plant setting and be used as a complementary quantitative method in conjunction with 
other diagnostic methods.  The technology is model-independent and computationally fast, allowing 
removal of artifacts in the data that would otherwise obscure the underlying dynamics.  Future use of this 
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approach as a complementary and/or stand-alone method for equipment failure forewarning will require 
extensive analysis of several events for each machine and failure mode, and detailed determination of 
detection criteria.  Future work will involve: (i) statistical evaluation of false positives and negatives, and 
of false positives during normal operation, (ii) detailed monitoring of each machine to determine optimal 
PS reconstruction parameters, which subsequently would be fixed for real-time monitoring, (iii) the 
specific nonlinear feature(s) for event forewarning of know failure modes. 

 
In addition to the above technical accomplishments, the PY1 work produced several important lessons-
learned.  First, the use of two different shim types in the misalignment test (Sec. 3.7) points to a need for 
closer coordination between DE&S and ORNL for experimental design and test implementation.  These 
details will be governed by the PY2 test plan.  Second, ORNL’s experience with motor data suggests that 
the high frequency “noise” in the power data (e.g., bottom subplot of Fig. 7) is indicative of the 
equipment dynamics.  However, ORNL analysis of that noise did not uncover any such indications, 
probably due to an inadequate sampling rate.  ORNL has asked DE&S to look into higher sampling rates, 
perhaps up to 50KHz.  Third, DE&S transferred the multi-megabyte datasets to ORNL as attachments to 
e-mail messages rapidly and easily.  We expect to expand the use of data transfer via the Internet in PY2. 

 
The second phase of the proposed work begins in PY2, and involves compelling demonstration of the 
nonlinear prognostication, which entails the acquisition and analysis of much more data.  We hope to 
obtain at least 20 test sequences that begin with nominal operation, and progress to a non-normal, 
degraded, faulted, or failure state as a specific parameter changes.  We further hope to show this 
forewarning for different kinds of nuclear-grade equipment, as opposed to many different failure modes 
for one piece of equipment.  The measures of success include false positives, false negatives, and the 
forewarning times. ORNL subsequently will improve the nonlinear paradigm in order to minimize the 
number of false positive and false negative indications of failure, while maximizing the forewarning time.  
ORNL received $481K for PY2 on 8/15/01, and has begun planning efforts with DE&S to continue 
collaboration on the NERI2000-109 project during this second phase. 
 
Acknowledgments 
 
We gratefully acknowledge sponsorship of this work by the U.S. Department of Energy’s Nuclear Energy 
Research Initiative, and the Office of Basic Energy Sciences. The Oak Ridge National Laboratory is 
managed for the United States Department of Energy by UT–Battelle, LLC, under Contract No. DE-
AC05-00OR22725. 



 

 21

 
 

Fig. 1. Phase-space plots for the Lorenz system: (left) 1,000 points from the (x, y, z) coordinate 
sequence, as obtained from the integration Eq. (3.19) for r = 45, a =10, and b = 8/3; and (right) phase-
space reconstruction for the same parameters as (left) but using three different time-delayed elements of 
the y-coordinate only to form the three-dimensional vector sequence (yi, yi+λ , yi+2λ) for a time lag, λ = 3. 
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Fig. 2.  Linear measures for the y-coordinate of the Lorenz system versus r: (a) 

minimum (Ymin) and maximum values (Ymax), (b) absolute average deviation (a, from Eq. 3.10) 
and standard deviation (σ, from Eq. 3.2), (c) skewness (s, from Eq. 3.3) and kurtosis (k , from 
Eq. 3.4), and (d) time steps per cycle (m, from Eq. 3.5). As described in the text, the horizontal 
axis variable (T) is a surrogate for the value of r is as follows: r = 45 for 0 ≤ T ≤ 45, r = T for 46 
≤ T ≤ 89, r = 90 for 90 ≤ T ≤ 134. 
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Fig. 3.  Renormalized nonlinear measures versus r for the y coordinate of the Lorenz system: (a) 
correlation dimension, (b) Kolmogorov entropy, (c) lag (in time steps) of the first minimum in the mutual 
information function, (d) non-connected (solid) and connected (--) L1 dissimilarity, and (e) non-connected 
(solid) and connected (--) χ2 dissimilarity. The phase-space reconstruction parameters are: S = 12, d = 3, 
N = 50 000, and λ = 2. M1 is constant for r = 45, so subplot (c) is not renormalized. As described in detail 
in the text, the horizontal axis variable (T) is a surrogate for r as follows: r = 45 for 0 ≤ T ≤ 45, r = T for 
46 ≤ T ≤ 89, r = 90 for 90 ≤ T ≤ 134. 
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Fig. 4.  Renormalized nonlinear measures versus r for the y coordinate of the Lorenz system 
with the basecase over the first 10 cutsets of r=90: (a) non-connected  L1 dissimilarity, (b) connected L1 
dissimilarity, (c) non-connected connected χ2 dissimilarity, and (d) connected χ2 dissimilarity. The phase-
space reconstruction parameters are: S = 12, d = 3, N = 50 000, and λ = 7. The value of r is as follows: r = 
45 for 0 ≤ T ≤ 45, r = T for 46 ≤ T ≤ 89, r = 90 for 90 ≤ T ≤ 134.  
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Fig. 5.  Renormalized nonlinear measures versus r for the y coordinate of the Lorenz 
system: (a) non-connected χ2 dissimilarity for N = 5 000, (b) non-connected χ2 dissimilarity 
for N = 500, (c) non-connected χ2 dissimilarity for N = 50, (d) non-connected χ2 dissimilarity 
for N = 25. The phase-space reconstruction parameters are: S = 12, d = 3, and λ = 2. The 
horizontal axis variable (T) is a surrogate for r as follows: r = 45 for 0 ≤ T≤ 45, r = T for 46 
≤ T ≤ 89, r = 90 for 90 ≤ T ≤ 134. 
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Fig. 6.  Important features of the test equipment (5HP motor-driven pump) at the DE&S 
testing facility in Mount Holly, North Carolina. DE&S performed measurements of vibration on the 
motor inboard bearing casing velocity per ISO standards 2372 and 3945, as discussed in App. A, for 
correlation with the nonlinear analysis; see text for discussion. Vibration measurement points as indicated 
on the figure are:  
 

PIV  = Pump Inboard Vertical    MIV  = Motor Inboard Vertical 
PIH  = Pump Inboard Horizontal   MIH  = Motor Inboard Horizontal 
POH = Pump Outboard Horizontal   MIA  = Motor Inboard Axial 

 
MIV and MIH are the main indicators of motor vibration. 
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Fig. 7.  Use of the zero-phase quadratic filter for removal of high-frequency noise from typical power 
data from the baseline unbalance test: (top) raw power data, (middle) extraction of the low-frequency component 
of the power data via the zero-phase quadratic filter, and (bottom) residual high-frequency “noise” after subtraction 
of the low-frequency power data from the raw data. 
 



 

 28

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Various  linear measures of the unbalance power data as a function of the dataset 
number: (top) unbalance mass in grams; (second) minimum power (Pn), maximum power (Px), and the 
average power ± one standard deviation (σ); (third) skewness (solid) and kurtosis (- -); (bottom) timesteps 
per cycle (TS/C). There is no correlation between these linear measures and the monotonically increasing 
amount of unbalance mass; see text for a detailed discussion. 
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Fig. 9. Traditional nonlinear measures of the unbalance power data as a function of the 
dataset number: (top) unbalance mass (grams); (second) correlation dimension (D); (third) Kolmogorov 
entropy (K); (bottom) first minimum in the mutual information function (M1). No correla tion exists 
between these traditional nonlinear measures and the monotonically increasing amount of unbalance 
mass; see text for further discussion.  
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Fig. 10. Correlation of phase-space dissimilarity measure s and vibration levels as a function 
of the unbalance mass: (top) (non)connected phase-space dissimilarity measures (χ2, χc

2, L and Lc); 
(bottom) peak vibration levels in the horizontal direction (denoted as MIH in Fig. 6 and as ‘horiz’ in this 
figure) and the vertical direction (denoted as MIV in Fig. 6 and as ‘vert’ in this figure). The phase-space 
dissimilarity measures (top) rise monotonically and in unison for 0 ≤ mass ≤ 50g, in direct correlation 
with the monotonic rise in peak vibration levels (bottom). The best condition change discrimination 
occurs for the following parameter values: S=90 (equiprobable symbols), d=4, λ=5, and N=25 000. 
Dissimilarity measures are scaled between 0 and 1 for ease of comparison. 
 

