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ABSTRACT

This annua report describes the first year’'s accomplishments under the NERI2000-109 project. We
present a model-independent approach to quantify changes in the nonlinear dynamics underlying time-
serial data From time-windowed data sets, we construct discrete distribution functions on the phase
gpace. Condition change between base case and test case distribution functions is assessed by
dissmilarity measures via L,-distance and ¢ statistic. The discriminating power of these measuresis first
tested on noiseless model data, and then applied for detecting dynamical change in power from a motor-
pump system. We compare the phase-space dissmilarities with traditiona linear and nonlinear measures
used in the analysis of chaotic systems. We also assess the potential usefulness of the new measures for
robust, accurate, and timely forewarning of equipment failure.
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1. INTRODUCTION

This NERI Project began in August 2000. The project has three tasks. The first (current) project year
involves only Task 1, namely development of nonlinear prognostication for failures in critica equipment
at nuclear power facilities. Examples of such equipment include blowers, compressors, fans, vacuum
pumps, cooling units, generators, invertors, motor generators, governors, couplings, gearboxes, motors
(electric, hydraulic, pneumatic), pumps, valve operators, and turbines. This annua report describes the
work status for the first year of the project, spanning August 2000 through August 2001. Tasks 2-3 span
the second (FY 2002) and third (FY 2003) project years, and will not be discussed in this annua report.
Section 2 describes the status of the tasks, issues/concerns for each task, cost performance, and status
summary of tasks. Section 3 discusses the detailed technical aspects of the work, including the technical
background, traditional linear and nonlinear analysis, phase-space dissmilarity anadyss, validation d the
dissmilarity measures for model data, and analysis of equipment data. Section 4 presents the conclusions
of this year’s work and summarizes the expectations for the second year’s work.

2. PROJECT NARRATIVE

This narrative begins by explaining the project subtasks from the NERI2000-109 proposa for the firgt
project year. These subtasks are listed in the same order as in the proposal, for easy reference.

Task 1.1 of our proposd is as follows. A database of diagnostic data sets will be assembled from
historical or newly acquired data. Wewill first locate occurrences of the most significant failures, and
then assembl e the associated diagnostic data. This data will begin with the failure occurrence, and
extend backward in timeto the baselineperiod. The data setswill then be analyzed via linear measures
for obvious trends.

Under Task 1.1, time and funding congraints for the first project year did not alow long-term failure
monitoring of nuclear power plant equipment. Instead, we acquired new data via accelerated failure tests
by seeding specific faults in test equipment. In consultation with the Oak Ridge Nationa Laboratory
(ORNL), DE& S constructed a test plan, which includes a summary of important-to-safety equipment in
nuclear power pants; the choice of two test modes (unbalance and misaignment); the DE& S testing
facility; detailed specifications of the equipment to be tested; the test protocol; and specifications of the
data acquisition equipment. Appendix A contains the full test plan, which was completed in the third
project quarter. DE& S provided sample test datato ORNL for preliminary analysis. ORNL analyzed this
data and found a rich set of nonlinear features. The sampling rate was adequate (12.5 KHz), but the
number of data points was too small (16,384 points). ORNL needed voltages and currents from all three
phases of the three-phase eectric motor, for conversion to instantaneous power. ORNL aso needed
longer datasets. These requirements necessitated an upgrade to the data acquisition system (Emax by
PdMA Corporation), causing some delay while PAMA modified their software. DE&S subsequently
received the upgrades and provided the test data for the two test sequences. Tota payments to DE&S
were $49,906.40 under the subcontract (versus an allocated cost of $50K), as follows: $5,536.00 on
December 7, 2000, for priminary test data; $6,529.20 on January 4, 2001, for testing options;
$11,139.28 on February 12, 2001, for the test plan; $14,436.32 on March 16, 2001, for equipment
specifications; $12,265.60 on June 6, 2001, for test data.

Task 1.2 of our proposa is as follow. The diagnostic data from Task 1.1 will be analyzed for the
adequacy of data quality for subsequent nonlinear analysis. ORNL experienceindicates thatinadequate
data quality producesinferior or unusableresults. Thisanalysiswill evaluate the data-sampling rate,



digitization precision, number of points per dataset, frequency response of the sensors, and related
elements. Adequate quality data typically has? 20,000 data points, sampled at 2 10timesthefundamental
rotational frequency over 31 second at 36 bits of digitization precision. If the existing historical

diagnostic datais determined to be of insufficient quality, changesin the data acquistion methodswill be
instituted to produce data that is capabl e of being analyzed by the nonlinear methods. Thistaskwill be
performed by ORNL.

Under Task 1.2, ORNL performed quality checks of the test data. The table below summarizes the data
qudity checks that we performed. ORNL identified three misaignment datasets with ranges of
instantaneous power that far exceeded the others. DE& S confirmed these findings, and determined that
the problem was due to a memory limitation in the Emax system for more than two sequential datasets.
DE& S corrected the problem by rebooting the Emax system. DE& S provided replacement datasets of
adequate data quality to ORNL.

Brief description of the data quality check for each dataset  For good quality data, result should be

= proper number of data points 500,000
» any intervag(s) with unchanged signa amplitude no

=  adequate sampling rate no

=  excessve periodic content no

" excessive noise no

= sguration at high/low limits (indicator of improper amplification) no

= consstent signal amplitude across multiple datasets in the test yes

Task 1.3 of the proposal isasfollows. Each set of adequate-quality diagnostic datafrom Task 1.2 will be
analyzed with the nonlinear paradigmto deter mine the presence of a statistically significant condition
changeindication. Thisanalysiswill also determine the characteristics of the PS-DF associated with
each specific failure type. Thistask will be performed by ORNL.

Task 1.4 of the proposal isasfollows. Alibrary of PS-DF typesand their correlated failure typeswill be
devel oped for subsequent correlation to unknown failures by means of the nonlinear characteristics. This
task will be performed by ORNL.

Task 1.5 of the proposdl is asfollows. The extent of PS-DF changes, via the measures of dissimilarity,
will be associated with the time remaining until observed failure for the observed failure events. This
correlation will be used subsequently to indicate the assessment of remaining condition of the equi pment.
This task will be performed by ORNL.

ORNL used a research-class FORTRAN code that performs Tasks 1.3-1.5 as an integrated sequence of
agorithmic operations on both the misalignment data and the imbalance data from DE&S. The analysis
converts time-serial, process-indicative data into a discretized phase-space (PS) representation. The
resulting distribution function (DF) captures the location and occurrence frequency for the nonlinear
process dynamics. Dissimilarity measures indicate departure of the test case DF from the baseline DF as
an underlying system parameter changes. Forewarning of failure corresponds to a statistically significant
rise in dissmilarity, as to the desired outcome of Task 1.3. The library under Task 1.4 is formed by the
sequence of PS-DFs for the misalignment and unbalance tests. Correlation of the dissmilarity measures
with the failures was performed by reference to the 1SO standards 2372 and 3945, as the desired outcome
for Task 1.5. Sections 3.2 and 3.4 of this report describe this analysisin detall.

Task 1.6 of the proposa follows. This task will involve the robust implementation of the nonlinear
analysisalgorithmsfor near-real-time analysis of equipment data. Specifically, ORNL will imnplementthe
nonlinear paradigm on a desktop computer, which will be placed at an appropriate DE& Ssitefor use by



the reactor operatorsthere. This mode of on-site data acquisition and diagnosiswill be similar to the
mode of oper ation for equipment prognostication at an advanced nuclear reactor. Thistaskwill focuson
algorithm changes that minimize the memory requirements and maximize computational speed.

ORNL procured and set up a Win2000 1.3GHz Athlon PC with 1.5GB of memory and two 81 GB hard
drives. The PC aso has Ethernet capability, keyboard, mouse, video board, read-only CD-ROM, and
data archiva capability (100MB Zip drive and re-writable CD-ROM). An existing 15" monitor &t ORNL
was used to display the results. A new Compaq FORTRAN compiler was procured for this computer.
Procurement costs totaled $3,026. Sample analyses for Sec. 3.6 from an existing 500 MHz Pentium ||
computer were reproduced exactly on the new machine, demonstrating the robustness of the FORTRAN
agorithm in moving across processors (Pentium 11 to Athlon) and different operating systems (WinNT to
Win2000). The new PC is 2.42 times faster than the older machine, consistent with the proportionately
faster processor speed (1.3GHz/500MHz = 2.6). The new PC has not been transferred to DE& S because
on-site data acquisition of operationa data is not anticipated for the second project year. This new
computer will significantly enhance ORNL’s analysis capability for this project.

2.1 ISSUES AND CONCERNS

Analyss of preiminary test data identified a need for longer datasets and more data channels, as
explained in the narrative for Task 1.1. ORNL requested that DE& S obtain an upgrade the Emax
software from PdMA Corporation to meet these requirements, causing a delay in the test plan and
diagnostic data acquisition, as described above. Project spending has not risen linearly, aso due to this
delay in data acquisition. Consequently, we anticipate that $30—40K of FY 2001 funds will not be spent
in the first project year. We have requested that Phil Wong (Oakland Operations Office) authorize carry-
over of these funds into FY 2002. We expect to use this carry-over funding for more detailed nonlinear
analysis of the test data.

2.2 COST PERFORMANCE

We received $157,000 for the first project year on August 18, 2000. Total costs through the fourth fiscal
quarter of the first project year (August 2000 through August 2001) are $97,725. We anticipate that
spending through the end of FY 2001 will leave $30-40K of carry-over into FY 2002, as shown in the
plot of project costs versus time below. The dashed (- -) curve from months 12—15 shows subsequent
expected costs, versus nomina linear spending versus time in the solid curve (34).
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Planned Actual
Milestone/task description completion | completion

date date

Task 1.1: ORNL set subcontract in place for DE&S 09/00 10/00
DE& S provide preliminary test datato ORNL 09/00 02/01

DE& S construct test plan for accelerated testing 11/00 04/01

DE& S provide datasets to ORNL 01/01 06/01

Task 1.2: ORNL andyze quality of DE& S test data 02/01 06/01
DE& S provide replacement datasets for any found inadequate 02/01 06/01

Task 1.3: ORNL perform condition change analysis on data 08/01 08/01
Task 1.4: ORNL congtruct library of nonlinear condition change signatures 08/01 08/01
Task 1.5: ORNL correlate condition change to approaching failure 08/01 08/01
Task 1.6: ORNL procure new computer 08/01 05/01
ORNL implement nonlinear analysis software on new PC 08/01 06/01




3. TECHNICAL APPROACH AND RESULTS

3.1 BACKGROUND

The Advanced Technology Program (ATP) of the Nationa Institute of Standards and Technology (NIST)
held a workshop on Condition-Based Maintenance (CBM) during its November 17-18, 1998 fdl mesting
in Atlanta, Georgia [NIST, 1998]. Workshop participants identified three technical barriers to
widespread CBM: (i) the inability to predict the remaining useful life of a machine accurately and
religbly; (ii) a lack of continuous machine monitoring; and (iii) the need for decison systems to learn
impending failures, and to recommend what action to take. These barriers could potentialy be addressed
through innovations in three technical areas. (i) prognostication capabilities, (ii) cost effective sensor and
monitoring systems, and (ii) reasoning or expert systems. Decision models should accommodate changes
in misson compliance, operationd environment, economic rules, priority assessments, and functiona
requirements. The need for decision infrastructure is being addressed by a separate NERI project
[Harmon, et al., 2001] that includes DE& S, which is aso collaborating on this NERI project.

This NERI2000-109 project addresses the first need for technical innovation (prognostication) via
nonlinear analysis of equipment operational data. The NIST/ATP workshop [NIST, 1998] identified high
quality diagnostics and sensor information as essentid for prognostication. Indeed, data is needed not
only for prognogtication, but aso for training and validating the decison methodology. Workshop
participants placed a very high priority on quality and completeness of data sets. The barriers to
achieving these goas include: (a) incomplete understanding of the evolution of faults and how they effect
equipment; (b) non-robust state-based modeling techniques to develop understanding of physics of
fallures (reduced order modedling); (c) and lack of predictive methodologies for unsteady signatures that
are indicative of physics-based failure modes; (d) ignorance about controlling parameters, which hampers
development of accurate models;, and (e) unavailability of test facilities, especially replication of the rea
operating environment. Our NERI2000-109 project addresses items (&)-(c) by quantifying the (non-
stationary) condition change in test equipment as a sequence of robust nonlinear statistical signatures for
progression of a (seeded) fault in specific test equipment. This project addresses item (d) by associating
the change in the controlling parameter (seeded fault) with the equipment response. This project
addresses (€) by tests of nuclear-grade equipment at the DE& S facilities, which are very similar to rea
plant conditions. We use hypothesis testing to demonstrate these capabilities, as discussed in detail
below.

We expect that regulatory criteria from the U.S. Nuclear Regulatory Commission (NRC) will continue to
govern operation and safety in next generation Nuclear Power Plant (NPP). The NRC identifies three
strategic areas for the reactor oversight process [NRC, 2000]: reactor safety, radiation safety (including
occupational and public safety) and safeguards (physical protection). Reactor safety relies on mitigating
systems, barrier integrity, and emergency preparedness to respond to initiating events (unplanned reactor
shutdowns, loss of norma reactor cooling after an unplanned shutdown, and unplanned events that result
in significant changes in reactor power). Failure prognogtication is intended primarily to forecast
initiating events in operationa equipment, and secondarily to forewarn of failures in mitigating (safety)
systems.

Plant processes evolve from normal to abnormal conditions with an accompanying display of rich
dynamics, including multiple time scales, quasi-periodicity, nonlinearity, and chaos. Usually, such
systems: have many componentswith hierarchical structure, are driven by various competing forces, and
interact strongly with noisy and/or nonstationary environments. Quantitative analysis of the
corresponding time serial data has been a difficult and frustrating problem for diagnosis of the
degradation, fault, or failure. Key issuesinclude: (i) lack of aproper (physical) model, forcing theandyst



to view signalsas generated by ablack box whoseinternal mechanismiseither poorly understood, or not
understood at all; (ii) non-stationary signals, i.e., with statistical propertiesthat change significantly over
the observation period with changes not known a priori and not explicitly advertised; (iii) nonlinear
structure of various component dynamics and their complex, intricate interconnection, rich in feedbacks
and hysteresis; (iv) rarely functioning at steady state, and more typically occurring far from equilibrium
via continuous feedback-control loop(s) to adjust to changing conditions.