Need forewarning for 
vibration level  >2.8mm/s, 
or mass > 37g 
 

Monotonic rise for  
0 ≤ mass ≤ 50g gives 
forewarning 
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Fig. 11.  Illustration of misalignment between motor and pump. Misalignment is typically 
expressed in mils/inch or an offset in mils for the angle made by the shaft centerlines. A parallel 
misalignment may be defined as the distance between two rotational centerlines in a given plane, often 
referred to as offset misalignment. DE&S measured the misalignment via a laser alignment system with a 
resolution of 1/1000 mm. DE&S used shims at the motor-to-pump coupling and under motor mount to 
produce misalignment. 
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Fig. 12. Various linear measures of the misalignment power data as a function of the dataset 
number: (top) vertical angular misalignment (in millimeters as defined in Fig. 11); (second) minimum 
power (Pn), maximum power (Px), and the average power ± one standard deviation (σ); (third) skewness 
(solid) and kurtosis (- -); (bottom) timesteps per cycle (TS/C). There is no correlation between these linear 
measures and the amount of misalignment; see text for a detailed discussion. 
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Fig. 13. Traditional nonlinear measures of the misalignment power data as a function of the 
dataset number: (top) vertical angular misalignment (in millimeters, as defined in Fig. 11); (second) 
correlation dimension (D); (third) Kolmogorov entropy (K); (bottom) first minimum in the mutual 
information function (M1). No correlation exists between these traditional nonlinear measures and the 
monotonically increasing amount of misalignment; see text for further discussion.  
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Fig. 14. Correlation of phase-space dissimilarity measures and vibration levels as a function 
of the unbalance mass: (top) (non) connected phase-space dissimilarity measures (χ2, χc

2, L and Lc); 
(bottom) peak vibration levels in the horizontal direction (denoted as MIH in Fig. 6 and as ‘horiz’ in this 
figure) and the vertical direction (denoted as MIV in Fig. 6 and as ‘vert’ in this figure). Note that the 
phase-space dissimilarity measures (top) rise monotonically and in unison for misalignment >0.2mm, in 
correlation with the (erratic) rise in peak vibration levels (bottom). The best condition change 
discrimination occurs for the following parameter values: S=140 (equiprobable symbols), d=3, λ=49, and 
N=25 000. Dissimilarity measures are scaled between 0 and 1 for easy comparison. 

Need forewarning for 
0.2 ≤ misalign ≤ 0.47 

Monotonic rise in 
dissimilarities gives 
forewarning for 
misalign > 0.2mm 
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Table 1: Summary of Unbalance Test 

                       
Mass  ---------------Vibration Levels - Peak Velocity (in/sec)------------------- 

Test # (oz)   MIV*  MIH*  MIA  PIV  PIH  POH  

1  0.00  0.0196  0.0380  0.0445  0.0188  0.0182  0.0120  
2  0.10  0.0264  0.0414  0.0500  0.0200  0.0232  0.0116  
3  0.20  0.0321  0.0462  0.0555  0.0217  0.0226  0.0117 
4  0.30  0.0364  0.0514  0.0637  0.0216  0.0252  0.1172 
5  0.50  0.0497  0.0665  0.0843  0.0218  0.0293  0.0143 
6  0.90  0.0521  0.1000  0.1460  0.0264  0.0444  0.0261 
7  1.15  0.0817  0.1250  0.1770  0.0237  0.0511  0.0271 
8  1.50  0.1100  0.1640  0.2360  0.0255  0.0601  0.0356 
9  1.90  0.1390  0.2070  0.3120  0.0270  0.0741  0.0432 
10  2.25  0.1680  0.2410  0.3700  0.0277  0.0838  0.0537 
11  2.80  0.2130  0.3000  0.4600  0.0326  0.0979  0.0644 
12  3.20  0.2250  0.3670  0.5340  0.0439  0.1290  0.0859 
13  3.60  0.2700  0.3990  0.6060  0.0379  0.1400  0.0914 
* Vibration at the motor inboard bearing 

 
 
 
 

Table 2: Summary of Data from Misalignment Test 
                           
 Shim. Horiz Horiz Vert Vert       
 Thick Ang. Off. Ang. Off. -------------Vibration Levels - Peak Velocity in/sec------------- 
#   Mils Mils Mils Mils MIV*  MIH*  MIA  PIV PIH POH  
1 0  0.05 1  1.1  1.7  0.0196  0.0380  0.0445  0.0188  0.0182 0.0120  
2 0.000 0.5  0  -0.2 -0.1  0.0468  0.0556     0.0474 0.0465 0.0301  
3 0.002# 0.3  0.1  6.4  1.7  0.1160  0.1180     0.0864 0.0906 0.0553 
4 0.005# -1.9  -0.2  7.7  2.4  0.0897  0.1280  0.1090  0.0331 0.0770 0.0569  
5 0.006# -0.3  -0.1  11.8 3.3  0.1670  0.2170  0.3120  0.1440 0.1460 0.0978  
6 0.010# -3  -0.1  15.5 5.1  0.0759  0.1330  0.1040  0.0435 0.0715 0.0519 
7 0.015# 0.4  0.1  17.4 4.5  0.1580  0.1270  0.2330  0.0958 0.1030 0.0737  
8 0.005+ 3.9  1.2  19.0 5.0  0.2040  0.2210  0.3560  0.1730 0.1910 0.1100  
9 0.010+ 8.6  1.9  25.5 6.0  0.3930  0.3050  0.6580  0.2420 0.2090 0.1260  
10 0.020# -2.3  0.7  39.9 12.6 0.3770  0.6370      
0 0.000& -1.5  -0.2  1.4  0.4  0.0558  0.1220  0.0810  0.0262 0.0594 0.0365 
* Vibration at the motor inboard bearing 
# Shims under the motor mount 
+ Shims at the motor-to-pump coupling 
& Re-alignment to zero for reference
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A.1 Introduction 
 
This Appendix addresses the various considerations for the test plan for this project. 

Section A.2 describes the important-to-safety equipment in a nuclear power plant. 
Section A.3 chooses two test modes, based on typical failure modes. 
Section A.4 explains the choice of testing facility and methodology. 
Section A.5 shows the detailed specifications of the equipment to be tested. 
Section A.6 provides the detailed protocol for the accelerated failure testing. 
Section A.7 lists the detailed specifications of the data acquisition equipment. 
Section A.8 discusses the resulting test data for subsequent analysis by ORNL. 
 

The choices for the Phase-1 test plan arise from the considerations in this Appendix. 
 
A.2 Important-to-Safety Equipment for Testing 
 
Nuclear power plants (NPPs) use a large variety of safety-related equipment. Table A.1 shows typical 
examples of such equipment. Table A.2 show typical failures in rotating components. 
 

TABLE A.1: Typical safety-related equipment in a PWR nuclear power plant 
 

Component Type  Approximate 
Number per Unit 

Notes 

Control rods and control element 
assemblies 

50 to 60 160 in a BWR Unit 

Heat exchangers, condensers, and steam 
generators 

24  

Turbines (steam, gas) 1  
Generators and inverters 6  
Blowers, compressors, fans, vacuum pumps, 
and cooling units 

20  

Pumps 20  
Electric Motors 500  
Relays 1000 to 2000  
Circuit breakers, contactors, and controllers 750 to 1000  
Governors and gear boxes 15  
Valves  650 All types 
Valve operators 260 Motor operated valves 
Engines (gas, diesel) 1  
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TABLE A.2: Approximate Distribution of Some Critical Rotating Components Failures in Nuclear Power Plants 

Prior to 1997 [2] 

 
Number of Failures that Resulted in:  

Component Type 
Reduced-Power 

Operation 
Unit Off 
Line  

Reactor 
Trip 

Blowers, compressors, fans, vacuum pumps, 
cooling units  2 17 0 

Generators, inverters, motor generators 79 79 131 
Governors, couplings, gear boxes 88 28 52 
Motors (electric, hydraulic, pneumatic) 76 90 53 
Pumps, eductors 272 252 62 
Valve operators 430 338 220 
Turbines (steam, gas) 88 41 48 

 
Failures of motors and motor driven equipment represent a big percentage of plant events that resulted in 
serious plant condition ranging from reactor trip to reduced-power operation. 
 
INPO-EPIX database [1] shows that motor failures directly impact NPP operations, including reactor trips 
(25% of failures), unit off-line (40% of failures), and reduced power operation (35% of failures). Motors 
are among the most common equipment in NPPs. Motor testing is a straight-forward matter of acquiring 
voltage and current. For all of these reasons, we choose to test electric motors for the first phase of this 
NERI project.  DE&S is well acquainted with motor testing, and has extensive facilities and experience in 
such testing, as described below. 
 
A nuclear power plant utilizes a large number of electric motors ranging from fractional horsepower to 
many thousands of horsepower in almost every safety system.  Most NPP motors are three-phase, 
alternating current (AC), induction type at 110-480 volts with anti-friction bearings. These motors drive 
small pumps for coolers, dampers, and similar components. Direct current (DC) motors usually provide 
backup in the case of AC power loss.  In PWRs, safety systems contain small induction-type valve motors 
that are pipe mounted. Motors are used for both continuous and intermittent duty.  Continuous duty 
motors drive pumps, fans, generators, dampers, chillers, and other components for long periods.  
Intermittent duty motors run for a short duration to actuate valves from open to closed position and vice-
versa.  Table A.3 provides an approximate distribution of motors in a PWR plant [1]. 
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TABLE A.3: Approximate Motor Population in a PWR Plant [1] 

 
SAFETY-RELATED MOTORS NONSAFETY-RELATED 

MOTORS HP 
INSIDE 

CONTAINMENT 
OUTSIDE 

CONTAINMENT 
INSIDE 

CONTAINMENT 
OUTSIDE 

CONTAINMENT 
TOTAL 

MOTORS 

CONTINUOUS DUTY MOTORS 
< 1 HP 0 15 0 20 35 
1 – 100 HP 10 150 10 270 440 
125 – 250 HP 10 0 0 20 30 
> 300 HP 0 20 4 15 39 
DC 0 10 0 5 15 

SUB – TOTAL 1 559 

VALVE MOTORS (INTERMITTENT OPERATION) 
AC Power 30 250 0 260 540 
DC Power 0 10 0 0 10 

SUB - TOTAL 2 550 
TOTAL 1109 

 
 
A.3 Failure  Modes of Equipment 

 
Component failure analysis identifies specific root cause(s), beginning with identification of the possible 
failure modes.  The fault tree approach is often combined with one or more other techniques to reveal 
possible causes for the observed failure mode of the equipment.  A failure cause may involve the 
investigation of health monitoring indicators, degradation mechanisms, direct degradation indicators, 
indirect degradation indicators, and use of various data sources. A functional failure mode is indicated 
when the component fails to perform its designed function.  Some common failure modes associated with 
electric motor driven equipment are presented in Table A.4. 
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TABLE A.4: Representative electrical motor driven equipment faults 
 

General category Brief description of specific deterioration modes 
Mass unbalance Force unbalance, couple unbalance, dynamic unbalance, overhung. 

rotor unbalance 
Misalignment Angular, parallel, misaligned bearing cocked on shaft 
Journal bearings Wear/clearance problems, oil whirl instability, oil whip instability 
Gears Tooth wear, tooth load, gear eccentricity and backlash, gear misalignment, 

cracked/broken tooth, gear assembly phase problems, hunting tooth problems, 
loose bearing fit 

AC induction motors Stator eccentricity shorted lamination or loose iron, eccentric rotor, rotor 
problems, phasing problems 

DC motors and 
controls 

Broken armature windings, grounding problems, or faulty system tuning, 
faulty firing card or blown fuse, faulty SRC, shorted control card, loose 
connection and/or blown fuse, faulty comparator card, electrical current 
passage through bearings 

Belt drive problems Worn/loose/mismatched belts, belt/pulley misalignment, eccentric pulleys, 
belt resonance 

Hydraulic/aerodynami
c force 

Blade pass, vane pass, flow turbulence, cavitation 

Foot problems Soft foot, sprung foot, foot-related resonance 
 
The motor components most likely to result in failures are bearings and stator windings (including 
connections) [3], as shown in Table A.5. Analysis [3] shows that 60% of failures are of mechanical origin 
and that 30% are of electrical origin, as summarized in Table A.6. An example of mechanical failure is 
the overheating due to overloading, blocked ventilation, or phase unbalance.  The effect may not be 
drastic enough to trip the overload relay or fuses, but may cause the motor bearing lubrication degradation 
leading to bearing failure.  Alternatively, overheating may result in premature aging and failure of the 
winding insulation. 
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TABLE A.5.  Motor Component Failures [3] 

 
Cause IEEE Survey EPRI Survey 

Bearing Related 44% 41% 
Stator Related 26% 36% 
Rotor Related 8% 9% 

Other 22% 14% 
 

TABLE A.6. Failure Mechanisms [3] 
 

Cause of Failure Bearings Windings 
Overheating 12% 21% 

Insulation Breakdown 2% 37% 
Mechanical Damage 50% 10% 

Electrical Fault 4% 11% 
 
Motors frequently fail due to excessive vibration, resulting from mechanical, as well as electrical 
excitations.  Mechanical imbalance and misalignment are the most common mechanical conditions that 
produce excessive vibration in rotating machinery. Changes in vibration arise from bearing deterioration, 
misalignment, damaged parts, electrical imbalance, and wear. Unbalance is the most common cause of 
vibration in rotating machinery, occurring when the actual center of the rotating mass is not exactly at its 
geometric center.  This eccentricity causes a heavy side of the rotating component, creating a synchronous 
rotating force vector.  For linear systems, unbalance produces a vibration directly proportional to the 
unbalance amount, and has a frequency equal to the running speed of the machine. Mechanical unbalance 
in rotating machinery is usually caused by unavoidable errors in design, manufacture, assembly, initial 
balancing, or impeller damage.  Unbalance can lead to excessive vibration, bearing wear, and seal 
leakage.  Impellers should be statically and dynamically balanced so that the maximum residual 
unbalance is less than 1xW/rpm, where W = impeller weight. An unbalance condition may involve 
different modes of the rotor bearing system.  For rigid rotor modes, the condition may be static, coupled, 
or dynamic.  Flexible rotors are more complex; unbalance correction requires several balancing planes 
and may require knowledge of the mode shapes involved. Hydraulic unbalance in pumps is induced by 
the fluid flow and is usually caused by poor suction piping arrangements and design.  A flow restriction 
or an elbow too close to the pump suction causes fluid to assume different velocities within the pipe.  If 
these velocities do not equalize before reaching the impeller, the hydraulic unbalance will impose a high 
radial vibration at the running frequency of the machine. 
 
Misalignment is considered the second most prevalent vibration source, and is due to non-coincidence of 
rotating axis of coupled components.  Misalignment results in a high axial vibration at multiples of 
running speed, mainly the two-times (2X) component.  The axial reading may be as high as twice the 
vertical reading.  Misalignment causes pump vibration resulting in seal leakage, bearings overheating, and 
coupling wear.  Soft foot and pipe stresses contribute a great deal to misalignment. 
 