3.2 APPROACH

One of the most important problems encountered in nonlinear time-series analysis is the appropriate
characterization of features and events in nonlinear systems dynamics. Often these features are either
described by several different quantities or do not have a precise definition at all. The former category
includes: (content of) information, (relative) entropy, and synchrony. Examples of the latter group are:
coherence, patterns, or complexity. These features may have various origins, such as nonstationarity,
nonlinearity, nonequilibrium, and intertwining of length- and time-scales. The presence of any one of
these factors frequently introduces eratic fluctuations, patchiness, lack of obvious structure, or other
irregularities. Previoudy, these irregularities have been neglected as noise without much structure and
meaning. Recent advances in nonlinear science have facilitated the interpretation of intermediate and
gndl-scale details as bona fide structure, with significant information about the underlying dynamics.
Anaysis of this structure enables a deeper understanding of basic dynamical features of system, and
results in more efficient assessment, prediction, prevention, control, and repair of their malfunctions.

We address the forewarning problem within a purely pragmatic approach geared at designing, testing, and
implementing such measures. We base this gpproach on a set of nested assumptions that we retain or
discard by: (a) the Occam'’s razor (i.e. start with a smple explanation before resorting to a complicated
one); (b) consideration of falsifiable hypotheses only; and (c) acceptance of operationally realizable tests
only. Inamore or less decreasing order of generality, the assumptions underlying our approach are:

(i) For abroad range of circumstances, the motor-pump system behaves as a finite-dimensiona nonlinear,
possibly chaotic dynamica system. This assumption underlies all efforts of modeling such systems
by a system of coupled nonlinear evolution equations, for which relevant dynamics occur on a
bounded, finite dimensiona region of the phase space (PS), cadled an attractor. Moreover, under
assumption (i), we do not attempt to answer questions about nonstationarity or nonequilibrium.
Indeed, statistical tests for Stationarity produce a binary result, namely, they indicate whether a
change occurred, but provide no information about the extent of departure from one state to another.
Stationarity tests also have limited value for inherently nonstationary processes that undergo changes
in dynamics. For such nonstationary processes, a measure of dissmilarity that quantifies the
‘“‘distance’’ between attractors turns out to be more useful [Schreiber, 1997; Moeckel and Murray,
1997; Schreiber, 1999]. This approach is closdly related to testing hypotheses of chaotic fluctuations
by comparing the “spatial distance” in phase space between observed time sries and theoretical
attractors [Bjernstad and Grenfell, 2001; Cushing et d. 1998]. Such phase-space comparisons aso
provide a robust criterion for estimating model parameters [Bjernstad and Grenfell 2001; Ellner and
Sefu, in press).

(if) Time-serial power data captures the main features of nonlinear equipment dynamics. Recent studies
show that different observables do not capture the same amount and/or quality of information
[Letellier et al., 1998]. Obvioudy, this result has momentous implications for forewarning anaysis.
In the absence of amodel, the “correct” choice among apparently equivalent channels can be assessed
only a posteriori.



(iii) The firgt two assumptions are easy to understand and are well documented in the literature, alowing
the use of nonlinear dynamical methods for time-series analysis. Globa aspects of the equipment
dynamics can be adeptly captured, characterized, and discriminated by nonlinear descriptors such as
Lyapunov exponents, Kolmogorov entropy, corrdation dimension, etc. [Qu et a., 1993].
Straightforward methods exist [Eckmann and Ruelle, 1985; Abarbanel, 1996; Cover et al., 1997] for
discriminating between regular and chaotic motion, or for detecting the transition between these
regimes. However, distinguishing different chaotic regimes can be very difficult, especialy when
data are limited and noisy.

(iv) The PS parameters can be adequately chosen for equipment failure forewarning. In addition to
implicitly relying on the vadidity of (i)-(iii), this asumption constrains the length and qudity of the
data.

(v) No significant correlation exists between the base case and the failure event, and thus no time
relationship between the physical state of the base case and event. This assumption Smply implies
that the characteristic time of the underlying equipment dynamics is much shorter than the time
interval between the “normal” (base case) regime and the onset of the abnormal behavior. We shall
seein Sec. 3.6 the effect of violating this assumption on model data.

(vi) A fixed threshold value for al the data sets is sufficient for robust and reliable forewarning. On the
one hand, the threshold is easy to understand and modify operationdly, but is very difficult to judtify
by generd principles since the very notion of threshold is “in the eye of the beholder”. On the other
hand, the results of the analysis depend heavily on the threshold value. Continuing test input and
adjustment is necessary for successful practical implementation.

(vii) Forewarning of an event is indicated by severa successive occurrences above threshold within the
forewarning window. The same caveats apply to this assumption as in (vi). Here we choose the
number of crossings by striking a balance between timeliness and accuracy of forewarning. Within
the scope of this study, this judiciousness of this balance is evaluated a posteriori.

We systematically tested the vaidity of the assumptions (iv) and (vii), including various checks in the
agorithm development. In particular, we tested these hypotheses one by one, starting with the simplest
ones via appropriate analysis of the data, while keeping the others unchanged. If an assumption was
found to be fase, it was rgected and replaced by a more vaid assumption. A conclusive test of
assumption (iv) requires statistically significant amounts of standard length data of verified quality for all
types of equipment failures. Such atest is beyond the scope of the present project. The results of such an
andysis would alow a test of more “universal” values for the parameters under assumptions (v) through

(vii).

This section is organized as follows. Sections 3.3-3.4 discuss typica traditiona linear and nonlinear
measures for time series analysis. Section 3.5 explains the phase-space analysis, and Sec. 3.6 presents
results of our analysis on model data. Section 3.7 describes the analysis of machine data

3.3LINEAR MEASURES

Analysis of time serial data begins with the collection of a process-indicative scalar signal, x, from a
dynamical system whose dimensionality, structure, parameters, and regime are usually unknown. This
signal is sampled at equal time intervals, t, starting at the initial time, t,, and yields a sequence of N
points, x = X(t, +it). Several linear measures are useful for characterizing the gross features of this data.
Thefirst isthe mean, x , or average over the N data points:



x=4 x 33

i=1
The second is the sample standard deviation (s), which follows from Eq. (3.1):

s7=3 (x- X /(N- 1) 2

i=1

Equation (3.2) is the second moment about the mean, implying that higher moments are available. Thus,
athird linear measure is the third moment about the mean, called skewness, s:

N
s=3 (X -_x)3/ Ns®. (33
i=1
A fourth linear measure is the fourth moment about the mean, called kurtoss, k:

k= (% -X"/Ns*-3 (34)

Qo=

’g

Typical process data have significant values for skewness and kurtosis, but Gaussian random processes
have vaues that are not significantly different from zero [Abramowitz and Stegun, 1965]. A large
positive (negative) value of skewness corresponds to a longer, fatter tail of the data distribution about the
mean to the right (left). Kurtosis measures the amount of flattening (negative k) or excess peakedness
(pogitive k) about the mean. Another measure applies to both linear and nonlinear systems, and involves
counting the number of times (n,) that the signal crosses the mean value. More specifically, one-haf of a
wave period is delimited by two successive mean crossings. For n. >>1, the average number of time steps
per wave cycle (m) as:

m=N/[n_-1/2] =2N/(n,- ) » 2N /n. (3.5)

This last measure indicates the average periodicity in the signal, or the inverse of the average frequency.
Andyss of typica data (below) shows that these measures provide little, if any, discrimination for
detection of condition change. We include these measures for the sake of completeness and to show that
linear measures are inadequate for prognostication.

3.4 TRADITIONAL NONLINEAR MEASURES

Nonlinear analysis uses the same sequence of time seria data (x;) to reconstruct the process dynamics. In
particular, phase-space (PS) reconstruction [Eckmann and Ruelle, 1985] uses d-dimensiona time-delay
vectors, y(i) = [Xi, X« , . - ., Xis@-1y], fOr asystem with d active variables and time lag, | . The choice of
lag and embedding dimension, d, determines how well the PS reconstruction unfolds the underlying
dynamics from a finite amount of noisy data. Takens found that, for a d-dimensond system, 2 + 1
dimensions generaly results in a smooth, nonintersecting reconstruction [Takens, 1981]. Sauer et al.
(1991) showed that, using ideal data (i.e. no noise and infinite precison), the first integer greater than the
corrdation dimension is often sufficient to reconstruct the system dynamics; this result has been
confirmed by computing the embedding dimension via the fase nearest-neighbors method [Abarbanel
and Kennel, 1993; Abarbanedl et al., 1993; Cao 1997]. However, too high an embedding dmension could
result in overfitting for real data with finite length and noise. We further note that different observables



of a system contain unequal amounts of dynamica information [Letellier et al. 1998],implying that PS
reconstruction could be easier from one variable, but more difficult or even next to impossible from
another. As indicated in the discusson of assumptions (i)-(vii), our analysis seeks to balance these
caveats within the constraints imposed by the finite length noisy data.

Various nonlinear measures have been defined to characterize process dynamics using the PS
reconstruction. [Kantz and Schreiber, 1997; Rezek and Roberts, 1998]. We choose three of these
nonlinear measures, against which we compare the dissmilarity indicators. In particular, we use: the first
minimum in the mutua information function as a measure of decorrelation time, the correlaion
dimension as a measure of dynamic complexity, and the Kolmogorov entropy as a measure of
predictability. For the reader’s convenience, we briefly describe these three measures next.

The mutud information function (MIF) is a nonlinear version of the (linear) autocorrelation and cross-
correlation functions and was origindly developed by Shannon and Weaver (1949) with subsequent
application to time series anadyss by Fraser and Swinney (1986). The MIF measures the average
information (in bits) that can be inferred from one measurement about a second measurement and is a
function of the time delay between the measurements. Univariate MIF measures predictability within the
same data stream at different times. Bivariate MIF measures predictability of one data channel, based on
measurements in a second signa at different times. For the present analysis, we use the first minimum in
the univariate MIF, My, to indicate the average time lag that makes x; independent of x;. The MIF, 1(q,r),
and system entropy, H, are defined by

l@n) =1(.a)=H@+H(M)- H(r.aq), 39

H()=- & P(@)lod P(q)] , (37)

H(a.r)=- a P(q.1,)logl P(g,.r))] (38

For awindow of N points, we denote the Q set of data measurements by qi, 0, . . , On, With associated
occurrence probabilities P(q.), P(02), . . . , P(gn). R denotes asecond set of data measurements, ry,r, . .

., 'y, with atime delayrelative to the g; vaues, having associated occurrenceprobabilities P(r,), P(r,), . .
,P(rn). The function P(q;, r;) denotes the joint probability of both states occurring smultaneously. H
and | are expressed in units of bitsif the logarithm is taken in base two.

The maximum-likelihood correlation dimension, D, is[Takens 1984; Schouten et al. 19944]:

1

D= (- 1/M)& In(d, /d, - d, /d,) /(1- dn/dong , @9
|

ij

where M is the number of randomly sampled point pairs, d; is the maximum-norm distance between the
(randomly chosen) i — j point pairs, as defined in Eq. (3.11) below. The distance (scae length) d, is
associatedwith noise as measured from the time serial data. Note that the distances are normalized with
respect to a nominal scale length dy, which is chosen as a balance between sensitivity to local dynamics

(typicdly at d, £[15a) and avoidance of excessive noise (typically atd, [ a). Here, the symbol a denotes the
absolute average deviation as arobust indicator of variability [Schouten et al. 19944 in the data,



a:(llw)éw|>q -A. (310)

where X is the mean of x; over the window of N points. Thedistances d; are defined by

d. = max

- X
1 O£k£m-l)q+k i+k

: (3.12)

where mis the average number of points per cycle, as determined by Eq. (3.5).

The Kolmogorov entropy, K, measures the rate of nformation loss per unit time, or (equivdently) the
degree of predictability. A postive, finite entropy is generally considered a clear demonstration that the
time series and its underlying dynamics are chaotic. A very large entropy indicates a stochastic
(nondeterministic) and therefore totally unpredictable phenomenon. The K-entropy is estimated from the
average divergence time for pairs of initialy close orbits. More precisaly, the entropy is obtained from
the average time for two points on an attractor to go from an initia separation d £ d, to a separation of
more than a specific distance @ > d,). The maximum-likelihood K-entropy is calculated from the
method by Schouten et al. (1994),

K =- f_loy(1- 1/b), (3.12)

M
b=@M)ah, (313)
i=1
with b; as the number of timesteps for two points, initidly within d £ d,, to divergeto d > d,. The
symbol f5 denotes the data-sampling rate.

There are several problems associated with the use of these measures for detection of dynamical change.
The most serious is that these nonlinear measures are expressed as a sum or integral over (aregion of) the
PS, which averages out dl dynamica details into a single number. Two (very) different dynamical
regimes may lead to very close, or even equal measures. The Stuation is even murkier for noisy
dynamics, in which case reliable determination of the nonlinear measures is next to impossible. The
second difficulty arises from the definitions of K-entropy and correlation dimension in the limit of zero
scale kngth. However, dl rea data have noise and even noiseless model data is limited by the finite
precison of computer arithmetic. Thus, we choose a finite scale length that is somewhat larger than the
noise (d, = 2a), at which to report the values of K and D, corresponding to finite-scale dynamic structure.
Consequently, the calculated values of K and D have smaller values than expected for the zero-scale-
length limit d, 00 0) and cannot capture dynamica complexity at length scales smaller than do. A third
difficulty arises from the definition of these nonlinear measures as functionds of the distribution
functions. Some of these functionals do not satisfy all the mathematical properties of a distance. In
particular, for some of them, symmetry and the triangle inequality may be violated [Quin Quiroga et al.,
2000]. Therefore, these measures cannot define a metric in the mathematical sense. They may indicate
change, although only in a sense that has to be made precise for each situation.

In an attempt to improve the discrimination power, Thomasson et al. (2001) has recently proposed the
“recurrence quantification” approach that does not require assumptions about dtationarity, length, or
noise. Their new measure quantifies the recurrence of sets of points of various lengths that “almost repeat
themselves’ during the dynamics. It can be viewed somewhat as a generalization of the Poincaré section
concept and is designed to detect and characterize “real phenomena’ present in the time serial data. Since
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we do not attempt to infer what “rea phenomena’ are, our approach has a much more modest goal,
namely to detect condition change from the time-seria data, independent of specific assumptions about
the underlying dynamics. As we have seen in Sec. 3.2, general assumptions are necessary, but — at this
stage of the development of the field — we fed that they should be retained or diminated on a minimalist
and pragmatic basis aone.

3.5 PHASE-SPACE DISSIMILARITY MEASURES

The traditional nonlinear measures described in the previous section characterize global features of the
dynamics, and can clearly distinguish between regular and chaotic dynamics. However, they do not
reveal slight dissimilarities between dynamical states. The same is true for other dobal indicators, such
as fractal dimension, Lyapunov exponents, etc. This lack of discrimination occurs because such
traditional measures are based on averaged or integrated features of the dynamics over the attractor,
which provide agloba picture of long-term dynamical behavior.

Greater discrimination is possible by more detailed andysis of the reconstructed dynamics. The natura
(or invariant) measure on the attractor provides a more refined representation of the reconstruction,
describing the visitation frequency of the system dynamics over the PS. We obtain a useful discrete
representation of the invariant measure from time serial data as follows. We first represent each signa
value, x;, asasymbolized form, s, that is, one of Sdifferent integers, 0,1, . . . , S-1,

0£5 =INTIS(X - Xin) /(X = Xin)] £ S- 1. (3.14)

Here, the function (INT) converts a decima number to the closest lower integer, and Xq, and X denote
the minimum and maximum vaues of x;, respectively, over the base case (reference data). We previoudy
used [Hively et al., 1999; Gailey et al., 1999; Hively et al., 2000] the minimum and maximum values over
both the base case and test case (data to be tested for departure from the base case). However, in real- or
near-real-time analyses, only kbase case extrema are actually known. We require that S(X; = Xma) = S—1
in order to maintain exactly S digtinct symbols. Consequently, Eq. (3.14) creates symbols that are
uniformly distributed between the minimum and maximum in signa amplitude (uniform symboals).

An dternative is equiprobable symbols. These symbols are formed by ordering the base case time-seria
data from the smallest to largest value. The first N/S of these ordered data values corresponds to the first
symbol (0). Ordered data values (N/S)+1 through 2N/S correspond to the second symbol (1), and so on
up to the last symbol (S-1). Consequently, equiprobable symbols have non-uniform partitions in the
signa amplitude so that each symbol has the same occurrence frequency (N/S) of % values. Much
sructure is inherent in uniform symbols before beginning the PS reconstruction, but no PS structure
arises from equiprobable symbols. Thus, a key advantage of equiprobable symbols is that dynamical
structure arises only from the phase-space reconstruction, as described below. Large negative and large
positive values of x have little affect on equiprobable symbolization, but dramaticaly change the
partitions for uniform symbols. Moreover, information theoretic measures of the PSDF (e.g., mutua
information function) are a smooth function of the reconstruction parameters for equiprobable symbols,
but are noisy functions of these same parameters for uniform symbols. We find that equiprobable
symbols provide better discrimination of condition change than uniform symbals.

The phase-space (PS) is partitioned into S* hypercubes or bins by the symbolization process. We then
count the number of PS points occurring in each bin to obtain the distribution function (DF) as a
discretized dendity on the attractor. We denote the population of the ith bin of the digtribution function,
Q, for the base case, and R for atest case, respectively. For infinitely precise data, this representation
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has been used in Grebogi et al. (1988). The choice of parameters (S, N, and d) depends not only on the
system, but also on the specific data under consideration. In the preliminary phase of the andysis, we
systematically varied each parameter with the others fixed, to obtain optimum sengitivity of the measures
to changes in system dynamics for each class of data. After achieving optimal sensitivity, the vaues of
the parameters were kept fixed.

We use an embedding window, M; = (d — 1)l , based on the first minimum in the mutua information
function, M; [Fraser and Swinney, 1986]. This choice of time delay provides maximal information for
the reconstruction of the phase space dynamics. Then, we set | = INT[0.5 + Mj/(d — 1)] to obtain an
integer value for the reconstruction lag when M; is not evenly divisble by d — 1. The reconstruction
requires that | d O 2M; + 1 from the above
formula

After recongtruction (unfolding) of the dynamics, the test case is compared to the base case. Diks et al.
(1996) measured differences between delay vector distributions by the square of the distance between two
DFs. Schreiber (1997 and 1999) measured dissimilarity via the Euclidean distance between points of the
atractor. This measure of dissmilarity only accounts for the geometrical shape and location of the
attractor. Manuca and Savit (1996 and 1998) described dissmilarity via ratios of the correlation integral
over the DF. Thisis essentially the correlation dimension discussed in Sec. 3.4. Moreover, these papers
discuss dissmilarity measures from the perspective of nonstationarity, while our focus is on condition
change, as explained in the Introduction. We measure the difference between Q with R by the +*
statisticsand L, distance,

¢*=4(Q- RF/Q+R), (3.15)

L=a Q- R|. (3.16)

where the summations in both equations run over al of the populated PS cells. The choice of these
measures is based on the following considerations. The +2 gatigtic is one of the most powerful, robust,
and widely used statistical tests to measure discrepancies between observed and expected frequencies.
The +* datistic is obviously symmetric, but does not aways satisfy the triangle inequality, so it does not
define a distance in the mathematical sense.  The L, distance is the natural metric for distribution
functions since it is directly related to the total invariant measure on the attractor and does define a bona
fide distance. Therefore, these measures account for changes in the geometry, shape, and visitation
frequency of the attractor and can be viewed as somewhat complementary. Obvioudy, caculation of
these measures in a consistent fashion, requires that the base case and test case contain the same number
of points, identically sampled; otherwise the distribution functions have to be properly rescaled.

We extended the previous analysis in a manner that is naturally compatible with the underlying dynamics.
By connecting successive PS points as prescribed by the dynamics, y(i) ® y(i +1),i=1,2,... we obtained
a discrete representation of the process flow [Abarbanel, 1996]. The 2d-dimensiona vector, Y(i) = [y(i),
y(i + 1)], formed by adjoining two successive vectors from the d-dimensional reconstructed PS, livesin a
2d-dimensiona space, that we cdl the connected phase space (CPS). As before, Q and R denotethe CPS
DFs for the base case and test case, respectively. We define the measures of dissimilarity between these
two CPS DFs, as before, via the L;-distance and +* dtatistic, [Hively et al., 1999, 2000, 2000a;

Protopopescy, et al., 2001 and references therein]



x*=8(Q-R)/(q +R) (3.17)

Lc = a |Qij - F\)j | (3.18)
ij

The subscript ¢ indicates the connected distribution function measure. We note that the vaue | =1
resultsin d — 1 components of y(i + 1) being redundant with those of y(i), but we alow this redundancy to
accommodate other data such as discrete points from two-dimensional maps. The CPS measures have a
higher discriminating power than their non-connected counterparts. Indeed, we can prove that the
measures defined in Egs. (315)—(3.18) satisfy the following inequalities [Hively et 4.,

2000):c*£L,c2£L,,LEL, ,and c® £ c?.Alternaiveformsare: c?£L £L.and c® £¢. £ L.

The c? statistic requires statistical independence between various samples. However, the PS points
depend on one another due to reconstruction from time delay vectors with dynamical structure [Diks et
al., 1996]. The resulting Satistical bias is avoidable by averaging contributions to Egs. (3.15)-(3.18)
over values of y(j) or Y(j) which satisfy | —j| < L [Diks et al., 1996],where L is some largest typical
correlation time lag. We tested the bias in typica data by sampling every L -th connected phase space
point for 4 0 L O 23, resultingin L different samples for the base case (Q;) and for each cutset (R). We
then averaged the sampled ¢ values over the L2 different combinations of distribution functions for the
base case and test case cutsets. As expected, a decrease proportiona to 1/L occurs in the sampled ¢?
values, because the number of data points contributing to ¢ decreases in the same proportion. The trend
over time in sampled ¢ values is the same as in ¢ values without sampling, showing that no bias is
present. Thus, we use unsampled c¢? values for the remainder of this work as a relative measure, rather
than as an unbiased ¢* statistic for accepting or rejecting anull statistical hypothesis[Hively et al., 1999].

Use of the dissmilarity measures on finite length, noisy data requires a consistent Statistica
implementation and interpretation. Moreover, construction of the base case(s) dso requires careful
satistics to eliminate possible outliers and to ensure robust results. We use the first B non-overlapping
cutsets as base cases. However, afew of these base case cutsets may be very different from the typical
regime, causing a severe hias in the detection of condition change. This is especidly true for noisy data.
We gtatistically test the base case cutsets for outliers as follows. Dissimilarity comparisons among the B
base case cutsets yields B(B — 1)/2 unique pairs, from which we obtain an average, V, and sample

standard deviation, s for each of the dissmilarity measures, V=1L, L, ¢ and c>. We caculate a ¢’

satistic, S(V;; - V)*/s, for each of these four dissimilarity measures. The index j is fixed, to test the jth
cutset against the other B — 1 cutsets, thereby giving B - 1 degrees of freedom in the ¢ tatistic. The null
satistical hypothesis alows a random outlier with a probability less than 2/B(B — 1), corresponding to less
than one out of the B(B — 1)/2 unique pairs. In the latter case, we identify an outlier cutset as having the
largest ¢ gtatistic greater than 19.38 over the four dissimilarity measures, which corresponds to a
probability larger than 1/45 for B=10. If this analyss does not identify any outlier, then the previous
values of V are used for subsequent renormalization, as described below. If this analysis identifies an
outlier, we remove it. We then repesat this anaysis for the remaining base case cutsets to identify any
additiona outliers when the largest chi-squared statistic exceeds the below threshold, corresponding to a
random probability of greater than 2/B(B — 1), as interpolated from standard statistical tables for B — 1
degrees of freedom [Abramowitz and Stegun, 1965]. Here, B is the number of non-outlier base case
cutsets.  Thus, rejection of the null hypothesis corresponds to a ¢ statistic greater than 19.38, 17.24,
15.03, 12.74, and 10.33, for B=10, 9, 8, 7, and 6, respectively.

13



This approach dramatically improves the robustness of the condition change detection. If the analysis
identifies five (or more) outliers, we would have to reject all ten base cases as unrepresentative, and
acquire anew set of ten cutsets as base cases. However, the present analysis never finds more than four
outliers. Subsequently, we compare the non-outlier base case cutsets to each non-overlapping test case
cutset, and obtain average values for the dissimilarity measures for each test case.

The choice of B should strike a judicious balance between a reasonably short base case period to capture
guasi-stationary, “norma” dynamics and a sufficiently long period for statistical significance. We have
chosen B = 5 for the noisdless, model generated data for fixed dynamica conditions, where the variability
arises only from the location in and the discrete sampling of the PS. On the other hand, we have chosen B
= 10 for noisy machine data to provide alarger statistical sample.

The disparate range and variability of various nonlinear measures are difficult to interpret (especially for
noisy data), so we need a consistent means of comparison. Thus, we renormalize the nonlinear measures
[Hively et al., 1999 and 2000]. For each nonlinear measure, V = {D, K, My, L, L, ¢%, and ¢}, we define
V; as the vaue of the nonlinear measure for the ith cutset. As before, V is the mean vaue of that
nonlinear measure over the non-outlier base cases, with a corresponding sample standard deviation s, as
described above. No averaging is needed for D, K, and M; since the calculation of these measures
involves only one cutset at the time. The renormalized form isthen U(V) = |V; — VI/s, which measures the
number of standard deviations that the test case deviates from the base case mean. Severa successive
occurrences above threshold provide a clear indication of condition change.

3.6 VALIDATION OF PHASE-SPACE DISSIMILARITY ON MODEL DATA

We show the discriminating power of the nonlinear measures by first testing them as well as some of the
assumptions (i)-(vii) on noisdless mode-generated time seriad data.  We use the well-known Lorenz
model [Lorenz, 1963], a system of three coupled nonlinear differential equations:.

dx dy dz
—=a(y-X), —==rx-y-Xz, —=xy- bz (319
dt =% dt y dt Y

with properties that have been well documented in the literature. We integrated the Lorenz system with
timesteps d t = 0.03 and used the variable y to reconstruct the dynamics. We fixed parametersa and b at
the values 10 and 8/3, respectively. Figure 1 shows the phase-space recongtruction for this model system,
representing where the dynamics does (and does not) spend its time. Figure 1 (left) displays the phase-
space by plotting the sequence of pointsin (X, y, z) coordinates from the integration of Eq. (3.19). Figure
1 (right) illustrates the power of the time-delay reconstruction from the y coordinate only, as very similar
to the phase space from al three coordinates. We used time-delay reconstruction for the dissimilarity
anaysis.

As the variable parameter r increases from zero, the Lorenz system displays increased complexity and
different stability properties. Transtions from one type of solution to another occur through bifurcations
or trangitions to chaos for which traditiona nonlinear measures are good indicators, in general. However
transitions between two chaotic regimes are not readily detected by these traditional measures, especialy
for small changes in the parameter r. Therefore, we concentrate on detecting dynamical change within a
region where the Lorenz system behaves chaoticaly [Jackson, 1989 and 1990], namely for 45 [ r

We started with r = 45 which was considered the base case and kept r unchanged for 2,250,000 points (45
cutsets of 50,000 points). Then, we increased r from 45 to 90 in one unit steps for each 50,000-point
window. Finaly, we maintained r = 90 for another 2,250,000 points (45 cutsets of 50,000 points).
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Figure 2 shows linear measures of he y-coordinate of the Lorenz model. The minimum §/,) and
maximum (Yma) Vaues in each cutset are roughly constant for r = 45, changing monotonicaly as r
increases from 45 to 90 because the attractor size increases, then remaining constant for r =90 (Fig. 2a).
The absolute average deviation (a) and standard deviation (s) of y are likewise constant for r = 45, risng
linearly as r increases from 45 to 90, then remaining constant for r = 90 (Fig. 2b). Skewness (s) varies
erraticaly over the entire range of 45 £ r £ 90, while kurtosis (k) remains roughly constant for r <59,
varies erraticaly for 59 £ r < 90, then rises abruptly to a new (roughly) constant for r =90 (Fig. 2c). The
number of time steps per cycle (m) is roughly constant at m= 50 for r=45, decreasing erratically over the
range of 45 < r < 90, then remaining roughly constant at m = 27 for r = 90 (Fig. 2d). These correlations
arise from the larger attractor size asr increasesin the Lorenz model.