Based on these considerations, the two failure modes for our testing are unbalance and misalignment.  As discussed 
below, DE&S can induce these failures on Duke Training Center Test Cell by replacing the actual flexible spring-
type coupling with a more rigid coupling. 
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A.4 Testing Options  

 
DE&S Electric Motor Testing Services provide both on-line and off-line electric motor testing. A DE&S 
technician typically visits the client’s site, acquires the data, performs the analysis, and then delivers a 
written report with recommendations. Three facilities can be used for this motor testing: DE&S Toddville 
Complex Facility (Charlotte, NC); Duke Power Mount Holly Training Center (Charlotte, NC); Advanced 
Energy (NC State University, Raleigh, NC). 
 
DE&S keeps most testing equipment and instrumentation at the Toddville Complex facility.  This facility 
can be used for the purpose of this project, but we would have to build a test setup using our existing 
motors.  This option has been ruled out due to the time and budget constraints.  
 
DE&S has a closed-loop pumping system with three similar pump motors at the Mount Holly Training 
Facility. This system belonged to an ex-NPP; DE&S uses the system for training.  As discussed below, 
this option is the best for this phase of the project due to its proximity (half an hour drive) and to the 
flexibility we have in terms of scheduling. It is also much cheaper to rent the Mount Holly Training 
Facility than the Advanced Energy facility since there are negligible expenses associated with its use. 
 
Advanced Energy Motor Services is the only independent motors testing facility of its kind in the nation. Advanced 
Energy can test motors for their efficiency and/or operating characteristics, and motor test data are used to help 
industries develop motor repair and replacement policies that reduce operating costs. The Motor Test Lab can 
perform a wide variety of tests on new and repaired motors at full and partial loads in the range of 3 - 150 
horsepower.  The lab is equipped to perform dynamometer load tests on 3-phase AC induction motors per IEEE 
112B, NEMA MG-1 and CSA C-390 test standards.  Foot Mount and Face Mount "C" flange and "D" flange motors 
can be tested. In-field motor testing is also available with the IEL's In-Situ Motor Analyzer, which can determine 
efficiency, operating load, and temperature rise.  This capability is particularly beneficial when the configuration of 
the motor prevents it from being tested at the IEL motor lab.  
 
Table A.7 summarizes the considerations for choice of a testing facility. Pricing is a major consideration. 
Use of the UNC facility for three weeks would require more than $20K, in addition to DE&S expenses 
and labor using our own motors. Another important issue is scheduling. The NC State Facility is used 
extensively by many testers, and has very tight advanced scheduling. DE&S facilities allow the freedom 
of setting a less stringent schedule. The best test facility option is the Duke Mount Holly Training Center. 
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TABLE A.7.  Benchmarking of the three options 

 
 Toddville 

Complex 
Charlotte, NC 

Duke’s Training Center 
Charlotte, NC 

NC State Lab 
Rale igh, NC 

Testing Equipment Only Motors 
Available 

Closed Loop Water 
System with Three 
Pump/Motor used in NPP 

Motor with 
Dynamometers for 
load variations 

Travel/Lodging 
Expenses 

None Very Low Mileage from DE&S 
Charlotte to Raleigh + 
Expenses 

Cost of testing 
equipment  

Very High Low None 

Cost of Testing (labor, 
Rent) 

Very Low Low Very High 

Scheduling Constraints None Negligible Tight Scheduling 
Access Restrictions None Weekdays Controlled 
Data format As required As required No idea 

 
Electric motor testing involves both “on-line” and “off-line” methods. ORNL has found that subtle faults 
in electric motor-driven elements are detectable via nonlinear analysis of “on-line” motor current or motor 
power data, and can capture the rich array of process dynamics in the entire motor-driven train. DE&S 
uses a motor/circuit evaluator produced by PdMA Corporation called MCE/Emax.  MCE is a lightweight, 
static tester that provides a detailed analysis of motor and circuit condition.  This portable unit features 
diagnostic results that evaluate all five of the motor's fault zones including the power circuit, insulation, 
stator, rotor and air gap.  MCE tests all major types of motors: induction, synchronous, wound rotor, DC, 
servo and spindle. Emax is a dynamic tester that simultaneously collects all three phases of current and 
voltage to provide spectral and digital data in the areas of power, motor current signature analysis, crest 
factor, total harmonic distortion, power factor, and impedance. This information can be used to evaluate 
incoming power quality and motor efficiency, as well as rotor, stator, air gap and power circuit 
conditions. DE&S has used the MCE/Emax throughout Duke Energy, as well as other industrial 
customers.  Common faults include loose or corroded connections between cabling and motor leads, 
broken or cracked rotor bars, eccentricity, and poor stator and/or cable insulation. DE&S will use the 
PdMA MCE/Emax to acquire voltage and current from each of the three motor phases during accelerated 
failure testing. 
 
In electrical machines in general, faults can be detected by measuring the currents or voltages in the machine 

windings.  The magnetic field created near an electrical machine, changes when faults occur.  Therefore, using 

induction loops to measure flux can aid in condition monitoring and diagnostics of the machine.   

 

Operating electric motor current signatures (“on-line”) contain information not only related to the motor 
itself but also that related to the driven component mechanical condition.  Therefore,  driven devices, such 
as fans, pumps, or motor-operated valves, can be monitored using a simple current loop on a lead that can 
be remote from hostile or inaccessible environments. 
 



 

A- 11 

A.5 Test site and equipment to be tested 
 
The testing facility of choice for this project is the Duke Power Mount Holly Training Center 
located in Charlotte, NC.  The Mount Holly Training Facility contains of a closed loop pumping 
system with three similar pump motors.  This system belonged to an ex-NPP and is used for 
training.  This system is shown in Figures A.1 to A.5. 
 

 
 

Figure A.1: Closed Loop Pumping System at Duke Mount Holly Training Center 
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Figure A.2: Three Pumps in Parallel can be used in any combination 
 
 

 
 

Figure A.3: A closer view of the pump/motor assembly – Coupling Removed 
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Figure A.4: Motor Control Panel Closed 
 

 
 

Figure A.5: Motor Control Panel Open – Provides Connection to Emax Testing 
 

 
 
The picture of the testing facility is shown in Figure A.1.  The equipment to be tested consists of a closed 
loop pumping station made of three groups of pump/motor.  The motor and pump nameplate data is 
provided in Table A.8.  Figure A.6 shows the pump head versus flow curve. 
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Table A.8.  Test Equipment Characteristics 

 Motor Pump 
Manufacturer  Gould 
Model 5K182AL1963 3196 ST 
HP 5 - 
Speed (rpm) 3495 3500 
Volts 230/460 - 
Amps 12.6/6.3 - 
Phases 3 - 
Capacity (GPM) - 30 
Head (feet) - 135 
Weight (lbs) 80 84 
Max. Filtered Bearing Casing Vibration (Mils p-p) 1.3 1.3 
Max. Filtered Bearing Casing Vibration (in/s peak) 0.3 0.3 
Notes No.-KRF Size 1X1X-6 

 
 

Figure A.6: Pump Characteristics 
 

A.6 Detailed Protocol for the Accelerated Failure Testing 
 
During operation, an electric motor's components such as rolling bearings and rotor bars produce 
distinctive vibrations that can be used for motor condition assessment and help identify problems. 
Consequently, vibration monitoring and analysis has become a widely accepted part of power plant motor 
predictive maintenance programs.  
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Vibration analysis has a wide scope of application to nuclear power plant rotating equipment.  Vibration 
sources include common structural vibrations from the interaction of rotating and non-rotating parts, as 
well as fluid-flow noise such as cavitation in pumps.  The following sources of vibration are documented 
in the literature: 
• Imbalance problems 

• Alignment problems  

• Bearing wear 

• Wear of geared pump/motor couplings 

• Cracked and/or worn shaft 

• Mechanical looseness (bearings, pedestals, base) 

• Improper internal pump clearances (design, mounting) 

• Impeller wear (especially that caused by off-Best Efficiency Point (BEP) operation) 

• Degradation of wear rings, diffusers, volutes, channel rings, balancing device, and interstage seals 

• Erosion, corrosion of pump casing and/or rotor internal flow paths 
Vibration transducers and monitoring instrumentation will be used to access the mechanical condition of 
the equipment. Duke Engineering & Services (DE&S) will provide the motor current and vibration data 
to the ORNL team.  DE&S collects and analyzes thousands of data points on a monthly basis using the 
latest available condition monitoring hardware and software across several industries.  DE&S owns 
industry standard instrumentation including CSI, SKF, Bently Nevada and various laboratory type 
analyzers.  Typical transducers and instrumentation are depicted in Figures A.7 to A.9. 
 

   
Figure A.7: Typical Vibration Sensors (SKF) Figure A.8: Sensor Mounting Magnet 

(CSI)  
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Figure A.9: CSI 2120 Dual Channel Portable Vibration Analyzer 
(Courtesy CSI Inc.) 

 
A.6.1 Electric Motor Failures 

Conditions of excessive temperature and vibration are the most common symptoms of electric motor 
failures. 
 
Temperature is a good indicator of electric motor problems.  Higher than normal temperature can result 
from electrical as well as mechanical problems.  For example, the first indication of bearing trouble may 
be high bearing temperature.  Temperature increase can be caused by such conditions as high ambient 
temperature, voltage imbalance, excessive load, dirty windings or blocked air intakes. 
 
Vibration can be caused by electrical as well as mechanical faulty conditions.  When an open bar 
develops in the rotor winding or a short happens in the stator winding, the effect on motor operation may 
show up as a higher vibration reading.  The cause of vibration can be due to imbalance, misalignment, or 
bearing wear/defect.  Motors can also have initial damaged due to handling and storage or have a 
manufacturing defect, which will appear as a vibration problem over time because of residual stresses. 
 
Failures seemingly not related to vibration can develop because of vibration in an electric motor.  Bearing 
damage, insulation abrasion, excessive brush-wear, commutator or collector ring burning, and winding 
fatigue can all result from excessive vibration. 
 
In general, motor failures can be induced mechanically, electrically, or some combination of the two 
source areas. 
A.6.1.1 Mechanical Faults 

 
Some of the more common mechanical faults include rotor mass imbalance, coupling misalignment and 
bearing defects.  These three are considered the most common conditions encountered in the majority of 
rotating machinery faults. 
 
Rotor mass imbalance may be caused by dirt accumulation, loss of rotating parts, or possibly a loss of 
balance weights.  Coupling misalignment can be due to coupling wear, temperature growth of the driver 
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or driven component; and an improper alignment during installation.  Bearing defects or degradation may 
be due to manufacturing flaws, improper mounting, excessive loads or inadequate lubrication. 
 
A.6.1.2 Electrical Faults 

 
In addition to mechanical faults, motors can also show indications of electromechanical abnormalities.  
Although electrical faults are diagnosed less often than their mechanical counterparts, they do exist.  The 
difficulty is in determining that the fault is electrical in nature instead of mechanical. 
 
A.6.1.3 Additional causes of failures are: 

 
Ambient Temperature: Motor components such as stator windings, armature windings, field windings, 
bearings and lubricants have maximum temperature limitations.  If these limitations are exceeded, the 
useful life of these components may be shortened.  High ambient temperature, when added to the rated 
temperature rise of the component, can cause the temperature limit to be exceeded leading to motor 
failure. 
 
Moisture: Excessive moisture causes failures in motor winding insulation and in motor leads.  It can also 
cause loss of lubrication capability in bearing oil systems and deterioration of both electrical and 
mechanical motor parts. 
 
Corrosion: Corrosion can cause serious damage to motor parts.  Conduit boxes, motor feet, bearing fits, 
air deflectors, screens, and assembly bolts can be destroyed.  Oil cooling coils can develop pitting and 
holes from corrosion. 
 
Motor Starts: Large squirrel cage induction and synchronous motors have limited capability for repetitive 
starts defined by the motor manufacturer.  Exceeding these repetitive starting limitations can lead to 
failure of rotor bars, rotor short circuiting ring, or stator winding. 
 
Lubrication: Both oil-based and greased-based systems degrade due to contamination or lack of adequate 
lubrication. Dirt in lubrication systems will lead to eventual bearing failure. Oil analysis is one of the 
predictive maintenance technologies used widely in the industry to assess the condition of lubricating oils 
through trending of their physical properties in addition to providing diagnostic data for bearing health 
monitoring. 
 
Misapplication: Excessive loading results in high temperature and deterioration of electrical insulation.  
Bearings and shaft materials are carefully selected for the loading demands of the shaft system (i.e. side 
loaded VS direct coupled). 
 
Repair/Design Related: Motor failures can result from improper repair/design procedures and techniques.  
Defects can result from, but are not limited to, poor rewind techniques, stator core damage from burn-out 
oven procedures, improper installation of new bearings, damage from dropping major components, and 
inadequate efforts to exclude foreign material. 
 
Shaft Currents: Large motors have one or two insulated bearings to prevent the flow of current from 
motor frame to motor shaft through the bearing. If allowed to flow, these currents can damage the 
bearings.  The integrity of the insulation can be assessed by a check of the resistance path between the oil 
reservoir and the bearing housing 
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Ventilation: Motor cooling can be adversely affected by foreign material in the ventilation path including 
oil, dirt, paper, and rags.  Also, structural columns, pipes, building walls, and low ceilings can restrict 
airflow to or from motors. 
 
Contaminants: Oil and dirt have a detrimental effect on insulated stator and rotor windings.  Oil tends to 
dissolve insulation systems and makes them more susceptible to the deteriorating effects of moisture.  Oil 
attracts dirt, which reduces heat transfer from the winding surface and plugs ventilating passages causing 
overheating.  
 

A.6.2 Vibration Measurements 

Vibrations can be measured by attaching displacement, velocity, or acceleration transducers to different 
parts of the machine in different orientations (see Figure A.10).  Noise is measured by microphones and 
treated the same way as vibrations, except that noise levels are expressed in decibels (dB) and generally 
referenced to human ear characteristics.  Vibration measurements can be divided into two major types: 
 

• Direct shaft motion by displacement probes which is often accompanied by a tachometer pulse 
attachment (a sensor generates a pulse with every shaft revolution used as a reference for phase 
measurements) 

• Casing vibration by velocity probes or accelerometers 
 

Shaft

Bearing
Casing

Motor
Vertical
Accelerometer

Axial
Accelerometer

 
 

Figure A.10: Vibration Measurements Using Displacement Probes and Accelerometers 
 

A.6.3. Vibration Characteristics of Pump/Motor Systems  

A.6.3.1 Electrically Induced Faults 

 
Frequency domain analysis indicates some electrical faults by peaks at multiples of the line frequency 
(50Hz/60 Hz and 100Hz/120Hz), as summarized in Table A.9.  In certain cases, it is possible to 
differentiate between mechanical and electrical faults by removing power from the motor and allowing a 
coast down.  If the indication is electrical in origin it will usually disappear when power is removed.  If 
the fault is mechanically induced, it will still be evident, although it may diminish in severity as the speed 
decreases. 
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Table A.9: Typical Electrical Fault Diagnoses Chart 
 

Problem Symptom Comments 
Uneven Air Gap 2X Line Frequency Always 120Hz 
Eccentric Rotor 1X Running Speed Beat frequency present 
Broken Rotor Bar  1X Running Speed Beat frequency present 

 
A.6.3.2 Mechanical Imbalance 

 
Imbalance, the most common cause of vibration in rotating machinery, occurs when the actual center of 
the rotating mass is not exactly at its geometric center.  This eccentricity causes a heavy side of the 
rotating component, creating a synchronous rotating force vector.  For linear systems, imbalance produces 
a vibration directly proportional to the imbalance amount, and has a frequency equal to the running speed 
of the machine (Figure A.11). 
Mechanical imbalance in rotating machinery is usually caused by unavoidable errors in design, 
manufacture, assembly, initial balancing, or impeller damage.  Imbalance can lead to excessive vibration, 
bearing wear, and seal leakage.  Impellers should be statically and dynamically balanced so that the 
maximum residual imbalance is less than 1xW/rpm, where W = impeller weight. 
 