Figure 3 shows the consistency and robustness of the resulting dissimilarity measures. Indeed, as long as
the parameter r is unchanged, the dynamicad system remains in the same regime, and the dissmilarity
measures remain consistently close to zero. When the parameter varies monotonicaly, the dissmilarity
measures rise monotonicaly, in roughly linear fashion, and over a much broader range than the traditiona
nonlinear measures. The dissimilarity measures reach a clear plateau at r = 90, illudtrating their
consistency. The base case consisted of the first ten adjacent windows for r = 45. We obtained the
traditional and (C)PS renormalized measures by comparing the distribution function for each 50,000-
point test case to each of the ten base cases, using Eq. (3.15)-(3.18). We note that the CPS measures
(dashed curves in Fig. 3) lie below the non-connected measures (solid curves in Fig. 3). This does not
contradict the rigorous inequdlities for these measures [Hively et al., 2000], since the curves in Fig. 3
were obtained by averaging, to obtain renormalized measures. Only the MIF vaues are given in the
unrenormalized form because the first minimum in the MIF is completely constant over the base case,
resultingin s = 0. Of courseg, if the window length decreases, more variability appears and s would be
different from zero. Figure 3 shows various nonlinear measures versus r. The correlation dimension
(Fig. 3a) varies eratically between 0 and 0.2, over the whole range. The renormalized Kolmogorov
entropy (Fig. 3b) aso varies erraticaly while gradudly rising from O to 4. Figure 3c shows the location
of the fird minimum in the mutua information function, M;, with a single abrupt step a r = 60. A
smdler integration step (dt = 0.1) yields a series of finer steps (not shown here), thereby illustrating the
limitation of a coarser sampling rate. In sharp contrast, the (connected) phase space measures (Figs. 3d
and 3e) increase dmost monotonically from zero to more than 500 as r rises from 45 to 90. The values of
L and c? essentially coincide over the whole range, because the measures are dominated by phase space
bins that are populated only for the base case (Q, > 0 for R = 0) and only the test case (R > 0 for Q; =0),
for which the two measures become anayticaly equivalent. Fgure 4 shows the dissimilarity measures
for a different choice of the base case, namely over the first ten cutsets of r = 90. These curves are
roughly mirror images of those in Fig. 3: large and congtant dissimilarity for r = 45, a monotonic and
roughly linear decrease during the transition (45 < r < 90), and small dissmilarity in the base case region
(r = 90). Figure 5 shows the dissimilarity measures for severa cutset lengths (N), varying from 5,000 to
25 points. As expected, the quality of the results degrades dramaticaly as the length of the window
shortens. For a very short window, the long-range regularity of the dynamicsis overcome by short-range
variability, which depends strongly on the specific location in the PS. This result underscores the need
for “sufficiently long data sets’ in comparison to the characteristic times of the underlying dynamics, in
order to provide “sufficiently good” statistics.

In addition to the Lorenz system, we previously assessed [Hively, et al., 2000] the discriminating power
of the dissmilarity measures for the Bondarenko model [Bondarenko, 1997]. This infinite-dimensond
modd is described by a system of time-delayed ordinary differential equations, and is very different from
the Lorenz system. As before, we found that correlation dimension, Kolmogorov entropy, and mutual
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information function varied erratically with the changing parameter. Our analysis also showed that the
(C)PS measures rise ddmost monotonically as the parameter in the Bondarenko model increases.

Although the analysis of model data was not an explicit part of the NERI2000-109 proposal, an essentia
aspect of this work is vdidation of the methodology on well-characterized and carefully controlled data,
as provided by model data. The results of this subsection do indeed show that the hypotheses underlying
this nonlinear anadlysis are valid. Moreover, the methodology gives consistent and robust indication of
change in the process dynamics as measured by the phase-space dissmilarity with a changing parameter.
In sharp contragt, the traditional nonlinear measures (correlation dimension, Kolmogorov entropy, and
mutual information) provide no such consistency or robustness.

3.7 ANALYSISOF EQUIPMENT DATA

Having validated the nonlinear measures of condition change on model data (Sec. 3.6), we turn next to
andysis of equipment data. Machine dynamics has a long history [King, 1985]. Qu et d. (1993)
demonstrated the usefulness of severa nonlinear measures for vibration data from rotating machinery
(turbo-generator and compressor). Moreover, falure prognostication is one of the hardest problems to
solve for nonlinear and chaotic systems [Casdagli, 1989; Sugihara and May, 1990; Essawy, 2001], due to
process sengtivity to initid conditions [Farmer and Sidorowich, 1987].

We begin this phase of the work by summarizing important-to-safety equipment in nuclear power plants
(NPP). TableA.1 of Appendix A providesexamplesof typical NPP equipment. Furthermore, the INPO-
EPIX database shows that motor failuresdirectly impact NPP operations, including reactor trips (25% of
failures), unit off-line (40% of failures), and reduced power operation (35% of failures); see Table A.2 of
Appendix A. Such failurestypically develop over many months, and sometimesyears. Consequently,
the time and funding for PY 01 of this NERI project do not permit acquisition of real process datafrom
such NPP equipment to obtain such failure sequences. Instead, we acquired new data by seeding specific
faults in test equipment. Appendix A shows the complete test plan, including the choice of two
representative failure modes (unbalance and misalignment). Figure 6 showstheimportant features of the
test equipment (5HP motor-driven pump) at the DE& Stesting facility in Mount Holly, North Carolina.
The test protocol involves acquisition of test data for a no-fault baseline, followed by datasets for
successively larger faults.

DE& Sprovidedinitial test datato ORNL for preliminary analysis, which revealed arich set of nonlinear
features. The sampling rate was adequate (12 KHz), but the number of data pointswastoo small (16,384
points). ORNL requested voltages, V., and currents, |, from all three phases of the three-phase electric
motor. ORNL also requested longer datasetsfor robust conversion of the time-serial datato statistical

distribution functions, as described in Sec. 2. These requirements necessitated an upgrade to the data
acquisition system (Emax by PAMA Corporation), causing some delay while PAMA modified their

software. DE& S subsequently received the Emax upgrades and provided the power datafor the two test
sequences. The final data acquisition parameters for these six channels included a sampling rate of

12,288 Hz over 42.67s (524,288 points) with adigitization accuracy better than 1%. These datawere
converted to instantaneous power, P=S, |V, which we used for all subsequent analysis. Thetime-said

motor power datawas saved to aseparate ACSI| filefor each value of unbalance mass, and for eechvadue
of misalignment. These datasets were transferred from DE& S to ORNL as an attachment (4.6MB for

each dataset) to an e-mail message. Quality of the datawas assured by Task 1.2 (dataquality analysis), as
described in Sec. 2. ORNL subsequently concatenated the sequence of datasetsinto asinglelong dataset
for the unbalance test, and another long dataset for the misalignment test. Thedissimilarity analysisused
these long (concatenated) datasets, as discussed below.
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The machine power data include high frequency artifacts, typicaly treated as “noise” We remove
essentially all of these artifacts with a novel zero-phase quadratic filter [Hively et al., 1995]. This filter
uses a moving window of 2h + 1 points of raw data, e, with the same number of data points, n, on either
side of a centra point. We fit the data to a quadratic equation, F(t;) = aT2+a,T +as,withT, =t —t,,
and t. the time a the central point of the moving window. We obtain the best fit to the data by
minimizing the function, 0 Y =S; [F(t) — &]?, where the sum is over the 2n + 1 pointsin the moving window.
The minimum in Y is found from the condition Y /fa, = O, which yields three linear equations in three
unknowns. The window-averaged signa at the central point is the fitted value at the centra point, F(t. =
t;) = a;s. We note that the sums over odd powers of T; are zero and that symmetric sums over even powers
of T; (over i from —n to n) can be converted to sums from 1 to n, giving awindow-averaged solution for
the artifact signal,

F(t = to) = [3(3n® + 3n — 1)(Sec) — 15(Si? e+c)]/(4n* + 4n —3)(2n + 1). (3.20)

The sums in this last equation are over i from —n to n, with sums over even powers of i explicitly
evaluated with standard formulas for S; i* and S; i* (Gradshteyn and Ryzhik, 1965). The effort to evaluate
Eqg. (3.20) can be reduced further by computing the sums initidly with ¢ = n + 1, and then using
recursions thereafter for ¢ > n + 1 [Hivey et al., 1995]. Application of thisfilter to the N-point set of raw
data, e, yidds N — 2n points of low-frequency signal data, f;. Theresdue, g = e — f;, has essentialy no
low-frequency activity, and captures essentidly al of the high-frequency “noise.” The filter window
width (n=7) corresponds to optima remova of this high-frequency “noise” Figure 7 illustrates this
filtering process for typical power data from the baseline of unbalance test sequence. Subsequent analysis
uses only the low-frequency-filtered machine power data

DE& S performed the unbalance test by attaching successively larger masses (0 - 101.7 grams) to the
motor-pump coupling, as illustrated in Fig. 6. Table 1 summarizes the test results, with the most relevant
data shown in bold: unbalance mass (second column), peak vertical vibration (third column), and peak
horizonta vibration (fourth column). Figure 8 shows various linear measures of the motor-pump power
as afunction of the dataset number in this unbalance test sequence. The top subplot of Fig. 8 shows the
addition of successively larger amounts of unbalance mass to the motor-pump coupling. The second plot
down in Fig. 8 depicts the overdl| variation in motor power level (2000-3500W), which is nearly constant
for the first five datasets, rising abruptly to te largest values for intermediate unbalance masses, then
decreasing gradually for datasets 913. The third plot down in Fig. 8 presents vaues of skewness (solid),
which varies erratically between 0.2-0.5 over the test sequence. This subplot aso displays kurtosis (- -),
which decreases erratically from 0.3 in the first dataset to —1.2 in the fourth dataset, rising to —1 in the
fifth dataset, varying erratically around zero over datasets 612, and finally decreasing to —0.5 for the last
dataset. The bottom subplot of Fig. 8 illustrates the number of timesteps per power cycle, which rises
from ~15 in the first dataset to ~60 in dataset 4, then decreases to ~ 35 in dataset 5, remains nearly
constant over datasets 612, and finally rises somewhat to ~20 in the last dataset. Figure 9 shows a
similar set of plots for traditional nonlinear measures of the unbalance power versus the dataset number.
The top subplot of Fig. 9 shows the monotonic rise in unbalance mass, asin Fig. 8. The second plot down
in FHg. 9 depicts the very erratic variation between 1.4-2.3 in correlation dimenson, D, versus dataset
number. The third plot down in Fig. 9 presents the erratic variation in Kolmogorov entropy, K, between
0.001-0.018 versus dataset number. The bottom plot of Fig. 9 illustrates the variation in the first
minimum in the mutua information function, M, , which is between 15-16 for dataset 1, 10-14 for dataset
2, 14-20 for dataset 3, 10-20 for dataset 4, 10-11 over dataset 5, 14-16 for datasets 6-12, then down to 9-
11 for the last dataset. Thus, the linear and traditional measures of motor power are uncorrelated to
unbalance mass.
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In sharp contrast to Figs. 89, Fig. 10 shows a clear correlation between the phase-space dissimilarity
measures (top) and the vibration levels (bottom) as functions of the unbalance mass. All four
dissmilarity measures (Fig. 10 top) rise monotonicaly and in unison for O £ (unbalance mass) £ 50g.
The operationa vibration levels (Fig. 10 bottom) rise monotonicaly (and almost linearly) with increasing
unbalance mass. Table A.12 of Appendix A provides a correlation between the phase-space dissimilarity
measures and the vibration levels, based on SO 2372 and 1SO 3945 standards. In particular, Table A.12
shows that the 5HP motor is in Class | (small machines to 20HP), for which the onsets of unsatisfactory
and unacceptable vibration occur a 2.8 mm/s and 7.1 mm/s, respectively. Figure 10 (bottom) shows
these vibration limits as two horizontal lines with corresponding labdls in the two bands (unsatisfactory
for range of 2.8 mm/s < v < 7.1, and unacceptable for v > 7.1 mm/s). Thus, the phase-space dissimilarity
measures provide clear and consistent indications of condition change that correlate with unbalance mass.

DE&S performed the second test by introducing successively larger amounts of misalignment, as
illustrated in Fig. 11. Table 2 summarizes the test results, with the most relevant data shown in bold:
vertical angular misalignment (fifth column), pesk vertica vibration (severth column), and pesk
horizontal vibration (eighth column). Figure 12 shows various linear measures of the motor-pump power
as a function of the dataset number in this misalignment test sequence. The top subplot of Fig. 12 shows
the vertical angular misdignment of the motor-pump system via insertion of shims in the motor-to-pump
coupling and/or under the motor mount; note the non-monactonic change in the first two datasets. The
second subplot down in Fig. 12 depicts the variation in motor power, which remains amost constant
(2000-3000 W) for datasets 1-8, then rises dightly (2500-3500 W) for dataset 9, and is largest (and most
variable) for the last dataset (4500-7000 W). The third subplot down in Fig. 12 displays skewness and
kurtosis of the motor power, both of which vary erraticaly over the whole range of misalignment. The
bottom subplot in Fig. 12 illustrates the number of timesteps per cycle, with mostly low values (15-25) for
datasets 1-3, 5, and 7-9 interspaced with high plateau vaues (50-70) for datasets 4, 6, and 10. Figure 13
shows a smilar set of plots for traditiona nonlinear measures of the misaignment motor power versus
the dataset number. The top subplot of Fig. 13 shows the monotonic rise in vertica offset, asin Fig. 12.
The second plot down in Fig. 13 depicts the very erratic variation between 1.6-2.4 in correlation
dimenson, D, versus dataset number. The third plot down in Fig. 13 presents the erratic variation in
Kolmogorov entropy, K, between 0.001-0.036 versus dataset number. Interestingly, the smallest values
of corrdation dimenson, D, and Kolmogorov entropy, K, in Fig. 13 both occur in datasets 4, 6, and 10;
these same datasets have the smallest values of kurtosis (dashed curve in the third subplot down in Fig.
12) and the largest values of timesteps per cycle (bottom subplot of Fig. 12). We conclude from the
results in Figs. 12-13 that no correlation exists between the linear and traditional measures of motor
power and the values of motor-pump misdignment, not unlike the results for the linear and nonlinear
measures of pump-motor power for the unbalance test sequence.

In sharp contrast to Figs. 12-13, Fig. 14 shows correlation between the phase-space dissimilarity measures
(top) and the vibration levels (bottom) as functions of the misaignment. All four dissmilarity measures
(Fig. 14 top) rise in unison for 0.19 £ misdignment (mm) £ 1.1. The operationd vibration levels (Fig. 14
bottom) rise somewhat erraticaly with increasing misalignment. Referring again to Appendix A, Table
A.12 provides a correlation between the phase-space dissmilarity measures and the vibration levels,
based on 1SO 2372 and 1SO 3945 standards. In particular, Table A.12 shows that the 5SHP motor is in
Class | (small machines to 20HP), for which the onsets of unsatisfactory and unacceptable vibration occur
at 2.8 mm/s and 7.1 mm/s, respectively. Asin Fig. 10 (bottom), Fig. 14 (bottom) shows these vibration
limits as two horizonta lines with corresponding labels in the two bands (unsatisfactory for range of 2.8
mm/s < v < 7.1, and unacceptable for v > 7.1 mm/s). The rise and subsequent fal in dissmilarity
measures (Fig. 14 top) is accompanied by the same rise and fdl in vibration levels (Fig. 14 bottom) for
datasets 14, and is probably due to the inconsistent introduction of misaignment by shims under the
motor mount and in the motor-to-pump coupling. See Table 2. Thus, the phase-space dissmilarity
mesasures aso provide indication of condition change that correlates with misalignment.