An imbalance condition may involve different modes of the rotor bearing system.  For rigid rotor modes, 
the condition may be static, coupled, or dynamic.  Flexible rotors are more complex; imbalance correction 
requires several balancing planes and may require knowledge of the mode shapes involved.  
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Figure A.11: Vibration Spectrum Indicating a Mechanical Imbalance Condition 
 

 
A.6.3.3 Hydraulic Imbalance 

 
Hydraulic imbalance in fluid flow is usually caused by poor suction piping arrangements and design.  
Velocity inhomogeneities can arise from a flow restriction or an elbow too close to the pump suction.  If 
these velocities do not equalize before reaching the impeller, the hydraulic imbalance will impose a high 
radial vibration at the running frequency of the machine.   
A.6.3.4 Misalignment 

 
Misalignment is considered the second most prevalent vibration source.  It is due to non-coincidence of 
rotating axis of coupled components.  Misalignment results in a high axial vibration reading, in addition 
to multiples of running speed, mainly the two-times (2X) component (Figure A.12).  The axial reading 
may be as high as twice the vertical reading.  Misalignment causes pump vibration resulting in seal 
leakage, bearings overheating, and coupling wear.  Soft foot and pipe stresses contribute a great deal to 
misalignment. 
 



 

A- 21 

          
Figure A.12: Vibration Spectrum Indicating a Misalignment 

 
A.6.3.5 Bent Shaft 

 
A bent shaft will appear as an imbalance condition (see Figure A.11), accompanied by high axial 
vibration due to the contortion of the rotor configuration.  A twice-per-revolution harmonic will also 
appear in the spectrum.  Phase readings are usually taken to distinguish between imbalanced and bent 
shaft.  Phase readings at both bearings in the same direction indicate an in-phase relationship, whereas in 
the axial direction they indicate an out-of-phase condition. 
 



 

A- 22 

A.6.3.6 Looseness 

 
Mechanical looseness produces running speed harmonics with generally decreasing magnitudes (Figure 
A.13), depending upon the degree of looseness and the machine design.  Rotating forces occur twice per 
revolution in horizontal machines due to excessive clearances or lack of tightness. The vibration response 
reflects this double impact. A strobe light synchronized to the frequency of the rotating machine is 
typically used to investigate looseness of assembled parts. 
 

 
 

Figure A.13: Vibration Spectrum Indicating Looseness 
 
A.6.3.7 Impeller/Diffuser Interaction 

 
Turbulence occurs when the fluid interacts with the diffuser at less than the rated flow rate.  Inappropriate 
clearances between the impeller and casing are the main cause for sub-synchronous and random 
vibrations.  Further evidence of impeller/diffuser interaction is acoustic resonance in the discharge piping 
caused by pressure pulsations.  The piping resonates at the vane-pass frequency (Figure A.14), regardless 
of the number of fixed vanes. 
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Figure A.14: Vibration Spectrum Indicating a Vane-Pass Excitation (5X) with Sum and 

Difference Frequencies 
 

A.6.3.8 Pump and Motor Bearings 

 
Water or other contamination in the lube oil can cause bearing failures.  Coupling alignment is another 
high contributor to bearing failures.  One cause is thermal expansion of the pump as it heats up during 
operation. This thermal growth must be considered when the pump is aligned cold so that the hot 
condition alignment with the driver is correct.  Most manufacturers will provide the amount of thermal 
growth expected.  However, their calculations include assumptions that may not exist in the power plant.  
For example, some equipment manufacturers provide the amount of thermal growth based on the 
assumption that the pedestal reaches full operating temperature of the fluid.  However, in the plant the 
pedestal may never reach this temperature since it is not insulated.  In this example, the thermal growth 
provided would be more than the pump exhibits in the plant and the pump would be misaligned in its 
operating condition.  The thermal growth should be measured in the power plant to verify the 
manufacturer recommendations.   
 
High suction pressures in pumps can cause unusual axial thrust loads on a thrust bearing that may cause 
the bearing to fail.  Also, some pumps have balancing lines installed to reduce the axial loads and the size 
of the thrust bearing.  If this line becomes blocked, the thrust loads would be increased and the bearing 
may fail.  Also, for the same reason, valves are never installed in a balancing line. 
In anti-friction bearings, structural deformation due to metal-to-metal contact of the balls or rollers and/or 
races produces a high frequency, low amplitude vibration (Figure A.15).   
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The useful life of a rolling element bearing depends on two basic sets of variables:  

• The application set of variables, such as load, speed, temperature, mounting, lubrication, etc. 

• The configuration of the bearing itself, including the design, material and method of fabrication 
 
Literature has shown that it is possible for a superior quality bearing to fail to achieve rated life 
predictions.  Many such bearing failures are caused by improper mounting and lubrication, as well as 
contamination, high temperature and load.  Manufacturing defects also play an important role in bearing 
failures.  As many as 10 % of new bearings are reported to have manufacturing defects.  Bad storage 
practices may also reduce the life of a bearing. 
 
Typical defects include those found in the inner or outer race, the balls or rollers, and the retainers 
(sometimes referred to as ball separators or cages).  Other failure causes include improper internal 
clearances and the imposition of either thrust or radial loads.   
 
Most anti-friction bearing failures have characteristic frequencies that are readily discernible from the 
fundamental running frequency of the rotating equipment. 
 
Anti-friction Bearing Frequencies 
 
The predominant frequencies generated by anti-friction type bearings can be classified as: 

• Ball Pass Frequency of the Outer race (BPFO) – This frequency is associated to localized defects 
occurring on the outer race  

• Ball Pass Frequency of the Inner race (BPFI) – This frequency is associated to localized defects 
occurring on the inner race 

• Ball Spin Frequency  (BSF) – This frequency is associated to defects occurring on the ball or 
roller 

• Fault on the Train Frequency (FTF) – This frequency occurs when there are faults on the cage of 
the bearing (Train of Rolling Elements) 

 
Race Frequencies (BPFO and BPFI) are produced as the balls or rollers pass over a defect in the raceway.  
As a ball or roller strikes the raceway, it produces a particular response at BSF.  The defect can impact 
both races during each revolution; thus, the response can be two times the operating speed.  Rotation of 
the cage and ball or roller assembly or train produces FTF.  Also, when particular faults occur, harmonics 
are generated with unique characteristic frequencies. 
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Figure A.15: Vibration Spectrum Showing a Bearing Fault (BSF) 

 
Spectrum Analysis of Rolling Element Bearings 
Formulas have been developed to calculate bearing characteristic frequencies associated with a ball or 
roller bearing given the following: 
 

• Rotating speed 

• Number of balls or rollers 

• Diameter of ball or roller 

• Pitch diameter 

• Contact angle  
 
In general, there is no set rule to determine when a critical condition has been reached.  However, 
experience has shown that trends in the spectrum, such as the following, may indicate a developing 
bearing fault: 
 

• Shifting from single peaks to a broad spectrum with the running speed superimposed  

• An increase in amplitude  

• The presence of any bearing frequency related peaks  

• The appearance of single peaks at characteristic frequencies that were not present during start-
up  
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• A combination frequency caused by the sum and/or difference of several characteristic 
frequencies 

 

A.6.3.9 Foundation/Structural Problems  

Foundation failure can cause erratic changes in vibration amplitude and phase, especially during transient 
regime operations of high-speed rotating machinery.  Bases, bedplates or baseplates, machine feet, and 
mounting bolts are often overlooked as potential sources of vibration problems. 
 
Soft foot is a term loosely applied to several mounting related faulty conditions.  Soft foot can include 
structural looseness, deformation of the machine feet due to static or dynamic loading, weakness of the 
baseplate, and a degraded foundation.  Soft foot is a structural problem, although it is frequently 
considered an alignment-related problem. 
 
Attached structural components such as piping, seismic restraints and hangers might be poorly installed or 
adjusted, resulting in unwanted loads on the pump casing causing excessive vibration. 
 
A.6.3.10 Resonance 

Resonance occurs when a forcing frequency falls within the range of the natural frequency of the excited 
system (Figure A.16).  Resonance conditions can amplify the vibration to dangerous levels, depending 
largely on the amount of damping present in the excited mode of vibration.   
 