18



4. DISCUSSION

One of the most important problems encountered in nonlinear time-series analysis is the appropriate
characterization of changes in the system’s dynamics. More often than not, physical systems are
complex, nongtationary, affected by noise, and difficult to fully quantify in ordinary physica or
mathematical terms. Such systems usualy have low-dimensional dynamics that varies between (quas)
periodic and completely irregular (chaotic). Thus, to a certain extent, globa aspects of the dynamics may
be legitimately quantified by traditiona nonlinear descriptors such as Lyapunov exponents, Kolmogorov
entropy, and correlation dimension. While these descriptors are adequate for discriminating between
clear-cut regular and chaotic dynamics, they are not sufficiently sengtive to distinguish quasi-periodicity,
intermittency, or dightly different chaotic regimes, especially when data are limited and/or noisy.
Therefore, robust and timely forewarning of equipment failures has remained an outstanding chalenge.
We address this problem, by introducing four new measures of dissmilarity that capture more details
about the dynamics and differences between various regimes and therefore are more sensitive than the
traditional nonlinear measures. A change in these measures signifies that the system has departed from
the base case and can be interpreted as a forewarning of an impending failure.

The PS indicators of condition change measure the difference between PS distribution functions for a
base case and a test case, as ¢” statistics and L, distance. Thus, these indicators retain the differences
between the process dynamics and avoid the inner cancellation effects due to averaging over many orbits
(as one does, for instance, when cdculating the correlation dimenson and Kolmogorov entropy).
Changes in the Lorenz and Bondarenko model dynamics are clearly detected by the dissmilarity
measures and somewhat by Kolmogorov entropy. On the other hand, these changes are either undetected
or poorly detected by the correlation dimension and mutua information measures. The new measures
also provide forewarning of failure due to two seeded fault conditions, as described in Sec 3.7. These
results show that the PS measures are superior to traditional nonlinear measures for detection of condition
change.

We note that the PS indicators contain more information than we have systematically exploited so far.
For instance, some datasets show a remarkably close smilarity between the pairs{c*, L} and { L., ¢},
while other datasets show close similarities between {L , L.} and {c*, ¢/}. Other data sets show no
similarities a al. The first Situation may arise because the base case and test case distribution functions
are not significantly different from zero on a common domain. The second situation can be interpreted
as a dsign of very dow dynamics (little change between the PS and CPS measures). The third case
displays more variahility in the dynamics.

We view these results as an encouraging validation of our method and its potential for event forewarning.
There are a few caveats though: (i) the present data were obtained in a controlled laboratory setting,
which is substantialy different from the uncontrolled plant environment where a monitoring device might
attempt forewarning; (ii) the PS-reconstruction parameters were adjusted to give the best indication of
forewarning for these datasets. The algorithm may not be equally well tuned for other datasets. Thus, we
are acutely aware that as long as the dynamics is unknown, it may reserve surprises.

On the other hand, the performance and robustness of our approach on model data and real machine data
suggests that this methodology could allow convenient, non-intrusive sensor placement by atechnicianin
anon-laboratory, plant setting and be used as acomplementary quantitative method in conjunction with
other diagnostic methods. The technology is model-independent and computationally fast, allowing
removal of artifactsin the datathat would otherwise obscure the underlying dynamics. Future useof this
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approach as acomplementary and/or stand-alone method for equipment failureforewarning will require
extensive analysis of several eventsfor each machine and failure mode, and detail ed determination of
detection criteria. Futurework will involve: (i) statistical evaluation of false positives and negatives, and
of false positives during normal operation, (ii) detailed monitoring of each machineto determine optimal
PS reconstruction parameters, which subsequently would be fixed for real-time monitoring, (iii) the
specific nonlinear feature(s) for event forewarning of know failure modes.

In addition to the above technical accomplishments, the PY 1 work produced several important lessons-
learned. First, the use of two different shim typesin the misalignment test (Sec. 3.7) pointsto aneed for
closer coordination between DE& Sand ORNL for experimental design and test implementation. These
detailswill be governed by the PY 2 test plan. Second, ORNL’sexperience with motor data suggeststhat
the high frequency “noise” in the power data (e.g., bottom subplot of Fig. 7) is indicative of the
equipment dynamics. However, ORNL analysis of that noise did not uncover any such indications,
probably due to aninadequate sampling rate. ORNL has asked DE& Sto ook into higher sampling rates,
perhaps up to 50KHz. Third, DE& Stransferred the multi-megabyte datasetsto ORNL as attachmentsto
e-mail messagesrapidly and easily. We expect to expand the use of datatransfer viatheInternetin PY 2.

The second phase of the proposed work begins in PY2, and involves compelling demonstration of the
nonlinear prognogtication, which entails the acquisition and analysis of much more data. We hope to
obtain a least 20 test sequences that begin with nominal operation, and progress to a non-normd,
degraded, faulted, or failure state as a specific parameter changes. We further hope to show this
forewarning for different kinds of nuclear-grade equipment, as opposed to many different failure modes
for one piece of equipment. The measures of success include false positives, fase negatives, and the
forewarning times. ORNL subsequently will improve the nonlinear paradigm in order to minimize the
number of false positive and false negative indications of failure, while maximizing the forewarning time.
ORNL received $481K for PY2 on 8/15/01, and has begun planning efforts with DE& S to continue
collaboration on the NERI2000-109 project during this second phase.
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Fig. 6. Important features of the test equipment (SHP motor-driven pump) at the DE& S
testing facility in Mount Holly, North Carolina. DE& S performed measurements of vibration on the
motor inboard bearing casing velocity per 1SO standards 2372 and 3945, as discussed in App. A, for
correlation with the nonlinear analysis; see text for discussion. Vibration measurement points as indicated

on the figure are:
PIV = Pump Inboard Vertical MIV = Motor Inboard Vertical
PIH = Pump Inboard Horizontal MIH = Motor Inboard Horizontal
POH = Pump Outboard Horizontal MIA = Motor Inboard Axia

MIV and MIH are the main indicators of motor vibration.
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produce misalignment.
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he amount of misalignment; see text for a detailed discusson.
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correlation dimenson (D); (third) Kolmogorov entropy (K); (bottom) first minimum in the mutua
information function M,). No correlation exists between these traditional nonlinear measures and the
monotonically increasing amount of misalignment; see text for further discussion.
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Fig. 14. Correlation of phase-spacedissimilarity measuresand vibration levelsasafunction
of the unbalance mass: (top) (non) connected phase-space dissmilarity measures (¢, ¢, L and LJ);
(bottom) peak vibration levels in the horizonta direction (denoted as MIH in Fig. 6 and as ‘horiZ’ in this
figure) and the vertica direction (denoted as MIV in Fig. 6 and as ‘vert’ in this figure). Note that the
phase-space dissmilarity measures (top) rise monotonicaly and in unison for misdignment >0.2mm, in
correlation with the (eratic) rise in pesk vibration levels (bottom). The best condition change
discrimination occurs for the following parameter values: S=140 (equiprobable symbols), d=3, | =49, and
N=25 000. Dissimilarity measures are scaled between 0 and 1 for easy comparison.



Table 1. Summary of Unbalance Test

Mass ----memememeee- Vibration Levels - Peak Ve ocity (in/sec)-------------------

Test # (02) MIV MIH MIA PV PIH POH

1 0.00 0.0196 0.0380  0.0445 0.0188 0.0182 0.0120
2 0.10 0.0264  0.0414  0.0500 0.0200 0.0232 0.0116
3 0.20 0.0321  0.0462  0.0555 0.0217 0.0226 0.0117
4 0.30 0.0364 0.0514  0.0637 0.0216 0.0252 0.1172
5 0.50 0.0497 0.0665  0.0843 0.0218 0.0293 0.0143
6 0.90 0.0521  0.1000  0.1460 0.0264 0.0444 0.0261
7 1.15 0.0817 0.1250 01770 0.0237 0.0511 0.0271
8 1.50 0.1100 0.1640  0.2360 0.0255 0.0601 0.0356
9 1.90 0.1390 0.2070 03120 0.0270 0.0741 0.0432
10 2.25 0.1680 0.2410 0.3700 0.0277 0.0838 0.0537
11 2.80 0.2130  0.3000  0.4600 0.0326 0.0979 0.0644
12 3.20 0.2250 0.3670 05340 0.0439 0.1290 0.0859
13 3.60 0.2700  0.3990  0.6060 0.0379 0.1400 0.0914

* Vibration at the motor inboard bearing

Table 2: Summary of Data from Misalignment Test

Shim. Horiz Horiz Vert Vert

Thick Ang. Off. Ang. Off. ----mmeeeee Vibration Levels - Peak Velocity in/sec-------------
# Mils  Mils  Mils Mils MIV’ MIH" MIA PV PIH POH
1 0 005 1 1.1 17 0.0196 0.0380 0.0445 0.0188 0.0182 0.0120
2 0000 05 O -0.2 -0.1 0.0468 0.0556 0.0474 0.0465 0.0301
3 0002 03 01 64 17 01160 0.1180 0.0864 0.0906 0.0553
4 0005 -19 -02 77 24 00897 0.1280  0.1090 0.0331 0.0770 0.0569
5 0006° -0.3 -01 11.8 33 0.1670 0.2170 0.3120 0.1440 0.1460 0.0978
6 0010° -3 -01 155 51 0.0759 0.1330 01040 0.0435 0.0715 0.0519
7 0015 04 01 174 45 0.1580 0.1270 0.2330 0.0958 0.1030 0.0737
8 0005 39 12 190 50 0.2040 0.2210 0.3560 0.1730 0.1910 0.1100
9 0010 86 19 255 6.0 0.3930 0.3050 0.6580 0.2420 0.2090 0.1260
10 0020 -23 07 399 126 0.3770 0.6370
0 0000 -15 -02 14 04 00558 0.1220 0.0810 0.0262 0.0594 0.0365

* Vibration at the motor inboard bearing
# Shims under the motor mount

+ Shims a the motor-to-pump coupling
& Re-alignment to zero for reference
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A.1 Introduction

This Appendix addresses the various considerations for the test plan for this project.
Section A.2 describes the important-to-safety equipment in a nuclear power plant.
Section A.3 chooses two test modes, based on typical failure modes.
Section A.4 explains the choice of testing facility and methodology.
Section A.5 shows the detailed specifications of the equipment to be tested.
Section A.6 provides the detailed protocol for the accelerated failure testing.
Section A.7 lists the detailed specifications of the data acquisition equipment.
Section A.8 discusses the resulting test data for subsequent analysis by ORNL.

The choices for the Phase-1 test plan arise from the considerations in this Appendix.

A.2 Important-to-Safety Equipment for Testing

Nuclear power plants (NPPs) use a large variety of safety-related equipment. Table A.1 shows typica
examples of such equipment. Table A.2 show typical failuresin rotating components.

TABLE A.1: Typical safety-related equipment in a PWR nuclear power plant

Component Type Approximate Notes
Number per Unit
Control rods and control element 50 to 60 160 inaBWR Unit
assemblies
Heat exchangers, condensers, and steam 24
generators
Turbines (steam, gas) 1
Generators and inverters 6
Blowers, compressors, fans, vacuum pumps, 20
and cooling units
Pumps 20
Electric Motors 500
Relays 1000 to 2000
Circuit breskers, contactors, and controllers 750 to 1000
Governors and gear boxes 15
Valves 650 All types
Valve operators 260 Motor operated valves
Engines (gas, diesd) 1




TABLE A.2: Approximate Distribution of Some Critical Rotating Components Failuresin Nuclear Power Plants

Prior to 1997 2]

Component Type Number of Failuresthat Resulted in:
Reduced-Power | Unit Off | Reactor
Operation Line Trip

Blowers, compressors, fans, vacuum pumps, 5 17 0
cooling units
Generators, inverters, motor generators 79 79 131
Governors, couplings, gear boxes 88 28 52
Motors (electric, hydraulic, pneumatic) 76 90 53
Pumps, eductors 272 252 62
Valve operators 430 338 220
Turbines (steam, gas) 88 41 48

Failures of motors and motor driven equipment represent a big percentage of plant events that resulted in
serious plant condition ranging from reactor trip to reduced-power operation.

INPO-EPIX database [1] shows that motor failures directly impact NPP operations, including reactor trips
(25% of failures), unit off-line (40% of failures), and reduced power operation (35% of failures). Motors
are among the most common equipment in NPPs. Motor testing is a straight-forward matter of acquiring
voltage and current. For all of these reasons, we choose to test eectric motors for the first phase of this
NERI project. DE&S iswell acquainted with motor testing, and has extensive facilities and experience in
such testing, as described below.

A nuclear power plant utilizes a large number of electric motors ranging from fractional horsepower to
many thousands of horsepower in amost every safety system. Most NPP motors are three-phase,
aternating current (AC), induction type at 110-480 volts with anti-friction bearings. These motors drive
smdl pumps for coolers, dampers, and similar components. Direct current (DC) motors usualy provide
backup in the case of AC power loss. In PWRs, safety systems contain small induction-type valve motors
that are pipe mounted. Motors are used for both continuous and intermittent duty. Continuous duty
motors drive pumps, fans, generators, dampers, chillers, and other components for long periods.
Intermittent duty motors run for a short duration to actuate valves from open to closed position and vice-
versa. Table A.3 provides an approximate distribution of motorsin a PWR plant [1].
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TABLE A.3: Approximate Motor Population in a PWR Plant [1]

SAFETY-RELATED MOTORS NONSAFETY-RELATED
HP MOTORS
INSIDE OUTSIDE INSIDE OUTSIDE TOTAL
CONTAINMENT | CONTAINMENT | CONTAINMENT | CONTAINMENT | MOTORS
CONTINUOUSDUTY MOTORS
<1HP 0 15 0 20 35
1— 100 HP 10 150 10 270 440
125— 250 HP 10 0 0 20 30
> 300 HP 0 20 4 15 39
DC 0 10 0 5 15
SUB-TOTAL 1 559
VALVE MOTORS (INTERMITTENT OPERATION)
AC Power 30 250 0 260 540
DC Power 0 10 0 0 10
SUB-TOTAL 2 550
TOTAL 1109

A.3 Failure M odes of Equipment

Component failure analysis identifies specific root cause(s), beginning with identification of the possible
faillure modes. The fault tree approach is often combined with one or more other techniques to revea

possible causes for the observed failure mode of the equipment.

A failure cause may involve the

investigation of heath monitoring indicators, degradation mechaniams, direct degradation indicators,
indirect degradation indicators, and use of various data sources. A functiond fallure mode is indicated

when the component fails to perform its designed function. Some common failure modes associated with
electric motor driven equipment are presented in Table A 4.
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TABLE A.4: Representative electrical motor driven equipment faults

General category

Brief description of specific deterioration modes

Mass unbalance

Force unbaance, couple unbaance, dynamic unbalance, overhung.
rotor unbalance

Misdignment Angular, parale, misaigned bearing cocked on shaft
Journal bearings Wear/clearance problems, oil whirl ingtability, oil whip ingtability
Gears Tooth wear, tooth load, gear eccentricity and backlash, gear misaignment,

cracked/broken tooth, gear assembly phase problems, hunting tooth problems,
loose bearing fit

AC induction motors

Stator eccentricity shorted lamination or loose iron, eccentric rotor, rotor
problems, phasing problems

DC motors  and | Broken armature windings, grounding problems, or faulty system tuning,

controls faulty firing card or blown fuse, faulty SRC, shorted control card, loose
connection and/or blown fuse, faulty comparator card, electrical current
passage through bearings

Bdlt drive problems Worn/loose/mismatched belts, bdt/pulley misdignment, eccentric pulleys,

belt resonance

Hydraulic/aerodynami
c force

Blade pass, vane pass, flow turbulence, cavitation

Foot problems

Soft foot, sprung foot, foot-related resonance

The motor components most likely to result in failures are bearings and stator windings (including
connections) [3], as shown in Table A.5. Andysis[3] shows that 60% of failures are of mechanica origin
and that 30% are of electrica origin, as summarized in Table A.6. An example of mechanica failure is
the overheating due to overloading, blocked ventilation, or phase unbaance. The effect may not be
drastic enough to trip the overload relay or fuses, but may cause the motor bearing lubrication degradation
leading to bearing failure. Alternatively, overheating may result in premature aging and failure of the

winding insulation.




TABLE A.5. Motor Component Failures[3]

Cause IEEE Survey EPRI Survey
Bearing Related 44% 41%
Stator Related 26% 36%
Rotor Related 8% 9%
Other 22% 14%

TABLE A.6. Fallure Mechanisms[3]

Cause of Failure Bearings | Windings
Overheating 12% 21%
Insulation Breakdown 2% 37%
Mechanica Damage 50% 10%
Electrical Fault 4% 11%

Motors frequently fail due to excessive vibration, resulting from mechanica, as wel as eectrical
excitations. Mechanica imbaance and misaignment are the most common mechanical conditions that
produce excessve vibration in rotating machinery. Changes in vibration arise from bearing deterioration,

misalignment, damaged parts, electrical imbaance, and wear. Unbalance is the most common cause of
vibration in rotating machinery, occurring when the actual center of the rotating mass is not exactly at its
geometric center. This eccentricity causes a heavy side of the rotating component, creating a Synchronous
rotating force vector. For linear systems, unbalance produces a vibration directly proportiona to the
unbalance amount, and has a frequency equal to the running speed of the machine. Mechanical unbalance
in rotating machinery is usually caused by unavoidable errors in design, manufacture, assembly, initia

baancing, or impdler damage. Unbaance can lead to excessive vibration, bearing wear, and sed
leskage. Impdlers should be daticaly and dynamically baanced so that the maximum residua
unbaance is less than IxW/rpm, where W = impdler weight. An unbaance condition may involve
different modes of the rotor bearing system. For rigid rotor modes, the condition may be static, coupled,
or dynamic. Flexible rotors are more complex; unbaance correction requires several balancing planes
and may require knowledge of the mode shapes involved. Hydraulic unbalance in pumps is induced by
the fluid flow and is usualy caused by poor suction piping arrangements and design. A flow restriction
or an elbow too close to the pump suction causes fluid to assume different velocities within the pipe. If
these velocities do not equalize before reaching the impeller, the hydraulic unbalance will impose a high
radia vibration at the running frequency of the machine.

Misalignment is considered the second most prevaent vibration source, and is due to non-coincidence of
rotating axis of coupled components. Misadignment results in a high axid vibration a multiples of
running speed, mainly the two-times (2X) component. The axia reading may be as high as twice the
vertical reading. Misalignment causes pump vibration resulting in sedl leakage, bearings overhesating, and
coupling wear. Soft foot and pipe stresses contribute a great deal to misaignment.

Based on these considerations, the two failure modes for our testing are unbalance and misalignment. As discussed
below, DE& S can induce these failures on Duke Training Center Test Cell by replacing the actual flexible spring-
type coupling with amore rigid coupling.



A.4 Testing Options

DE&S Electric Motor Testing Services provide both on-line ad off-line eectric motor testing. A DE& S
technician typicaly visits the client’s site, acquires the data, performs the analysis, and then ddivers a
written report with recommendations. Three facilities can be used for this motor testing: DE& S Toddville
Complex Fecility (Charlotte, NC); Duke Power Mount Holly Training Center (Charlotte, NC); Advanced
Energy (NC State University, Raleigh, NC).

DE& S keeps mogt testing equipment and instrumentation at the Toddville Complex facility. This facility
can be used for the purpose of this project, but we would have to build a test setup using our existing
motors. This option has been ruled out due to the time and budget constraints.

DE&S has a closed-loop pumping system with three similar pump motors a the Mount Holly Training
Facility. This system belonged to an ex-NPP, DE& S uses the system for training. As discussed below,
this option is the best for this phase of the project due to its proximity (haf an hour drive) and to the
flexibility we have in terms d scheduling. It is dso much chegper to rent the Mount Holly Training
Facility than the Advanced Energy facility since there are negligible expenses associated with its use.

Advanced Energy Motor Servicesis the only independent motors testing facility of itskind in the nation. Advanced
Energy can test motors for their efficiency and/or operating characteristics, and motor test data are used to help
industries develop motor repair and replacement policies that reduce operating costs. The Motor Test Lab @an
perform a wide variety of tests on new and repaired motors at full and partial loads in the range of 3 - 150
horsepower. The lab is equipped to perform dynamometer load tests on 3phase AC induction motors per |EEE
112B, NEMA MG1 and CSA C-390 test standards. Foot Mount and Face Mount "C" flange and "D" flange motors
can be tested. In-field motor testing is also available with the 1EL's In-Situ Motor Analyzer, which can determine
efficiency, operating load, and temperature rise. This capability is particularly beneficial when the configuration of
the motor preventsit from being tested at the IEL motor lab.

Table A.7 summarizes the considerations for choice of a testing facility. Pricing is a mgor consideration.
Use of the UNC facility for three weeks would require more than $20K, in addition to DE& S expenses
and labor using our own motors. Another important issue is scheduling. The NC State Facility is used
extensively by many testers, and has very tight advanced scheduling. DE& S facilities alow the freedom
of setting aless stringent schedule. The best test facility option is the Duke Mount Holly Training Center.
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TABLE A.7. Benchmarking of the three options

Toddville Duke's Training Center | NC StateLab
Complex Charlotte, NC Raleigh, NC
Charlotte, NC
Testing Equipment Only Motors Closed Loop Water Motor with
Avallable System with Three Dynamometers for
Pump/Motor used in NPP | load variations
Travel/Lodging None Very Low Mileage from DE&S
Expenses Charlotte to Raeigh +
Expenses
Cost of testing | Very High Low None
equipment
Cost of Testing (labor, | Very Low Low Very High
Rent)
Scheduling Constraints None Negligible Tight Scheduling
Access Restrictions None Weekdays Controlled
Data format Asrequired As required No idea

Electric motor testing involves both “on-ling” and “off-line’ methods. ORNL has found that subtle faults
in eectric motor-driven elements are detectable via nonlinear analysis of “on-lineg” motor current or motor
power data, and can capture the rich array of process dynamics in the entire motor-driven train. DE&S
uses a motor/circuit evaluator produced by PAMA Corporation caled MCE/Emax. MCE is a lightweight,
satic tester that provides a detailed analysis of motor and circuit condition. This portable unit features
diagnostic results that evaluate al five of the motor's fault zones including the power circuit, insulation,
dator, rotor and air gap. MCE tests dl mgor types of motors: induction, synchronous, wound rotor, DC,
servo and spindle. Emax is a dynamic tester that smultaneoudy collects al three phases of current and
voltage to provide spectral and digital data in the areas of power, motor current signature analysis, crest
factor, total harmonic distortion, power factor, and impedance. This information can be used to evaluate
incoming power quaity and motor efficiency, as well as rotor, stator, air gap and power circuit
conditions. DE&S has used the MCE/Emax throughout Duke Energy, as well as other industria
customers.  Common faults include loose or corroded connections between cabling and motor leads,
broken or cracked rotor bars, eccentricity, and poor stator and/or cable insulation. DE& S will use the
PdMA MCE/Emax to acquire voltage and current from each of the three motor phases during accelerated
failure tegting.

In electrical machines in general, faults can be detected by measuring the currents or voltages in the machine
windings. The magnetic field created near an electrical machine, changes when faults occur. Therefore, using

induction loops to measure flux can aid in condition monitoring and diagnostics of the machine.

Operating electric motor current signatures (“on-ling”) contain information not only related to the motor
itself but also that related to the driven component mechanical condition. Therefore, driven devices, such
as fans, pumps, or motor-operated vaves, can be monitored using a simple current loop on alead that can
be remote from hogtile or inaccessible environments.
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A.5 Test site and equipment to be tested

Thetedting facility of choice for this project is the Duke Power Mount Holly Training Center
located in Charlotte, NC. The Mount Holly Training Facility contains of aclosed loop pumping
system with three smilar pump motors. This system belonged to an ex-NPP and is used for
traning. Thissysemisshownin FiguresA.1to A.5.

Mator Canttol Cabine

[ Mourt Holly Training Ganter
Ansed Loog Waksr Pump Systerm  EESSSSS

Figure A.1: Closed Loop Pumping System at Duke Mount Holly Training Center
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Figure A.3: A closer view of the pump/motor assembly — Coupling Removed
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Figure A.4: Motor Control Panel Closed

Opan Fared Showing
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i Tealing

B ENENALER ECFCTRIC

Figure A.5: Motor Control Panel Open — Provides Connection to Emax Testing

The picture of the testing facility is shown in Figure A.1. The equipmert to be tested consists of a closed
loop pumping station made of three groups of pump/motor. The motor and pump nameplate data is
provided in Table A.8. Figure A.6 shows the pump head versus flow curve.
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Table A.8. Test Equipment Characteristics

M otor Pump
Manufacturer Gould
Model 5K 182AL.1963 3196 ST
HP 5 -
Speed (rpm) 3495 3500
Volts 230/460 -
Amps 12.6/6.3 -
Phases 3 -
Capacity (GPM) - 30
Head (feet) - 135
Weight (Ibs) 80 34
Max. Filtered Bearing Casing Vibration (Mils p-p) 1.3 1.3
Max. Filtered Bearing Casing Vibration (in/s peak) 0.3 0.3
Notes No.-KRF Sze 1X1X-6

Goulds Pumps
@ ITT Industries CENTRIFUGAL PUMP CHARACTERISTICS RPM 3500 CDS 5004-1
Model: 3196
Size: 1X1.5-6
240 Imp. Dwg. 76781 70
290 Pattern 56208
Eye Area 3.14 in?
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Figure A.6: Pump Characteristics

A.6 Detailed Protocol for the Accelerated Failure Testing

During operation, an electric motor's components such as rolling bearings and rotor bars produce
distinctive vibrations that can be used for motor condition assessment and help identify problems.
Conseguently, vibration monitoring and analysis has become a widely accepted part of power plant motor
predictive maintenance programs.
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Vibration analysis has a wide scope of application to nuclear power plant rotating equipment. Vibration
sources include common structural vibrations from the interaction of rotating and non-rotating parts, as

well as fluid-flow noise such as cavitation in pumps. The following sources of vibration are documented
in the literature:

Imbaance problems

Alignment problems

Bearing wear

Wear of geared pump/motor couplings

Cracked and/or worn shaft

Mechanica |ooseness (bearings, pedestals, base)

Improper internal pump clearances (design, mounting)

Impeller wear (especially that caused by off-Best Efficiency Point (BEP) operation)

Degradation of wear rings, diffusers, volutes, channel rings, balancing device, and interstage sedls

- Erosion, corrosion of pump casing and/or rotor interna flow paths

Vibration transducers and monitoring instrumentation will be used to access the mechanical condition of
the equipment. Duke Engineering & Services (DE& S) will provide the motor current and vibration data
to the ORNL team. DE& S collects and analyzes thousands of data points on amonthly basis using the
latest available condition monitoring hardware and software across several industries. DE& S owns
industry standard instrumentation including CSI, SKF, Bently Nevada and various laboratory type
analyzers. Typical transducers and instrumentation are depicted in Figures A.7 to A.9.

Figure A.7: Typical Vibration Sensors (SKF) Figure A.8: Sensor Mounting Magnet
(Csl)
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Figure A.9: CSl 2120 Dual Channel Portable Vibration Analyzer
(Courtesy CSl Inc.)

A.6.1 Electric Motor Failures

Conditions of excessive temperature and vibration are the most common symptoms of electric motor
failures.

Temperature is a good indicator of electric motor problems. Higher than normal temperature can result
from electrica as well as mechanical problems. For example, the first indication of bearing trouble may
be high bearing temperature. Temperature increase can be caused by such conditions as high ambient
temperature, voltage imbalance, excessive load, dirty windings or blocked air intakes.

Vibration can be caused by dectrica as well as mechanica faulty conditions. When an open bar
develops in the rotor winding or a short happens in the stator winding, the effect on motor operation may
show up as a higher vibration reading. The cause of vibration can be due to imbaance, misalignment, or
bearing wear/defect. Motors can aso have initial damaged due to handling and storage or have a
manufacturing defect, which will appear as a vibration problem over time because of residual stresses.