 
Figure A.16: Vibration Spectrum Indicating a Resonance Condition Excited by Fan 9X Blade 

Pass In the Presence of Misalignment 
 
Rotating machinery critical speeds present a special case of resonance conditions during run-up or coast-
down operations.  They involve the synchronizing the rotating frequency with the rotor natural frequency.  
 

A.6.4. Diagnostic Aids  

Years of diagnostic experience with vibration analysis has been captured and documented in table -like 
vibration diagnostic charts to aid professionals in their day-to-day vibration diagnostic work. Table A.10 
is a typical example. 
 

Table A.10: Diagnostic Table Using Vibration Analysis 
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Cause Frequency Amplitude  Phase  Notes 

Imbalance 1 x RPM Proportional to 
imbalance Radial 
- steady 

1 Reference 
mark - steady 

Most common cause of vibration, no phase 
change 

Eccentricity 1 x RPM Varies 0 or 180o 
between 
Horizontal 
and Vertical 

Balancing may reduce vibration in one 
direction but increase it in the other 

Bent shaft (1 to 2) x 
RPM 

Axial - high 180o out of 
phase axially 

Same radial phase on both bearings  Orbit 
and phase are good parameters to monitor 

Thermal 
bow  

1 x RPM Varies 1 Reference 
mark - steady 

Increasing vibration during load variations 
and startup from a cold condition 

Misalign-
ment 

(1, 2, 3, …) x 
RPM  

Axial – high  1, 2 or 3 
reference 
marks 

Axial amplitude may be twice the vertical or 
horizontal.   

Looseness (1, 1.5, 2, 2.5,  
3, …) x RPM 

Proportional to 
load 

2 reference 
marks, 
slightly 
erratic 

Frequently coupled with misalignment   
Strobe may help.  Amplitude depends on 
load 

Soft foot 1 to 2 x RPM Proportional to 
load 

 Check mountings for variations in amplitude 

Electrical 1 x RPM or 1 
to 2 x line 
frequency 

Large Erratic When power is turned off vibrations 
disappears instantly 

Sleeve 
bearings 
wear and 
clearance 

(1, 2, 3, 4, …) 
x RPM 

May be higher in 
Vertical than 
Horizontal 

Erratic Compare shaft to bearing displacement 
readings.  Oil analysis best monitor for wear 

Oil whip .5 x RPM Radial – 
unsteady, 
excessive 

Erratic Frequency is near one-half running speed 
(machine speed is nearly 2x critical speed) 
Oil temperature is a good indicator 

Oil whirl (.42 to .48) x 
RPM 

Radial – 
unsteady, 
sometimes 
severe 

Erratic Caused by unloading of bearing.  Tangential 
destabilizing force due to lube film in the 
direction of rotation adds energy to vibration 
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Table A.10: (Continued) Diagnostic Table Using Vibration Analysis 
 

Anti-friction 
bearings 

BPFI, BPFO, 
BSF, FTF 
and 
Harmonics 

Radial - low Erratic Use velocity, acceleration or spike energy 

Rubbing (0-0.5)x, 1x, 
and higher 
harmonics 

Erratic Erratic Similar to impact, may excite many system 
frequencies 

Gears GMF=Z x 
RPM 

Radial - low Erratic Use velocity or acceleration.  Tooth wear is 
better indicated by side-bands around GMF 
and excitation of tooth natural frequency.  
Higher tooth load will increase amplitude at 
GMF.  Backlash is characterized by 
decreasing amplitude at GM F when load is 
increased.  Gear misalignment shows with 
higher 2x and 3x GMF.  A cracked or broken 
tooth is best seen on the time signal.  A 
hunting tooth problem shows at very low 
frequencies 

Foundation  Unsteady Erratic Unstable 
reference 

Strobe may help 

Resonance System 
specific 

High Erratic Increased levels at resonant frequency.  
Often appears on old machines pedestals 

Cracks 1x, 2x RPM,  Variable during 
transients.  Drop 
in higher 
harmonics 

Phase shift  Increased levels at resonant frequency 
Phase is a good indicator.  2x RPM 
excitation of critical speed during coast 
down. 

Hydraulic 
Forces 

Vane Pass =  
Z x RPM and 
harmonics 
 

High radial and 
axial 

NA Use velocity or acceleration.  Due to uneven 
internal gap between rotating vanes and 
diffuser.  May excite natural frequencies.  
Flow obstructions are common causes. 

Cavitation Random high 
frequency + 
Vane Pass 
 

High radial and 
axial 

NA Due mainly to insufficient suction pressure 
and the presence of vapor and air in the 
liquid.  

 
A.6.4 Acceptance Criteria 

Acceptance criteria are necessary to translate a measurement into a mechanical condition.  There are two 
types of guidelines: 
 

• Physical constraints, such as clearances supplied by the original equipment manufacturer (OEM) 

• Established limits, determined from experience and dependent on the type of machine, measurement 
location, etc. 

 
Standards for vibration limits are published by industry groups, and by national and international 
standards organizations including: 
 
• the American Petroleum Institute (API),  
• the American Gear Manufacturer Association (AGMA),  
• the National Electrical Manufacturers Association (NEMA), the American National Standards 

Institute (ANSI), 
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• and the International Standards Organization (ISO) 
 
The rotating equipment OEM and vibration instrumentation vendors are good sources of vibration limits. 

 
A.6.4.1 OEM Limits 

 
Radial and axial clearances between rotating and stationary surfaces are important physical parameters.  
They are usually expressed as “maximum allowable,” and should not be exceeded.  Other types of OEM 
criteria may include limits on pressure, balance piston differential pressure, speed, temperature, etc. 
 
A.6.4.2 Published Severity Criteria 

 
Vibration limits are also established per the following: 
 
• Independent testing organizations 

• Severity charts from PdMA vendors 

• Inspection results 

• OEM recommendations 
 
A.6.4.3 Casing Vibration 

 
Limits for casing vibration for typical machines are based on measurements made under similar operating 
conditions (measurement type, location, etc.) in a controlled environment.  ISO standards 2372 and 3945 
are widely used. 
 

• ISO 2372 is a general standard and is used primarily for shop acceptance testing. 

• ISO 3945 is a more specific standard and is designed for evaluating the vibration of larger machinery 
in the field 

 
Both standards contain criteria for judging machine condition from casing velocity measured at specific 
bearing locations.  These standards apply to machines operating at 10 to 200 Hz (600 to 12,000 rpm).  
Both standards require a true root mean square (RMS) amplitude measurement, make a distinction 
between flexibly supported and rigidly supported machines, and recognize that a support system may be 
rigid in one direction and flexible in the other.  Both standards are now withdrawn and replaced by a more 
current standard (ISO 10816). 
 
There is generally good agreement on the various limits among experts.  In general, a level below 0.1 
in/sec peak is considered acceptable, and a level above 0.6 in/sec peak is considered unacceptable.  The 
advantage of velocity measurements, which are limited to casings, is that frequency is included in the 
measurement. 
 
Acceleration measurements are not generally used for trending, but rather for diagnostic work. Acceleration signals 

accentuate the low amplitude, high frequency signals for diagnostics. 
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To monitor conditions for operating gears, the AGMA specification recommends a conservative guideline limit of a 

constant 10 Gs of casing acceleration above 600 Hz. 

 

Table A.11 summarizes the recommended limits for overall unfiltered casing velocities. Table A.12 gives 
the vibration severity per ISO criteria. 
 