Failures seemingly not related to vibration can develop because of vibration in an electric motor. Bearing
damage, insulation abrasion, excessive brushrwear, commutator or collector ring burning, and winding
fatigue can all result from excessive vibration.

In general, motor failures can be induced mechanicaly, eectricaly, or some combination of the two
source areas.

A.6.1.1 Mechanical Faults

Some of the more common mechanical faults include rotor mass imbalance, coupling misalignment and
bearing defects. These three are considered the most common conditions encountered in the majority of
rotating machinery faults.

Rotor mass imbalance may be caused by dirt accumulation, loss of rotating parts, or pssibly a loss of
baance weights. Coupling misalignment can be due to coupling wear, temperature growth of the driver
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or driven component; and an improper aignment during instalation. Bearing defects or degradation may
be due to manufacturing flaws, improper mounting, excessive loads or inadequate [ubrication.

A.6.1.2 Electrical Faults

In addition to mechanica faults, motors can aso show indications of electromechanica abnormalities.
Although electrical faults are diagnosed less often than their mechanical counterparts, they do exist. The
difficulty isin determining that the fault is electrical in nature instead of mechanical.

A.6.1.3 Additional causes of failuresare;

Ambient Temperature: Motor components such as stator windings, armature windings, field windings,
bearings and lubricants have maximum temperature limitations. If these limitations are exceeded, the
useful life of these components may be shortened. High ambient temperature, when added to the rated
temperature rise of the component, can cause the temperature limit to be exceeded leading to motor
falure.

Moisture: Excessive moisture causes failures in motor winding insulation and in motor leads. It can dso
cause loss of lubrication capability in bearing oil systems and deterioration of both dectrical and
mechanical motor parts.

Corrosion: Corrosion can cause serious damage to motor parts. Conduit boxes, motor feet, bearing fits,
air deflectors, screens, and assembly bolts can be destroyed. Oil cooling coils can develop pitting and
holes from corrosion.

Motor Starts: Large squirrel cage induction and synchronous motors have limited capability for repetitive
starts defined by the motor manufacturer. Exceeding these repetitive starting limitations can lead to
falure of rotor bars, rotor short circuiting ring, or stator winding.

Lubrication: Both oil-based and greased-based systems degrade due to contamination or lack of adequate
[ubrication. Dirt in lubrication systems will lead to eventuad bearing failure. Oil andyss is ae of the
predictive maintenance technologies used widely in the industry to assess the condition of lubricating oils
through trending of their physica properties in addition to providing diagnostic data for bearing hedth
monitoring.

Misapplication: Excessive loading results in high temperature and deterioration of eectrica insulation.
Bearings and shaft materials are carefully selected for the loading demands of the shaft system (i.e. side
loaded V S direct coupled).

Repair/Design Related: Motor failures can result from improper repair/design procedures and techniques.
Defects can result from, but are not limited to, poor rewind techniques, stator core damage from burn-out
oven procedures, improper installation of new bearings, damage from dropping ngor components, and
inadequate efforts to exclude foreign materid.

Shaft Currents. Large motors have one or two insulated bearings to prevent the flow of current from
motor frame to motor shaft through the bearing. If alowed to flow, these currents can damage the
bearings. Theintegrity of the insulation can be assessed by a check of the resistance path between the oil
reservoir and the bearing housing
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Ventilation: Motor cooling can be adversely affected by foreign materia in the ventilation path including
oail, dirt, paper, and rags. Also, structural columns, pipes, building walls, and low ceilings can restrict
arflow to or from motors.

Contaminants: Oil and dirt have a detrimenta effect on insulated stator and rotor windings. Oil tends to
dissolve insulation systems and makes them more susceptible to the deteriorating effects of moisture. Oil
attracts dirt, which reduces hest transfer from the winding surface and plugs ventilating passages causing
overheating.

A.6.2 Vibration M easurements

Vibrations can be measured by attaching displacement, velocity, or acceleration transducers to different
parts of the machine in different orientations (see Figure A.10). Noise is measured by microphones and
treated the same way as vibrations, except that noise levels are expressed in decibels (dB) and generally
referenced to human ear characteristics. Vibration measurements can be divided into two major types:

Direct shaft motion by displacement probes which is often accompanied by a tachometer pulse
attachment (a sensor generates a pulse with every shaft revolution used as a reference for phase
measurements)

Casing vibration by velocity probes or accelerometers

Vertical
Motor \ Accelerometer

” Accelerometer

Shaft

Bearing
Casing

Figure A.10: Vibration Measurements Using Displacement Probes and Accelerometers

A.6.3. Vibration Characteristics of Pump/Motor Systems

A.6.3.1 Electrically Induced Faults

Frequency domain analysis indicates some electrical faults by pesks a multiples of the line frequency
(50Hz/60 Hz and 100HZz/120Hz), as summarized in Table A.9. In certain cases, it is possble to
differentiate between mechanical and electrica faults by removing power from the motor and alowing a
coast down. If the indication is eectrical in origin it will usualy disappear when power is removed. If
the fault is mechanically induced, it will gill be evident, athough it may diminish in severity as the speed
decreases.
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Table A.9: Typical Electrical Fault Diagnoses Chart

Problem Symptom Comments
Uneven Air Gap 2X Line Frequency Always 120Hz
Eccentric Rotor 1X Running Speed Beat frequency present
Broken Rotor Bar 1X Running Speed Beat frequency present

A.6.3.2 Mechanical | mbalance

Imbalance, the most common cause of vibration in rotating machinery, occurs when the actua center of
the rotating mass is not exactly at its geometric center. This eccentricity causes a heavy side of the
rotating component, creating a Ssynchronous rotating force vector. For linear systems, imbalance produces
a vibration directly proportiona to the imbaance amount, and has a frequency equal to the running speed
of the machine (Figure A.11).

Mechanicd imbdance in rotating machinery is usudly caused by unavoidable errors in design,
manufacture, assembly, initial balancing, or impeller damage. Imbalance can lead to excessive vibration,
bearing wear, and seal leskage. Impdllers should be statically and dynamically balanced so that the
maximum residua imbaance is less than 1xW/rpm, where W = impeller weight.

An imbalance condition may involve different modes of the rotor bearing system. For rigid rotor modes,

the condition may be tatic, coupled, or dynamic. Flexible rotors are more complex; imbalance correction
requires several balancing planes and may require knowledge of the mode shapes involved.
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Figure A.11: Vibration Spectrum Indicating a Mechanical | mbalance Condition

A.6.3.3 Hydraulic Imbalance

Hydraulic imbaance in fluid flow is usualy caused by poor suction piping arrangements and design.
Velocity inhomogeneities can arise from a flow restriction or an elbow too close to the pump suction. If
these velocities do not equalize before reaching the impeller, the hydraulic imbalance will impose a high
radia vibration at the running frequency of the machine.

A.6.3.4 Misalignment

Misdignment is considered the second most prevalent vibration source. It is due to non-coincidence of
rotating axis of coupled components. Misaignment results in a high axia vibration reading, in addition
to multiples of running speed, mainly the two-times (2X) component (Figure A.12). The axid reading
may be as high as twice the vertica reading. Misadignment causes pump vibration resulting in sed
leakage, bearings overheating, and coupling wear. Soft foot and pipe stresses contribute a great deal to
misdignment.
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Figure A.12: Vibration Spectrum Indicating a Misalignment

A.6.3.5 Bent Shaft

A bent shaft will appear as an imbalance condition (see Figure A.11), accompanied by high axia
vibration due to the contortion of the rotor configuration. A twice-per-revolution harmonic will aso
appear in the spectrum. Phase readings are usualy taken to distinguish between imbalanced and bent
shaft. Phase readings at both bearings in the same direction indicate an in-phase relationship, whereasin
the axial direction they indicate an out-of -phase condition.
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A .6.3.6 Looseness

Mechanical looseness produces running speed harmonics with generally decreasing magnitudes (Figure
A.13), depending upon the degree of looseness and the machine design. Rotating forces occur twice per
revolution in horizontal machines due to excessive clearances or lack of tightness. The vibration response
reflects this double impact. A strobe light synchronized to the frequency of the rotating machine is
typically used to investigate looseness of assembled parts.
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Figure A.13: Vibration Spectrum Indicating Looseness

A.6.3.7 Impeller/Diffuser Interaction

Turbulence occurs when the fluid interacts with the diffuser at less than the rated flow rate. Inappropriate
clearances between the impeller and casing are the main cause for sub-synchronous and random
vibrations. Further evidence of impeller/diffuser interaction is acoustic resonance in the discharge piping
caused by pressure pulsations. The piping resonates at the vane-pass frequency (Figure A.14), regardless
of the number of fixed vanes.
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Figure A.14: Vibration Spectrum Indicating a Vane-Pass Excitation (5X) with Sum and
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A.6.3.8 Pump and Motor Bearings

Water or other contamination in the lube oil can cause bearing failures. Coupling dignment is another
high contributor to bearing faillures. One cause is therma expansion of the pump as it heats up during
operation. This therma growth must be considered when the pump is aligned cold so that the hot
condition alignment with the driver is correct. Most manufacturers will provide the amount of thermal
growth expected. However, their calculations include assumptions that may not exist in the power plant.
For example, some equipment manufacturers provide the amount of therma growth based on the
assumption that the pedestal reaches full operating temperature of the fluid. However, in the plant the
pedestal may never reach this temperature since it is not insulated. In this example, the therma growth
provided would be more than the pump exhibits in the plant and the pump would be misaigned in its
operating condition. The therma growth should be measured in the power plant to verify the
manufacturer recommendations.

High suction pressures in pumps can cause unusua axial thrust loads on a thrust bearing that may cause
the bearing to fail. Also, some pumps have balancing lines installed to reduce the axial loads and the size
of the thrust bearing. If this line becomes blocked, the thrust loads would be increased and the bearing
may fail. Also, for the same reason, valves are never ingtalled in abalancing line.

In anti-friction bearings, structural deformation due to metal-to-meta contact of the balls or rollers and/or
races produces a high frequency, low amplitude vibration (Figure A.15).
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The useful life of arolling eement bearing depends on two basic sets of variables:
The application set of variables, such asload, speed, temperature, mounting, lubrication, etc.
The configuration of the bearing itsalf, including the design, material and method of fabrication

Literature has shown that it is possible for a superior qudity bearing to fal to achieve rated life
predictions. Many such bearing failures are caused by mproper mounting and lubrication, as well as
contamination, high temperature and load. Manufacturing defects also play an important role in bearing
failures. As many as 10 % of new bearings are reported to have manufacturing defects. Bad storage
practices may aso reduce the life of a bearing.

Typical defects include those found in the inner or outer race, the balls or rollers, and the retainers
(sometimes referred to as ball separators or cages). Other failure causes include improper internal
clearances and the imposition of either thrust or radia loads.

Most anti-friction bearing failures have characteristic frequencies that are readily discernible from the
fundamenta running frequency of the rotating equipment.

Anti-friction Bearing Frequencies

The predoml nant frequencies generated by anti-friction type bearings can be classified as.

Ball Pass Frequency of the Outer race (BPFO) — This frequency is associated to localized defects
occurring on the outer race

Ball Pass Frequency of the Inner race (BPFI) — Thisfrequency is associated to localized defects
occurring on the inner race

Bal Spin Frequency (BSF) — This frequency is associated to defects occurring on the ball or
roller

Fault on the Train Frequency (FTF) — This frequency occurs when there are faults on the cage of
the bearing (Train of Rolling Elements)

Race Frequencies (BPFO and BPFI) are produced as the balls or rollers pass over a defect in the raceway.
As abal or roller strikes the raceway, it produces a particular response at BSF. The defect can impact
both races during each revolution; thus, the response can be two times the operating speed. Rotation of
the cage and ball or roller assembly or train produces FTF. Also, when particular faults occur, harmonics
are generated with unique characteristic frequencies.
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Figure A.15: Vibration Spectrum Showing a Bearing Fault (BSF)

Spectrum Analysis of Rolling Element Bearings
Formulas have been developed to calculate bearing characteristic frequencies associated with a ball or
roller bearing given the following:

Rotating speed

Number of balls or rollers
Diameter of ball or roller
Pitch diameter

Contact angle

In genera, there is no set rule to determine when a critical condition has been reached. However,
experience has shown that trends in the spectrum, such as the following, may indicate a developing
bearing fault:

Shifting from single pesks to a broad spectrum with the running speed superimposed
An increase in amplitude
The presence of any bearing frequency related peaks

The appearance of single peaks at characteristic frequencies that were not present during start-
up
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A combination frequency caused by the sum and/or difference of severa characteristic
frequencies

A.6.3.9 Foundation/Structural Problems

Foundation failure can cause erratic changes in vibration amplitude and phase, especially during transient
regime operations of high-speed rotating machinery. Bases, bedplates or baseplates, machine feet, and
mounting bolts are often overlooked as potential sources of vibration problems.

Soft foot is a term loosely applied to severa mounting related faulty conditions. Soft foot can include
structural looseness, deformation of the machine feet due to static or dynamic loading, weakness of the
baseplate, and a degraded foundation. Soft foot is a structural problem, athough it is frequently
considered an dignment-related problem.

Attached structural components such as piping, seismic restraints and hangers might be poorly ingtalled or
adjusted, resulting in unwanted loads on the pump casing causing excessive vibration.

A.6.3.10 Resonance

Resonance occurs when a forcing frequency falls within the range of the natural frequency of the excited
system (Figure A.16). Resonance conditions can amplify the vibration to dangerous levels, depending
largely on the amount of damping present in the excited mode of vibration.
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Figure A.16: Vibration Spectrum I ndicating a Resonance Condition Excited by Fan 9X Blade
Pass I n the Presence of Misalignment

Rotating machinery critical speeds present a special case of resonance conditions during run-up or coast-
down operations. They involve the synchronizing the rotating frequency with the rotor natural frequency.

A.6.4. Diagnostic Aids

Years of diagnostic experience with vibration analysis has been captured and documented in table-like
vibration diagnostic charts to aid professionas in their day-to-day vibration diagnostic work. Table A.10
isatypica example.

Table A.10: Diagnostic Table Using Vibration Analysis
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Cause Frequency Amplitude Phase Notes
Imbalance | 1x RPM Proportional to | 1 Reference Most common cause of vibration, no phase
imbalance Radial | mark - steady | change
- steady
Eccentricity | 1x RPM Varies 0 or 180° | Balancing may reduce vibrationin one
between direction but increase it in the other
Horizontal
and Vertical
Bentshaft | (1 to 2) x| Axid -high 180° out of | Sameradial phase on both bearings Orbit
RPM phaseaxially | and phase are good parameters to monitor
Thermal 1xRPM Vares 1 Reference | Increasing vibration during load variations
bow mark - steady | and startup from acold condition
Misalign- 1,2 3,...) x | Axid - high 1, 2 or 3| Axia amplitude may be twice the vertical or
ment RPM reference horizontal .
marks
Looseness | (1,15,2, 25, | Proportional to| 2 reference | Frequently coupled with misalignment
3,..)XRPM |oad marks, Strobe may help. Amplitude depends on
dlightly load
erratic
Soft foot 1to2x RPM Proportional  to Check mountings for variationsin amplitude
load
Electrical 1xRPMorl | Large Erratic When power is turned off vibrations
to 2 x line disappears instantly
frequency
Sleeve (1,2, 34, ...) | May behigher in | Erratic Compare shaft to bearing displacement
bearings X RPM Vertical than readings. Oil analysis best monitor for wear
wear and Horizontal
clearance
Qil whip SxRPM Radial — | Errdic Frequency is near one-half running speed
unsteady, (machine speed is nearly 2x critical speed)
excessive Qil temperatureis agood indicator
Oil whirl (42 to 48) x | Radid — | Errdtic Caused by unloading of bearing. Tangential
RPM unsteady, destahilizing force due to lube film in the
sometimes direction of rotation adds energy to vibration
severe
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Table A.10: (Continued) Diagnostic Table Using Vibration Analysis

Use velocity, acceleration or spike energy

Similar to impact, may excite many system
frequencies

Use velocity or acceleration. Tooth wear is
better indicated by side-bands around GMF
and excitation of tooth natural freguency.

Higher tooth load will increase amplitude at
GMF. Backlash is characterized by
decreasing amplitude at GM F when load is
increased. Gear misalignment shows with
higher 2x and 3x GMF. A cracked or broken
tooth is best seen on the time signal. A
hunting tooth problem shows at very low
frequencies

Strobe may help

Increased levels at resonant frequency.
Often appears on old machines pedestals

Increased levels at resonant frequency
Phase is a good indicator. 2x RPM
excitation of critical speed during coast
down.

Use velocity or acceleration. Due to uneven
internal gap between rotating vanes and

diffuser. May excite natural frequencies.

Flow obstructions are common causes.

Anti-friction | BPFI, BPFO, | Radia - low Erratic
bearings BSF, FTF
and
Harmonics
Rubbing (0-05x, 1x, | Errdic Erratic
and  higher
harmonics
Gears GMF=Z X | Radia - low Erratic
RPM
Foundation | Unsteady Erretic Unstable
reference
Resonance | System High Erratic
specific
Cracks 1X, 2x RPM, Variable during | Phase shift
transients. Drop
in higher
harmonics
Hydraulic | VanePass= High radial and NA
Forces Z x RPM and | axial
harmonics
Cavitation | Random high | High radial and | NA
frequency + | axial
Vane Pass

Due mainly to insufficient suction pressure
and the presence of vapor and air in the
liquid.

A.6.4 Acceptance Criteria

Acceptance criteria are necessary to transate a measurement into a mechanical condition. There are two
types of guidelines:

Physical constraints, such as clearances supplied by the original equipment manufacturer (OEM)
Established limits, determined from experience and dependent on the type of machine, measurement

location,

€tc.

Standards for vibration limits are published by industry groups, and by national and internationa
standards organizations including:

the American Petroleum Institute (AP1),
the American Gear Manufacturer Association (AGMA),
the Nationa Electricdl Manufacturers Association (NEMA), the American National Standards
Institute (ANSI),
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and the International Standards Organization (1SO)

The rotating equipment OEM and vibration instrumentation vendors are good sources of vibration limits.

A.6.4.1 OEM Limits

Radial and axia clearances between rotating and stationary surfaces are important physical parameters.
They are usualy expressed as “maximum alowable,” and should not be exceeded. Other types of OEM
criteria may include limits on pressure, balance piston differential pressure, speed, temperature, etc.

A.6.4.2 Published Severity Criteria
Vibration limits are also established per the following:

Independent testing organizations
Severity charts from PAMA vendors
Inspection results

OEM recommendations

A.6.4.3 Casing Vibration

Limits for casing vibration for typica machines are based on measurements made under similar operating
conditions (measurement type, location, etc.) in a controlled environment. SO standards 2372 and 3945
are widely used.

ISO 2372 isagenera standard and is used primarily for shop acceptance testing.

SO 3945 is a more specific standard and is designed for evaluating the vibration of larger machinery
inthefied

Both standards contain criteria for judging machine condition from casing velocity measured at specific
bearing locations. These standards apply to machines operating at 10 to 200 Hz (600 to 12,000 rpm).
Both standards require a true root mean square (RMS) amplitude measurement, make a distinction
between flexibly supported and rigidly supported machines, and recognize that a support system may be
rigid in one direction and flexible in the other. Both standards are now withdrawn and replaced by a more
current standard (1SO 10816).

There is generaly good agreement on the various limits among experts. In generd, a level below 0.1
in/sec peak is considered acceptable, and a level above 0.6 in/sec peak is considered unacceptable. The
advantage of velocity measurements, which are limited to casings, is that frequency is included in the
measurement.

Acceleration measurements are not generally used for trending, but rather for diagnostic work. Acceleration signals

accentuate the low amplitude, high frequency signals for diagnostics.
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To monitor conditions for operating gears, the AGMA specification recommends a conservative guideline limit of a

constant 10 Gs of casing accel eration above 600 Hz.

Table A.11 summarizes the recommended limits for overall unfiltered casing velocities. Table A.12 gives
the vibration severity per SO criteria.

Table A.11: Recommended Limits for Overall Casing Velocity

Peak Velocity Classification

Lessthan 0.15 ips (3.8 mm/sec) Acceptable

0.15t00.25ips (3.8 — 6.3 mm/sec) Tolerable

. B May be tolerable for moderate periods of time
0.25100.41ips (6.3 — 10 mm/sec) Monitor closdly to warn of changes
0410 0.6 ips (10 — 15 mm/sec) Impending failure; watch closaly for changes and

be prepared to shut down for repairs

Above 0.6 ips (15 mm/sec) Danger of immediate failure




Table A.12: Vibration Severity Criteria per 1SO 2372 and 3945

Ranges OéeR\?;ii?J Vibration Quality Judgment for Separate Classes of Machines
RMS Vel ocity measured
inthe 10-1000 Hz frequency band | ¢jass1 | Classil | Classlll | Class1V
mm/sec in/sec
0.71 0.028 A
A
A
112 ) A
0.044 5
1.8 0.071 5
2.8 0.11 c 5
4, Mk
5 0.18 c B
7.1 0.2
8 C
11.2 0.44
D C
18 0.71 D
D
D
45 1.8
MACHINE CLASSES
CLASS | Small Machines to 20 HP
CLASS Il Medium Machines 20 to 100 HP
CLASS Il Large Machines 10-200 rev/sec, 400 HP and Larger Mounted on Rigid
Supports
CLASS IV Large Machines 10-200 rev/sec, 400 HP and Larger Mounted on Flexible
Supports
ACCEPTANCE CLASSES
A = GOOD B = SATISFACTORY C = UNSATISFACTORY D =
UNACCEPTABLE

A.6.5 Accelerated Test Plan

The accelerated testing will involve creating mechanical conditions of imbalance and misalignment that
would lead to unacceptable vibration levels based on above criteria tables.
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Initialy (Test #1), the machine will be aligned to acceptable levels then balanced to (CLASS | per Table
A.12). The second step will be to determine the amount of imbalance in 0z-in necessary to bring the
machine to adegraded level based on bearing casing vibration (Test #10). Test # 2 to Test # 9 will be an
gpproximate succession of trends from motor good operating condition to motor degraded condition
based on bearing vibration. An imbaance condition will be created by adding calculated weights a a
specific machine location. Resulting vibration levels will be monitored. Imbalance weights will be
interpolations based on the force-response linear relationship. Angular misalignment is easier to control
than parale misaignment and will be implemented during these tests. An acceptable shaft aignment for
the system will be determined (Test #1). Then, an unacceptable misaignment (maximum degraded
condition) for the pump/motor will be determined (Test #10). The shaft angle (offset) will be incremented
from alignment condition (Test #1) to misaignment condition (Test # 10), to produce eight more tests
(from #2 to #9). Overdl vibration levels and non-synchronous harmonic components of the vibration
signd will be monitored for aignment condition.

The following table summarizes the various tests that would be conducted aong with the necessary
vibration monitoring data (Trend Plots and Spectra).

Table A.13: Test Plan

Test#|1 [2 [3 [4 |5 |6 |7 [8 [9 J10

Imbalance (0z-in) 0.0

Vibration (in/sec)

Acceptance Class A D

Emax File (CD) 001 |[002 |003 | 004 | 005 [ 006 | 007 | 008 | 009 | 010

Misalignment (deg) | 0.0

Vibration (in/sec)

Acceptance Class A D

Vibration Spectra #

Emax File (CD) 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110
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A.7 Detailed Specifications of the Data Acquisition Equipment

Emax is a dynamic tester (see Figure A.17) that utilizes state of the art technology to collect data while the motor is
operating. This information can be used to evaluate incoming power quality and motor efficiency, as well as rotor,
stator, air gap and power circuit conditions. The data can be analyzed immediately or recalled later for trend

analysis.

Static testing can also be dne with Emax providing a detailed analysis of motor and circuit condition.
This feature alows diagnogtic and evauation of al five of the motor's fault zones including the power
circuit, insulation, stator, rotor and air gap. Emax dlows testing of al mgjor types of motors: induction,
synchronous, wound rotor, DC, servo and spindle.

Figure A.17: Motor Testing I nstrument — Emax (Courtesy PAMA)

The Emax system is portable (13" x 18" x 3.5” in size), lightweight (17 |bs.), and operates in typical plant
conditions (5 - 35 °C at 20 - 80% humidity). The Emax system simultaneoudly collects all three phases of
current and voltage to provide spectral and digital datain the areas of:

Power

Motor Current Signature Analysis
Efficiency

Crest factor

Total Harmonic Distortion (THD)
Sequence Data

Power Factor

Impedance



Current
Voltage
A.8 Test Data for Subsequent Analysis by ORNL

The specific data that will be acquired during these tests involves six channels of data: three voltages and
three currents from each from each of the three phases for the pump motor, as shown in the Figure A.18.

;,Tq_ Fowar Analpsiz - [Volage and Currant]
fy; Fle View Window Coneeiiens Sefinge  Help =] =

[addhote | | CordtionCode | Capire | |
T T —— r—ry | Elum.l i Hjm““"
Loir | | ir [on| C[Pe st PRV
F1l Fiz Fi13 Fivi Fivz FIv3 CV120 V23 CVI3  Poba Saling | Fhasor Dingiem
[itts| zssp| g653| arec| sesss| apsnal zesd1| esere| asost| geass| 04300 LenFl) =i 5':*

Woleme (W]

Figure A.18: Motor Signatures (Courtesy PAMA)
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The Emax system is battery powered and uses a PCMIA card to measure and acquire datathe three-phase
voltages and currents, as shown summarized below.

Probe Current Range  Accuracy Resolution

PR-430  0-40 amps +- 1% +/-10mA
0-400amps +/- 1% +/-100mA

PR- 1030 0-100 amps +- 1% +/- 100mA
0-1000 amps +/- 1% +/- 100mA

PR — 3000 0-300amps  +/- 1%(range) +/- 0.3mA
0-3000 amps +/- 1%(range) +/- 30mA

L ocation Voltage Range Accuracy

Direct Line 0-600v +/- .6%

Secondary No Limit +/- .6% + PT error

Test Sampling Rate M ax Frequency Resolution
High Resolution 480/ sec 0-240 Hz 8000 lines
Low Resolution 960 / sec 0-480 Hz 8000 lines
Eccentricity 12,288 / sec 0-6000 Hz 8000 lines

PAMA Corp. (5909-C Hampton Oaks Parkway, Tampa, FL 33610 www.pdma.com) provided
DE&S with a modified software package for the Emax system to do these experiments. This
modified sysem can measure and acquire Sx sSmultaneous channels a 12,288 Hz per channd
over a tota time of 85.3 seconds for a totd of 1048576 samples for each channd. The test
capabilities under the Advanced Insulation System include AC dandard, DC sandard, rotor
influence check, polarization index, didectric absorption ratio, step voltage tesdts. Acquisition
cgpabilities are summarized in the Table below.




RANGE RESOLUTION |ACCURAC RANGE RESOLUTION| ACCURAC
Y Y
CAPACITANCE GROUND RESISTANCE (Standard Test)
1000 - 999,750 250 pF +/- 1% 0- 100 Mohm .1 Mohm +- 1%
100 - 500 Mohm +/- 2.5%
500 - 1000 Mohm +/- 5%
1000 - 2000 Mohm +/- 5%
DC RESISTANCE INDUCTANCE (300 H2)
0-.018 Ohm .00001 Ohm| +/- 1% 100 - 250 mH dmH +- 1%
.018 - 1.8 Ohm .0005 Ohm 250 - 500 mH S5 mH
1.8- 50 Ohm .005 Ohm 500 - 1000 mH 1mH
50 - 1000 Ohm .01 Ohm 1000 - 1500 mH 25 mH +- 2%
1000 - 2000 Ohm .1 Ohm 1500 - 2500 mH 5mH
2500 - 3500 mH 10 mH +/- 5%
3500 - 5000 mH 25 mH
GROUND RESISTANCE (All Tests)** INDUCTANCE (1200 H2)
40K - 200 Gohm 5% of range +/- 1% 0-10mH .005 mH +- 1%
10- 50 mH .01 mH
50 - 100 mH .05mH
100 - 250 mH 1 mH

GROUND RESISTANCE (PI/DA Testing)

0- 100 Mohm JdMohm|  +/- 5%

100 - 500 Mohm 1Mohm| +/-5%
500 - 1000 Mohm 10 Mohm| +/- 109%
1000 - 2000 Mohm 100 Mohm| +/- 10%
2000 - 3500 Mohm 100 Mohm|  +/- 20%




Refer ences
[1.] “Nuclear Power Reliability Data System”, INPO — EPIX (ex. NPRDS).

[2] M. Subudhi,W.E. Gunther, and JH. Taylor, “Improving Motor Reliability in Nuclear Power Plants.
V.1: Performance Evaluation and Maintenance Practices’, NUREG CR-4939, 1987.

[3.] “Electric Motor Predictive and Preventive Maintenance NMAC report NP-7502,
1992
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