Table A.11: Recommended Limits for Overall Casing Velocity 
 

Peak Velocity Classification 

Less than 0.15 ips (3.8 mm/sec) Acceptable  

0.15 to 0.25 ips (3.8 – 6.3 mm/sec) Tolerable  

0.25 to 0.4 ips (6.3 – 10 mm/sec) May be tolerable for moderate periods of time 
Monitor closely to warn of changes 

0.4 to 0.6 ips (10 – 15 mm/sec) Impending failure; watch closely for changes and 
be prepared to shut down for repairs 

Above 0.6 ips (15 mm/sec) Danger of immediate failure 
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Table A.12: Vibration Severity Criteria per ISO 2372 and 3945 
 

Ranges of Radial Vibration 
Severity 

Quality Judgment for Separate Classes of Machines 

RMS Velocity measured 
in the 10-1000 Hz frequency band 

mm/sec in/sec 
Class I Class II Class III Class IV 

0.71 0.028 A 

1.12 0.044 

A 

1.8 0.071 

B 

A 

2.8 0.11 

B 

A 

4.5 0.18 

C B 

7.1 0.28 

C B 

11.2 0.44 

C 

18 0.71 

C 

45 1.8 

D 
D 

D 
D 

 
MACHINE CLASSES 

 
CLASS I    Small Machines to 20 HP 
CLASS II   Medium Machines 20 to 100 HP 
CLASS III  Large Machines 10-200 rev/sec, 400 HP and Larger Mounted on Rigid 
Supports 
CLASS IV  Large Machines 10-200 rev/sec, 400 HP and Larger Mounted on Flexible 
Supports 
 

ACCEPTANCE CLASSES 
 
A = GOOD     B = SATISFACTORY    C = UNSATISFACTORY   D = 
UNACCEPTABLE 

 
A.6.5 Accelerated Test Plan 

The accelerated testing will involve creating mechanical conditions of imbalance and misalignment that 
would lead to unacceptable vibration levels based on above criteria tables. 
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Initially (Test #1), the machine will be aligned to acceptable levels then balanced to (CLASS I per Table 
A.12).  The second step will be to determine the amount of imbalance in oz-in necessary to bring the 
machine to a degraded level based on bearing casing vibration (Test #10).  Test # 2 to Test # 9 will be an 
approximate succession of trends from motor good operating condition to motor degraded condition 
based on bearing vibration.  An imbalance condition will be created by adding calculated weights at a 
specific machine location. Resulting vibration levels will be monitored.  Imbalance weights will be 
interpolations based on the force-response linear relationship.  Angular misalignment is easier to control 
than parallel misalignment and will be implemented during these tests. An acceptable shaft alignment for 
the system will be determined (Test #1).  Then, an unacceptable misalignment (maximum degraded 
condition) for the pump/motor will be determined (Test #10). The shaft angle (offset) will be incremented 
from alignment condition (Test  #1) to misalignment condition (Test # 10), to produce eight more tests  
(from #2 to #9).  Overall vibration levels and non-synchronous harmonic components of the vibration 
signal will be monitored for alignment condition. 
 
The following table summarizes the various tests that would be conducted along with the necessary 
vibration monitoring data (Trend Plots and Spectra). 
 

Table A.13: Test Plan 
 

Test # 1 2 3 4 5 6 7 8 9 10 
 

Imbalance (oz-in) 0.0          

Vibration (in/sec)           

Acceptance Class A         D 

Emax File (CD) 001 002 003 004 005 006 007 008 009 010 

 

Misalignment (deg) 0.0          

Vibration (in/sec)           

Acceptance Class A         D 

Vibration Spectra #           

Emax File (CD) 101 102 103 104 105 106 107 108 109 110 
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A.7 Detailed Specifications of the Data Acquisition Equipment  
 
Emax is a dynamic tester (see Figure A.17) that utilizes state of the art technology to collect data while the motor is 

operating. This information can be used to evaluate incoming power quality and motor efficiency, as well as rotor, 

stator, air gap and power circuit conditions. The data can be analyzed immediately or recalled later for trend 

analysis. 

 

Static testing can also be done with Emax providing a detailed analysis of motor and circuit condition.  
This feature allows diagnostic and evaluation of all five of the motor's fault zones including the power 
circuit, insulation, stator, rotor and air gap.  Emax allows testing of all major types of motors: induction, 
synchronous, wound rotor, DC, servo and spindle.  
 

 

 
Figure A.17: Motor Testing Instrument – Emax (Courtesy PdMA) 

 
The Emax system is portable (13” x 18” x 3.5” in size), lightweight (17 lbs.), and operates in typical plant 
conditions (5 - 35 °C at 20 - 80% humidity). The Emax system simultaneously collects all three phases of 
current and voltage to provide spectral and digital data in the areas of: 
 

• Power  
• Motor Current Signature Analysis  
• Efficiency  
• Crest factor  
• Total Harmonic Distortion (THD)  
• Sequence Data  
• Power Factor  
• Impedance  
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• Current  
• Voltage  

A.8 Test Data for Subsequent Analysis by ORNL 

 
The specific data that will be acquired during these tests involves six channels of data:  three voltages and 
three currents from each from each of the three phases for the pump motor, as shown in the Figure A.18. 
 

 
 

Figure A.18: Motor Signatures (Courtesy PdMA) 
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The Emax system is battery powered and uses a PCMIA card to measure and acquire data the three-phase 
voltages and currents, as shown summarized below. 

 

Probe   Current Range Accuracy  Resolution 

PR-430  0-40 amps  +/- 1%   +/-10mA 
   0-400amps  +/- 1%   +/-100mA 
PR- 1030  0-100 amps  +/- 1%   +/- 100mA 
   0-1000 amps  +/- 1%   +/- 100mA 
PR – 3000  0-300 amps  +/- 1%(range)  +/- 0.3mA 
   0-3000 amps  +/- 1%(range)  +/- 30mA 

 
Location  Voltage Range Accuracy 

Direct Line  0-600v   +/- .6% 
Secondary  No Limit  +/- .6% + PT error 

 
Test   Sampling Rate Max Frequency Resolution 
High Resolution 480 / sec  0-240 Hz  8000 lines 
Low Resolution 960 / sec  0-480 Hz  8000 lines 
Eccentricity  12,288 / sec  0-6000 Hz  8000 lines 

 
PdMA Corp. (5909-C Hampton Oaks Parkway, Tampa, FL 33610 www.pdma.com) provided 
DE&S with a modified software package for the Emax system to do these experiments. This 
modified system can measure and acquire six simultaneous channels at 12,288 Hz per channel 
over at total time of 85.3 seconds for a total of 1048576 samples for each channel. The test 
capabilities under the Advanced Insulation System include AC standard, DC standard, rotor 
influence check, polarization index, dielectric absorption ratio, step voltage tests. Acquisition 
capabilities are summarized in the Table below. 
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RANGE RESOLUTION ACCURAC

Y 
RANGE RESOLUTION ACCURAC

Y 
CAPACITANCE GROUND RESISTANCE (Standard Test) 

1000 - 999,750 250 pF +/- 1% 0 - 100 Mohm .1 Mohm +/- 1% 
   100 - 500 Mohm  +/- 2.5% 
   500 - 1000 Mohm  +/- 5% 
   1000 - 2000 Mohm  +/- 5% 

DC RESISTANCE INDUCTANCE (300 Hz) 
0 - .018 Ohm .00001 Ohm +/- 1% 100 - 250 mH .1 mH +/- 1% 

.018 - 1.8 Ohm .0005 Ohm  250 - 500 mH .5 mH  
1.8 - 50 Ohm .005 Ohm  500 - 1000 mH 1 mH  

50 - 1000 Ohm .01 Ohm  1000 - 1500 mH 2.5 mH +/- 2% 
1000 - 2000 Ohm .1 Ohm  1500 - 2500 mH 5 mH  

   2500 - 3500 mH 10 mH +/- 5% 
   3500 - 5000 mH 25 mH  

GROUND RESISTANCE (All Tests)** INDUCTANCE (1200 Hz) 
40K - 200 Gohm 5% of range +/- 1% 0-10 mH .005 mH +/- 1% 

   10 - 50 mH .01 mH  
   50 - 100 mH .05 mH  
   100 - 250 mH .1 mH  

GROUND RESISTANCE (PI/DA Testing)    
0 - 100 Mohm .1 Mohm +/- 5%    

100 - 500 Mohm 1 Mohm +/- 5%    
500 - 1000 Mohm 10 Mohm +/- 10%    

1000 - 2000 Mohm 100 Mohm +/- 10%    
2000 - 3500 Mohm 100 Mohm +/- 20%    
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